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Types of monad functions

unit : a« — aM
map : (¢ — B8) — (aM — BM)
join: aMM — oM
ext: (a« — M) — (aM — BM)
bind : aM — (o — BM) — M
©: (8= M) — (a— BM) — (o — vM)

Examples for the list monad

letg1 =[1],93 =[1,2,3], etc

unit a = [a]
map f [z,y,z] = [f =, fy, f 2]
join [[u,v], [w], [z, y]] = [u,v,w, =, y]
extg [2,0,4] =[1,2,1,2,3,4]
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Relationships between monad functions

mbind f = ext fm
ext f = join o map f
join = extid
map f = ext (unit o f)
g f = extgof
extg = goid
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Monad rules for unit, map and join

map id = id (1)

map f o map g = map (f o g) (2)

unit o f = map f o unit (3)

join o map (map f) = map f o join (4)
join o unit = id (5)

join o map unit = id (6)

join o map join = join o join (7)

ext f = join o map f (8)

ext (g o f) =extg omap f (9)
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Examples of monad rules

join o unit = id (5)
join [[3,5,7]] = [3,5,7]
join o map unit = id (6)
join [[3], [5], [7]] = [3,5,7]

join o map (map f) = map f o join (4)

ol fol, [y yl] O byl e
[u, v, w, x, y]

join o map join = join o join (7)

[, v, w]], [[z,y, 2]]
[[[w, v], [w]], [[=], [y, z]] T, o], [l (2], [0, 21] [w, v, w,z,y, 2]
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Monad rules for unit, ext and ©

ext f ounit= f (E1)
ext unit = id (E2)

ext (extg o f) = extg o ext f (E3)
join = ext id (E4)

map f = ext (unit o f) (E5)

ext f o unit = f (E1)
extunit = id (E2)

ext (g ® f) = extgoextf (E3)
goO©Jf = extgof (E6)
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A useful theorem

Theorem 1 In a monad the following are equivalent
(i) extg=g o join

(i) g=-ext (g o unit)

(i) there exists f such that g = ext f

(iv) forall h,ext(g o h)=g o exth

Refer monad rules (E4), (7), (E5) and (4)
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ldentity and associativity in the Kleisli category Ky,

Theorem 2 Assuming rules (E1) to (E3)

g® f=extgo f (E6)
(h©g)of=ho(gof) (A6)
ext f =extg=f =g (El)
f O unit=f (A1)
unit © f = f (A2)
ho(@o fl)=hog) Of (A3)

the Kleisli category K/: objects are types — «, (3, etc
an arrow from « to g is a function of type o« — M
identity arrow on o is unit : « — aM

compositionis® : (8 —-YM) — (o« — BM) — (o — vM), SO
g from g to v and f from « to 3 compose to give g ® f, from « to ~

Rules (Al) to (A3) give the properties required for a category.
2006 8




Monad Rules Based on the Kleisli Category Ky,

f © unit=f (Al)
unit © f = f (A2)
ho(@o f)=hog) Of (A3)
(h®id)o f=hof (Ad)
h ® (unito f) =ho f (A4)
extg =g © id (A5)
(h©g)of=ho(gof) (A6)
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The State Monad

Let State be a fixed type, eg, the program state.
aS = State — « * State
unitg a s = (a, s)

(g ®g flas=let(b,s’) = fasingbs
Proof tedious, but

cury gz y = g (z,9) unc f (z,y) = fzy
(mutually inverse, and so 1-1)

for (Al) and (A2):
unc (f ®g unitg) = unc f o unc unitg = unc f o id = unc f
unc (unitg ®g f) = unc unitg o unc f =id o unc f = unc f

for (A3): unc (h ®g (g ®g f)) =unch o (Unc g o unc f) =

(unch ouncg) ounc f =unc ((h ©®g g) ®g f)

2006
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The Compound State Monad
Let M be any monad. Define a.S); = State — (« * State) M.
We can define ®© g, and unitg,, by

unc (g ©gpr f) =uncg @y unc f
unc unitg,; = unity,

Then the proofs are easy, using corresponding rules for monad M.

for (Al) and (A2):
unc (f ®gps Unitgps) = unc f ®,7 unc unitgpy, = unc f ®,s unity; = unc f
unc (unitgp; ®gps f) = unc unitgp; ®ps Unc f = unity; ©py unc f = unc f
for (A3):
unc (h ©gp (9 Oy f)) =unch @y (UNCg ©py unc f) =

(unc h ©p7 unc g) Opy unc f=unc ((h Osnr 9) Osar f)
Other definitions more complicated, and proofs correspondingly so.
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A free theorem ?7?
Still need to prove (A4),

(h@id)of=hof f:a—BM h:B8—~M

Can we use Wadler’s “free theorems”?

ldeaisthath ©® _: (oo — BM) — o — ~vM is polymorphic in «, so in applying
h ® ftoa: «, canonly apply f to a, and then do something else, call it g.

Thatis,h ® f =g o f, soO
(h©id)o f=(goid)o f=go f=hOf

Is this valid?
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Other Monads
List monad: oL = « list
Reader monad: R = param — «
Writer monad: aWW = o x output
Error monad: o = « option (SOME « for success, NONE for failure)

These can form compound monads with an arbitrary monad M in different
ways: aM R, oW M, oL M

aF’ can represent termination of a program, in a final state, or non-termination
aF L represents corresponding non-deterministic program operation

aLLE also represents such a program for considering total correctness:
If it may fail to terminate then never mind what else it might do, it is a failure.

aL FE' is also a compound monad
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Compound Monads via Partial Extension

compound monad type is (aN)M = oN M. To define a compound monad
N M, need exty s, “extending” a function f from a “smaller” domain, «, to a
“larger” one, aN M.

