
Generic Methods for Formalising Sequent

Calculi Applied to Provability Logic

Jeremy E. Dawson and Rajeev Goré

Logic and Computation Group, School of Computer Science
The Australian National University, Canberra ACT 0200, Australia

http://users.rsise.anu.edu.au/~jeremy/

http://users.rsise.anu.edu.au/~rpg/

Abstract. We describe generic methods for reasoning about multiset-
based sequent calculi which allow us to combine shallow and deep em-
beddings as desired. Our methods are modular, permit explicit structural
rules, and are widely applicable to many sequent systems, even to other
styles of calculi like natural deduction and term rewriting systems. We
describe new axiomatic type classes which enable simplification of multi-
set or sequent expressions using existing algebraic manipulation facilities.
We demonstrate the benefits of our combined approach by formalising
in Isabelle/HOL a variant of a recent, non-trivial, pen-and-paper proof
of cut-admissibility for the provability logic GL, where we abstract a
large part of the proof in a way which is immediately applicable to other
calculi. Our work also provides a machine-checked proof to settle the
controversy surrounding the proof of cut-admissibility for GL.

Keywords: provability logic, cut admissibility, interactive theorem prov-
ing, proof theory

1 Introduction

Sequent calculi provide a rigorous basis for meta-theoretic studies of various
logics. The central theorem is cut-elimination/admissibility, which states that
detours through lemmata can be avoided, since it can help to show many im-
portant logical properties like consistency, interpolation, and Beth definability.
Cut-free sequent calculi are also used for automated deduction, for nonclassical
extensions of logic programming, and for studying the connection between nor-
malising lambda calculi and functional programming. Sequent calculi, and their
extensions, therefore play an important role in logic and computation.

Meta-theoretic reasoning about sequent calculi is error-prone because it in-
volves checking many combinatorial cases, some being very difficult, but many
being similar. Invariably, authors resort to expressions like “the other cases are
similar”, or “we omit details”. The literature contains many examples of meta-
theoretic proofs containing serious and subtle errors in the original pencil-and-
paper proofs. For example, the cut-elimination theorem for the modal “provabil-
ity logic” GL, where ✷ϕ can be read as “ϕ is provable in Peano Arithmetic”,
has a long and chequered history which has only recently been resolved [5].

When reasoning about sequent calculi using proof assistants, we have to
represent proof-theoretical concepts like “sequents”, “derivations” and “deriv-
ability” in the meta-logic of the given proof assistant. The granularity of the
representation plays a critical role in determining the versatility of the represen-
tation. At one extreme, we have “deep” embeddings in which a sequent and a
derivation are represented explicitly as terms of the meta-logic, as espoused in
our previous work on display calculi [2]. The advantage of this approach is that
it allows us to encode fine-grained notions like “each structure variable appears
at most once in the conclusion of a rule”. The disadvantage of this approach is
that it requires a lot of ancillary low-level work to capture essential notions like
“rule instance”. At the other extreme, we have “shallow” embeddings like the
one in the Isabelle/Sequents package, which allows us to derive sequents, but
does not allow us to reason about the derivations or derivability. Most practi-
tioners [8, 9, 3] choose an approach somewhere between these extremes, which
then limits their ability to generalise their work to other calculi or to handle
arbitrary structural rules for example.

Here, we describe general methods for reasoning in Isabelle/HOL about the
proof-theory of traditional, propositional, multiset-based sequent calculi. Our
methods are modular in allowing an arbitrary set of rules, permit explicit struc-
tural rules, and are widely applicable to many sequent systems, even to other
styles of calculi like natural deduction and term rewriting systems. They ad-
vance the “state of the art” in that they allow us to “mix and match” shallow
and deep embeddings where appropriate, which, as far as we know, has not been
done before. We then show how we used them to formalise a highly non-trivial
proof of cut-admissibility for GL based on, but different from, that of [5].

In Section 2, we briefly describe traditional sequent calculi, discuss the need
for multisets, and describe the controversy surrounding the cut-elimination theo-
rem for the set-based sequent system GLS for provability logic GL . In Section 3
we describe general deep and shallow techniques and functions we have defined
for reasoning about derivations and derivability, independently of the rules of
a particular sequent system. We give very general induction principles which
are useful beyond the application to GLS. We show how we formalise formulae,
sequents and rules, and then show some of the GL sequent rules as examples. In
Section 4 we describe an Isabelle axiomatic type class which we developed to fa-
cilitate reasoning about multisets of formulae, and sequents based on them. This
development explores the interaction between lattice (∧, ∨, ≤) and “arithmetic”
(+, −, 0, ≤) operations. In Section 5 we discuss how we made our Isabelle proofs
as general as possible, and how they are useful for proving cut-elimination and
other results in arbitrary sequent calculi which meet the associated precondi-
tions. In Section 6 we describe the cut-admissibility proof for GLS.

We assume the reader is familiar with basic proof-theory, ML and Isabelle/HOL.
In the paper we show some Isabelle code, edited to use mathematical symbols.
The Appendix gives the actual Isabelle text of many definitions and theorems.
Our Isabelle code can be found at http://users.rsise.anu.edu.au/~jeremy/
isabelle/200x/seqms/. Some of this work was reported informally in [4].

2

2 Sequents, Multisets, Sets and Provability Logic

Proof-theorists typically work with sequents Γ ⊢ ∆ where Γ and ∆ are “collec-
tions” of formulae. The “collections” found in the literature increase in complex-
ity from simple sets for classical logic, to multisets for linear logic, to ordered lists
for substructural logics, to complex tree structures for display logics. A sequent
rule typically has a rule name, a (finite) number of premises, a side-condition
and a conclusion. Rules are read top-down as “if all the premises hold then the
conclusion holds”. A derivation of the judgement Γ ⊢ ∆ is typically a finite
tree of judgements with root Γ ⊢ ∆ where parents are obtained from children
by “applying a rule”. We use “derivation” to refer to a proof within a calculus,
reserving “proof” for a meta-theoretic proof of a theorem about the calculus.

Provability logic GL is obtained by adding Löb’s axiom ✷(✷A → A) → ✷A
to propositional normal modal logic K. Its Kripke semantics is based on rooted
transitive Kripke frames without infinite forward chains. It rose to prominence
when Solovay showed that ✷A could be interpreted as “A is provable in Peano
Arithmetic” [10]. An initial proof-theoretic account was given by Leivant in 1981
when he “proved” cut-elimination for a set-based sequent calculus forGL [6]. But
Valentini in 1983 found a simple counter-example and gave a new cut-elimination
proof [11]. In 2001, Moen [7] claimed that Valentini’s transformations don’t ter-
minate if the sequents Γ ⊢ ∆ are based on multisets. There is of course no a
priori reason why a proof based on sets should not carry over with some modi-
fication to a proof based on multisets. The issue was recently resolved by Goré
and Ramanayake [5] who gave a pen-and-paper proof that Moen is incorrect,
and that Valentini’s proof using multisets is mostly okay.

