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Types of monad functions

unit : α → αM

map : (α → β) → (αM → βM)

join : αMM → αM

ext : (α → βM) → (αM → βM)

bind : αM → (α → βM) → βM

� : (β → γM) → (α → βM) → (α → γM)

Examples for the list monad

let g 1 = [1], g 3 = [1,2,3], etc

unit a = [a]
map f [x, y, z] = [f x, f y, f z]

join [[u, v], [w], [x, y]] = [u, v, w, x, y]

ext g [2,0,4] = [1,2,1,2,3,4]
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Relationships between monad functions

m bind f = ext f m

ext f = join ◦ map f

join = ext id
map f = ext (unit ◦ f)

g � f = ext g ◦ f

ext g = g � id
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Monad rules for unit, map and join

map id = id (1)
map f ◦ map g = map (f ◦ g) (2)

unit ◦ f = map f ◦ unit (3)
join ◦ map (map f) = map f ◦ join (4)

join ◦ unit = id (5)
join ◦ map unit = id (6)
join ◦ map join = join ◦ join (7)

ext f = join ◦ map f (8)

ext (g ◦ f) = ext g ◦ map f (9)
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Examples of monad rules

join ◦ unit = id (5)
join [[3,5,7]] = [3,5,7]

join ◦ map unit = id (6)
join [[3], [5], [7]] = [3,5,7]

join ◦ map (map f) = map f ◦ join (4)

[[u, v], [w], [x, y]]
[[u′, v′], [w′], [x′, y′]]

[u, v, w, x, y]
[u′, v′, w′, x′, y′]

join ◦ map join = join ◦ join (7)

[[[u, v], [w]], [[x], [y, z]]
[[[u, v, w]], [[x, y, z]]

[[u, v], [w], [x], [y, z]]
[u, v, w, x, y, z]
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Monad rules for unit, ext and �

ext f ◦ unit = f (E1)
ext unit = id (E2)

ext (ext g ◦ f) = ext g ◦ ext f (E3′)

join = ext id (E4)
map f = ext (unit ◦ f) (E5)

ext f ◦ unit = f (E1)
ext unit = id (E2)

ext (g � f) = ext g ◦ ext f (E3)

g � f = ext g ◦ f (E6)

2006 6



A useful theorem

Theorem 1 In a monad the following are equivalent

(i) ext g = g ◦ join

(ii) g = ext (g ◦ unit)

(iii) there exists f such that g = ext f

(iv) for all h, ext (g ◦ h) = g ◦ ext h

Refer monad rules (E4), (7), (E5) and (4)
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Identity and associativity in the Kleisli category KM

Theorem 2 Assuming rules (E1) to (E3)

g � f = ext g ◦ f (E6)
(h � g) ◦ f = h � (g ◦ f) (A6)

ext f = ext g ⇒ f = g (EI)
f � unit = f (A1)
unit � f = f (A2)

h � (g � f) = (h � g) � f (A3)

the Kleisli category KM : objects are types — α, β, etc

an arrow from α to β is a function of type α → βM

identity arrow on α is unit : α → αM

composition is � : (β → γM) → (α → βM) → (α → γM), so
g from β to γ and f from α to β compose to give g � f , from α to γ

Rules (A1) to (A3) give the properties required for a category.
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Monad Rules Based on the Kleisli Category KM

f � unit = f (A1)
unit � f = f (A2)

h � (g � f) = (h � g) � f (A3)
(h � id) ◦ f = h � f (A4)

h � (unit ◦ f) = h ◦ f (A4′)

ext g = g � id (A5)

(h � g) ◦ f = h � (g ◦ f) (A6)
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The State Monad

Let State be a fixed type, eg, the program state.

αS = State → α ∗ State

unitS a s = (a, s)

(g �S f) a s = let (b, s′) = f a s in g b s′

Proof tedious, but

curry g x y = g (x, y) unc f (x, y) = f x y

(mutually inverse, and so 1-1)

for (A1) and (A2):
unc (f �S unitS) = unc f ◦ unc unitS = unc f ◦ id = unc f

unc (unitS �S f) = unc unitS ◦ unc f = id ◦ unc f = unc f

for (A3): unc (h �S (g �S f)) = unc h ◦ (unc g ◦ unc f) =

(unc h ◦ unc g) ◦ unc f = unc ((h �S g) �S f)
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The Compound State Monad

Let M be any monad. Define αSM = State → (α ∗ State)M .

We can define �SM and unitSM by

unc (g �SM f) = unc g �M unc f

unc unitSM = unitM

Then the proofs are easy, using corresponding rules for monad M .

for (A1) and (A2):
unc (f �SM unitSM) = unc f �M unc unitSM = unc f �M unitM = unc f

unc (unitSM �SM f) = unc unitSM �M unc f = unitM �M unc f = unc f

for (A3):
unc (h �SM (g �SM f)) = unc h �M (unc g �M unc f) =

(unc h �M unc g) �M unc f = unc ((h �SM g) �SM f)

Other definitions more complicated, and proofs correspondingly so.
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A free theorem ??

Still need to prove (A4),

(h � id) ◦ f = h � f f : α → βM h : β → γM

Can we use Wadler’s “free theorems”?

Idea is that h � : (α → βM) → α → γM is polymorphic in α, so in applying
h � f to a : α, can only apply f to a, and then do something else, call it g.

That is, h � f = g ◦ f , so

(h � id) ◦ f = (g ◦ id) ◦ f = g ◦ f = h � f

Is this valid?
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Other Monads

List monad: αL = α list

Reader monad: αR = param → α

Writer monad: αW = α × output

Error monad: αE = α option (SOME a for success, NONE for failure)

These can form compound monads with an arbitrary monad M in different
ways: αMR, αWM , αEM

αE can represent termination of a program, in a final state, or non-termination

αEL represents corresponding non-deterministic program operation

αLE also represents such a program for considering total correctness:
if it may fail to terminate then never mind what else it might do, it is a failure.

