
Formalising Generalised Substitutions

Jeremy E. Dawson12

1 Logic and Computation Program, NICTA ⋆

2 Automated Reasoning Group,
Australian National University, Canberra, ACT 0200, Australia

http://users.rsise.anu.edu.au/∼jeremy/

Abstract. We use the theorem prover Isabelle to formalise and machine-
check results of the theory of generalised substitutions given by Dunne
and used in the B method. We describe the model of computation implicit
in this theory and show how this is based on a compound monad, and
we contrast this model of computation and monad with those implicit
in Dunne’s theory of abstract commands. Subject to a qualification con-
cerning frames, we prove, using the Isabelle/HOL theorem prover, that
Dunne’s results about generalised substitutions follow from the model of
computation which we describe.
Keywords: general correctness, generalised substitution

1 Introduction

In [7] Dunne gave an account of general correctness, which combines the concepts
of partial correctness and total correctness, arguing for its utility in analysing the
behaviour of programs. He defined a language of “abstract commands”, giving
several basic abstract commands and operators for joining them, for which he
gave rules in terms of weakest liberal preconditions and termination conditions.
In [6] we considered this abstract command language and described the oper-
ational interpretation of the abstract commands, showing how it is based on a
compound monad. We used the automated theorem proving system Isabelle to
prove that the operational interpretation implies the rules given by Dunne.

In [3] Chartier formalised the operations of the B method of Abrial [1] in
Isabelle/HOL. He formalised generalised substitutions as an abstract type com-
prising the trm and prd functions and a list of variables involved in the substi-
tution. Defining the generalised substitution operations in terms of trm and prd,
he proved that these definitions are equivalent to those of Abrial’s definitions in
terms of the weakest precondition functions.

In [8] Dunne considered the generalised substitutions used in the B method.
He developed the notion of the frame of a substitution, the variables “involved”
in it, and defined generalised substitution operations in terms of frames and

⋆ National ICT Australia is funded by the Australian Government’s Dept of Commu-
nications, Information Technology and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Centre of Excellence program.

weakest preconditions. He then proved a number of properties of these gener-
alised substitutions. In contrast to [7], this theory is based on total correctness.

In this paper we formalise this theory of generalised substitutions, using a
similar approach to our work on abstract commands in [6], and using some of
its results. That is, we develop a model of computation and define the theory in
terms of it. We then find that this enables us to derive the previous definitions
and results as consequences of our formulation. These results are proved using
the Isabelle/HOL theorem prover, see [5]. We have also performed, in Isabelle,
proofs of other results of Dunne in [8], of which details are in the Appendix.

We find that the model of computation we use is also based on a compound
monad, and provides an interesting example of a distributive law for monads.
Furthermore, this distributive law is also a monad morphism from the monad of
[6] to the monad described in this paper.

2 The Operational Models

In [7] Dunne argued that general correctness provides a better framework for
program refinement than either total or partial correctness, and its relative sim-
plicity is supported by the results at the end of [6, §3.2]. However the theory of
generalised substitutions as used in the B method is based on total correctness,
so that when two generalised substitutions with the same frame are equivalent
in total correctness, they are regarded as the same, although they may not be
equivalent in terms of general correctness. So we need to model program (state-
ments) in such a way that two such generalised substitutions are equal.

So we describe the two operational models. Firstly, we review the operational
model of [6], which we used for abstract commands, based on general correctness.
Then we describe the model, on which this paper is based, which fits the total

correctness framework of generalised substitutions. We describe these models, at
first without reference to frames, which we discuss in §4. Furthermore, where we
state that we have proved a result of Dunne [8], this will usually refer to the
result as modified by deleting reference to the frames of the substitutions.

2.1 The General Correctness Operational Model

To express that a command can either terminate in a new state or fail to ter-
minate, in [6] we considered command outcomes, where an outcome is either
termination in a new state or non-termination. Then we model a command as
a function, of type state → outcome set, from states to sets of outcomes. Com-
mands are equal if the corresponding functions are equal: that is, we have an
extensional definition of equality. This model can distinguish between a com-
mand which (when executed in a particular given state) must fail to terminate
from one which may or may not fail to terminate. Since Dunne’s treatment of
abstract commands [7] distinguished between two such commands, this model
was effective in considering abstract commands. However a theory of total cor-
rectness, using weakest preconditions (which are satisfied only when a command
is guaranteed to terminate), does not distinguish between two such commands.

2

2.2 The Total Correctness Operational Model

For the total correctness model, we model a generalised substitution as a function
returning either the tag NonTerm, indicating possible non-termination, or Term

S, indicating guaranteed termination in one of the states contained in the set
S. Note that this implies an extensionsal definition of equality: substitutions are
equal iff they are equal considered as functions of the appropriate type.

To do this we declare the Isabelle datatype

datatype σ TorN = NonTerm | Term σ

where σ is a type variable. This means that a value of the type σ TorN is either
the tag NonTerm or a member of the type σ, tagged with the tag Term. (Thus the
type outcome of [6] is state TorN). We then define the type tcres to be state set

TorN, that is, either non-termination, or termination in (one of) a set of states.
(As in Isabelle, we write a type constructor after the type.)

