
Composition of Monads
Jeremy E. Dawson

Logic & Computation Programme Automated Reasoning Group
National ICT Australia Computer Sciences Laboratory

Res. Sch. of Inf. Sci. and Eng.
Australian National University

Jeremy.Dawson@nicta.com.au http://rsise.anu.edu.au/∼jeremy

2006 1



Types of monad functions

unit : α → αM

map : (α → β) → (αM → βM)

join : αMM → αM

ext : (α → βM) → (αM → βM)

bind : αM → (α → βM) → βM

� : (β → γM) → (α → βM) → (α → γM)

Examples for the list monad

let g 1 = [1], g 3 = [1,2,3], etc

unit a = [a]
map f [x, y, z] = [f x, f y, f z]

join [[u, v], [w], [x, y]] = [u, v, w, x, y]

ext g [2,0,4] = [1,2,1,2,3,4]

2006 2



Relationships between monad functions

m bind f = ext f m

ext f = join ◦ map f

join = ext id
map f = ext (unit ◦ f)

g � f = ext g ◦ f

ext g = g � id

2006 3



Monad rules for unit, map and join

map id = id (1)
map f ◦ map g = map (f ◦ g) (2)

unit ◦ f = map f ◦ unit (3)
join ◦ map (map f) = map f ◦ join (4)

join ◦ unit = id (5)
join ◦ map unit = id (6)
join ◦ map join = join ◦ join (7)

ext f = join ◦ map f (8)

ext (g ◦ f) = ext g ◦ map f (9)

2006 4



Examples of monad rules

join ◦ unit = id (5)
join [[3,5,7]] = [3,5,7]

join ◦ map unit = id (6)
join [[3], [5], [7]] = [3,5,7]

join ◦ map (map f) = map f ◦ join (4)

[[u, v], [w], [x, y]]
[[u′, v′], [w′], [x′, y′]]

[u, v, w, x, y]
[u′, v′, w′, x′, y′]

join ◦ map join = join ◦ join (7)

[[[u, v], [w]], [[x], [y, z]]
[[[u, v, w]], [[x, y, z]]

[[u, v], [w], [x], [y, z]]
[u, v, w, x, y, z]

2006 5



Monad rules for unit, ext and �

ext f ◦ unit = f (E1)
ext unit = id (E2)

ext (ext g ◦ f) = ext g ◦ ext f (E3′)

join = ext id (E4)
map f = ext (unit ◦ f) (E5)

ext f ◦ unit = f (E1)
ext unit = id (E2)

ext (g � f) = ext g ◦ ext f (E3)

g � f = ext g ◦ f (E6)

2006 6



A useful theorem

Theorem 1 In a monad the following are equivalent

(i) ext g = g ◦ join

(ii) g = ext (g ◦ unit)

(iii) there exists f such that g = ext f

(iv) for all h, ext (g ◦ h) = g ◦ ext h

Refer monad rules (E4), (7), (E5) and (4)

2006 7



Identity and associativity in the Kleisli category KM

Theorem 2 Assuming rules (E1) to (E3)

g � f = ext g ◦ f (E6)
(h � g) ◦ f = h � (g ◦ f) (A6)

ext f = ext g ⇒ f = g (EI)
f � unit = f (A1)
unit � f = f (A2)

h � (g � f) = (h � g) � f (A3)

the Kleisli category KM : objects are types — α, β, etc

an arrow from α to β is a function of type α → βM

identity arrow on α is unit : α → αM

composition is � : (β → γM) → (α → βM) → (α → γM), so
g from β to γ and f from α to β compose to give g � f , from α to γ

Rules (A1) to (A3) give the properties required for a category.

2006 8



Monad Rules Based on the Kleisli Category KM

f � unit = f (A1)
unit � f = f (A2)

h � (g � f) = (h � g) � f (A3)
(h � id) ◦ f = h � f (A4)

h � (unit ◦ f) = h ◦ f (A4′)

ext g = g � id (A5)

(h � g) ◦ f = h � (g ◦ f) (A6)

2006 9



The State Monad

Let State be a fixed type, eg, the program state.