The sequent system GLS for the logic GL as given by Goré and Ramanayake
in [5], like Valentini’s, contains explicit weakening and contraction rules and,
modulo these, a typical (additive) set of rules for the classical logical connectives
¬,∧,∨,→. The axiom A ⊢ A does not require atomic A. Since GLS admits axiom
extension, it could have been formulated using p ⊢ p, for p atomic. In fact the
general result Theorem 2 doesn’t depend on the axiom or on axiom extension.

The one additional rule GLR which characterises GL is shown below:

✷X,X,✷B ⊢ B
GLR or GLR(B) or GLR(X,B)

✷X ⊢ ✷B

The rule is unusual since the principal formula ✷B changes polarity from con-
clusion to premise. To identify the principal formula involved, or all the formulae,
we refer to it as GLR(B), or GLR(X,B). The full set of rules of GLS is shown
in [5], but note that our formalisation does not regard the cut or multicut rules
shown below as being part of the system.

We show a context-sharing cut rule and a context-splitting multicut rule.
Given the contraction and weakening rules, the context-sharing and context-
splitting versions are equivalent; our formal proofs show the admissibility of a
context-splitting multicut rule where A is not contained in Γ ′′ or ∆′′.

Γ ⊢ A,∆ Γ,A ⊢ ∆
(cut)

Γ ⊢ ∆

Γ ′ ⊢ An, ∆′ Γ ′′, Am ⊢ ∆′′

(multicut)
Γ ′, Γ ′′ ⊢ ∆′, ∆′′

3

Thus our results will be lemmata of the form: if Γ ⊢ A,∆ and Γ,A ⊢ ∆ are
derivable then Γ ⊢ ∆ is derivable, where “derivable” means without using (cut).

3 Reasoning About Derivations and Derivability

3.1 Deep and Shallow Embeddings

In [2] we proved cut admissibility for δRA, the display calculus for relation
algebras. The proof was based on a proof of Belnap, which applied generally to
display calculi whose inference rules satisfied certain properties. In that paper
we described the formalisation as a “deep embedding”. We now believe that to
describe a particular formalisation as either a “deep embedding” or a “shallow
embedding” over-simplifies the issue as we now discuss.

In [2], we modelled an explicit derivation tree in HOL as a recursive structure
which consists of a root sequent (which should be the conclusion of some rule),
and an associated list of (sub)trees (each of which should derive a premise of that
rule). This is expressed in the following recursive Isabelle datatype declaration:

datatype ’a dertree = Der ’a (’a dertree list)

| Unf ’a (* unfinished leaf which remains unproved *)

We then had to express the property of such a tree, that it is in fact correctly
based on the given rules, and so represents a valid derivation. We modelled a
sequent rule as an object in HOL consisting of a list of premises and a con-
clusion, each of which was a sequent in the language of the logic (of relation
algebras). Notably, our language of formulae included “variables” which could
be instantiated with formulae, so we defined functions for such substitutions.
This was necessary because we had to express conditions on the rules such as
that a variable appearing in the premises also appears in the conclusion. It is
much more common to let the variables in a rule be the variables of the theo-
rem prover, and for the theorem prover to do the substitution. Thus it is more
accurate to say that in [2], we used a deep embedding for derivations, rules and
variables, since we modelled each of these features of the proof-theory explicitly
rather than identifying them with analogous features of Isabelle.

In alternative (“shallow derivations”) approaches to work of this type, the
set of derivable sequents can be modelled as an inductively defined set, and there
is no term representing the derivation tree as such, although the steps used in
proving that a specific sequent is derivable could be written in the form of a
derivation tree. That is, derivability in the sequent calculus studied equates to
derivability in Isabelle, giving a shallow embedding of derivations.

We now briefly describe the functions we used to describe derivability. More
details are in Appendix A.1, and a more expository account is given in [4].

types ’a psc = "’a list * ’a" (* single step inference *)

consts

derl, adm :: "’a psc set => ’a psc set"

derrec :: "’a psc set => ’a set => ’a set"

4

An inference rule of type ’a psc is a list of premises and a conclusion. Then
derl rls is the set of rules derivable from the rule set rls, adm rls is the
set of admissible rules of the rule set rls, and derrec rls prems is the set of
sequents derivable using rules rls from the set prems of premises. These were
defined separately using Isabelle’s package for inductively defined sets as below.
Thus, using shallow derivations, the rules of the sequent calculus can either be
encoded explicitly as in derrec or they can be encoded in the clauses for the
inductive definition of the set of derivable sequents as in ders.

Shallow Embedding of Derivations and Deep Embedding of Rules:

({Γ ⊢ P, Γ ⊢ Q}, Γ ⊢ P ∧Q) ∈ rules (etc for other rules)

c ∈ prems =⇒ c ∈ derrec rules prems

[| (ps, c) ∈ rules ; ps ⊆ derrec rules prems |] =⇒ c ∈ derrec rules prems

Shallow Embedding of Derivations and Shallow Embedding of Rules:

c ∈ prems =⇒ c ∈ ders prems

[| Γ ⊢ P ∈ ders prems ; Γ ⊢ Q ∈ ders prems |] =⇒ Γ ⊢ P ∧Q ∈ ders prems

The first clause for derrec says that each premise c in prems is derivable
from prems, and the second says that a sequent c “obtained” from a set of
derivable sequents ps by a rule (ps, c) is itself derivable. The set of rules rules
is a parameter. The first clause for ders also says that each premise c in prems

is derivable from prems. The rules however are no longer a parameter but are
hard-coded as clauses in the definition of ders itself.

Thus, with a shallow embedding of derivations, we have a choice of either
a deep or a shallow embedding of rules. It would also be possible to combine
our deep embedding of derivations (dertree) with a shallow embedding of rules
by encoding the rules in the function which checks whether a derivation tree
is valid. Note however, that when we use a deep embedding of derivations in
Lemma 3, our definition of validity is parameterised over the set of rules.

Our framework is generic in that a rule merely consists of “premises” and
a “conclusion”, and is independent of whether the things derived are formulae,
sequents, or other constructs, but we will refer to them as sequents.

Our experience is that shallow embeddings generally permit easier proofs,
but sometimes they are inadequate to express a desired concept. For example,
with a deep embedding of rules it is easy to express that one set of rules is a
subset of another set, but with a shallow embedding this is not possible. With
a deep embedding of derivation trees it is easy to express that one property of
derivation trees is the conjunction of two other properties, or that a derivation
tree has a particular height, since each such tree has an explicit representation
as a term, whereas to express such things using ders or derrec (as above), one
would have to redefine these predicates incorporating the particular properties
of interest. Indeed, in this work (see §6) we discuss how we found a shallow
embedding of derivability inadequate, and we describe there how we “mix and
match” the various styles as required.

5

3.2 Properties of Our Generic Derivability Predicates

We obtained the expected results linking derl and derrec, and a number of
results expressing transitivity of derivation and the results of derivation using
derived rules, of which the most elegant are:

derl_deriv_eq : "derl (derl ?rls) = derl ?rls"

derrec_trans_eq : "derrec ?rls (derrec ?rls ?prems)

= derrec ?rls ?prems"

derl deriv eq states that derivability using derived rules implies derivability
using the original rules

derrec trans eq states that derivability from derivable sequents implies deriv-
ability from the original premises.