Then we model a generalised substitution as a function of type state → tcres.
For a generalised substitution C, we define [C] (or wp C, the weakest precondition
of C) for post-condition Q and initial state s, as follows. Then, from it, we define
total correctness refinement ⊑tc. By P −→ Q we mean ∀s. P s → Q s.

[C] Q s = ∃S. (∀x ∈ S. Q x) ∧ C s = Term S

A ⊑tc B = ∀Q. [A] Q −→ [B] Q

"wp_tc C Q s == EX S<=Collect Q. C s = Term S"

"ref_tc A B == ALL Q. wp_tc A Q ---> wp_tc B Q"

The definition makes it clear that refinement is a preorder. We then obtain a
direct characterisation of refinement, and, from it, we show (as ref_tc_antisym)
that two generalised substitutions A, B (of type state → tcres) are refinement-
equivalent if and only if they are equal in our operational model. Thus refinement
is a partial order. This confirms that the operational model above is appropriate
for total correctness refinement and equivalence. The related result wp_tc_inj

is useful for proving the equality of two generalised substitutions.

ref_tc_alt = "ref_tc A B ==

ALL s SA. A s = Term SA --> (EX SB<=SA. B s = Term SB)"

ref_tc_antisym = "[| ref_tc A B; ref_tc B A |] ==> A = B"

wp_tc_inj = "wp_tc A = wp_tc B ==> A = B"

2.3 The Total Correctness Compound Monad

In [6, §3.1] we showed that the general correctness operational monad gave a
monad, which we will call the outcome set monad. See [6, §3.1] for a brief dis-
cussion of monads, or Wadler [10] for further information. We now find that the
type tcres, relative to the type state, is a monad, the total correctness monad.

To define a monad M , we need to define the unit and extension functions,
of the types shown. The unit function models the command which does nothing

3

(skip) and the extension function is used to model sequencing of commands since
ext A models the action of command A on the output of a previous command.
We then need to show that the unit and extension functions satisfy the following
rules required for a monad.

unit : α → αM

ext : (α → βM) → (αM → βM)

ext f ◦ unit = f (1)

ext unit = unit (2)

ext (ext g ◦ f) = ext g ◦ ext f (3)

As a standard result (see [10]), a monad can be characterised either by the
three functions unit, map and join, and seven axioms involving these functions,
or the functions unit and ext and the three axioms shown above. Rule (3) lets
us define sequencing of commands, A; B (or seq A B) = ext B ◦A, and, as in [6,
§3.1], the associativity of seq (which obviously ought to hold!) follows from (3).

We have that tcres = state set TorN. Each of the type constructors set and
TorN with their associated unit and extension functions, is a monad. It does not
follow, however, that tcres (relative to state) is a monad.

To prove that the total correctness monad is in fact a monad, we used the
results of Dawson [4], which develop those of Jones & Duponcheel [9]. As in
[9], we consider the composition of two monads M and N , but as in Isabelle,
we write a type constructor after the type, so the compound monadic type is
αNM . We write extNM , extM , extN for the extension functions of NM, M , N .

To get a compound monad, we need the function extNM , which “extends”
a function f from a “smaller” domain, α, to a “larger” one, αNM . Consider,
therefore, a “partial extension” function which does part of this job:

extNM : (α → βNM) → (αNM → βNM)

pext : (α → βNM) → (αN → βNM)

The following rules and definitions are sufficient to define a compound monad
using such a function pext.

pext f ◦ unitN = f (4)

pext unitNM = unitM (5)

pext (extNM g ◦ f) = extNM g ◦ pext f (6)

extNM g = extM (pext g) (7)

unitNM = unitM ◦ unitN (8)

We now give the definitions for our particular monads N = set and M = TorN,
the suffix tc indicating the total correctness monad.

unit tc : state → tcres

prod tc : tcres set → tcres

pext tc : (state → tcres) → state set → tcres

ext tc : (state → tcres) → tcres → tcres

4

unit tc s = Term {s} (9)

prod tc S = NonTerm if NonTerm ∈ S (10)

prod tc (Term‘S) = Term (
⋃

S) (11)

pext tc A S = prod tc (A‘S) (12)

ext tc A S = ext o (pext tc A) S (13)

where ext o is the extension function of the TorN monad (see [6]), given by

ext o f NonTerm = NonTerm (14)

ext o f (Term s) = f s (15)

and f ‘S is Isabelle notation for {f s | s ∈ S}.
We have proved, in Isabelle, the following result. We did this by proving rules

(4) to (6), noting that (7) and (8) follow directly from our definitions.

Theorem 1. σ set TorN is a compound monad.

2.4 Relation to the outcome set monad

Jones & Duponcheel [9] also use a function swap : αMN → αNM to define a
compound monad. As they show, when such a function swap can be defined,
satisfying certain conditions S(1) to S(4), then the compound monad αNM can
be constructed. Equivalently, the function swap is a distributive law for monads,
see Barr & Wells [2, §9.2]. Jones & Duponcheel also use the function prod as
above, and give conditions for defining a compound monad in terms of prod.

In fact the total correctness monad can be defined using swap. In this case
M is the outcome monad, and N is the set monad, and swap is a function

swap tc : σ TorN set → σ set TorN

swap tc S = NonTerm if NonTerm ∈ S (16)

swap tc (Term‘S) = Term S (17)

Here, definition (16) reflects the fact that, in total correctness, a command that
may fail to terminate is equivalent to one which will fail to terminate.