αLE is also a compound monad
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Compound Monads via Partial Extension

compound monad type is (αN)M = αNM . To define a compound monad
NM , need extNM , “extending” a function f from a “smaller” domain, α, to a
“larger” one, αNM .

Consider a “partial extension” function pext which does part of this job:

extNM : (α → βNM) → (αNM → βNM)

pext : (α → βNM) → (αN → βNM)

Then extNM f = extM (pext f).

Rules (E1K) to (E3K) are enough to define NM .

About �NM or unitNM , assume only they have the right types.

Need not assume that N is a monad.
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Monad rules for a compound monad using pext

pext f �M unitNM = f (E1K)
pext unitNM = unitM (E2K)

pext (g �NM f) = pext g �M pext f (E3K)

kjoin = pext unitM (E4K)
kmap f = pext (unitNM �M f) (E5K)

g �NM f = pext g �M f (E6K)

These are just the rules needed for a monad N in KM
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Correspondence between monad N and monad N in KM

id : α → α unitM : α → αM

unitN : α → αN unitNM : α → αNM

mapN : (α → β) → αN → βN kmap : (α → βM) → αN → βNM

joinN : αNN → αN kjoin : αNN → αNM

extN : (α → βN) → αN → βN pext : (α → βNM) → αN → βNM

extN g = g �N id pext g = g �NM unitM
g �N f = extN g ◦ f g �NM f = pext g �M f

joinN = extN id kjoin = pext unitM
mapN f = extN (unitN ◦ f) kmap f = pext (unitNM �M f)

extN f = joinN ◦ mapN f pext f = kjoin �M kmap f

h �N f = (h �N id) ◦ f h �NM f = (h �NM unitM) �M f
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To show NM is a monad, using the pext rules

f �NM unitNM = f (A1K)
unitNM �NM f = f (A2K)

h �NM (g �NM f) = (h �NM g) �NM f (A3K)
(h �NM unitM) �M f = h �NM f (A4K)

To show NM is a monad, want namely (A1NM) to (A4NM).

But (A1NM) to (A3NM) same as (A1K) to (A3K); only (A4NM) is different.

So need only (A4NM); to get it, have both (A4K) and (A4M).

(h �NM id) ◦ f = h �NM f (A4NM)
(h �M id) ◦ f = h �M f (A4M)

(h �NM id) ◦ f = ((h �NM unitM) �M id) ◦ f (A4K)
= (h �NM unitM) �M f = h �NM f (A4M, A4K)
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What characterises such compound monads?

Such compound monads NM satisfy

extNM f = extM (pext f) (EC)

pext f = extNM f ◦ unitM (PE)

extM (extNM f) = extNM f ◦ joinM (J1S)

Note, (J1S) of the form of Theorem 1(i).

Conversely, if M and NM are monads, and (J1S) holds, then �NM also
defines a monad in KM , and, using (PE) to define pext, (EC) holds.

Proof uses that (A1K) to (A3K) same as (A1NM) to (A3NM);
shows (A4K) and (EC) from (J1S) using Theorem 1.
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A more general set of rules

Three more functions of the following types:

dunit : αM → αNM

dmap : (α → βM) → (αNM → βNM)

djoin : αNNM → αNM

dmap unitM = id (G1)
dmap (f ◦ h) = dmap f ◦ mapNM h (G2)

dmap f ◦ unitNM = dunit ◦ f (G3)
djoin ◦ dmap (dmap f) = dmap f ◦ joinNM (G4)

djoin ◦ dunit = id (G5)
djoin ◦ dmap unitNM = id (G6)

djoin ◦ dmap djoin = djoin ◦ joinNM (G7)

extNM f = djoin ◦ dmap f (G8)
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These also give a monad NM

Theorem 3 Assume rules (G1) to (G8). Then extNM , joinNM , mapNM and
unitNM give a monad NM , where also

djoin = extNM unitM (G9)
dmap f = extNM (dunit ◦ f) (G10)
unitNM = dunit ◦ unitM (G11)

mapNM f = dmap (unitM ◦ f) (G12)

Conversely, for a compound monad NM , when is this construction applicable?

Theorem 4 Assume that NM is a monad. Also assume that rules (G5) and
(G9) to (G11) hold. Then the remaining rules among (G1) to (G8) hold.
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When is the construction applicable?

How to use Theorem 4? Assume (UC).

unitNM f = unitM (unitN f) (UC)

dunit = mapM unitN (DU)

extNM unitM ◦ mapM unitN = id (G5′)

If (J1S) and the pext construction hold, then define functions dunit, dmap and
djoin by (DU), (G10) and (G9).

Then (G11) holds by (3M), and (G5) becomes (G5′) which holds: the proof
uses extNM f = extM(pext f).

So Theorem 4 applies.
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On the other hand . . .

extNM (mapM joinN) = mapM joinN ◦ joinNM (J2′)

Note (J2′) is also of the form of Theorem 1(i).

If N is a monad and M a premonad, and (J2′) holds, then
extNM unitM = mapM joinN (proved from Theorem 1).

In this case (G5)/(G5′) also hold, by a seemingly different proof.

extNM unitM ◦ mapM unitN = mapM joinN ◦ mapM unitN
= mapM (joinN ◦ unitN) = mapM id = id

So again Theorem 4 applies.

Common feature: extNM unitM is of the form extM f , so Theorem 1 applies.
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When both (J1S) and (J2′) hold

If both (J1S) and (J2′) hold, and both M and N are monads, then we have a
distributive law for the monads M , N and NM .
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