A simplified version of the induction principle generated by the definition of
the inductive set derrec is as follows:

x ∈ derrec rls prems ∀c ∈ prems.P c ∀(ps, c) ∈ rls.(∀p in ps.P p) ⇒ P c

P x

The principle says that if each rule preserves the property P from its premises to
its conclusion, then so does the whole derivation, even though there is no explicit
derivation as such. We contrast this principle with induction on the height of
derivations where it is possible, and sometimes necessary, to transform a sub-
tree in some height-preserving (or height-reducing) way, and assume that the
transformed tree has property P . Such transformations are not available when
using the induction principle above.

Where we have a property of two derivations, such as cut-admissibility, we
need a more complex induction principle Ind which we derived, though, again,
there are no explicit representations of derivation trees:

cl ∈ derrec rlsl {} cr ∈ derrec rlsr {}
∀(lps, lc) ∈ rlsl.∀(rps, rc) ∈ rlsr.

(∀lp ∈ lps.P lp rc) ∧ (∀rp ∈ rps.P lc rp) ⇒ P lc rc
P cl cr

Ind: Suppose cl and cr are the conclusions of the left and right subderivations.
Assume that for every rule pair (lps, lc) and (rps, rc), if each premise lp in lps
satisfies P lp rc, and each premise rp in rps satisfies P lc rp, then P lc rc holds.
Then we can conclude that P cl cr holds.

Finally, (ps, c) is an admissible rule iff: if all premises in ps are derivable, then
c is too: (ps, c) ∈ adm rls ⇐⇒ (ps ⊆ derrec rls {} ⇒ c ∈ derrec rls {}).

We obtained the following four results, which were surprisingly tricky because
adm is not monotonic (since any rule with a premise is in adm {}). For example,
the last of these says that a derived rule, derived from the admissible rules, is
itself admissible.

"derl ?rls <= adm ?rls" "adm (adm ?rls) = adm ?rls"

"adm (derl ?rls) = adm ?rls" "derl (adm ?rls) = adm ?rls"

6

3.3 Sequents, Formulae and the GLS rules

We define a language of formula connectives, formula variables and primitive
(atomic) propositions:

datatype formula = FC string (formula list) (* formula connective *)

| FV string (* formula variable *)

| PP string (* primitive proposition *)

Although the formula connectives are fixed for each logic, the datatype is more
general, using a single constructor FC for all formula connectives. We then define
(for example) P ∧Q as FC ’’Btimes’’ [P, Q]. A sequent is a pair of multisets
of formulae, written Γ ⊢ ∆.

Given a rule such as (⊢ ∧) in the two forms below,

Cs =
⊢ A ⊢ B

⊢ A ∧B
Ce =

X ⊢ Y,A X ⊢ Y,B

X ⊢ Y,A ∧B

we call Ce an extension of Cs, and we define functions pscmap and extend, where
pscmap f applies f to premises and conclusion, so, using + for multiset union,

extend (X ⊢ Y) (U ⊢ V) = (X + U) ⊢ (Y + V)

Ce = pscmap (extend (X ⊢ Y)) Cs

Then we define glss, the set of rules of GLS by defining:

glil and glir: the unextended left and right introduction rules, like Cs above;
wkrls and ctrrls A: the unextended weakening and contraction (on A) rules;
glne: all of the above;
glr B: the GLR(B) rule;
glss: the axiom A ⊢ A (not requiring A to be atomic), the GLR(B) rule for all

B, and all extensions of all rules in glne.

The Isabelle definitions are given in Appendix A.2. Note that in theGLR rule,
X is a multiset, and ✷X is informal notation for applying ✷ to each member
of X; this is formalised as mset map, used in the formalised GLR rule. Using
a similar notation we write ✷Bk for (✷B)k, the multiset containing n copies
of ✷B. Development of mset map and relevant lemmas is in the source files
Multiset no le.{thy,ML}. Our results there also show multisets form a monad,
see Appendix A.3 for details.

Our treatment of sequents and formulae amounts to a deep embedding of
sequents and formulae which is independent of the set of rules. The implementa-
tion in [8] is a shallow embedding of sequents, which automatically implies the
admissiblity of certain structural rules like contraction and weakening.

4 An Axiomatic Type Class for Multisets and Sequents

Isabelle provides a theory of finite multisets with an ordering which we did not
use; we defined a different ordering ≤ analogous to ⊆ for sets: N ≤ M if, for all
x, N contains no more occurrences of x than does M .

7

An axiomatic type class in Isabelle is characterised by a number of axioms,
which hold for all members of a type in the type class. The multiset operators ≤,
+, − and 0 have several useful properties, which are described by the axiomatic
type classes pm0 and pm ge0. For any type in class pm0, the operations + and 0
form a commutative monoid and the following two properties hold.

A+B −A = B A−B − C = A− (B + C)

We then define a class pm ge0 which also has an ≤ operator and a smallest
element 0, in which the axioms of pm0 and the following hold.

0 ≤ A B ≤ A ⇒ B + (A−B) = A

m ≤ n ⇔ m− n = 0 x < y ⇔ x ≤ y ∧ x 6= y a ⊑ b ⇔ a ≤ b

The last three axioms could be given as definitions, except for a type where ≤,
< or ⊑ are already defined. We define ⊑ as a synonym for ≤, because Isabelle’s
lattice type class uses ⊑ as the order operator.

Lemma 1. Multisets are in pm0 and pm ge0 using our definition of ≤, and, if
Γ and ∆ are of any type in the classes pm0 or pm ge0, then so is sequent Γ ⊢ ∆.

Isabelle has “simplification procedures”, which will (for example) simplify
a − b + c + b to a + c for integers, or a + b + c − b to a + c for integers or
naturals. The naturals obey the axioms above. We have been able to apply the
simplification procedures for naturals, other than those involving the successor
function Suc, to types of the classes pm0 and pm ge0. This was a very great help
in doing the proofs discussed in §6, especially since X ⊢ Y can be derived from
X ′ ⊢ Y ′ by weakening if and only if X ⊢ Y ≤ X ′ ⊢ Y ′.

It is easy to show that, in the obvious way, multisets form a lattice. In fact
we found the interesting result that the axioms of pm ge0 are sufficient to give
a lattice (with ⊑ as the order operator, defined as a ⊑ b iff a ≤ b), so we have:

Lemma 2. Any type of class pm ge0 forms a lattice, using the definitions

c ∧ d = c− (c− d) c ∨ d = c+ (d− c)

From these definitions it is possible (at some length) to prove the axioms for a
lattice and so any type in the class pm ge0 is also in Isabelle’s class lattice.
The source files for this development are pmg*.{thy,ML}.

5 Capturing the Core of Cut-Admissibility Proofs

Many cut-elimination proofs proceed via two main phases. The first phase trans-
forms the given derivations using several “parametric” steps until the cut-formula
is the principal formula of the final rule in the resulting sub-derivations above
the cut. (In the diagram for Ce above, for example, a parametric formula in the
rule application is one within the X or Y , but A ∧ B is principal; a parametric

8

step is used when the cut-formula is parametric in the bottom rule application of
a sub-derivation above the cut). The “principal cut” is then “reduced” into cuts
which are “smaller” in some well-founded ordering such as size of cut-formula.
We describe how we captured this two-phase structure of cut-elimination proofs,
and present a widely applicable result that a parametric step is possible under
certain conditions.