Our Isabelle proofs included the conditions S(1) to S(4) of [9], and so we also
have shown that swap tc is a distributive law for the monads.

The function swap tc : σ TorN set → σ set TorN is also a monad morphism

from the outcome set monad to the total correctness monad. We have proved
the following theorems (which characterise a monad morphism), where unit os

and ext os are the unit and extension functions for the outcome set monad, as
defined in [6, §3.1]:

unit os : state → outcome set

ext os : (state → outcome set) → outcome set → outcome set

unit tc a = swap tc (unit os a) (18)

ext tc (swap tc ◦ f) (swap tc x) = swap tc (ext os f x) (19)

5

Since this monad morphism is surjective, we could use the fact that the
outcome set monad satisfies the monad axioms to give an alternative proof to
show that the total correctness monad also satisfies them.

Often, where two monads can be composed to form another monad, the
construction depends on one of them, and the other may be arbitrary. Thus, as
discussed in [6, §3.1], the TorN monad can be composed with any other monad
M to give a compound monad, which gave the outcome set monad. In this case
we have that the type σ set TorN is a monad (relative to σ), but it does not
seem to be an example of a more general construction, in that for an arbitrary
monad M , neither σ M TorN nor σ set M is in general a monad.

We also proved the following theorem about abstract commands. Dunne’s
treatment of general correctness in [7] includes a definition of total correctness
refinement, which is referred to as totcref in the result below. This result also
confirms that the operational model of §2.2 is appropriate for total correctness.
For two abstract commands A, B (of type state → outcome set) the left-hand side
says A ⊑ B according to the total-correctness refinement relation for abstract
commands, as defined and discussed in [7] and [6, §3.2]. The right-hand side says
that the refinement relation for generalised substitutions holds of the projections
of A and B into the type state → tcres.

ref_tc_swap = "totcref A B = ref_tc (swap_tc o A) (swap_tc o B)"

Often in this work, we drew upon [6], using the fact that if two abstract com-
mands are equal, then so are their projections into the total correctness monad.

3 The Generalised Substitutions

Frames Dunne has also defined that each substitution has a frame. Loosely, this
is the set of variables which “might” be affected. Note, however, that frame(x :=
x) = {x}. Also, from any command a new command may be defined which has
an enlarged frame but is otherwise the same.

Stating the frame of a command does not contribute to a description of what
the command, considered in isolation, does. Thus when we show, for example,
that two commands behave the same way, we do so without considering their
frames. Indeed, the substitution skip and x := x behave the same way, but have
different frames. Likewise, it is impossible to deduce the frame of a substitution
from its behaviour. The work in this section proceeds on this basis. Therefore
the results are therefore subject to the proviso that two generalised substitutions
are in fact distinct if their frames differ.

On the other hand, the specified frame of a substitution does have an effect
in that the parallel composition S‖T depends on the frames of S and T — that
is, if the frames of S or T are extended, then that changes S‖T .

Variables Indeed, for many generalised substitution operations, we do not need
to consider variables at all: rather, we can consider a machine state abstractly.

6

For others, we need to consider a state as a map from variables (variable names)
to values. As discussed at greater length in [6], where Q is a predicate on states,
we may use the notation Q[x := E] to mean Q, with occurrences of x replaced
by E, when Q is written in the command language, or some similar notation.
This is found in the wp rule for assignment, and in the related Hoare logic rule.

wp(x := E, Q) = Q[x := E] {Q[x := E]} (x := E) {Q}

In fact we could take Q[x := E] to be defined as follows. Considering expres-
sion E as a function from states to values, Q[x := E] s = Q (s[x := E s]) where,
for state s, s[x := E s] means the function s, changed at the domain point x.
(though using this as a definition makes the wp rule above rather trivial, since
assignment will be defined to take state s to state s[x := E s]).

3.1 Meaning of Commands

skip, magic, abort [8, §3.1, §3.3] skip is the command which is feasible, termi-
nates and does nothing to the state. It is exactly the function unit tc. It follows
immediately from the monad laws (1) and (2) that skip is an identity for the
binary function seq tc. These are proved in Isabelle as seq_tc_unitL/R.

We define magic and abort in terms of the operational model, as magic_tc_def
and abort_tc_def; then with these definitions, we then prove Dunne’s defini-
tions, as magic_alt and abort_alt (using precon_tc and guard_tc, see below).

As abort always fails to terminate, it fails to satisfy any post-condition. On
the other hand, magic is always infeasible: while not suffering non-termination,
it cannot produce any result which fails to satisfy any given post-condition, so
it satisfies every post-condition. So we also prove that magic and abort are the
top and bottom members in the lattice of generalised substitutions [8, §7].

magic_tc_def = "magic_tc s == Term {}"

abort_tc_def = "abort_tc s == NonTerm"

magic_alt = "magic_tc = guard_tc (%s. False) unit_tc"

abort_alt = "abort_tc = precon_tc (%s. False) unit_tc"

top_magic_tc = "ref_tc C magic_tc"

bot_abort_tc = "ref_tc abort_tc C"

preconditioned command, guarded command [8, §3.1] The preconditioned
command P |A is the same as A except that, if P does not hold, then P |A need
not terminate. The guarded command P =⇒ A is the same as A if P holds,
but is infeasible (it cannot reach any outcome, that is, it cannot run) if P does
not hold. Dunne defines both of these by giving the formula for their weakest
precondition. We define them using precon_tc_def and guard_tc_def, and
then prove Dunne’s definitions as precon_wp_tc’ and guard_wp_tc.

