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Abstract. We compare several methods of implementing the display
(sequent) calculus dRA for relation algebra in the logical frameworks
Isabelle and Twelf. We aim for an implementation enabling us to for-
malise within the logical framework proof-theoretic results such as the
cut-elimination theorem for dRA and any associated increase in proof
length. We discuss issues arising from this requirement.
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1 Introduction and Motivation

Relation algebras [13] are extensions of Boolean algebras; whereas
Boolean algebras model subsets of a given set, relation algebras model
binary relations on a given set. Thus relation algebras have operations
such as relational composition and relational converse. As each relation is
itself a set (of ordered pairs), relation algebras also have the Boolean op-
erations such as intersection (conjunction) and complement (negation).
Relation algebras form the basis of relational databases [6] and of the
specification and proof of correctness of programs.

Display Logic [1] is a generalised sequent framework for non-classical
logics, based on the Gentzen sequent calculus [7]. Its advantages include
a generic cut-elimination theorem, which applies whenever the rules for
the display calculus satisfy certain, easily checked, conditions. It is an
extremely general logical formalism, applicable to many (classical and
non-classical) logics in a uniform way [10], [21]. The generality of the dis-
play framework means that essentially the same meta-level proofs work
for many different logics. A rigorous mechanical formalisation of such
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proofs is then widely applicable and worth pursuing. In this paper we
discuss the implementation of dRA, a display calculus for relation alge-
bras, as a case study for exploring various methods for such a mechanical
formalisation of display calculi in general.

Display calculi extend Gentzen’s language of sequents with extra, com-
plex, n-ary structural connectives, in addition to Gentzen’s sole struc-
tural connective, the “comma”. Whereas Gentzen assumed the comma
to be associative, commutative and inherently poly-valent, display calculi
make no such implicit assumptions. Properties such as these are explicitly
stated as structural rules. For example, dRA-sequents are built using a
binary comma, a binary semicolon, and unary * and e structural connec-
tives. Thus, whereas Gentzen’s sequents I' F A assume that I and A are
comma-separated lists of formulae, dRA-sequents X Y assume that X
and Y are complex tree-like structures built from formulae together with
comma, semicolon, * and e.

The defining feature of display calculi is that in all logical introduction
rules, the principal formula is always “displayed” as the whole of the right-
hand or left-hand side. For example, the rule (LK- F V), shown below left,
is typical of Gentzen’s sequent calculi like LK, while the rule (§RA- F V)
shown on the right is typical of display calculi:

I'-APQ
I'FAPVQ

XFPQ

(LK- + V) YIPVO

(6RA-F V)
Intuitively, to use this display calculus rule downwards on a sequent
X' F Y’ everything other than (P, Q) must be moved into the complex
structure X on the left of |, thereby displaying the structure (P, Q) as
the whole of the right-hand side. There are rules which enable any given
structure to be displayed. After the rule application we can “undisplay”
the moved material back to its original position (reversing the display
steps used), so that the sole purpose of this rule is to “rewrite” some
(P, Q) to PV Q somewhere inside Y. See [9] for a full account.

Isabelle is an automated proof assistant [17]. Its meta-logic is an intu-
itionistic typed higher-order logic, sufficient to support the built-in infer-
ence steps of higher-order unification and term rewriting. Isabelle accepts
inference rules of the form “from «aq,aq,...,qa,, infer 37 where the «;
and 3 are expressions of the Isabelle meta-logic, or are expressions using
a new syntax, defined by the user, for some “object logic”. An Isabelle
user can encode a particular calculus Cy, for some logic L as an “object
logic” by using these rule templates to encode the set of inference rules
for Cr,. For example, if Cr, is a natural deduction calculus, then the o; and



B will be formulae of L, whereas if Cj, is a sequent calculus, then the «;
and 3 will be sequents of Cr. Such an encoding is called an “object logic”,
even though it is a (typically natural deduction or sequent) calculus for
some particular logic L. In practice most users would build on one of the
comprehensive “object logics” already supplied [18].