In §3.2 we mentioned the induction principle Ind used for deriving cut-
admissibility, or indeed any property P of pairs of subtrees. In the diagram below,
to prove P (Cl, Cr), the induction hypothesis is that P (Pli, Cr) and P (Cl,Prj) hold
for all i and j:

Pl1 . . .Pln ρl
Cl

Pr1 . . .Prm ρr
Cr. (cut ?)

?

A proof of P (Cl, Cr) using this induction hypothesis inevitably proceeds by cases
on the actual rules ρl and ρr, and for a cut-formula A, on whether it is principal
in either or both of ρl and ρr. But we also use induction on the size of the cut-
formula, or, more generally, on some well-founded relation on formulae. So we
actually consider a property P of a (cut) formula A and (left and right subtree
conclusion) sequents (Cl, Cr). In proving P A (Cl, Cr), in addition to the inductive
hypothesis above, we assume that P A′ (Dl,Dr) holds generally for A′ smaller
than A and all “rls-derivable” sequents Dl and Dr: i.e. derivable from the empty
set of premises using rules from rls. These intuitions give the following definition
gen step2ssr of a condition which permits one step of the inductive proof. See
Appendix A.5 for reference to related more complex predicates and theorems.

Definition 1 (gen step2ssr). For a formula A, a property P , a subformula
relation sub, a set of rules rls, inference rule instances Rl = (Pl1 . . .Pln, Cl)
and Rr = (Pr1 . . .Prm, Cr), gen step2ssr P A sub rls (Rl,Rr) means:

if forall A′ such that (A′, A) ∈ sub and all rls-derivable sequents Dl and Dr,
P A′ (Dl,Dr) holds

and for each Pli in Pl1 . . .Pln, P A (Pli, Cr) holds
and for each Prj in Pr1 . . .Prm, P A (Cl,Prj) holds

then P A (Cl, Cr) holds.

The main theorem gen step2ssr lem below for proving an arbitrary prop-
erty P states that if the step of the inductive proof is possible for all cases of
final rule instances Rl and Rr on each side, then P holds in all cases.

Theorem 1 (gen step2ssr lem). If

– A is in the well-founded part of the subformula relation sub,
– sequents Sl and Sr are rls-derivable, and
– for all formulae A′, and all rules Rl and Rr, our induction step condition

gen step2ssr P A′ sub rls (Rl,Rr) holds

then P A (Sl,Sr) holds.

9

This enables us to split up an inductive proof, by showing, separately, that
gen step2ssr holds for particular cases of the final rules (Pl, Cl) and (Pr, Cr) on
each side. For example, the inductive step for the case where the cut-formula A
is parametric, not principal, on the left is encapsulated in the following theorem
where prop2 mar erls A (Cl, Cr) means that the conclusion of a multicut on A

whose premises are Cl and Cr is derivable using rules erls.

Theorem 2 (lmg gen steps). For any relation sub and any rule set rls, given
an instance of multicut with left and right subtrees ending with rules Rl and Rr:

if weakening is admissible for the rule set erls,
and all extensions of some rule (P, X ⊢ Y) are in the rule set erls,
and Rl is an extension of (P, X ⊢ Y),
and the cut-formula A is not in Y (meaning that A is parametric on the left)
then gen step2ssr (prop2 mar erls) A sub rls (Rl,Rr) holds.

Theorem 2 codifies multi-cut elimination for parametric cut-formulae, and
applies generally to many different calculi since it holds independently of the
values of sub and rls. Of course, for a system with explicit weakening rules,
such as GLS, weakening is a fortiori admissible. As we note later, the proof for
GLS involves one really difficult case and a lot of fairly routine cases. In dealing
with the routine cases, automated theorem proving has the benefit of ensuring
that no detail is overlooked. Moreover, as in this example, we often have more
general theorems that apply directly to a set of rules such as GLS.

Notice that all of this section has used a shallow embedding of derivations
since no explicit derivation trees were required.

6 The Proof of Cut-Admissibility for GLS

Valentini’s proof of cut-admissibility for GLS uses a triple induction on the size
of the cut-formula, the heights of the derivations of the left and right premises
of cut, and a third parameter which he called the “width”. Roughly speaking,
the width of a cut-instance is the number of GLR rule instances above that
cut which contain a parametric ancestor of the cut-formula in their conclusion.
The Goré and Ramanayake [5] pen-and-paper proof follows Valentini but gives
a constructive way to calculate the width of a cut by inspecting the branches of
the left and right sub-derivations of a cut rule instance.

As usual, the proof of cut-admissibility for GLS proceeds by considering
whether the cut-formula is principal in the left or right premise of the cut, or
principal in both. The crux of the proof is a “reduction” when the cut-formula
is of the form ✷B and is principal in both the left and right premises of the cut.
The solution is to replace this cut on ✷B by cuts which are “smaller” either
because their cut-formula is smaller, or because their width is smaller. In reality,
most of the work involves a cut instance which is only left-principal as shown in
Figure 1, and most of this section is devoted to show how we utilised our general
methods to formalise these “reductions” as given by Goré and Ramanayake [5].
But there are some important differences which we now explain.

10

µ

{

Πl

✷X,X,✷B ⊢ B
GLR(B)

✷X ⊢ ✷B

Πr ρ
✷Bk, Y ⊢ Z

. (multicut ?)
✷X,Y ⊢ Z

Fig. 1. A multicut on cut formula ✷B where ✷B is left-principal via GLR

As explained in §3.2, our general methods do not model derivation trees
explicitly, since we use a shallow embedding. So our proof uses induction on the
size of the cut-formula and on the fact of derivation, rather than on the size of
the cut-formula and the height of derivation trees. Also, we actually proved the
admissibility of “multicut”: that is, if Γ ′ ⊢ An, ∆′ and Γ ′′, Am ⊢ ∆′′ are both
cut-free derivable, then so is Γ ′, Γ ′′ ⊢ ∆′, ∆′′. This avoids problems in the cases
where these sequents are derived using contraction on A.

In all other aspects, our proof of cut-admissibility for GLS is based on that
given by Goré and Ramanayake [5]. In particular, although we do not actually
require [5, Lemma 19], we use the construction in that lemma, which is funda-
mental to overcoming the difficulties of adapting standard proofs to GLS, as we
explain shortly. Consequently, our proof uses the idea of induction on the width
as defined in [5], although as we shall see, our proof is expressed in terms of
del0, which approximates to the ∂0 of [5], not width per se.

To cater for width/∂0, we could have altered our shallow embedding, derrec,
but that destroys the modularity of our approach. Instead, we defined our del0
by using the datatype dertree from §3.1 to represent explicit derivation tree
objects. These trees, and the general lemmas about them, are similar to the
trees of [2]. Thus we “mix and match” a deep embedding of derivation trees
with a shallow embedding of inductively defined sets of derivable sequents.

To ensure the correctness of our “mixing and matching” we needed the fol-
lowing relationship between our definitions of derivability according to the two
embeddings. A valid tree is one whose inferences are in the set of rules and which
as a whole has no premises.

