Composition of Monads

Jeremy E. Dawson

Logic & Computation Programme Automated Reasoning Group
National ICT Australia Computer Sciences Laboratory
Res. Sch. of Inf. Sci. and Eng.

Australian National University
Jereny. Dawson@i cta.comau http://rsise.anu. edu. au/ ~j ereny

2006 1

Types of monad functions

unit : a« — aM
map : (¢ — B8) — (aM — BM)
join: aMM — oM
ext: (a« — M) — (aM — BM)
bind : aM — (o — BM) — M
©: (8= M) — (a— BM) — (o — vM)

Examples for the list monad

letg1 =[1],93 =[1,2,3], etc

unit a = [a]
map f [z,y,z] = [f =, fy, f 2]
join [[u,v], [w], [z, y]] = [u,v,w, =, y]
extg [2,0,4] =[1,2,1,2,3,4]

2006

Relationships between monad functions

mbind f = ext fm
ext f = join o map f
join = extid
map f = ext (unit o f)
g f = extgof
extg = goid

2006

Monad rules for unit, map and join

map id = id (1)

map f o map g = map (f o g) (2)

unit o f = map f o unit (3)

join o map (map f) = map f o join (4)
join o unit = id (5)

join o map unit = id (6)

join o map join = join o join (7)

ext f = join o map f (8)

ext (g o f) =extg omap f (9)

2006 4

Examples of monad rules

join o unit = id (5)
join [[3,5,7]] = [3,5,7]
join o map unit = id (6)
join [[3], [5], [7]] = [3,5,7]

join o map (map f) = map f o join (4)

ol fol, [y yl] O byl e
[u, v, w, x, y]

join o map join = join o join (7)

[, v, w]], [[z,y, 2]]
[[[w, v], [w]], [[=], [y, z]] T, o], [l (2], [0, 21] [w, v, w,z,y, 2]

2006 5

Monad rules for unit, ext and ©

ext f ounit= f (E1)
ext unit = id (E2)

ext (extg o f) = extg o ext f (E3)
join = ext id (E4)

map f = ext (unit o f) (E5)

ext f o unit = f (E1)
extunit = id (E2)

ext (g ® f) = extgoextf (E3)
goO©Jf = extgof (E6)

2006 6

A useful theorem

Theorem 1 In a monad the following are equivalent
(i) extg=g o join

(i) g=-ext (g o unit)

(i) there exists f such that g = ext f

(iv) forall h,ext(g o h)=g o exth

Refer monad rules (E4), (7), (E5) and (4)

2006

ldentity and associativity in the Kleisli category Ky,

Theorem 2 Assuming rules (E1) to (E3)

g® f=extgo f (E6)
(h©g)of=ho(gof) (A6)
ext f =extg=f =g (El)
f O unit=f (A1)
unit © f = f (A2)
ho(@o fl)=hog) Of (A3)

the Kleisli category K/: objects are types — «, (3, etc
an arrow from « to g is a function of type o« — M
identity arrow on o is unit : « — aM

compositionis® : (8 —-YM) — (o« — BM) — (o — vM), SO
g from g to v and f from « to 3 compose to give g ® f, from « to ~

Rules (Al) to (A3) give the properties required for a category.
2006 8

Monad Rules Based on the Kleisli Category Ky,

f © unit=f (Al)
unit © f = f (A2)
ho(@o f)=hog) Of (A3)
(h®id)o f=hof (Ad)
h ® (unito f) =ho f (A4)
extg =g © id (A5)
(h©g)of=ho(gof) (A6)

2006 9

The State Monad

Let State be a fixed type, eg, the program state.
aS = State — « * State
unitg a s = (a, s)

(g ®g flas=let(b,s’) = fasingbs
Proof tedious, but

cury gz y = g (z,9) unc f (z,y) = fzy
(mutually inverse, and so 1-1)

for (Al) and (A2):
unc (f ®g unitg) = unc f o unc unitg = unc f o id = unc f
unc (unitg ®g f) = unc unitg o unc f =id o unc f = unc f

for (A3): unc (h ®g (g ®g f)) =unch o (Unc g o unc f) =

(unch ouncg) ounc f =unc ((h ©®g g) ®g f)

2006

10

The Compound State Monad
Let M be any monad. Define a.S); = State — (« * State) M.
We can define ®© g, and unitg,, by

unc (g ©gpr f) =uncg @y unc f
unc unitg,; = unity,

Then the proofs are easy, using corresponding rules for monad M.

for (Al) and (A2):
unc (f ®gps Unitgps) = unc f ®,7 unc unitgpy, = unc f ®,s unity; = unc f
unc (unitgp; ®gps f) = unc unitgp; ®ps Unc f = unity; ©py unc f = unc f
for (A3):
unc (h ©gp (9 Oy f)) =unch @y (UNCg ©py unc f) =

(unc h ©p7 unc g) Opy unc f=unc ((h Osnr 9) Osar f)
Other definitions more complicated, and proofs correspondingly so.

2006 11

A free theorem ?7?
Still need to prove (A4),

(h@id)of=hof f:a—BM h:B8—~M

Can we use Wadler’s “free theorems”?

ldeaisthath ©® _: (oo — BM) — o — ~vM is polymorphic in «, so in applying
h ® ftoa: «, canonly apply f to a, and then do something else, call it g.

Thatis,h ® f =g o f, soO
(h©id)o f=(goid)o f=go f=hOf

Is this valid?