Twelf [20] is an implementation of the Edinburgh Logical Frame-
work (LF) [11], which is based on a typed A-calculus with dependent
types. Logics are represented using a judgements as types principle, where
each judgement of the form Iz : @ F y : P is identified with the
types of its proofs. Twelf also accepts inference rules of the form “from
aq,Qa,...,0,, infer 67, But now, the rule is expressed as the declaration
of a A-calculus term of type a; — as — ... — a,, — (. Once again, if the
calculus we are trying to capture is a natural deduction calculus, then
the o; and 3 will be formulae (types), but if the calculus is a sequent
calculus, then the a; and § will be sequents (types).

In an earlier paper [4], we described the Isabelle implementation of
0RA, a display calculus for relation algebra [9], as an object logic of
Isabelle. In that paper we described how we had used the implementation
to prove results comparing alternative formalisations of relation algebra
from a proof-theoretic perspective. However we had not proved those
results themselves in Isabelle, in the sense we now explain.

Suppose we have a logic L (in the sense of a set of formulae which we
regard as valid with respect to some semantics) and two calculi P and
Q for L (each consisting of axioms and inference rules). Further suppose
that we have mechanical implementations of P and Q. Then one can use
the implementation of P to derive in P every axiom and rule of Q. One
could then go outside the mechanical system and argue (by induction
on the size, or on the structure, of a Q-derivation) that therefore every
Q-derivable object (typically a formula or sequent) is also P-derivable.

The results referred to in [4] were proved in this manner. An alter-
native and, when one’s aim is the mechanical proof of proof-theoretical
results, better, approach would be one which enabled the inductive ar-
gument, above to be carried out in the mechanical theorem-prover. This
would require a different style of implementation of the calculi P and Q
in the prover, so as to enable reasoning about the shape and form of P-
derivations and Q-derivations. Typically this would require modelling, in
the theorem prover, the “tree” of steps used in a derivation and the fact
that each step is an instance of a rule of the calculus P or Q; this in turn
requires modelling the form of the statement of an inference rule of P or
Q, and a method of obtaining particular substitutional instances of such



rules of inference. The terms “shallow embedding” and “deep embedding”
are often used to distinguish these styles of implementation [2].

Providing both shallow and deep embeddings leads to the possibility
of linking the two implementations to give an efficient theorem prover
for dRA, in the shallow embedding, but making use of proof-theoretic
results proved in the deep embedding. We would then have a theorem
prover based directly on machine-checked proof theory.

The only other example of a deep embedding of a logical calculus of
which we know is found in Mikhajlova and von Wright [15], in which they
compare classical first-order logic calculi. We contrast our approach with
theirs in Section 5.

In this paper we describe work done so far towards a “deep embed-
ding” of dRA. We explored the possibility of implementation in Twelf,
Isabelle/CTT and Isabelle/HOL. In the subsequent sections we describe
the original Isabelle/Pure implementation and this further work.

Acknowledgements We are grateful to Paul Jackson, Randy Pollack and
Mark Staples for many useful discussions on the notions of “shallow”
and “deep” embeddings, and to Frank Pfenning and Larry Paulson for
answering our questions about T'welf and Isabelle.

2 The Isabelle/Pure implementation

Isabelle is an interactive computer-based proof system, described in [17].
Its capabilities include higher-order unification and term rewriting. It
is written in Standard ML [16]; when it is running, the user can inter-
act with it by entering further ML commands, and can program com-
plex proof sequences in ML. As stated previously, the basic Isabelle con-
structs available to a user include inference rule templates of the form

“from aq,Qa,...,q,, infer 7. These can be used “forwards”, to obtain
G from the «;, or “backwards”, to reduce a given goal 3 to subgoals
Qa1,Q9,...,0,. Isabelle provides a number of basic operations for back-

wards proof and proof-search (tactics), as well as tacticals for combining
these. Isabelle also supports forward proof.