precon_tc_def = "precon_tc P C s == if P s then C s else NonTerm"

guard_tc_def = "guard_tc P C s == if P s then C s else Term {}"

precon_wp_tc’ = "wp_tc (precon_tc P C) Q s = (P s & wp_tc C Q s)"

guard_wp_tc = "wp_tc (guard_tc P C) Q s = (P s --> wp_tc C Q s)"

7

termination, feasibility [8, §5] We define

"trm_tc C s == C s ~= NonTerm"

"fis_tc C s == C s ~= Term {}"

We can then prove Dunne’s definition of trm and fis, and his results in [8, §5]:

trm_alt = "trm_tc C = wp_tc C (%s. True)"

fis_alt = "fis_tc C = Not o wp_tc C (%s. False)"

pc_trm_tc = "precon_tc (trm_tc A) A = A"

fis_guard_tc = "guard_tc (fis_tc A) A = A"

strongest_guard = "(guard_tc g A = A) = (fis_tc A ---> g)"

strongest_pc = "(precon_tc pc A = A) = (trm_tc A ---> pc)"

sequencing [8, §3.1] As mentioned earlier, we define sequencing of commands
using ext tc, as shown in seq_tc_def. Dunne defines it by giving the weakest
precondition of A; B, and we prove this result, as seq_wp_tc, from our definition.

seq_tc_def = "seq_tc A B == ext_tc B o A"

seq_wp_tc = "wp_tc (seq_tc A B) Q = wp_tc A (wp_tc B Q)"

choice In [8, §3.1] Dunne defines a binary operator, A2B, for bounded choice:
A2B is a command which can choose between two commands A and B. Again,
Dunne defines this by giving its weakest precondition. This is a special case of
choice among an arbitrary set of commands. In the total correctness setting,
where choice tc C can fail to terminate if any C ∈ C can fail to terminate, we
define choice tc as shown below.

As the definition is rather unintuitive, we show the types of some of its parts.
Recall that if the type σ represents the machine state, then a command has type
σ → σ set TorN. The definition is unintuitive perhaps because where pext is used
(indirectly) in defining sequencing of commands, the types α and β are both the
state type σ. But in the use of pext below, α is the type of commands.

choice tc C s = pext (λC. C s) C

choice tc : (σ → σ set TorN) set → σ → σ set TorN

pext : (α → β set TorN) → α set → β set TorN

λC. C s : (σ → σ set TorN) → σ set TorN

pext (λC. C s) : (σ → σ set TorN) set → σ set TorN

When the definition is expanded (choice_tc_def’’ in the Isabelle proofs), it
shows that if {C s |C ∈ C} contains NonTerm then choice tc C s = NonTerm; if
{C s |C ∈ C} = {Term SC |C ∈ C}, then choice tc C s = Term(

⋃
C∈C

SC).
We obtained the following results, relating the distribution of sequencing over

choice. The theorem seq_choice_tcL was obtained as an easy corollary of rule
(6), obtained in the course of the proofs about the total correctness monad. We
also proved a result giving the weakest precondition of choice tc, which is the
generalisation of Dunne’s definition of A2B, and from which it easily follows
that choice tc C is the glb of the set C. Proposition 7 of [8, p288] follows.

8

seq_choice_tcL =

"seq_tc (choice_tc Cs) B = choice_tc ((%C. seq_tc C B) ‘ Cs)"

seq_choice_tcR = "Cs ~= {} ==>

seq_tc A (choice_tc Cs) = choice_tc (seq_tc A ‘ Cs)"

choice_wp_tc = "wp_tc (choice_tc Cs) Q s = (ALL C:Cs. wp_tc C Q s)"

choice_glb_tc = "ref_tc A (choice_tc Cs) = (ALL C:Cs. ref_tc A C)"

We note that for many generalised substitutions, the definition may be ob-
tained by translation from the definitions in [6] for abstract commands. For
example, for choice tc we could have defined choice tc C in terms of choice A
for any set A of abstract commands corresponding to the set C of generalised
substitutions. Alternatively, we can relate our definitions to the definitions of
the corresponding abstract commands, where seq, precon, guard and choice

are the corresponding operations on abstract commands: [6, §3.4].

seq_tc = "seq_tc (swap_tc o A) (swap_tc o B) = swap_tc o seq A B"

precon_tc = "precon_tc P (swap_tc o A) = swap_tc o precon P A"

guard_tc = "guard_tc P (swap_tc o A) = swap_tc o guard P A"

choice_tc = "choice_tc (op o swap_tc ‘ As) = swap_tc o choice As"

where (op o swap_tc ‘ As) means {swap tc ◦ A | A ∈ As} (We have sim-
ilar results for magic_tc, abort_tc, trm_tc and fis_tc also). These results
enable us to prove many results for generalised substitutions from the corre-
sponding results for abstract commands. In some cases, such as for the theorem
choice_wp_tc, this provided much simpler proofs in Isabelle.

