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Introduction

Several sorts of refinement suggested by Dunne.

General Correctness

Total Correctness

Chorus Angelorum

Each is based, implicitly or explicitly, on a notion of what a
computation is, an underlying “model of computation”

Each underlying “model of computation” is based on a monad

Each of these monads is, or is somewhat like, a compound monad
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The General Correctness Operational Model

Want to distinguish computations which (on a given initial state)

fail to terminate

terminate in final state s

non-deterministically, either of the above

Neither wlp / partial correctness
nor wp / total correctness does this.

General correctness refinement (Dunne):

A ⊑ B ≡ wp(A,Q) ⇒ wp(B ,Q) ∧ wlp(A,Q) ⇒ wlp(B ,Q)
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The General Correctness Operational Model
Type of Computations

A computation (on given state) produces a set of outcomes.
An outcome is either

NonTerm, indicating non-termination, or

Term s, indicating termination in the state s.

In Isabelle: datatype σ TorN = NonTerm | Term σ

For a non-deterministic computation (from given initial state),
result is a set of outcomes.

type outcome = TorN state

type of computations is state → set TorN state
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The Total Correctness Operational Model

Related to semantics of the B-method,
only interested in total correctness (weakest preconditions).

A computation which may fail to terminate fails every
post-condition.

Such computation is refinement-equivalent to a computation which
does fail to terminate.

Type of results is either

NonTerm, indicating possible non-termination, or

Term S , indicating termination in a state s ∈ S .

type of result tcres (“total correctness result”) = TorN set state

type of computations is state → TorN set state

weakest precondition function (hence refinement):

[C ] Q s = ∃S . (∀x ∈ S . Q x) ∧ C s = Term S



Introduction The Operational Models The Monads used in these Models

The Chorus Angelorum Operational Model

Ordinarily, non-determinism is demonic choice
(all possible results must satisfy post-condition ≡
the result chosen by a demon satisfies post-condition)

Want to model angelic and demonic non-determinism

Computation returns a set of sets A of states:

angel chooses set A ∈ A

demon chooses state a ∈ A

weakest precondition function (hence refinement):

[C ] Q s = ∃U ∈ C s. (∀u ∈ U. Q u)

If A ∈ A, A′ ⊇ A, to include A′ in A, or not, makes no difference:
consider only A up-closed: if A′ ⊇ A and A ∈ A then A′ ∈ A.
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Confirming the Models

In each case, to confirm model is appropriate,

we show two computations refinement-equivalent iff they are
the same function (of type used in model)

we define operations operationally, and prove these definitions
correspond to Dunne’s definitions (which use weakest
preconditions)

(Caveat: we ignore “frames”).

Note: all proofs in the theorem prover Isabelle/HOL
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Monads

Long known in category theory.

Define unit and extension functions, satisfying rules

unit : α → Mα

ext : (α → Mβ) → (Mα → Mβ)

ext f ◦ unit = f

ext unit = id

ext (ext g ◦ f ) = ext g ◦ ext f

or functions unit, map and join (7 axioms for these)

Can represent the structure of a computation (Moggi)
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Monads — the Kleisli category

ext B models the action of B on result of previous computation

Define B ⊙ A = ext B ◦ A : sequencing computations B and A.

f ⊙ unit = f (1)

unit ⊙ f = f (2)

h ⊙ (g ⊙ f ) = (h ⊙ g) ⊙ f (3)
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Monads — the Kleisli category

ext B models the action of B on result of previous computation

Define B ⊙ A = ext B ◦ A : sequencing computations B and A.

f ⊙ unit = f (1)

unit ⊙ f = f (2)

h ⊙ (g ⊙ f ) = (h ⊙ g) ⊙ f (3)

Properties (1) to (3) show that we have a category:

objects are types

arrow from α to β is function α → Mβ,

the identity arrow for object α is the function unit : α → Mα

composition is given by ⊙.