The inference rules collectively form a simple meta-logic: an intu-
itionistic typed higher-order logic. There are three logical operators: ==>
(implication, or deducibility), == (equality, or substitutability), and !!
(universal quantification). For example, [| Al; A2 |] ==> B, which is
an abbreviation for A1 ==> (A2 ==> B), is the Isabelle representation for
“from a1, ag, infer 5”. These operators satisfy certain properties arising



from their intended meanings. For example, since [| Al; A2 |] ==> B
means that 3 can be deduced from a7 and as, it should also be possible to
deduce 3 from as and «;. Indeed, using Isabelle, we can prove a new rule
that states “if (from o, ag, infer 3) is a rule, then (from as, aq, infer 3)
is a rule”, as shown below:

[l [I A1; A2 |1 ==> B |] ==> ([| A2; A1 |] ==> B).

That is, ==> can be seen as the analogue of the horizontal bar used to
state rules in a natural deduction system, in which the order of premises
is not significant. Likewise, since A == B means that A can be replaced
by B, or vice versa, == is reflexive, symmetric and transitive.

This meta-logic is known as Isabelle’s Pure theory. Mostly the user
would augment this by defining additional constants to capture the syntax
of the object logic. For example, to capture set theory, we would add a
constant mem (say) to stand for the € symbol, while sequents would require
constants ‘|-" and ‘,’. Several such object logics are packaged with the
Isabelle distribution [18]. Once these syntactic elements of the object
logic are in place, we can build object-logic expressions into the «; and .
For example, in dRA, the (F V) rule uses the meta-logical operator ==>
discussed above, and could be entered as

"[l $X |- P, Q |] ==>$X |- P v Q".

where the $ distinguishes R A-structures such as X from dRA-formulae
such as P. This rule is an instance of the form “from « infer 5”.
However dRA was implemented in Isabelle directly on top of the Pure
theory, so that the only inference rules available are those of dRA. As
far as the Isabelle meta-logic is concerned, we can think of its atomic
propositions as the formulae of the object-logic. In this case these are
dR A-sequents of the form X Y, built using object-logic “connectives”
L0, R, fel A, V7, ete. These can be combined into more complex
Isabelle propositions using the Isabelle meta-logic connectives ==>, ==
and !!. Thus each Isabelle proposition is either a dRA sequent X Y,
or is made up of sequents combined into inference rules using the three
Isabelle/Pure logical operators. It follows that expressions such as X |-
(P ==> Q) or A v (B ==> C) are not possible. Note that the «; and 3
as discussed above would most commonly simply be dRA-sequents, but
could be “complex” Isabelle propositions, such as X |- P ==>Y |- Q.
We may declare axioms and inference rules of the dRA calculus to
Isabelle. For example, the sequent p - p is an initial sequent (axiom) in
ORA; thus it is declared in Isabelle as a rule, P |- P, with no premises.



Similarly, each rule of dRA is declared as an Isabelle rule, as in the
example of the (- V) rule above. This becomes an Isabelle theorem con-
taining the metalogical implication operator ==>. That this is a shallow
embedding is reflected in the fact that the horizontal bar of sequent rules
becomes the Isabelle ==> operator. In a deep embedding, as in Section 4,
the horizontal bar also becomes an object-level constant.

In this shallow embedding, access to and manipulation of the shape
of dRA constructs (ie, sequents, structures, formulae) and derivations
was provided only at the ML level. For example, in [4] we described hav-
ing programmed a procedure to perform cut-elimination for dRA. The
input to this was a JRA derivation (represented as a tree of sequent
rule instances), and the output was a derivation not containing an in-
stance of the cut rule. This required examining the shape of a derivation
(represented as a tree of dRA rule instances) and of the Isabelle terms
representing sequents. While the shape of an Isabelle term is easily ac-
cessible (by ML code), a derivation step is represented as a function; a
complex derivation is the composition of functions representing the ele-
mentary derivation steps. Therefore, to look at the shape of a derivation
(for example, to ask what rule was used in the final JRA inference step)
involved changing the Isabelle code somewhat, so as to record the elemen-
tary dRA rules used and to construct a derivation-tree while a derivation
was being performed.