3.2 Monotonicity

For developing a program by starting with a generalised substitution (expressing
a program specification), and progressively refining it to a concrete program,
it is important that the generalised substitution constructors are monotonic
with respect to the refinement relation (⊑). All the constructors mentioned are
monotonic. We proved these results in Isabelle as (for example)

seq_tc_ref_mono = "[| ref_tc A1 B1; ref_tc A2 B2 |] ==>

ref_tc (seq_tc A1 A2) (seq_tc B1 B2)"

rephat_ref_mono = "ref_tc A B ==> ref_tc (rephat A) (rephat B)"

3.3 Repetition and Iteration for the General Correctness Model

In [7, §7] Dunne defined A0 = skip and An+1 = A; An, and we proved that
An+1 = An; A. From this we defined repall A s =

⋃
n

Ans, that is, repall A is
the (unbounded) choice of any number n of repetitions of A; it terminates iff for
every n, An terminates (proved as repall_term).

In [7, §12] Dunne defined the repetitive closure A∗ of A, where the outcomes
of A∗ are those of repall, augmented by NonTerm in the case where it is feasible
to execute A infinitely many times sequentially (calling this an “infinite chain”).

9

Thus, in [6, §3.5] we defined a function infch, where infch A s means that it is
possible to execute A infinitely many times sequentially, starting in state s.

So we had the following definition, from which we proved various results from
[7], including characterisations of repall and repstar as fixpoints.

repstar C state == repall C state Un

(if infch C state then {NonTerm} else {})

A Coinductive Definition In [6, §3.5] we defined the concept of an infinite
chain explicitly, in terms of the existence of an infinite sequence of states through
which the executing program can pass. Some of these Isabelle proofs involving
this definition were quite difficult.

Subsequently we used Isabelle’s coinductive definition facility to give a more
elegant definition of an equivalent notion: infchs A is the set of states from which
it is possible to execute A infinitely many times sequentially. We also defined
inductively a set icnt A, which we showed is equivalent to {s | NonTerm ∈ A∗ s}.

The Isabelle definitions are:

coinductive "infchs A"

intros I : "Term ns : A s ==> ns : infchs A ==> s : infchs A"

coinductive "icnt A"

intros NTI : "NonTerm : A s ==> s : icnt A"

icI : "Term ns : A s ==> ns : icnt A ==> s : icnt A"

This defines infchs A to be the unique maximal set satisfying

infchs A = {s | ∃s′. Term s′ ∈ A s ∧ s′ ∈ infchs A}

Then Isabelle’s coinductive definition facility provides a coinduction principle:

a ∈ X ∀z.z ∈ X ⇒ ∃s′.Term s′ ∈ A z ∧ s′ ∈ X ∪ infchs A

a ∈ infchs A

and similarly for icnt. We then proved that s ∈ infchs A if and only if infch A s

holds, and that s ∈ icnt A if and only if NonTerm ∈ A∗ s. This made some other
proofs considerably easier than before.

3.4 Repetition and Iteration for the Total Correctness Model

For the total correctness model we used analogous definitions. We used a coin-
ductive definition to define infchs tc C, the set of states from which it is possible
to execute C infinitely many times sequentially and an inductive definition for
reach NT C, the set of states from which NonTerm is reachable.

coinductive "infchs_tc C" intros

"C s = Term S ==> ns : S ==> ns : infchs_tc C ==> s : infchs_tc C"

10

inductive "reach_NT C"

intros "C s = NonTerm ==> s : reach_NT C"

"C s = Term S ==> ns : S ==> ns : reach_NT C ==> s : reach_NT C"

Then we define icnt tc C, using the same introduction rules as for reach NT C,
but in a coinductive definition, not an inductive definition. We then prove that
icnt tc C = reach NT C ∪ infchs tc C, and can relate icnt tc to icnt.

icnt_alt = "icnt_tc C = reach_NT C Un infchs_tc C"

icnt_tc = "icnt_tc (swap_tc o A) = icnt A"

Also using an inductive definition, we define treach A s to be the set of
states reachable from s using A repeatedly.

In [8, §8.2] Dunne defines the generalised substitution C∧. He defines it as
the least fixed point in the refinement ordering µX. (C; X)2skip. For us to
define it in that way would require showing that the least fixed-point exists:
in [8, §8.1] Dunne discusses why this result holds. Rather than proving this
result in Isabelle, we define C∧ using the operational interpretation (suggested
in [8, §8.2]) that the result of C∧ is the states reachable by repeating C, but
with the result NonTerm either if NonTerm is reachable by repeating C or if
an infinite sequence of executions of C is possible. We then proved that C∧,
defined thus, is in fact the least fixed-point of λX. (C; X)2skip. The proofs were
more difficult than the corresponding ones for abstract commands, mentioned
in [6], and it was necessary to use a range of lemmas, including some of those
mentioned in §2.3. We can relate the total correctness repetition constructs to
those for general correctness, using swap tc (for example, rephat_star below).
We proved Dunne’s examples, magic∧ and skip∧. We also defined a function
repall_tc, analogously to repall (see §3.3), and showed that C∧ could instead
have been defined, analogously to A∗, using it. Among the following, rephat_def
and fprep_tc_def are definitions.

