Composition of Monads

Jeremy E. Dawson

Logic & Computation Programme

National ICT Australia

Automated Reasoning Group

Computer Sciences Laboratory

Res. Sch. of Inf. Sci. and Eng.

Australian National University

Jeremy.Dawson@nicta.com.au

http://rsise.anu.edu.au/~jeremy

Types of monad functions

```
unit: \alpha \to \alpha M

map: (\alpha \to \beta) \to (\alpha M \to \beta M)

join: \alpha MM \to \alpha M

ext: (\alpha \to \beta M) \to (\alpha M \to \beta M)

bind: \alpha M \to (\alpha \to \beta M) \to \beta M

\odot : (\beta \to \gamma M) \to (\alpha \to \beta M) \to (\alpha \to \gamma M)
```

Examples for the list monad

Relationships between monad functions

```
m 	ext{ bind } f = \operatorname{ext} f 	ext{ } m
\operatorname{ext} f = \operatorname{join} \circ \operatorname{map} f
\operatorname{join} = \operatorname{ext} \operatorname{id}
\operatorname{map} f = \operatorname{ext} (\operatorname{unit} \circ f)
g \odot f = \operatorname{ext} g \circ f
\operatorname{ext} g = g \odot \operatorname{id}
```

Monad rules for unit, map and join

$$map \ id = id \qquad \qquad (1)$$

$$map \ f \circ map \ g = map \ (f \circ g) \qquad \qquad (2)$$

$$unit \circ f = map \ f \circ unit \qquad \qquad (3)$$

$$join \circ map \ (map \ f) = map \ f \circ join \qquad \qquad (4)$$

$$join \circ unit = id \qquad \qquad (5)$$

$$join \circ map \ unit = id \qquad \qquad (6)$$

$$join \circ map \ join = join \circ join \qquad \qquad (7)$$

$$ext \ f = join \circ map \ f \qquad \qquad (8)$$

$$ext \ (g \circ f) = ext \ g \circ map \ f \qquad \qquad (9)$$

Examples of monad rules

Monad rules for *unit*, *ext* and ⊙

A useful theorem

Theorem 1 In a monad the following are equivalent

(i)
$$ext g = g \circ join$$

(ii)
$$g = \text{ext} (g \circ \text{unit})$$

(iii) there exists f such that g = ext f

(iv) for all h, ext $(g \circ h) = g \circ \text{ext } h$

Refer monad rules (E4), (7), (E5) and (4)

Identity and associativity in the Kleisli category \mathcal{K}_M

Theorem 2 Assuming rules (E1) to (E3)

$$g \odot f = \operatorname{ext} g \circ f$$
 (E6)
 $(h \odot g) \circ f = h \odot (g \circ f)$ (A6)
 $\operatorname{ext} f = \operatorname{ext} g \Rightarrow f = g$ (E1)
 $f \odot \operatorname{unit} = f$ (A1)
 $\operatorname{unit} \odot f = f$ (A2)
 $h \odot (g \odot f) = (h \odot g) \odot f$ (A3)

the Kleisli category \mathcal{K}_M : **objects** are types — α , β , etc

an arrow from α to β is a function of type $\alpha \to \beta M$

identity arrow on α is *unit* : $\alpha \rightarrow \alpha M$

composition is \odot : $(\beta \to \gamma M) \to (\alpha \to \beta M) \to (\alpha \to \gamma M)$, so g from β to γ and f from α to β compose to give $g \odot f$, from α to γ

Rules (A1) to (A3) give the properties required for a category.