Called the Kleisli category of M, K(M).
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Monads — Examples

The non-termination monad: a computation either terminates in a
new state, or fails to terminate.

unit nt s = Term s

map nt f NonTerm = NonTerm map nt f (Term s) = Term (f s)

ext nt f NonTerm = NonTerm ext nt f (Term s) = f s
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Monads — Examples

The non-termination monad: a computation either terminates in a
new state, or fails to terminate.

unit nt s = Term s

map nt f NonTerm = NonTerm map nt f (Term s) = Term (f s)

ext nt f NonTerm = NonTerm ext nt f (Term s) = f s

The set monad: models non-deterministic (but necessarily
terminating) computations.

unit s s = {s} join s A =
⋃

A

map s f S = {f s | s ∈ S} ext s f S =
⋃

s∈S
f s
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Compound Monads

Let M and N, each with unit and extension functions, be monads.

Then is MNα a monad? Need unitMN : α → MNα and extMN

extMN “extends” a function f from domain α to MNα.

pext, “partial extension”, does part of this

extMN : (α → MNβ) → (MNα → MNβ)

pext : (α → MNβ) → (Nα → MNβ)
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Compound Monads

Let M and N, each with unit and extension functions, be monads.

Then is MNα a monad? Need unitMN : α → MNα and extMN

extMN “extends” a function f from domain α to MNα.

pext, “partial extension”, does part of this

extMN : (α → MNβ) → (MNα → MNβ)

pext : (α → MNβ) → (Nα → MNβ)

Definitions using pext for a compound monad

extMN g = extM (pext g)

unitMN = unitM ◦ unitN
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Compound Monads — rules for pext

pext also must satisfy three rules

pext f ◦ unitN = f

pext unitMN = unitM

pext (extMN g ◦ f ) = extMN g ◦ pext f

unitMN and pext are the unit and extension functions of a monad
in the category K(M), whose Kleisli category is also K(MN).
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Compound Monads — Distributive Law

Jones & Duponcheel: two conditions, J(1) and J(2),
which compound monads may satisfy.

Assuming unitMN = unitM ◦ unitN and mapMN = mapM ◦ mapN ,
compound monads arise from a function pext iff J(1) holds

Compound monads satisfying J(1) and J(2) are those arising from
a distributive law swap : NMα → MNα

A distributive law satisfies S(1) to S(4) of Jones & Duponcheel

swap = pext (mapM unitN)
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The General Correctness Compound Monad

Want set TorN α is a monad;
in fact, for any monad M, M TorN α is a monad

pext : (α → M TorN β) → (TorN α → M TorN β)

pext f (Term a) = f a

pext f NonTerm = unitM NonTerm

Proof of pext axioms easy.

Arises from a distributive law: swap = pext (mapM unitN), so

swap gc : TorN set α → set TorN α

swap gc NonTerm = {NonTerm}

swap gc (Term S) = {Term s | s ∈ S}
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The Total Correctness Compound Monad

Recall tcres = TorN set state.

pext tc : (state → tcres) → set state → tcres

defined using
prod tc : set tcres → tcres

prod tc S = NonTerm if NonTerm ∈ S

prod tc {Term s | s ∈ S} = Term (
⋃

S)
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The Total Correctness Compound Monad
A Distributive Law and Monad Morphism

Total Correctness monad also arises from a distributive law:

swap tc : set TorN σ → TorN set σ

swap tc S = NonTerm if NonTerm ∈ S

swap tc {Term s | s ∈ S} = Term S
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Relating the General and Total Correctness monads

swap tc : set TorN σ → TorN set σ is also a monad morphism
from the general correctness monad to the total correctness monad.

unit tc a = swap tc (unit gc a)

ext tc (swap tc ◦ f ) (swap tc x) = swap tc (ext gc f x)

Since it is surjective, could use monad axioms for general
correctness monad to prove axioms for total correctness monad.
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The Chorus Angelorum Monad
up-closure, swapping angel and demon

Result A : set set state (up-closed):
angel chooses A ∈ A, demon chooses a ∈ A.