What we aim to do (as described later) is to perform the cut-
elimination proof entirely within a theorem prover (rather than writing a
cut-elimination program in ML). We will therefore need to model deriva-
tion trees within the language of the theorem prover. We would also need
to model the set of elementary inference rules of the calculus, so as to be
able to say that every rule in a given derivation tree is an instance of one
of the inference rules in that calculus.

In [4] we also described using the Isabelle dRA implementation to
show the soundness of certain other calculi for relation algebra. In these
cases, we in fact showed that all the axioms and rules of the other calculi
were derivable in dRA. The argument that followed, namely that there-
fore an entire derivation in one of those other calculi could have been
performed in dRA, was outside the scope of the mechanical theorem
prover.

Again, doing this within the theorem prover would have required mod-
elling the shape of sequents or formulae of the calculus in question, of
derivations, and of the rules used in them. This was done by Mikhajlova



and von Wright [15] in their comparison of classical first-order logic proof
systems.

3 Dependent Type Theory implementations

3.1 Introduction

In a dependent type theory, a type may be parametrised not only over a
type variable, but also over a term variable. This, coupled with the judge-
ments as types principle (where a judgement is identified with the types
of its proofs) enables us to express the derivation of a display calculus
derived rule.

A simpler situation where the Curry-Howard isomorphism can be seen
is in the simply-typed A-calculus and a natural deduction calculus NDInt
for intuitionistic propositional logic. Let A and B be formulae, and 7 be a
derivation of A in NDInt. Suppose also that A — B is derivable in NDlInt,
and consider an NDInt-derivation of A — B where one assumes A and
derives B. That is, it is a derivation of B in which A is regarded as true;
at the points where A is used, it would contain some notation £ meaning
“true by assumption”. Let p(£) be this derivation of B. So if we substitute
7 (the derivation of A) for £ in p(§), we get a derivation p(7) of B which
does not rely on A as an assumption.

Then, using 7 : A to mean “rm is a derivation of A”, we can write the
rule

T A p(): A— B
p(m) : B

Erasing the annotations m, p and ‘’ gives the well-known (— F)
natural deduction rule for intuitionistic logic; the rule as it stands also
shows how to derive B. As indicated above, we can equally think of p(.)
as a derivation of A — B or as a function which takes, as argument, a
derivation of A such as m, and returns a derivation of B. If we also think
of A as the type “derivations of proposition A” (and similarly for B) we
get the functional type-theory interpretation, under which A — B means
the type of functions which take an argument of type A and return a
result of type B. (Conveniently, the same symbol ‘=’ is conventionally
used for both purposes.)

Dependent types extend what can be done in the simply-typed A-
calculus in two distinct ways. Firstly, consider a type I of individuals,
and a parametrised type A(i); that is, for each individual i € I, there is




a type A(7). Consider a function p whose domain is 1, such that for each
i € I, p(i) € A(7). The type of such a function is written [[¢ : 1.A(7)
(denoting how the type of p(i) depends on the value of 7).

Now let A be a predicate, and therefore each A(7) be a proposition
(taking the value true or false), and let each p(i) be a derivation of A(7).
That is, p is a function which, for each individual i, gives a derivation
of A(i); we can think of such a p as a derivation of ViA(i). At the same
time, if we think of each type A(i) as the type “derivations of proposition
A(7)”, then the functions p of type [[i : I.A(i) are the derivations of
ViA(7).

Secondly, we install an object logic at the level of terms, so that the
expressions (formulae or sequents) of the object logic become terms of the
dependently-typed A-calculus. That is, we can install a syntax for terms
using the syntax of the chosen object logic, and declare a type constructor
P(.), so that for each term ¢, P(t) will mean “derivation of expression t”.
This was our approach for modelling dRA.

Regarding a formula ¢ as derivable when we have a term of type
P(t) has certain consequences. For example, since from functions of type
X —>Z,U—-=V —>Wand S - S — T we can construct functions
oftype X - Y - Z,V - U — W and S — T, we unavoidably
have weakening, exchange and contraction. Note, however, that in our
formulation of dRA, these are at the meta-logic level, not in the object
logic.