Lemma 3. Sequent X ⊢ Y is derivable, shallowly, from the empty set of premises
using rules rls (ie, is in derrec rls {}) iff some explicit derivation tree dt is
valid wrt. rls and has a conclusion X ⊢ Y .

"(?a : derrec ?rls {}) = (EX dt. valid ?rls dt & conclDT dt = ?a)"

We now define a function del0 which is closely related to ∂0 and the width
of a cut of [5], although we can avoid using the annotated derivations of [5].

Definition 2 (del0). For derivation tree dt and formula B, define del0 B dt:

– if the bottom rule of dt is GLR(Y,A) (for any Y,A), then del0 B dt is 1
(0) if ✷B is (is not) in the antecedent of the conclusion of dt

11

– if the bottom rule of dt is not GLR, then del0 B dt is obtained by summing
del0 B dt’ over all premise subtrees dt’ of dt.

Thus, the calculation of del0 traces up each branch of an explicit derivation
tree until an instance of the GLR rule is found: it then counts 1 if ✷B is in
the antecedent, meaning that B is in the X of the statement of GLR. Where
the derivation tree branches below any GLR rule, the value is summed over the
branches. (When we use del0, its argument will be the sub-tree µ of Figure 1.)

We now give a sequence of lemmata which eventually give the “reduction”
for left-and-right GLR-principal occurrences of a cut-formula of the form ✷B.

Lemma 4 (gr19e). If µ is a valid derivation tree with conclusion ✷X,X,✷B ⊢
B, and del0 B µ = 0, then ✷X,X ⊢ B is derivable.

Proof. By applying the GLR rule to the conclusion, we can derive ✷X ⊢ ✷B.
Tracing ✷B upwards in µ, it is parametric in each inference, except possibly
weakening, contraction or the axiom ✷B ⊢ ✷B. That is, since del0 B µ = 0,
when we meet a GLR inference as we trace upwards, ✷B must have already
disappeared (through weakening). So, tracing upwards, we can change each in-
stance of ✷B to ✷X in the usual way. The axiom ✷B ⊢ ✷B is changed to
✷X ⊢ ✷B, which is derivable. Contraction is not problematic since we use, as
the inductive hypothesis, that all occurrences of ✷B can be replaced by ✷X. ⊣

To abbreviate the statement of several lemmas, we define a function muxbn,
based on Figure 1, which is from [5]. It concerns a multicut on a cut-formula
✷B which is left-principal because the bottom rule on the left is GLR(B).

Definition 3 (muxbn). muxbn B n holds iff: for all instances of Figure 1 (for
fixed B) such that del0 B µ ≤ n, the multicut in Figure 1 is admissible.

The next lemma says that multicut admissibility on B implies muxbn B 0.

Lemma 5 (del0 ca’, caB muxbn’). If µ is a valid derivation tree with con-
clusion ✷X,X,✷B ⊢ B, and del0 B µ = 0, and multicut on B is admissible,
and ✷Bk, Y ⊢ Z is derivable, then ✷X,Y ⊢ Z is derivable.

That is, if multicut on B is admissible, then muxbn B 0 holds.

Proof. ✷X ⊢ ✷B is derivable from✷X,X,✷B ⊢ B viaGLR(X,B). By Lemma 4,
✷X,X ⊢ B is derivable. The rest of the proof is by induction on the derivation
of ✷Bk, Y ⊢ Z, in effect, by tracing relevant occurrences of ✷B up that deriv-
ation. Weakening and contraction involving ✷B are not problematic, and the
axiom ✷B ⊢ ✷B is changed to ✷X ⊢ ✷B, which is derivable. Suppose an in-
ference GLR(Y,C) is encountered, where B is in Y . This inference, allowing for
multiple copies of B, is as shown below left where Z is Y with B deleted:

✷Bk, Bk,✷Z,Z,✷C ⊢ C
GLR(Y,C)

✷Bk,✷Z ⊢ ✷C

Lemma 4

✷X,X ⊢ B ✷X,Bk,✷Z,Z,✷C ⊢ C
mcut(B)

✷X,✷X,X,✷Z,Z,✷C ⊢ C
ctr

✷X,X,✷Z,Z,✷C ⊢ C
GLR(C)

✷X,✷Z ⊢ ✷C

12

By induction, we have ✷X,Bk,✷Z,Z,✷C ⊢ C is derivable. From there we have
the derivation shown above right. As the machine-checking process showed us,
additional weakening steps are necessary if ✷B is in Z or if B is in ✷Z. ⊣

This construction is like that of case 2(a)(ii) in the proof of Theorem 20 of [5].
Having shown, in Lemma 5, that muxbn B 0 holds, we now use the construction of
[5, Lemma 19] to show that muxbn B n holds for all n: except that our inductive
assumptions and results involve admissibility of multicut, not cut. Again we use
induction: we assume that muxbn B n, and show that muxbn B (n+ 1) holds.

So suppose a derivation tree µ/✷X ⊢ ✷B has a bottom inference GLR(X,B),
as shown in Figure 1, and del0 B µ = n + 1. We follow the construction of [5,
Lemma 19] to obtain a derivation µ′ of ✷X,X,✷B ⊢ B, where del0 B µ′ ≤ n.

Since del0 B µ > 0, the tree µ/✷X ⊢ ✷B is as shown below left (with other
branches not shown). We first delete the topmost application of GLR(A) leaving
a tree µ−. Then adjoin ✷A to each antecedent of µ− obtaining the tree on the
right (call it µA/✷A,✷X ⊢ ✷B), whose topmost sequent is now a weakened
axiom, and which requires us to weaken in an occurrence of A just above the
final GLR-rule instance:

✷G,G,✷Bk, Bk,✷A ⊢ A
GLR(A)

✷G,✷Bk ⊢ ✷A

...

✷X,X,✷B ⊢ B
GLR(X,B)

✷X ⊢ ✷B

✷A,✷G,✷Bk ⊢ ✷A

...

✷A,✷X,X,✷B ⊢ B
(weakening)

✷A,A,✷X,X,✷B ⊢ B
GLR(B)

✷A,✷X ⊢ ✷B

Now del0 B µ > del0 B µA, and so µA/✷A,✷X ⊢ ✷B can be used as the
left branch of an admissible (i.e. “smaller”) multicut. We do this twice, the right
branches being derivations of ✷X,X,✷B ⊢ B and ✷G,G,✷Bk, Bk,✷A ⊢ A re-
spectively; which after contractions, give derivations of ✷A,✷X,X ⊢ B and
✷G,G,✷X,Bk,✷A ⊢ A. These two are cuts 1 and 2 of the description in [5,
Lemma 19], producing derivations which are cut-free equivalents of Λ11 and Λ12

from [5, Lemma 19]. The result gr19a in the Isabelle code gives the existence of
these two derivations; it uses the result add Box ant which permits adding ✷A
to the antecedent of each sequent of a derivation tree.