rephat_def = "rephat C state ==

if state : icnt_tc C then NonTerm else Term (treach C state)"

fprep_tc_def = "fprep_tc A X ==

X = choice_tc {seq_tc A X, unit_tc}"

rephat_isfp = "fprep_tc A (rephat A)"

rephat_is_lfp = "fprep_tc A Y ==> ref_tc (rephat A) Y"

rephat_star = "rephat (swap_tc o A) s = swap_tc (repstar A s)"

rephat_magic = "rephat magic_tc = unit_tc"

rephat_skip = "rephat unit_tc = abort_tc"

Dunne then defines the if and while constructs as follows [8, §9]:

if tc G then S else T end ≡ (G =⇒ S)2 (¬G =⇒ T)

while tc G do S end ≡ (G =⇒ S)∧ ; ¬G =⇒ skip

From these we are then able to prove an alternative definition for if and the
usual programming definition for while:

11

if_tc_prog = "if_tc G A B s = (if G s then A s else B s)"

ifthen_tc_prog =

"ifthen_tc G A s = (if G s then A s else Term {s})"

while_tc_prog =

"while_tc G A = ifthen_tc G (seq_tc A (while_tc G A))"

3.5 The prd predicate

[8, §5] The “before-after” predicate prd relates the values of the variables in the
frame before execution of the command to their values after the command. It is
defined in [8, §5] as prd (S) ≡ ¬[S](s 6= s′) where s = frame(S) and s′ are new
(logical) variables corresponding to the program variables s. Implicitly, prd (S)
depends on s′; (s 6= s′) is a post-condition on the values of s after executing S.

First we define prd_tc which assumes that the frame consists of all variables.
Then, for the analysis of prd_tc, it is possible to treat the state as abstract.

"prd_tc s’ C == Not o wp_tc C (%s. s ~= s’)

where s’, of type state, represents the values s′. We note a difference between
the definitions of [8, §6] and [7, §10]: in the former, if S does not terminate from
state s, then prd(S)s does hold.

As a sort of inverse to this definition, we derived wp_prd_tc, an expression
for wp in terms of prd, namely [S]Q = trm S ∧ ∀s′. prd(S) → Q. This was
suggested by a similar result in [7, §10].

We also derived [8, §13, p287, Proposition 7] as ref_tc_prdt.

wp_prd_tc = "wp_tc A Q s =

(trm_tc A s & (ALL s’. prd_tc s’ A s --> Q s’))"

ref_tc_prdt = "ref_tc A B = ((trm_tc A ---> trm_tc B) &

(ALL s’. prd_tc s’ B ---> prd_tc s’ A))"

3.6 The least upper bound

[8, §7] In §3.1 we showed that, in the refinement ordering, the greatest lower
bound of a set of commands is given by the choice command. To describe the
least upper bound lub S T of S and T is more difficult. We might expect that
[lub S T] Q = [S]Q ∨ [T]Q but this is not so. For if S x = Term {yS} and
T x = Term {yT}, where yS 6= yT , then (lub S T) x = Term {} and so [lub S T] Q x

holds. But if neither Q yS nor Q yT hold, then ([S]Q ∨ [T]Q) x does not hold.
However in [8, §7] Dunne gives a characterisation of the least upper bound of

the set of generalised substitutions on a given frame: we prove this result, applied
to a set of abstract states, as lub_tc. As a corollary of this general result, we get
ACNF_tc, giving Dunne’s normal form, [8, §11, Proposition 4], again in terms of
abstract states. These results use the functions at_tc and pc_aux. The function
at_tc is analogous to atd of [6, §4.2], and is used to express Dunne’s unbounded
choice over a set of logical variables. The function pc_aux_tc is used here and in
§7, and pc aux C s = Term S, where S consists of those states which every C ∈ C
can reach from initial state s (we proved this in Isabelle as pc_aux_alt2).

12

at_tc_def = "at_tc Ad == choice_tc (range Ad)"

pc_aux_def = "pc_aux Cs == at_tc

(%s’. guard_tc (%s. ALL C:Cs. prd_tc s’ C s) (%s. Term {s’}))"

lub_tc =

"ref_tc (precon_tc (%s. EX C:Cs. trm_tc C s) (pc_aux Cs)) A =

(ALL C:Cs. ref_tc C A)"

ACNF_tc = "A = precon_tc (trm_tc A)

(at_tc (%s’. guard_tc (prd_tc s’ A) (%s. Term {s’})))"

Having found the least upper bound of a set of generalised substitutions us-
ing the function pc_aux, we now derive an expresson for weakest precondition of
pc_aux C in terms of {[C] |C ∈ C}, using a function we called lub_pt. We then
proved that lub_pt gives the least upper bound of a set of predicate transform-
ers, provided that they are conjunctive (and so monotonic). This is not enough
to deduce that pc_aux C is the least upper bound of C since weakest precondi-
tion functions fail to be conjunctive, where non-termination is involved. Thus
the theorem lub_tc contains the termination precondition. In §3.8 we discuss
how generalised substitutions correspond to predicate transformers satisfying
the non-empty conjunctivity condition.