Two theories based on dependent types are the Edinburgh Logical
Framework (LF) [11] and Constructive Type Theory (CTT) [14].

3.2 The Twelf implementation

Twelf [20] is an implementation of the Edinburgh Logical Framework (LF)
[11]. This is based on a typed A-calculus with dependent types. Twelf is
written in Standard ML, and the user can interact with the system using
its “ML Interface”, but only a very limited range of functions is available.
Figure 1 is an extract of our Twelf source file.

Line 1 declares str as a new type to represent the dRA structures.
Line 2 declares |- as a binary type constructor, taking two term ar-
guments of type str and returning a type. If we followed the general
description above, we would declare seq as a new type to represent the
dRA sequents, and P as a function taking a term argument of type seq
and returning a type, thus:



1 str : type.
|- : str -> str -> type. %infix none 10 |-.
3 * : str -> str. Yprefix 200 x*.

4 % Display postulates
5 sA: (xX [-Y) > (xY |- X).
6 sS: X |-*Y) => (Y |- *X).

7 % Derived structural rules
8 ssAS1 = [D] sA (sSD). % (X |- % *xY) -> (x *x X |-Y)

Fig. 1. Sample Twelf source code

seq : type.
|- : str -> str -> seq. %infix nomne 10 |-.
P : seq -> type.

The actual code in Figure 1 abbreviates this by removing the type
constructor P and (in effect) changing |- from a term constructor to
a type constructor. Thus, for structures X and Y, the construct X |- Y
represents derivations of the sequent X F Y. Line 3 declares * as a unary
structure operator. Lines 4 and 7 are comments.

In lines 5 and 6 the terms sA and sS are declared with the types that
represent derivations of the dRA rules (see [9]) shown below:

*X Y X FxY

v x &4 v Eax 55

We can think of these declarations as assertions that there are deriva-
tions (which we name sA and sS) of these rules, or as defining these as
“primitive” rules (one-step derivations).

Now, treating sA and sS (which stand for “star in the antecedent” and
“star in the succedent”) as functions each taking a derivation of a sequent
to a derivation of another sequent, they can be composed for some given
sequent U F x x V' as follows

derivation of sg derivation of sp  derivation of
UFxxV =5 *xV F U =5 xxUFV

The definition of ssSA1 does this; the notation means AD.sA(sS D). Twelf
computes the type of the function ssSA1, giving (S1 F *%S52) — (xxS1HF
S2). Note that X,Y,S1 and S2 are variables (S1 and S2 being names
chosen by Twelf).



In a manner akin to Prolog [5], Twelf offers the facilities to make a
query such as

ssAS1 @ (X1 |- * * Y1) -> (x * X1 |- Y1).

which searches for a term of the specified type (ie, searches for a deriva-
tion of the stated rule) and instantiates _ssAS1 with that term. In this
example, because Twelf allows substituting for X1 and Y1 in the query
as well as for the variables X and Y in the declarations of sA and sS, the
search proceeds along an infinite branch in the wrong direction.

On the other hand, the code

% Using the theorem prover
%theorem
ssAS1_th : exists
{D:{S1:str} {S2:str} (81 |- * * S2) -> (*x * S1 |- S2)} true.
hprove 2 {} (ssASl_th D).

successfully uses Twelf’s theorem prover to find the derivation, returning

/ssAS1_th/:
ssAS1_th ([S1:str] [S2:str] [X1:S1 |- * *x S2] sA (sS X1)).

(Here the variables S1 and S2 need to be explicitly abstracted over — in
the earlier code they were free variables).

Twelf’s theorem prover is not extensively documented, and is stated to
be under active development, with the proof search component expected
to undergo major changes. The proof search strategy can be controlled
by the user to only a very limited extent, whereas we have found that
considerable control by the user (using tactics differing from proof to
proof) has generally been necessary in our work so far.