We combine these derivations of ✷A,✷X,X ⊢ B and✷G,G,✷X,Bk,✷A ⊢ A
using an admissible (“smaller”) multicut on B, and then use contraction to
obtain ✷G,G,✷A,✷X,X ⊢ A. This is cut 3 of [5, Lemma 19]. Then the GLR
rule gives ✷G,✷X ⊢ ✷A. This is derivation Λ2 of [5, Lemma 19]. Because of this
GLR rule at this point, we do not need to worry about the del0 B values of
any of the subtrees mentioned above, whose existence is given by the inductive
assumptions of multicut-admissibility. We now weaken the conclusion of this
tree to ✷X,✷G,✷Bk ⊢ ✷A, giving (a counterpart of) the derivation Λ3 of [5,
Lemma 19].

Returning to µ−, as below left, we this time adjoin ✷X in the antecedent,
giving the tree below right, but we can now use Λ3 as a derivation for its leaf:

13

That is, we have replaced a given derivation µ of ✷X,X,✷B ⊢ B where del0
B µ = n+ 1, with a derivation µ′ of ✷X,X,✷B ⊢ B where del0 B µ′ = n.

✷G,✷Bk ⊢ ✷A

...

✷X,X,✷B ⊢ B
GLR(X,B)

✷X ⊢ ✷B

Λ3

✷X,✷G,✷Bk ⊢ ✷A

...

✷X,✷X,X,✷B ⊢ B
(contraction)

✷X,X,✷B ⊢ B
GLR

✷X ⊢ ✷B

We record this as the result as Lemma 6(a) (gr19b) below, however, we do
not use this result directly. Instead, we obtain Lemma 6(b) (gr19c’) below by
referring to Figure 1 and noting that we have replaced µ by µ′.

Lemma 6 (gr19b, gr19c’). Assume that multicut-admissibility holds for cut-
formula B, and that muxbn B n holds.

(a) If µ is a derivation of ✷X,X,✷B ⊢ B, where del0 B µ = n+ 1, then there
exists another derivation µ′ of ✷X,X,✷B ⊢ B with del0 B µ′ ≤ n.

(b) muxbn B (n+ 1) holds.

Proof. The proof of the first part is the construction described above. For the
second part, we are given an instance of Figure 1, where µ has del0 B µ = n+1.
Using the first part, we can transform µ to µ′, with del0 B µ′ = n. Since muxbn
B n holds, the multicut on ✷B where the left premise derivation is µ′/✷X ⊢ ✷B
is admissible. Hence the conclusion ✷X,Y ⊢ Z of Figure 1 is derivable. ⊣

The next result, which we do not use directly, approximates to [5, Lemma 19].

Lemma 7 (gr19d). If multicut-admissibility holds for cut-formula B, muxbn

B 0 holds, and ✷X,X,✷B ⊢ B is derivable, then ✷X,X ⊢ B is derivable.

Proof. By using Lemma 6(b) repeatedly, muxbn B n holds for any n. ⊣

Lemma 8 (caB muxbn, cut glr). If multicut-admissibility holds for cut-formula
B, then it holds for cut-formula ✷B for the case where the left premise derivation
ends with a GLR(B) rule. That is, muxbn B n holds for any n.

Proof. By combining Lemma 5 with repeated use of Lemma 6(b). ⊣

We now have the admissibility of principal multicuts on ✷B, which we indi-
cated was the crux of the cut-admissibility for GL. For the other cases, the usual
proofs hold. Although there is no particular difficulty in showing this, many de-
tails need to be checked: this takes almost 3 pages of [5], even with “omitting
details”, and citing “standard transformations”. The value of automated theo-
rem proving at this point is simply to ensure that all the necessary details have
been checked. The proof uses techniques described in §5, which means that a
relatively small amount of the proofs remaining for this theorem are peculiar to
the GLS calculus. Consequently, we get:

Theorem 3 (glss ca). Multicut is admissible in GLS.

14

7 Conclusions

We have described a formalised proof in the Isabelle theorem prover of cut ad-
missibility for the sequent calculus GLS for the provability logic GL. The proof
is based on the one from [5], particularly the construction in [5, Lemma 19],
though we use it in a slightly different way. The Isabelle proof moves to and fro
between our deep embedding of explicit trees (dertree) and our shallow embed-
ding using derrec, so our proof has demonstrated the technique of combining
use of a shallow embedding where adequate with a deep embedding where nec-
essary. The work in §5, while complex, succeeds in extracting those parts of the
cut elimination proof which follow a common pattern, and expressing them in a
way which will be useful beyond the particular sequent system GLS.

We have made considerable use of definitions and theorems which are useful
beyond this particular sequent system, or, indeed, beyond proofs about sequent
systems. We have developed axiomatic type classes based on properties of +, −,
0 and ≤ for multisets, and shown how a rather small set of axioms about these
operators is sufficient for defining a lattice. Multiset sequents (pairs of multisets)
also belong to this type class. We have applied relevant simplification procedures
to this type class, which was useful in our proofs. We have described extensive
definitions and theorems relating to abstract derivability, which we have used in
several different metalogical theories and proofs, and we have discussed the issue
of deep versus shallow embeddings in the light of this and previous work.

References

1. J E Dawson and R Goré. Embedding display calculi into logical frameworks:
Comparing Twelf and Isabelle. ENTCS 42, 89–103.

2. J E Dawson and R Goré. Formalised Cut Admissibility for Display Logic. In Proc.
TPHOLS’02, LNCS 2410, 131–147, Springer, 2002.

3. A Gacek. The Abella interactive theorem prover (system description) In Proc.
IJCAR 2008 LNCS 5195:154-161, Springer, 2008.

4. R Goré. Machine Checking Proof Theory: An Application of Logic to Logic. Invited
talk, Third Indian Conference on Logic and Applications, Chennai, January 2009.

5. R Goré and R Ramanayake. Valentini’s Cut-elimination for Provability Logic Re-
solved. Proc. AiML 2008, pp 67-86, College Publications http://users.rsise.

anu.edu.au/~rpg/publications.html
6. D Leivant. On the Proof Theory of the Modal Logic for Arithmetic Provability.

Journal of Symbolic Logic, 46:531538, 1981.
7. A Moen. The proposed algorithms for eliminating cuts in the provability calculus

GLS do not terminate. NWPT 2001, Norwegian Computing Center, 2001-12-10
http://publ.nr.no/3411

8. F Pfenning. Structural cut elimination. In Proc. LICS 94, 1994.
9. F Pfenning and C Schürmann. System description: Twelf a meta-logical framework

for deductive systems. In Proc. CADE-16, LNAI 1632: 202–206, Springer, 1999.
10. R M Solovay. Provability Interpretations of Modal Logic. Israel Journal of Math-

ematics, 25:287304, 1976.
11. S Valentini. The Modal Logic of Provability: Cut-elimination. Journal of Philo-

sophical Logic, 12:471476, 1983.