Here mono_pt T means that T is monotonic. and conj_pt T Q s means
that T is conjunctive in relation to a given set Q of predicates and state s.
The results lub_pt_lub, lub_pt_ub and lub_pt_is_conj, together show that,
among conjunctive predicate transformers, lub_pt gives the least upper bound.

pc_aux_wp = "wp_tc (pc_aux Cs) = lub_pt (wp_tc ‘ Cs)"

lub_pt_def = "lub_pt Ts Q x == ALL Q’:Qcs Q. EX T:Ts. T Q’ x"

Qcs_def = "Qcs Q == (%y x. x ~= y) ‘ (- Collect Q)"

lub_pt_lub = "[| ALL Qs. conj_pt T Qs s;

ALL U:Us. ALL Q. U Q s --> T Q s; lub_pt Us Q s |] ==> T Q s"

lub_pt_ub = "[| mono_pt T; T : Ts |] ==> T Q ---> lub_pt Ts Q"

lub_pt_is_conj = "conj_pt (lub_pt Ts) Qs s"

conj_pt_def = "conj_pt T Qs s ==

T (%s. ALL Q:Qs. Q s) s = (ALL Q:Qs. T Q s)"

3.7 Parallel Composition

[8, §6] Here we describe this in the case where the frames of the commands are the
set of all program variables. This enables us to treat the machine state abstractly.
We define the parallel composition according to Dunne’s informal description:
S||T can terminate in a state s only if both S and T can terminate in s (but we
define parallel composition of an arbitrary set of generalised substitutions). The
“else” part of pcomprs_tc amounts to pcomprs_tc (Term ‘S) = Term (

⋂
S).

From this we then derive Dunne’s definition, pcomp_tc_alt. We then derive the
further results given in [8, §6], and also prd_pcomp_tc, a variant of his expression
for prd(S||T) which generalises directly to give the parallel composition of an
arbitrary set of generalised substitutions.

13

pcomp_tc_def = "pcomp_tc Cs s == pcomprs_tc ((%C. C s) ‘ Cs)"

pcomprs_tc_def = "pcomprs_tc rs ==

if NonTerm : rs then NonTerm else Term (Inter (sts_of_ocs rs))"

pcomp_tc_alt = "pcomp_tc Cs ==

precon_tc (%s. ALL C:Cs. trm_tc C s) (pc_aux Cs)"

trm_pcomp_tc = "trm_tc (pcomp_tc Cs) s = (ALL C:Cs. trm_tc C s)"

prd_pcomp_tc = "prd_tc s’ (pcomp_tc Cs) s =

(trm_tc (pcomp_tc Cs) s --> (ALL C:Cs. prd_tc s’ C s))"

prd_pcomp_tc2 = "prd_tc s’ (pcomp_tc {A, B}) s =

((trm_tc B s --> prd_tc s’ A s) &

(trm_tc A s --> prd_tc s’ B s))"

pcomp_choice_tc = "pcomp_tc {B, choice_tc (insert A As)} =

choice_tc ((%a. pcomp_tc {B, a}) ‘ insert A As)"

3.8 Healthiness Conditions and positive conjunctivity

[8, §10.1] Dunne asks whether any choice of frame and predicate transformer
gives a generalised substitution. He gives three necessary conditions, that is,
properties of generalised substitutions. Of these, (GS1) is relevant only when
the definitions of frame(S) and [S] are given at a syntactic level — they must
then be well-defined at the semantic level. Here we are working at the semantic
level. Condition (GS3) in effect says that a generalised substitution has no effect
outside its frame. However, we look at condition (GS2) which says that a gener-
alised substitution [S] distributes through all non-empty conjunctions (of post-
conditions): we prove this as wp_tc_gen_conj. Given a predicate transformer T ,
the result ACNF_tc enables us to determine the generalised substitution C such
that, if T is a weakest precondition, then T = [C]. This gives us the definition
gs_of_pt_def and the theorem gs_of_pt. We then prove (as pt_gc_gs) that if
T is any predicate transformer satisfying the non-empty conjunctivity condition,
then T = [gs of pt T]. That is, the generalised substitutions correspond to the
predicate transformers satisfying the non-empty conjunctivity condition.

wp_tc_gen_conj = "Q : Qs ==>

wp_tc C (%s. ALL Q:Qs. Q s) s = (ALL Q:Qs. wp_tc C Q s)"

gs_of_pt_def = "gs_of_pt T == precon_tc (T (%s. True))

(at_tc (%s’. guard_tc (Not o T (%st. st ~= s’)) (%s. Term {s’})))"

gs_of_pt = "T = wp_tc C ==> C = gs_of_pt T"

pt_gc_gs = "[| ALL Q Qs s. Q : Qs --> conj_pt T Qs s;

C = gs_of_pt T |] ==> T = wp_tc C"

3.9 Properties of Substitutions

We proved the results of Proposition 1 of [8, §10.2], and of Proposition 2 (shown).

trm_or_prd_tc = "trm_tc S s | prd_tc s’ S s"

prd_tc_imp_fis = "prd_tc s’ S ---> fis_tc S"

14

fis_or_wp_tc = "fis_tc S s | wp_tc S Q s"

wp_imp_trm_tc = "wp_tc S Q ---> trm_tc S"

Our Isabelle proofs of other results of Dunne [8] are listed in the Appendix.