Monad Rules Based on the Kleisli Category \mathcal{K}_M

$$f \odot \textit{unit} = f \tag{A1}$$

$$\textit{unit} \odot f = f \tag{A2}$$

$$h \odot (g \odot f) = (h \odot g) \odot f \tag{A3}$$

$$(h \odot id) \circ f = h \odot f \tag{A4}$$

$$h \odot (\textit{unit} \circ f) = h \circ f \tag{A4'}$$

$$\textit{ext} g = g \odot id \tag{A5}$$

$$(h \odot g) \circ f = h \odot (g \circ f) \tag{A6}$$

The State Monad

Let State be a fixed type, eg, the program state.

$$\alpha S = \operatorname{State} \to \alpha * \operatorname{State}$$

$$unit_S \ a \ s = (a,s)$$

$$(g \odot_S f) \ a \ s = \operatorname{let} \ (b,s') = f \ a \ s \ \operatorname{in} \ g \ b \ s'$$

$$\operatorname{Proof tedious, but}$$

$$\operatorname{curry} g \ x \ y = g \ (x,y) \qquad \qquad \operatorname{unc} \ f \ (x,y) = f \ x \ y$$

$$(\operatorname{mutually inverse, and so 1-1})$$

$$\operatorname{for} \ (\operatorname{A1}) \ \operatorname{and} \ (\operatorname{A2}): \qquad \qquad \operatorname{unc} \ (f \odot_S \ unit_S) = \operatorname{unc} \ f \circ \ \operatorname{unc unit}_S = \operatorname{unc} \ f \circ \ \operatorname{id} = \operatorname{unc} \ f$$

$$\operatorname{unc} \ (unit_S \odot_S f) = \operatorname{unc unit}_S \circ \operatorname{unc} \ f = \operatorname{id} \circ \operatorname{unc} \ f = \operatorname{unc} \ f$$

$$\operatorname{for} \ (\operatorname{A3}): \operatorname{unc} \ (h \odot_S (g \odot_S f)) = \operatorname{unc} \ h \circ (\operatorname{unc} \ g \circ \operatorname{unc} \ f) = (\operatorname{unc} \ h \circ \operatorname{unc} \ g) \circ \operatorname{unc} \ f = \operatorname{unc} \ ((h \odot_S g) \odot_S f)$$

The Compound State Monad

Let M be any monad. Define $\alpha S_M = \text{State} \to (\alpha * \text{State})M$.

We can define \odot_{SM} and \textit{unit}_{SM} by

$$unc (g \odot_{SM} f) = unc g \odot_{M} unc f$$

 $unc unit_{SM} = unit_{M}$

Then the proofs are easy, using corresponding rules for monad M.

```
for (A1) and (A2):  unc \ (f \odot_{SM} \ unit_{SM}) = unc \ f \odot_{M} \ unc \ unit_{SM} = unc \ f \odot_{M} \ unit_{M} = unc \ f   unc \ (unit_{SM} \odot_{SM} \ f) = unc \ unit_{SM} \odot_{M} \ unc \ f = unit_{M} \odot_{M} \ unc \ f = unc \ f  for (A3):  unc \ (h \odot_{SM} \ (g \odot_{SM} \ f)) = unc \ h \odot_{M} \ (unc \ g \odot_{M} \ unc \ f) =   (unc \ h \odot_{M} \ unc \ g) \odot_{M} \ unc \ f = unc \ ((h \odot_{SM} \ g) \odot_{SM} \ f)
```

Other definitions more complicated, and proofs correspondingly so.

A free theorem ??

Still need to prove (A4),

$$(h \odot id) \circ f = h \odot f \qquad f : \alpha \to \beta M \qquad h : \beta \to \gamma M$$

Can we use Wadler's "free theorems"?

Idea is that $h \odot _: (\alpha \to \beta M) \to \alpha \to \gamma M$ is polymorphic in α , so in applying $h \odot f$ to $a : \alpha$, can only apply f to a, and then do something else, call it g.

That is, $h \odot f = g \circ f$, so

$$(h \odot id) \circ f = (g \circ id) \circ f = g \circ f = h \odot f$$

Is this valid?