15

A Isabelle text of selected definitions and theorems

A.1 More details of our General Derivability Predicates

We now describe more fully the functions we used to describe derivability. This
framework is general in that a rule merely consists of “premises” and a “con-
clusion”, and is independent of whether the things derived are formulae, se-
quents, or other constructs, but we will refer to them as sequents.

types ’a psc = "’a list * ’a" (* single step inference *)

consts

derl, adm :: "’a psc set => ’a psc set"

dersl :: "’a psc set => (’a list * ’a list) set"

dercsl :: "’a psc set => (’a list list * ’a list) set"

derrec :: "’a psc set => ’a set => ’a set"

dersrec :: "’a psc set => ’a set => ’a list set"

An inference rule (of type ’a psc) is a list of premises ps and a conclusion c.
Then, derl rls is the set of rules derivable from the rule set rls, and derrec

rls prems is the set of sequents derivable using rules rls from the set prems of
premises. These were defined separately using Isabelle’s package for inductively
defined sets, using also the functions dersl and dersrec. So (ps, c) ∈ derl rls

reflects the shape of a derivation tree: ps is a list of exactly the premises used, in
the correct order, whereas c ∈ derrec rls prems holds even if the set of premises
prems contains superfluous sequents.

The auxiliary function dersrec represents several sequents, all derivable from
the premises. The auxiliary function dersl represents several derivation trees
side by side; (ps, cs) ∈ dersl rls when ps is the concatenation of their lists of
premises, and cs is the list of their conclusions. The function dercsl is similar,
but it shows which premises are part of which tree. That is, (pss, cs) ∈ dercsl rls

implies (concat pss, cs) ∈ dersl rls. Curiously, we have used this framework
for several years, and only recently we found the need to redefine derl using
dercsl rather than dersl as the auxiliary function.

The key clauses for defining derl and derrec are shown below (the full
definitions are in the source file gen/dtrel.{thy,ML}):

dtderI : "[| (ps, concl) : pscrel ; (pss, ps) : dersl pscrel |]

==> (pss, concl) : derl pscrel"

derI : "[| (ps, concl) : pscrel ; ps : dersrec pscrel prems |]

==> concl : derrec pscrel prems"

We obtained the expected results linking derl and derrec, and a number of
results expressing transitivity of derivation and the results of derivation using
derived rules, for example:

derrec trans eq derivability from derivable sequents is derivability from the
original premises

16

derl deriv eq derivability (in terms of derrec) using derived rules is derivabil-
ity using the original rules

derrec derl deriv eq derivability (in terms of derl) using derived rules is
derivability using the original rules

derl trans composition of derivation trees (joining conclusions to premises)
gives a derivation tree

derrec_trans_eq : "derrec ?rls (derrec ?rls ?prems) = derrec ?rls ?prems"

derl_deriv_eq : "derl (derl ?rls) = derl ?rls"

derrec_derl_deriv_eq : "derrec (derl ?rls) ?prems = derrec ?rls ?prems"

derl_trans : "[| (?ps, ?c) : derl ?rls; (?x, ?ps) : dersl ?rls |]

==> (?x, ?c) : derl ?rls"

The expected link between derl and derrec was proved in the following
form, by defining derrc from derl, and proving derl rr.

inductive "derrc pr prems"

intros

rcI : "[| (ps, c) : derl pr ; set ps <= prems |] ==>

c : derrc pr prems"

derl_rr : "derrec == derrc"

A.2 Definitions of the GLS formulae, sequents and rules

We define a language of formula connectives, formula variables and primitive
(atomic) propositions:

datatype formula = FC string (formula list) (* formula connective *)

| FV string (* formula variable *)

| PP string (* primitive proposition *)

Although the formula connectives are fixed for each logic, we made the
datatype as general as possible, and then defined (for example) P ∧ Q as FC

’’Btimes’’ [P, Q].

consts Btimes :: "formula => formula => formula" ("_ && _" [67,68] 67)

Bplus :: "formula => formula => formula" ("_ v _" [63,64] 63)

defs Btimes "Btimes f g == FC ’’Btimes’’ [f, g]"

Bplus "Bplus f g == FC ’’Bplus’’ [f, g]"

This permits a single definition of the immediate (proper) subformula rela-
tion, ipsubfml, which will not need to be changed when new connectives are
added:

consts ipsubfml :: "(formula * formula) set"

inductive "ipsubfml" (* proper immediate subformula relation *)

intros ipsI : "P : set Ps ==> (P, FC conn Ps) : ipsubfml"

17

If we call Ce (in the main text) an extension of Cs, extrs S means the set of
all extensions of all rules in the set S.

consts

extend :: "’a sequent => ’a sequent => ’a sequent"

extrs :: "’a sequent psc set => ’a sequent psc set"

defs

extend_def : "extend fmls seq == seq + fmls"

pscmap_def : "pscmap f (ps, c) = (map f ps, f c)"

inductive "extrs rules"

intros

I : "psc : rules ==> pscmap (extend flr) psc = epsc ==>

epsc : extrs rules"

Then we define glss, the set of rules of GLS. Sets wkrls and ctrrls A refer
to weakening and contraction (on A) rules (before extension).

inductive "wkrls"

intros

L : "([0], {#A#} |- {#}) : wkrls"

R : "([0], {#} |- {#A#}) : wkrls"

inductive "ctrrls A"

intros

L : "([{#A#} + {#A#} |- {#}], {#A#} |- {#}) : ctrrls A"

R : "([{#} |- {#A#} + {#A#}], {#} |- {#A#}) : ctrrls A"

inductive "glir" (* right introduction rules *)

intros

andr : "([{#} |- {#A#}, {#} |- {#B#}], {#} |- {#Btimes A B#}) : glir"

orr1 : "([{#} |- {#A#}], {#} |- {#A v B#}) : glir"

orr2 : "([{#} |- {#B#}], {#} |- {#A v B#}) : glir"

negr : "([{#A#} |- {#}], {#} |- {#--A#}) : glir"

(* single premise right implication rule *)

impr : "([{#A#} |- {#B#}], {#} |- {#A -> B#}) : glir"

inductive "glil" (* left introduction rules *)

intros

andl1 : "([{#A#} |- {#}], {#Btimes A B#} |- {#}) : glil"

andl2 : "([{#B#} |- {#}], {#Btimes A B#} |- {#}) : glil"

orl : "([{#A#} |- {#}, {#B#} |- {#}], {#A v B#} |- {#}) : glil"

negl : "([{#} |- {#A#}], {#--A#} |- {#}) : glil"

impl : "([{#B#} |- {#}, {#} |- {#A#}], {#A -> B#} |- {#}) : glil"

inductive "glne" (* rules before being extended *)

18

intros

wkI : "(ps, c) : wkrls ==> (ps, c) : glne"

ctrI : "(ps, c) : ctrrls A ==> (ps, c) : glne"

ilI : "(ps, c) : glil ==> (ps, c) : glne"

irI : "(ps, c) : glir ==> (ps, c) : glne"

inductive "glr B"

intros I : "([mset_map Box X + X + {#Box B#} |- {#B#}],

mset_map Box X |- {#Box B#}) : glr B"

inductive "glss"

intros axiom : "([], {#A#} |- {#A#}) : glss"

extI : "psc : glne ==> pscmap (extend flr) psc : glss"

glrI : "psc : glr B ==> psc : glss"

A.3 Multisets form a monad

These results use the characterisation of a monad which uses three axioms and
the functions unit (here single) and ext (here mset ext). (These axioms are
often expressed with bind in place of ext). We also show the definition of map
(here mset map).