αS = State → α ∗ State

unitS a s = (a, s)

(g �S f) a s = let (b, s′) = f a s in g b s′

Proof tedious, but

curry g x y = g (x, y) unc f (x, y) = f x y

(mutually inverse, and so 1-1)

for (A1) and (A2):
unc (f �S unitS) = unc f ◦ unc unitS = unc f ◦ id = unc f

unc (unitS �S f) = unc unitS ◦ unc f = id ◦ unc f = unc f

for (A3): unc (h �S (g �S f)) = unc h ◦ (unc g ◦ unc f) =

(unc h ◦ unc g) ◦ unc f = unc ((h �S g) �S f)

2006 10



The Compound State Monad

Let M be any monad. Define αSM = State → (α ∗ State)M .

We can define �SM and unitSM by

unc (g �SM f) = unc g �M unc f

unc unitSM = unitM

Then the proofs are easy, using corresponding rules for monad M .

for (A1) and (A2):
unc (f �SM unitSM) = unc f �M unc unitSM = unc f �M unitM = unc f

unc (unitSM �SM f) = unc unitSM �M unc f = unitM �M unc f = unc f

for (A3):
unc (h �SM (g �SM f)) = unc h �M (unc g �M unc f) =

(unc h �M unc g) �M unc f = unc ((h �SM g) �SM f)

Other definitions more complicated, and proofs correspondingly so.

2006 11



A free theorem ??

Still need to prove (A4),

(h � id) ◦ f = h � f f : α → βM h : β → γM

Can we use Wadler’s “free theorems”?

Idea is that h � : (α → βM) → α → γM is polymorphic in α, so in applying
h � f to a : α, can only apply f to a, and then do something else, call it g.

That is, h � f = g ◦ f , so

(h � id) ◦ f = (g ◦ id) ◦ f = g ◦ f = h � f

Is this valid?

2006 12



Other Monads

List monad: αL = α list

Reader monad: αR = param → α

Writer monad: αW = α × output

Error monad: αE = α option (SOME a for success, NONE for failure)

These can form compound monads with an arbitrary monad M in different
ways: αMR, αWM , αEM

αE can represent termination of a program, in a final state, or non-termination

αEL represents corresponding non-deterministic program operation

αLE also represents such a program for considering total correctness:
if it may fail to terminate then never mind what else it might do, it is a failure.

αLE is also a compound monad

2006 13



Compound Monads via Partial Extension

compound monad type is (αN)M = αNM . To define a compound monad
NM , need extNM , “extending” a function f from a “smaller” domain, α, to a
“larger” one, αNM .

Consider a “partial extension” function pext which does part of this job:

extNM : (α → βNM) → (αNM → βNM)

pext : (α → βNM) → (αN → βNM)

Then extNM f = extM (pext f).

Rules (E1K) to (E3K) are enough to define NM .

About �NM or unitNM , assume only they have the right types.

Need not assume that N is a monad.

2006 14



Monad rules for a compound monad using pext

pext f �M unitNM = f (E1K)
pext unitNM = unitM (E2K)

pext (g �NM f) = pext g �M pext f (E3K)

kjoin = pext unitM (E4K)
kmap f = pext (unitNM �M f) (E5K)

g �NM f = pext g �M f (E6K)

These are just the rules needed for a monad N in KM

2006 15



Correspondence between monad N and monad N in KM

id : α → α unitM : α → αM

unitN : α → αN unitNM : α → αNM

mapN : (α → β) → αN → βN kmap : (α → βM) → αN → βNM

joinN : αNN → αN kjoin : αNN → αNM

extN : (α → βN) → αN → βN pext : (α → βNM) → αN → βNM

extN g = g �N id pext g = g �NM unitM
g �N f = extN g ◦ f g �NM f = pext g �M f

joinN = extN id kjoin = pext unitM
mapN f = extN (unitN ◦ f) kmap f = pext (unitNM �M f)

extN f = joinN ◦ mapN f pext f = kjoin �M kmap f

h �N f = (h �N id) ◦ f h �NM f = (h �NM unitM) �M f

2006 16



To show NM is a monad, using the pext rules

f �NM unitNM = f (A1K)
unitNM �NM f = f (A2K)

h �NM (g �NM f) = (h �NM g) �NM f (A3K)
(h �NM unitM) �M f = h �NM f (A4K)

To show NM is a monad, want namely (A1NM) to (A4NM).