Consider a “partial extension” function pext which does part of this job:
extyys : (a — BNM) — (aNM — BNM)
pext: (o« — BNM) — (aN — BNM)
Then exty s f = exty; (pext f).
Rules (E1K) to (E3K) are enough to define N M.
About O arps Or unity s, assume only they have the right types.

Need not assume that N is a monad.

2006
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Monad rules for a compound monad using pext

pext f Ops unitapys
pext unitar s

pext (9 Onpr f)
Kjoin
kmap f

9 Onm S

f

unitM
pext g ©ps pext f

pext unit,,
pext (unitNM On f)

pextg O f

These are just the rules needed for a monad N in ICy,

(E1K)
(E2K)
(E3K)

(E4K)
(E5K)

(E6K)

2006
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Correspondence between monad N and monad N in ICy,

id o — « unity; : o« — aM
unity : o« — alN unityps - o — aNM
mapy : (o — B) - aN — N kmap : (¢« — BM) — aN — BNM
joiny : aNN — aN kjoin : aNN — aNM

exty : (¢ — BN) — aN — BN pext: (¢« - BNM) — aN — BNM

exty g =9 On id pexXtg =g OnNMm unitM
g ON f=extygof g Onm J=pextg On f
joiny = exty id kjoin = pext unit,,
map, f = exty (unity o f) kmap f = pext (unity s Oar f)
exty f =joiny o mapy f pext f = kjoin ©,; kmap f

hoOn f=((h Oyid)o f h Oy f = (h Onp unityr) O f
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To show NM is a monad, using the pext rules

J ONnp uUnitypr = f (A1K)
unity s Oy f=f (A2K)

h Ony (9 Onyr f) = (h Onwr 9) Onwr (A3K)
(h Onpr unityy) Opr f=h Onar f (A4K)

To show N M is a monad, want namely (A1INM) to (A4ANM).
But (ALINM) to (A3BNM) same as (A1K) to (A3K); only (A4NM) is different.

So need only (A4ANM); to get it, have both (A4K) and (A4M).

(h Onprid) o f=h Oy f (A4NM)
(h Opid)o f=hopyf (A4M)
(h Onar id) o f = ((h Onps unityr) Opf id) o f (A4K)

= (h Oy unityr) Opar f=h Oy f (A4M, AdK)
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What characterises such compound monads?

Such compound monads N M satisfy

extayns f = exty, (pext f) (EC)
pext f = extn s f o unitM (PE)
extys (extNM f) =extya f o joinM (J1S)

Note, (J1S) of the form of Theorem 1(i).

Conversely, if M and N M are monads, and (J1S) holds, then ® s also
defines a monad in Ky, and, using (PE) to define pext, (EC) holds.

Proof uses that (A1K) to (A3K) same as (A1INM) to (A3NM);
shows (A4K) and (EC) from (J1S) using Theorem 1.
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A more general set of rules
Three more functions of the following types:

dunit : aM — aNM
dmap : (o« — BM) — («NM — BNM)
djoin : aNNM — aNM

dmap unit; = id
dmap (f o h) =dmap f o mappy s h
dmap f o unityp; = dunit o f
djoin o dmap (dmap f) = dmap f o joinp,,
djoin o dunit = id
djoin o dmap unity ;s = id
djoin o dmap djoin = djoin o joinp

exta s f = djoin o dmap f

(G1)
(G2)
(G3)
(G4)
(G5)
(G6)
(G7)

(G8)

2006
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These also give a monad N M

Theorem 3 Assume rules (G1) to (G8). Then exty s, Joinx s, Mapy s and
unity s give a monad N M, where also

djoin = extpy s unity, (G9)
dmap f = exty,s (dunit o f) (G10)
unitNM = dunit o unitM (Gll)
mapyy, f = dmap (unity; o f) (G12)

Conversely, for a compound monad N M, when is this construction applicable?

Theorem 4 Assume that N M is a monad. Also assume that rules (G5) and
(G9) to (G11) hold. Then the remaining rules among (G1) to (G8) hold.
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When is the construction applicable?

How to use Theorem 4? Assume (UC).

unitNM f= unitM (unitN f) (UC)
dunit = map,; unity (DU)
exty s Unity; o map,, unity = id (G5)

If (J1S) and the pext construction hold, then define functions dunit, dmap and
djoin by (DU), (G10) and (G9).

Then (G11) holds by (3M), and (G5) becomes (G5’) which holds: the proof
uses exty s f = extys(pext f).

So Theorem 4 applies.
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On the other hand ...

exty s (map,, joiny ) = map,, joiny o joinp s (32"

Note (J2/) is also of the form of Theorem 1(i).

If N is a monad and M a premonad, and (J2’) holds, then
exty s unity; = map,, joiny (proved from Theorem 1).

In this case (G5)/(G5’) also hold, by a seemingly different proof.
exty s unity, o map,, unityy = map,, Joiny o map,, unity
= map,,; (joiny o unityy) = map,, id = id

So again Theorem 4 applies.

Common feature: extars unity, is of the form ext,, f, so Theorem 1 applies.
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When both (J1S) and (J2’) hold

If both (J1S) and (J2’) hold, and both A and N are monads, then we have a
distributive law for the monads M, N and N M.

2006
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