We found that certain aspects of Isabelle which we very much appre-
ciated are absent from Twelf. Isabelle offers a substantial number of user
“commands”, in the form of documented ML functions, which enable the
user to programme proof procedures, or to examine the shape of a term
or type expression. For example, one might write a tactic which explicitly
examines the current proof state and then decides which of several tactics
to apply. There are many and expressive “glue” functions for combining
tactics in Isabelle. Inadequacies in the documentation, or in the selection
of functions documented, can often be circumvented by looking at the
source code, which can also be a great help to the user in programming
his/her own tactics.
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Twelf appears to offer no comparable capabilities to the user. Thus,
although the theorem prover did successfully find the derivation above,
we felt uncertain that we would be able to use it to find all required
derivations.

3.3 The Cut-Elimination Theorem in Twelf

At this point we should refer to the proof of a cut-elimination theorem,
using Twelf, described in [19]. This uses a rather ingenious representation
of sequents; a cut-free proof of a traditional Gentzen sequent A - B is
represented as the type neg A -> pos B -> @, and a cut-free proof of it
asneg A -> pos B -> #. The two rules shown below left are represented
as the type shown on the right:

ILAF A At
T AYBF A A&BF

(neg A -> #) -> (neg (A and B) -> #)

In fact, the second rule shown would be directly represented by the type
shown, but the first rule shown could be directly represented by

(neg I' => pos A -> neg A => #) —>
(neg I' -> pos A -> neg (A and B) -> #)

However the existence of a term (function) of the type shown first trivially
implies the existence of a term (function) of the type shown second. Fur-
ther constructed types represent stages of the transformation of a proof
into a cut-free proof, and a termination checker checks that the function
performing the entire transformation from a proof to a cut-free proof ter-
minates. However, this termination checker only checks that the function
would not run forever. It does not check that it terminates with a cut-
free derivation — it does not complain if the code is run with some cases
deleted.

This work on the cut-elimination theorem is based on an ingenious way
of representing the problem in a way that fits into T'welf; even so, getting
a proof of the cut-elimination theorem from it relies on the heuristically-
based termination checker and upon a manual check that all possible cases
for the rules used just above the “cut” have been covered. On the other
hand, the Twelf type-checker proves that each individual step is correct,
in that the changed derivation in fact does derive the sequent which it
purports to derive.

Thus this proof of cut-elimination lies between our previous work
(where we just programmed a cut-elimination function in ML) and a
fully formal proof.
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3.4 The Isabelle/CTT implementation

We then turned to the CTT theory of Isabelle, since it is based on a logic
which is very similar to that of Twelf, in that it includes dependent types.

We implemented dRA similarly to its implementation in Twelf, so
that we had, for example, (omitting premises of the form ?X : str, which
were fairly ubiquitous)

"sA : x ?X |- ?Y ——> % ?Y |- ?X" : thm
"sAh oo sS : ?X |- x x ?Y ——> x x ?X |- ?Y" : thm

where oo denotes function composition. Tactics were written to determine
the type of a term (ie, to determine the derived rule obtained by a given
combination of rules), by solving a goal such as sA oo sS : 7t (which
contains the type variable 7t). We explored tactics to search for a term
of a given type (ie, a proof of a given term), by solving a goal such as the
one below, which contains the term variable ?7P.

"?Por (X |=-*xxY) ——> (*x x X |-Y)"

The CTT theory of Isabelle is not extensively developed as some other
theories are; we found it necessary to prove some fairly elementary though
general theorems.

3.5 Conclusions

We experimented with Twelf because it had appeared that we get our
hands on the proofs “for free”, in that in the course of deriving a se-
quent or sequent rule, we produce a term which embodies the derivation
performed. Given our intention to do a fully mechanised proof of the cut-
elimination theorem (in which we manipulate derivations extensively) it
had seemed that this feature of Twelf would be useful. Our work with
Isabelle/CTT seemed to indicate that the same things could be done in
it as in Twelf (with some effort to produce appropriate derived rules and
tactics).

However we realised that although we could produce a term which
represented the derivation and showed the elementary steps from which it
is composed, we could not analyse derivations, in the logic of the theorem
prover, in the required ways: for example, to ask which rule was used in
the final step of the derivation. In the light of this, there seemed to be no
benefit in pursuing an implementation using dependent type theory.