2006 12

Other Monads
List monad: oL = « list
Reader monad: R = param — «
Writer monad: aWW = o x output
Error monad: o = « option (SOME « for success, NONE for failure)

These can form compound monads with an arbitrary monad M in different
ways: aM R, oW M, oL M

aF’ can represent termination of a program, in a final state, or non-termination
aF L represents corresponding non-deterministic program operation

aLLE also represents such a program for considering total correctness:
If it may fail to terminate then never mind what else it might do, it is a failure.

aL FE' is also a compound monad

2006 13

Compound Monads via Partial Extension

compound monad type is (aN)M = oN M. To define a compound monad
N M, need exty s, “extending” a function f from a “smaller” domain, «, to a
“larger” one, aN M.

Consider a “partial extension” function pext which does part of this job:
extyys : (a — BNM) — (aNM — BNM)
pext: (o« — BNM) — (aN — BNM)
Then exty s f = exty; (pext f).
Rules (E1K) to (E3K) are enough to define N M.
About O arps Or unity s, assume only they have the right types.

Need not assume that N is a monad.

2006

14

Monad rules for a compound monad using pext

pext f Ops unitapys
pext unitar s

pext (9 Onpr f)
Kjoin
kmap f

9 Onm S

f

unitM
pext g ©ps pext f

pext unit,,
pext (unitNM On f)

pextg O f

These are just the rules needed for a monad N in ICy,

(E1K)
(E2K)
(E3K)

(E4K)
(E5K)

(E6K)

2006

15

Correspondence between monad N and monad N in ICy,

id o — « unity; : o« — aM
unity : o« — alN unityps - o — aNM
mapy : (o — B) - aN — N kmap : (¢« — BM) — aN — BNM
joiny : aNN — aN kjoin : aNN — aNM

exty : (¢ — BN) — aN — BN pext: (¢« - BNM) — aN — BNM

exty g =9 On id pexXtg =g OnNMm unitM
g ON f=extygof g Onm J=pextg On f
joiny = exty id kjoin = pext unit,,
map, f = exty (unity o f) kmap f = pext (unity s Oar f)
exty f =joiny o mapy f pext f = kjoin ©,; kmap f

hoOn f=((h Oyid)o f h Oy f = (h Onp unityr) O f

2006 16

To show NM is a monad, using the pext rules

J ONnp uUnitypr = f (A1K)
unity s Oy f=f (A2K)

h Ony (9 Onyr f) = (h Onwr 9) Onwr (A3K)
(h Onpr unityy) Opr f=h Onar f (A4K)

To show N M is a monad, want namely (A1INM) to (A4ANM).
But (ALINM) to (A3BNM) same as (A1K) to (A3K); only (A4NM) is different.

So need only (A4ANM); to get it, have both (A4K) and (A4M).

(h Onprid) o f=h Oy f (A4NM)
(h Opid)o f=hopyf (A4M)
(h Onar id) o f = ((h Onps unityr) Opf id) o f (A4K)

= (h Oy unityr) Opar f=h Oy f (A4M, AdK)

2006 17

What characterises such compound monads?

Such compound monads N M satisfy

extayns f = exty, (pext f) (EC)
pext f = extn s f o unitM (PE)
extys (extNM f) =extya f o joinM (J1S)

Note, (J1S) of the form of Theorem 1(i).

Conversely, if M and N M are monads, and (J1S) holds, then ® s also
defines a monad in Ky, and, using (PE) to define pext, (EC) holds.

Proof uses that (A1K) to (A3K) same as (A1INM) to (A3NM);
shows (A4K) and (EC) from (J1S) using Theorem 1.

2006 18

A more general set of rules
Three more functions of the following types:

dunit : aM — aNM
dmap : (o« — BM) — («NM — BNM)
djoin : aNNM — aNM

dmap unit; = id
dmap (f o h) =dmap f o mappy s h
dmap f o unityp; = dunit o f
djoin o dmap (dmap f) = dmap f o joinp,,
djoin o dunit = id
djoin o dmap unity ;s = id
djoin o dmap djoin = djoin o joinp

exta s f = djoin o dmap f

(G1)
(G2)
(G3)
(G4)
(G5)
(G6)
(G7)

(G8)

2006

19

These also give a monad N M

Theorem 3 Assume rules (G1) to (G8). Then exty s, Joinx s, Mapy s and
unity s give a monad N M, where also

djoin = extpy s unity, (G9)
dmap f = exty,s (dunit o f) (G10)
unitNM = dunit o unitM (Gll)
mapyy, f = dmap (unity; o f) (G12)

Conversely, for a compound monad N M, when is this construction applicable?

Theorem 4 Assume that N M is a monad. Also assume that rules (G5) and
(G9) to (G11) hold. Then the remaining rules among (G1) to (G8) hold.

2006 20

When is the construction applicable?

How to use Theorem 4? Assume (UC).

unitNM f= unitM (unitN f) (UC)
dunit = map,; unity (DU)
exty s Unity; o map,, unity = id (G5)

If (J1S) and the pext construction hold, then define functions dunit, dmap and
djoin by (DU), (G10) and (G9).

Then (G11) holds by (3M), and (G5) becomes (G5’) which holds: the proof
uses exty s f = extys(pext f).

So Theorem 4 applies.

2006 21

On the other hand ...

exty s (map,, joiny) = map,, joiny o joinp s (32"

Note (J2/) is also of the form of Theorem 1(i).

If N is a monad and M a premonad, and (J2’) holds, then
exty s unity; = map,, joiny (proved from Theorem 1).

In this case (G5)/(G5’) also hold, by a seemingly different proof.
exty s unity, o map,, unityy = map,, Joiny o map,, unity
= map,,; (joiny o unityy) = map,, id = id

So again Theorem 4 applies.

Common feature: extars unity, is of the form ext,, f, so Theorem 1 applies.

2006 22

When both (J1S) and (J2’) hold

If both (J1S) and (J2’) hold, and both A and N are monads, then we have a
distributive law for the monads M, N and N M.

2006

23