But (A1NM) to (A3NM) same as (A1K) to (A3K); only (A4NM) is different.

So need only (A4NM); to get it, have both (A4K) and (A4M).

(h �NM id) ◦ f = h �NM f (A4NM)
(h �M id) ◦ f = h �M f (A4M)

(h �NM id) ◦ f = ((h �NM unitM) �M id) ◦ f (A4K)
= (h �NM unitM) �M f = h �NM f (A4M, A4K)

2006 17



What characterises such compound monads?

Such compound monads NM satisfy

extNM f = extM (pext f) (EC)

pext f = extNM f ◦ unitM (PE)

extM (extNM f) = extNM f ◦ joinM (J1S)

Note, (J1S) of the form of Theorem 1(i).

Conversely, if M and NM are monads, and (J1S) holds, then �NM also
defines a monad in KM , and, using (PE) to define pext, (EC) holds.

Proof uses that (A1K) to (A3K) same as (A1NM) to (A3NM);
shows (A4K) and (EC) from (J1S) using Theorem 1.

2006 18



A more general set of rules

Three more functions of the following types:

dunit : αM → αNM

dmap : (α → βM) → (αNM → βNM)

djoin : αNNM → αNM

dmap unitM = id (G1)
dmap (f ◦ h) = dmap f ◦ mapNM h (G2)

dmap f ◦ unitNM = dunit ◦ f (G3)
djoin ◦ dmap (dmap f) = dmap f ◦ joinNM (G4)

djoin ◦ dunit = id (G5)
djoin ◦ dmap unitNM = id (G6)

djoin ◦ dmap djoin = djoin ◦ joinNM (G7)

extNM f = djoin ◦ dmap f (G8)

2006 19



These also give a monad NM

Theorem 3 Assume rules (G1) to (G8). Then extNM , joinNM , mapNM and
unitNM give a monad NM , where also

djoin = extNM unitM (G9)
dmap f = extNM (dunit ◦ f) (G10)
unitNM = dunit ◦ unitM (G11)

mapNM f = dmap (unitM ◦ f) (G12)

Conversely, for a compound monad NM , when is this construction applicable?

Theorem 4 Assume that NM is a monad. Also assume that rules (G5) and
(G9) to (G11) hold. Then the remaining rules among (G1) to (G8) hold.

2006 20



When is the construction applicable?

How to use Theorem 4? Assume (UC).

unitNM f = unitM (unitN f) (UC)

dunit = mapM unitN (DU)

extNM unitM ◦ mapM unitN = id (G5′)

If (J1S) and the pext construction hold, then define functions dunit, dmap and
djoin by (DU), (G10) and (G9).

Then (G11) holds by (3M), and (G5) becomes (G5′) which holds: the proof
uses extNM f = extM(pext f).

So Theorem 4 applies.

2006 21



On the other hand . . .

extNM (mapM joinN) = mapM joinN ◦ joinNM (J2′)

Note (J2′) is also of the form of Theorem 1(i).

If N is a monad and M a premonad, and (J2′) holds, then
extNM unitM = mapM joinN (proved from Theorem 1).

In this case (G5)/(G5′) also hold, by a seemingly different proof.

extNM unitM ◦ mapM unitN = mapM joinN ◦ mapM unitN
= mapM (joinN ◦ unitN) = mapM id = id

So again Theorem 4 applies.

Common feature: extNM unitM is of the form extM f , so Theorem 1 applies.

2006 22



When both (J1S) and (J2′) hold

If both (J1S) and (J2′) hold, and both M and N are monads, then we have a
distributive law for the monads M , N and NM .

2006 23