12



We have referred to a proof in Twelf of the sequent calculus cut-
elimination theorem, noting that it was based on an ingenious way of
representing the problem in a way that fits into Twelf, and that it was
not a fully formal proof. Since we are aiming for a fully formal proof, us-
ing techniques which would be applicable equally to other proof-theoretic
results, we felt that this cut-elimination proof does not indicate that de-
pendent type theory would be powerful enough for our needs.

4 The Isabelle/HOL implementation

HOL is an Isabelle theory based on the higher-order logic of Church [3]
and the HOL system of Gordon [8]. Thus it includes quantification and
abstraction over higher-order functions and predicates. The HOL theory
uses Isabelle’s own type system and function application and abstraction
(that is, object-level types and functions are identified with meta-level
types and functions). Isabelle/HOL contains constructs found in func-
tional programming languages (such as datatype and let) which greatly
facilitates re-implementing a program in Isabelle/HOL, and then reason-
ing about it. However limitations (not found in, say, Standard ML itself)
prevent defining types which are empty or which are not sets, or functions
which may not terminate.

The work of embedding dRA in Isabelle/HOL is still underway. How-
ever it is clear at this stage that the facility for datatype type declarations
and associated primitive recursive function definitions is of enormous help.
For example, we model dRA structure expressions (see [9]) as follows

datatype structr = Comma structr structr
| SemiC structr structr
| Star structr
| Blob structr
| I

| E

| Structform formula
I

SV string

The first six lines correspond to the structure operators of dRA and the
next line is for “casting” a formula of dRA as a structure of dRA. The
last line had no analogue in the shallow embedding, where we just used
an Isabelle variable such as 7S to refer to any dRA-structure. In the
deep embedding, SV ¢ ‘X‘ ¢ will refer to the structure variable named X
appearing in (say) the statement of a rule. We therefore also will need

13



to define functions (in Isabelle/HOL) which (for example) find all the
variables in a structure expression, or substitute a given structure for such
a variable. We wrote such functions for the work described in Section 2,
but in Standard ML, not in Isabelle.

On the other hand, when writing Isabelle tactics which involve
analysing the shape of a rule, we will be able to write (for example)
((8V 7V), ?73) to match any structure expression consisting of two sub-
structures joined by the comma operator (infix ¢,” is alternative notation
for prefix Comma), of which the first must be a variable. This matching
and any related substitution is performed by Isabelle.

For describing the structure of a derivation we have

datatype pftree = Pr sequent rule (pftree list)
| Unf sequent

where Pr seq rule pts is a derivation of the sequent seq, the last step of
the derivation uses the IR A rule rule, and the premises of that last step
are the conclusions of the derivations in the list pts. Unf (“unfinished”)
means that a leaf is a sequent which is not an axiom, so is an assumption
(or a “premise”) of the derivation tree as a whole. We define functions
which check that such a structure is a valid derivation (for example, that
the premises of an instantiated rule really are the conclusions of the trees
above, and that each step uses a legitimate rule). For example, to list the
“premises” of the whole derivation tree:

primrec
"premsPT (Unf seq) = [seql"
"premsPT (Pr seq rule pts) = premsPTs pts"

"premsPTs [] = [1"
"premsPTs (pt # pts) =
(premsPT pt @ premsPTs pts)"

Each datatype declaration generates a number of theorems which are
made available for proofs, and of which some are installed in rule sets
used by the more automated proof tactics. These theorems include ones
expressing that a datatype type is a disjoint union and that the construc-
tors are 1-1 functions, and one expressing a structural induction principle.

We give examples of some results proved so far. Here IsProvableR
rules prems concl means that sequent concl can be derived from se-
quents prems using rules rules, and IsProvable rules rule means that
the conclusion of the statement of rule may be derived from its premises
using rules.
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val IsProvableR_trans =
"[| IsProvableR rules prems’ concl ;
ALL p:prems’. IsProvableR rules prems p |] ==
IsProvableR rules prems concl"

val IsProvableR_deriv =
"[| ALL rule:rules’. IsProvable rules rule ;
IsProvableR rules’ prems concl |] ==
IsProvableR rules prems concl"

While we think that the corresponding results, for particular instances
of the sequents and derivations involved, could be proved more easily in
Twelf than in Isabelle, we cannot see how to express the general result in
Twelf or Isabelle/CTT.