4 Frames and Variable Names

So far, we have viewed a command as a function from a state to either NonTerm
or a set of new states, and a condition as a predicate on states. In this treatment,
the view of a state was abstract. However, as in [6, §4], we also need to discuss
frames, and the values of program variables.

In our Isabelle model, as in [6, §4], the program variable names are of type
’n (eg, strings) and they take values of type ’v, where ’n and ’v are Isabelle
type variables. As a state is an assignment of variables to values, we have the
type definition state = name → value, or, in Isabelle, state = "’n => ’v".

In Dunne’s formulation [7, §7], each generalised substitution comes decorated
with a frame, and the frame of the new command is defined individually for each
generalised substitution constructor: for example

frame (A2B) = frame (A||B) = frame(A) ∪ frame(B)

However we are unable to give an exact semantic meaning to the frame in a
similar sense to the meaning we have given to commands so far. The frame
may be thought of as a set of variables “potentially” set by a command, but
it can be larger than the set of variables actually set by the command. The
frame may be smaller than the set of variables read by the command, and two
commands which have the same operational behaviour can have different frames.
This means that whereas we can deduce the weakest precondition of a generalised
substitution from its operational behaviour, we cannot deduce its frame. (We
could confirm that it does not change variables outside its defined frame, but
this seems straightforward, and we have not done it in Isabelle).

Certain of Dunne’s results involving frames can be seen to follow easily from
the results earlier which treat the state abstractly. Thus, to see Proposition 4 in
its full generality, you consider the state as consisting of only the variables in the
frame, and apply the theorem ACNF_tc. Similarly to get Dunne’s characterisation
of the lub of two generalised substitutions with the same frame u, you just apply
lub_tc to the state consisting only of the variables in u.

We now describe how to express some of Dunne’s other results involving
frames, and prove them. The condition x\Q is defined to mean that no variable
of x appears free in Q. Since we view Q semantically rather than syntactically,
we defined indep x Q to be the condition that changing the value, in a state
s, of a variable in x does not change Q s. In proving these results we also rely
on the fact that a generalised substitution S does not change variables outside
frame(S). So we defined frame_tc S F to mean that F could be the frame of S,
ie, that S does not change variables outside F . In this way we proved the frame
circumscription result [8, §10.1, (GS3)], and [8, Proposition 3].

Note that (Q V R) s ≡ Q s ∨ R s and (Q && R) s ≡ Q s ∧ R s.

15

GS3 = "[| frame_tc S F; indep F Q |] ==>

wp_tc S Q s = (trm_tc S s & (fis_tc S s --> Q s))"

prop3 = "[| frame_tc S F; indep F R |] ==>

wp_tc S (Q V R) = (wp_tc S Q V trm_tc S && R)"

5 Conclusion

We have formalised a computational model suggested by the notion of total
correctness underlying the B method, and have proposed definitions for the
generalised substitution operators in terms of this model. We have shown that
this model and these definitions do in fact imply the characterisations of these
operators in terms of weakest preconditions. We have proved these results in
Isabelle [5], and have also proved the other results of Dunne in [8] (although not
dealing explicitly with frames). Thus we have used formal verification to confirm
a body of theory underlying a widely used program development methodology.

We have shown how the computational model is derived from a compound
monad, and have compared this model and monad with those arising from
Dunne’s theory of abstract commands in [7]. We have shown how the monad
arises from a distributive law, which is in fact a monad morphism.

Acknowledgements Finally, I would like to thank Steve Dunne and some anony-
mous referees for some very helpful comments.

References

1. J-R Abrial. The B-Book: Assigning Programs to Meanings. CUP, Cambridge, 1996.
2. Michael Barr and Charles Wells. Toposes, Triples and Theories. Springer-Verlag,

1983, or see http://www.cwru.edu/artsci/math/wells/pub/ttt.html
3. Pierre Chartier. Formalisation of B in Isabelle/HOL. In Recent Advances in the

Development and Use of the B Method, Second International B Conference (B’98),
Lecture Notes in Computer Science 1393, Springer 1998, 66–83.

4. Jeremy E Dawson. Compound Monads and the Kleisli Category. Unpublished note.
http://users.rsise.anu.edu.au/∼jeremy/pubs/cmkc/

5. Jeremy E Dawson. Isabelle files, at http://users.rsise.anu.edu.au/∼jeremy/

isabelle/fgc/
6. Jeremy E Dawson. Formalising General Correctness. In Computing: The Aus-

tralasian Theory Symposium (2004), ENTCS 91 (2001), 21–42. http://www.

elsevier.com/locate/entcs
7. Steve Dunne. Abstract Commands: A Uniform Notation for Specifications and Im-

plementations. In Computing: The Australasian Theory Symposium (2001), ENTCS
42 (2001), 104–123. http://www.elsevier.com/locate/entcs

8. Steve Dunne. A Theory of Generalised Substitutions. In Formal Specification and
Development in Z and B, 2nd International Conference of B and Z Users, Grenoble,
2002 (ZB 2002), Lecture Notes in Computer Science 2272, Springer 2002, 270–290.

9. Mark P Jones & Luc Duponcheel. Composing Monads. Research Report
YALEU/DCS/RR-1004, Yale University, December 1993

10. Wadler, Philip, The Essence of Functional Programming. In Symposium on Prin-
ciples of Programming Languages (POPL’92), 1992, 1–14.

16