Alternative model: demon chooses first, then angel.

swap uc turns angel-chooses-first result into demon-chooses-first.

up cl : the up-closure of a set of sets.

swap uc A = {B | ∀A ∈ A. B ∩ A 6= {}}

up cl A = {A′ | ∃A ∈ A. A ⊆ A′}
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The Chorus Angelorum Monad
up-closure, swapping angel and demon

Result A : set set state (up-closed):
angel chooses A ∈ A, demon chooses a ∈ A.

Alternative model: demon chooses first, then angel.

swap uc turns angel-chooses-first result into demon-chooses-first.

up cl : the up-closure of a set of sets.

swap uc A = {B | ∀A ∈ A. B ∩ A 6= {}}

up cl A = {A′ | ∃A ∈ A. A ⊆ A′}

up cl (up cl A) = up cl A swap uc (swap uc A) = up cl A

swap uc (up cl A) = swap uc A up cl (swap uc A) = swap uc A

So work on equivalence classes of sets of sets of states
A ≡ A′ iff up cl A = up cl A′

each equivalence class has exactly one up-closed member.
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The Chorus Angelorum Monad
proofs of monad rules

try to prove S(1) to S(4) (to show distributive law):
cannot, but we can prove them modulo up-closure, eg

swap uc A = up cl (map s unit s A) S(2)′

swap uc (map s unit s A) = up cl A S(3)′

proofs of the monad axioms for set set α

(again, some equalities only modulo up-closure)
difficult, but imitated usual proofs from S(1) to S(4)

defined type ucss α : up-closed sets of sets
(ie, a representative of each equivalence class)

defined the monad functions for the ucss α type

translated results about set set α to ucss α: it is a monad!
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The Chorus Angelorum Monad
Link to Continuation Monad

First, recall functions used by Jones & Duponcheel

join : M N M N α → M N α prod : N M N α → M N α

dorp : M N M α → M N α swap : N M α → M N α

Think of M (N) as a set from which angel (demon) chooses.

“evaluation function” eval uc : set set α → (α → bool) → bool,

eval uc A P tells whether the post-condition P is satisfied when
angel and demon have made their choices from A.

eval uc B P ≡ ∃B ∈ B. ∀b ∈ B . P b.

(α → bool) → bool is type of continuation monad K α

Ball and Bex : set α → (α → bool) → bool, ie : set α → K α

express quantification over a given set: Ball S P ≡ ∀s ∈ S . P s
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The Chorus Angelorum Monad
Link to Continuation Monad – ctd

eval uc = Ball ⊙K Bex

eval uc ◦ swap uc = Bex ⊙K Ball

Using obvious isomorphism K α → set set α, called K to SS :

join uc = K to SS ◦ (Ball ⊙K Bex ⊙K Ball ⊙K Bex)

dorp uc = K to SS ◦ (Bex ⊙K Ball ⊙K Bex)

prod uc = K to SS ◦ (Ball ⊙K Bex ⊙K Ball)

swap uc = K to SS ◦ (Bex ⊙K Ball)

ext uc f = K to SS ◦ (Ball ⊙K (Bex ◦ f ) ⊙K Ball ⊙K Bex)

pext uc f = K to SS ◦ (Ball ⊙K (Bex ◦ f ) ⊙K Ball)
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Angelic and Demonic Choice

We defined these as follows (simplified by

omitting conversion between the set set α and ucss α types

assuming up-closed families of sets)

dem B s =
⋂

{B s | B ∈ B}

ang B s =
⋃

{B s | B ∈ B}

giving these results (which would normally be the definitions)

[dem B] Q s = ∀B ∈ B. [B ] Q s

[ang B] Q s = ∃B ∈ B. [B ] Q s
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