5 Further work and Related Work

As noted above, this work is still in progress. We need to specify and
reason about derivability and derivation trees; for example, we need to
express the requirement that each step of a derivation uses a substitution
instance of a dRA rule found in a given set. Reasoning about derivability
and derivation trees is rather intricate. We note that in other work of
this nature [15, p. 302] the authors chose to state, rather than prove,
principles concerning the transitivity of provability, and provability from
derived rules. (See the second and third clauses of the definitions given
at [15, p. 302]). We have been able to prove corresponding rules from our
definition of a proof tree. These are the theorems IsProvableR trans and
IsProvableR deriv given near the end of Section 4. Proving rather than
stating such rules is preferable as it avoids the possibility of stating an
unsound rule. Interestingly, we doubt the suitability of the requirement
for a derived rule used in [15], in the third clause of their definition of
IsProvable. Looking at the code given in the paper, the phrase

(?inf. CorrectRulelnst {r} inf /\
IsProvable rSet (InfHyps inf) (InfConcl inf))

suggests requiring that only one (not all) of the instances of the derived
rule r be provable, which would allow using P ==> Q as a derived rule
when False ==> True is provable.

It appears at this stage that the Isabelle/HOL logic is well-equipped
for writing specifications which describe the process of performing proofs
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in a given logical calculus. It is easy to specify the behaviour of a program
written in functional programming style, and for reasoning about it. It is
clearly a suitable choice for this project.

Another concept requiring further exploration is using the types of
Twelf or Isabelle/CTT to express more than just the sequent being
proved. For example, one might let ¢ : P(X F Y, p,n) denote that t is
a derivation of X Y, of length at most n, where the last rule used is p.
Clearly, however, to get all the expressiveness we need in this way would
require far more complex type expressions than in this example.

We aimed to produce a “deep” embedding of Display Calculi, suffi-
cient (for example) to enable a mechanised proof of the cut-elimination
theorem. While it is clear that we have done this (in a sense), our work
has elucidated some further points.

Belnap’s cut-elimination theorem for Display Calculi is generic. It
applies to all Display Calculi whose rules satisfy certain conditions. Our
work has been to model a particular display calculus, dRA (for relation
algebra). Accordingly, we will get a proof of the cut-elimination theorem
for dRA. While we will be able to identify the properties of the dRA
rules used in the proof, and match these with Belnap’s conditions, we
will not have proved the theorem as stated by Belnap (which is stated in
terms of any Display Calculus). To model an arbitrary Display Calculus
in Isabelle/HOL would be a further (and harder) activity.

Secondly, Belnap’s conditions on the rules of the Display Calculus are
listed by Kracht [12], who states “These conditions actually need some
exegesis”. Our work will produce a precise, formal, statement of those
properties of the rules which we actually use in the proof of the theorem.

6 Conclusion

We have reviewed earlier work which described a shallow embedding of
the SR A calculus into the Isabelle/Pure logic, and noted its drawbacks for
proving proof-theoretic results in Isabelle itself. Attracted by the notion
that the tools based on dependent type theory would give expressiveness
about proofs “for free”, we then looked at the Twelf tool. While the
Twelf tool is still under active development, we noted how a similar logic
is available in Isabelle/CTT, which offers the advantages of Isabelle, such
as access to a wide range of documented ML functions for programming
proof tactics. However we also found that, while Twelf and Isabelle/CTT
facilitate identifying the derivation of a sequent or derived rule, they
do not facilitate reasoning about the shape of that derivation, or of the
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sequents found in it. Thus we turned to Isabelle/HOL, which appears to
offer the best facility for deep embedding of a calculus such as dRA, and
reasoning about derivability, derivation trees and the associated proof-
theoretic concepts we will need. Needless to say, this was the advice we
received from Larry Paulson from the start.
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