Other Monads

List monad: $\alpha L = \alpha$ list

Reader monad: $\alpha R = \text{param} \rightarrow \alpha$

Writer monad: $\alpha W = \alpha \times \text{output}$

Error monad: $\alpha E = \alpha$ option (SOME a for success, NONE for failure)

These can form compound monads with an arbitrary monad M in different ways: αMR , αWM , αEM

 αE can represent termination of a program, in a final state, or non-termination

 αEL represents corresponding non-deterministic program operation

 αLE also represents such a program for considering *total correctness*: if it *may* fail to terminate then never mind what else it might do, it is a failure.

lpha LE is also a compound monad

Compound Monads via Partial Extension

compound monad type is $(\alpha N)M = \alpha NM$. To define a compound monad NM, need ext_{NM} , "extending" a function f from a "smaller" domain, α , to a "larger" one, αNM .

Consider a "partial extension" function *pext* which does part of this job:

$$m{ext}_{NM}: (lpha
ightarrow eta NM)
ightarrow (lpha NM
ightarrow eta NM) \ m{pext}: (lpha
ightarrow eta NM)
ightarrow (lpha N
ightarrow eta NM)$$

Then $ext_{NM} f = ext_M (pext f)$.

Rules (E1K) to (E3K) are enough to define NM.

About \odot_{NM} or $unit_{NM}$, assume only they have the right types.

Need not assume that N is a monad.

Monad rules for a compound monad using pext

These are just the rules needed for a monad N in \mathcal{K}_M

Correspondence between monad N and monad N in \mathcal{K}_M

```
id:\alpha \rightarrow \alpha
                                                           unit_M: \alpha \to \alpha M
                                             \mathit{unit}_{NM}: lpha 
ightarrow lpha NM
 unit_N: \alpha \to \alpha N
\mathsf{map}_N : (\alpha \to \beta) \to \alpha N \to \beta N \mathsf{kmap} : (\alpha \to \beta M) \to \alpha N \to \beta N M
 join_N: \alpha NN \rightarrow \alpha N
                                               kioin : lpha NN 
ightarrow lpha NM
  \mathsf{ext}_N : (\alpha \to \beta N) \to \alpha N \to \beta N \mathsf{pext} : (\alpha \to \beta NM) \to \alpha N \to \beta NM
  ext_N g = g \odot_N id
                                                           pext g = g \odot_{NM} unit_M
g \odot_N f = \operatorname{ext}_N g \circ f
                                                    g \odot_{NM} f = pext g \odot_{M} f
    join_N = ext_N id
                                                              kjoin = pext unit_M
\mathsf{map}_N \ f = \mathsf{ext}_N \ (\mathsf{unit}_N \circ f) \qquad \mathsf{kmap} \ f = \mathsf{pext} \ (\mathsf{unit}_{NM} \odot_M f)
  \operatorname{ext}_N f = \operatorname{join}_N \circ \operatorname{map}_N f \operatorname{pext} f = \operatorname{kjoin} \odot_M \operatorname{kmap} f
h \odot_N f = (h \odot_N id) \circ f h \odot_{NM} f = (h \odot_{NM} unit_M) \odot_M f
```

To show NM is a monad, using the *pext* rules

$$f \odot_{NM} \operatorname{unit}_{NM} = f$$

$$\operatorname{unit}_{NM} \odot_{NM} f = f$$

$$h \odot_{NM} (g \odot_{NM} f) = (h \odot_{NM} g) \odot_{NM} f$$

$$(h \odot_{NM} \operatorname{unit}_{M}) \odot_{M} f = h \odot_{NM} f$$

$$(A1K)$$

$$(A2K)$$

$$(A3K)$$

$$(A3K)$$

To show NM is a monad, want namely (A1NM) to (A4NM).

But (A1NM) to (A3NM) same as (A1K) to (A3K); only (A4NM) is different.

So need only (A4NM); to get it, have both (A4K) and (A4M).

$$(h \odot_{NM} id) \circ f = ((h \odot_{NM} unit_M) \odot_M id) \circ f$$

$$= (h \odot_{NM} unit_M) \odot_M f = h \odot_{NM} f$$
(A4K)

What characterises such compound monads?

Such compound monads NM satisfy

$$ext_{NM} f = ext_{M} (pext f)$$
 (EC)

$$pext f = ext_{NM} f \circ unit_{M}$$
 (PE)

$$ext_{M} (ext_{NM} f) = ext_{NM} f \circ join_{M}$$
 (J1S)

Note, (J1S) of the form of Theorem 1(i).