single :: "’a => ’a multiset" ("{#_#}")

mset_ext :: "(’a => ’b multiset) => ’a multiset => ’b multiset"

mset_map :: "(’a => ’b) => ’a multiset => ’b multiset"

mset_map_def : "mset_map ?f == mset_ext (single o ?f)"

mset_ext_of_single : "mset_ext ?f {#?x#} = ?f ?x"

mset_ext_o_single : "mset_ext ?f o single = ?f"

multiset_E3 : "mset_ext (mset_ext ?f o ?g) = mset_ext ?f o mset_ext ?g"

A.4 Definitions of an atom in a lattice

We produced a number of equivalent definitions characterising atoms of the lat-
tice, and properties of atomic elements (our definition of atomic includes 0).
Thus we showed that “x is atomic” is equivalent to each of the following:

∀y < x. y = 0
∀z. x ≤ z ∨ (pg meet x z = 0) ∀ab. x ≤ a+ b ⇒ x ≤ a ∨ x ≤ b
∀ab. 0 < a ∧ 0 < b ⇒ a+ b 6= x ∀ab. a < x ∧ b < x ⇒ a+ b 6= x

A.5 Definition 1 and Theorem 1

See also the definition gen_step2sr_simp and the result gen_step2sr_lem,
which is stronger, but not (here) usefully so, and the theorem gen_step2sr_s_imp

relating them.

19

gen_step2ssr_simp :

"gen_step2ssr ?P ?A ?sub ?rls ((?psl, ?cl), (?psr, ?cr)) =

((ALL A’. (A’, ?A) : ?sub -->

(ALL da:derrec ?rls {}. ALL db:derrec ?rls {}. ?P A’ (da, db))) -->

(ALL pa:set ?psl. ?P ?A (pa, ?cr)) -->

(ALL pb:set ?psr. ?P ?A (?cl, pb)) --> ?P ?A (?cl, ?cr))"

gen_step2ssr_lem :

"[| ?A : wfp ?sub ;

?seql : derrec ?rls {} ; ?seqr : derrec ?rls {} ;

ALL A. ALL (psl, cl):?rls. ALL (psr, cr):?rls.

gen_step2ssr ?P A ?sub rls ((psl, cl), (psr, cr)) |]

==> ?P ?A (?seql, ?seqr)"

A.6 Definitions of mar, mas and masdt

mar rlsA (Xl ⊢ Yl, Xr ⊢ Yr) means that the result of doing multicut elimination
of A for these two sequents, ie (Xl +Xr \A ⊢ Yl \A+ Yr), is derivable.

mas rls A (Xl ⊢ Yl, Xr ⊢ Yr) means the same, conditional upon the given
sequents, Xl ⊢ Yl and Xr ⊢ Yr, being derivable.

masdt is similar, except that its arguments are derivation trees rather than
sequents, and uses the condition that they are valid.

A derivation tree is valid according to a set of rules if each “rule” contained
in the tree is in fact a rule in the given set.

consts

mar :: "’a sequent psc set => ’a => (’a sequent * ’a sequent) set"

mas :: "’a sequent psc set => ’a => (’a sequent * ’a sequent) set"

masdt :: "’a sequent psc set => ’a =>

(’a sequent dertree * ’a sequent dertree) set"

inductive "mar pscrel A"

intros

I : "(Xl + ms_delete {A} Xr |- ms_delete {A} Yl + Yr) : derrec pscrel {}

==> (Xl |- Yl, Xr |- Yr) : mar pscrel A"

inductive "mas pscrel A"

intros

I : "seql : derrec pscrel {} & seqr : derrec pscrel {} -->

(seql, seqr) : mar pscrel A ==>

(seql, seqr) : mas pscrel A"

consts

masdt :: "’a sequent psc set => ’a =>

(’a sequent dertree * ’a sequent dertree) set"

20

inductive "masdt pscrel A"

intros

I : "valid pscrel dtl & valid pscrel dtr -->

(conclDT dtl, conclDT dtr) : mar pscrel A ==>

(dtl, dtr) : masdt pscrel A"

A.7 Theorem 2

lmg_gen_steps :

"[| wk_adm ?erls; extrs {(?ps, ?c)} <= ?erls; ~ ?A :# succ ?c;

?pscl = pscmap (extend ?flr) (?ps, ?c) |]

==> gen_step2ssr (prop2 mar ?erls) ?A ?sub ?rls (?pscl, ?pscr)"

A.8 Definition 2

Here glra is the set of all GLR-rule instances, antec is a function to return the
antecedent of a sequent, and :# is multiset membership.

primrec Der : "del0 B (Der seq dtl) =

(if (map conclDT dtl, seq) : glra then

if Box B :# antec seq then 1 else 0

else del0s B dtl)"

Unf : "del0 B (Unf dt) = 0"

Nil : "del0s B [] = 0"

Cons : "del0s B (dt # dts) = del0 B dt + del0s B dts"

A.9 Definition 3

defs muxbn_def : "muxbn B n ==

ALL mu dtb seq. ([conclDT mu], seq) : glr B -->

del0 B mu <= n --> (Der seq [mu], dtb) : masdt glss (Box B)"

A.10 Lemma 5

del0_ca’ :

"[| valid glss ?dt; del0 ?B ?dt = 0; mas glss ?B = UNIV;

([conclDT ?dt], ?sq) : glrxb ?X ?B; ?x : derrec glss {} |] ==>

(mset_map Box ?X |- 0) +

seq_delete (mset_map Box {#?B#} |- 0) ?x : derrec glss {}"

caB_muxbn’ : "mas glss ?B = UNIV ==> muxbn ?B 0"

A.11 Lemma 4

"[| valid glss ?mu ; del0 ?B ?mu = 0 ; (conclDT ?mu) =

(mset_map Box ?X + ?X + {# Box ?B#} |- {#?B#}) |]

==> (mset_map Box ?X + ?X |- {#?B#}) : derrec glss {}"

21

A.12 Lemma 6(a) and (b)

gr19b : "[| ((conclDT ?mu) =

(mset_map Box ?X + ?X + {# Box ?B#} |- {#?B#})) ;

valid glss ?mu ; del0 ?B ?mu = Suc ?n ;

mas glss ?B = UNIV; muxbn ?B ?n |]

==> EX mupr. valid glss mupr &

conclDT mupr = conclDT ?mu & del0 ?B mupr <= ?n"

gr19c’ : "[| muxbn ?B ?n; mas glss ?B = UNIV |] ==> muxbn ?B (Suc ?n)"

A.13 Lemma 8

cut_glr :

"[| mas glss ?B = UNIV; ([conclDT ?mu], ?seq) : glr ?B |] ==>

(Der ?seq [?mu], ?dtb) : masdt glss (Box ?B)"

caB_muxbn : "mas glss ?B = UNIV ==> muxbn ?B ?n"

A.14 Theorem 3

mar_glss :

"[| ?seqa : derrec glss {}; ?seqb : derrec glss {} |] ==>

(?seqa, ?seqb) : mar glss ?A"

glss_ca :

"[| (?Xl |- ?Yl) : derrec glss {}; (?Xr |- ?Yr) : derrec glss {} |] ==>

(?Xl + ms_delete {?A} ?Xr |- ms_delete {?A} ?Yl + ?Yr) : derrec glss {}"

22