Conversely, if M and NM are monads, and (J1S) holds, then \odot_{NM} also defines a monad in \mathcal{K}_M , and, using (PE) to define pext, (EC) holds.

Proof uses that (A1K) to (A3K) same as (A1NM) to (A3NM); shows (A4K) and (EC) from (J1S) using Theorem 1.

A more general set of rules

Three more functions of the following types:

dunit: $\alpha M \rightarrow \alpha NM$

```
dmap: (\alpha \to \beta M) \to (\alpha NM \to \beta NM)
djoin: \alpha NNM \rightarrow \alpha NM
             dmap\ unit_M = id
                                                                                  (G1)
           dmap(f \circ h) = dmap f \circ map_{NM} h
                                                                                  (G2)
      dmap f \circ unit_{NM} = dunit \circ f
                                                                                  (G3)
djoin \circ dmap (dmap f) = dmap f \circ join_{NM}
                                                                                  (G4)
             djoin ∘ dunit = id
                                                                                  (G5)
  djoin \circ dmap unit_{NM} = id
                                                                                  (G6)
                                                                                  (G7)
      djoin \circ dmap djoin = djoin \circ join_{NM}
                 ext_{NM} f = djoin \circ dmap f
                                                                                  (G8)
```

These also give a monad NM

Theorem 3 Assume rules (G1) to (G8). Then ext_{NM} , join_{NM}, map_{NM} and unit_{NM} give a monad NM, where also

$$\begin{array}{lll} \textit{djoin} &=& \operatorname{ext}_{NM} \, \operatorname{unit}_{M} \\ \textit{dmap} \, f &=& \operatorname{ext}_{NM} \, (\operatorname{dunit} \circ f) \\ \textit{unit}_{NM} &=& \operatorname{dunit} \circ \, \operatorname{unit}_{M} \\ \textit{map}_{NM} \, f &=& \operatorname{dmap} \, (\operatorname{unit}_{M} \circ f) \end{array} \tag{G10}$$

Conversely, for a compound monad NM, when is this construction applicable?

Theorem 4 Assume that NM is a monad. Also assume that rules (G5) and (G9) to (G11) hold. Then the remaining rules among (G1) to (G8) hold.

When is the construction applicable?

How to use Theorem 4? Assume (UC).

$$unit_{NM} f = unit_{M} (unit_{N} f)$$
 (UC)

$$dunit = map_M \ unit_N \tag{DU}$$

$$ext_{NM} unit_M \circ map_M unit_N = id$$
 (G5')

If (J1S) and the *pext* construction hold, then *define* functions *dunit*, *dmap* and *djoin* by (DU), (G10) and (G9).

Then (G11) holds by (3M), and (G5) becomes (G5') which holds: the proof uses $ext_{NM} f = ext_{M}(pext f)$.

So Theorem 4 applies.

On the other hand ...

$$ext_{NM} (map_M join_N) = map_M join_N \circ join_{NM}$$
 (J2')

Note (J2') is also of the form of Theorem 1(i).

If N is a monad and M a premonad, and (J2') holds, then ext_{NM} unit_M = map_M join_N (proved from Theorem 1).

In this case (G5)/(G5') also hold, by a seemingly *different* proof.

$$\mathsf{ext}_{NM} \ \mathsf{unit}_M \circ \mathsf{map}_M \ \mathsf{unit}_N = \mathsf{map}_M \ \mathsf{join}_N \circ \mathsf{map}_M \ \mathsf{unit}_N = \mathsf{map}_M \ (\mathsf{join}_N \circ \mathsf{unit}_N) = \mathsf{map}_M \ \mathsf{id} = \mathsf{id}$$

So again Theorem 4 applies.

Common feature: ext_{NM} unit_M is of the form ext_M f, so Theorem 1 applies.

When both (J1S) and (J2') hold

If **both** (J1S) and (J2') hold, and **both** M and N are monads, then we have a distributive law for the monads M, N and NM.