
Compound Monads and the Kleisli Category

Jeremy E. Dawson ⋆

Logic and Computation Program, NICTA ⋆⋆ and
Computer Sciences Laboratory,

Australian National University, Canberra, ACT 0200, Australia
Jeremy.Dawson@nicta.com.au http://csl.anu.edu.au/~jeremy/

Abstract. We consider sets of monad rules derived by focussing on the
Kleisli category of a monad, and from these we derive some constructions
for compound monads. Under certain conditions these constructions cor-
respond to a distributive law connecting the monads. We also show how
these relate to some constructions for compound monads described pre-
viously.

Keywords: compound monad, Kleisli category

1 Introduction

Monads are convenient for structuring functional programs. For example, an
algorithm requiring use of a mutable state may be coded in a purely functional
style using the state monad, or an algorithm involving some non-deterministic
steps may be conveniently coded using the list monad. Moggi [7] shows how
to describe computational activity in terms of monads. Wadler [8] shows in
particular how it is easy to change a program to introduce these features if it is
written in a monadic style. However, to code (equally conveniently) a program
involving both these aspects requires a monad which somehow combines both
the state and the list monads.

A monad consists of a type constructor and several functions (of appropriate
types), which must satisfy certain rules. There are several equivalent formula-
tions of these rules. Once we have defined the type constructor for a compound
monad, it is necessary to prove the rules for the compound monad, as they do not
follow automatically from the rules for the individual monads. It is important
to establish that the rules hold, since to use a type constructor wrongly thought
to be a monad can lead to incorrect programs – two ways of coding a function,
which are thought to be equivalent, may be different. Yet the constructions can
be complex, leading to errors in proofs, for example see [3, §6.4.2].

⋆ Supported by an Australian Research Council Large Grant
⋆⋆ National ICT Australia is funded by the Australian Government’s Dept of Commu-

nications, Information Technology and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Research Centre of Excellence pro-
grams.

A monad is a category theoretic notion, and we focus on sets of rules relating
to the Kleisli category of a monad, and show how these facilitate proofs of the
monad rules for some compound monads.

In the rest of this section we introduce monads and the category theory that
we use in the rest of the paper. In section 2 we give several sets of rules, and
prove some useful results about monads. and in Appendix B we give examples
of the easy use of some of these rules to certain compound monads. In section 3
we describe two constructions which are useful in defining a compound monad,
and we set out the rules which must be satisfied in each case. We show how
one of these constructions amounts to defining a monad in the Kliesli category
of another monad. In Appendix A we show how the constructions of Jones &
Duponcheel [3] are cases of ours. Section 4 concludes.

The results of this paper have been proved using the theorem prover Is-
abelle/HOL. The proofs are at http://users.rsise.anu.edu.au/~jeremy/

isabelle/monad/. While most of the proofs are not difficult, much of the work
involved showing the equivalence of different sets of axioms. In this regard the
“book-keeping” aspect of using a theorem prover, to keep track of which results
are being assumed, and which proved, at a particular point, was of great value.

1.1 Monads

A monad is a type constructor M (which we write postfix) together with func-
tions of the types given below, which must satisfy certain rules. If we loosely
say “M is a monad”, this refers also to associated functions which will be either
clear from the context, or have the names used below. Where several monads
are involved, we may use subscripts to avoid ambiguity in the names of these
functions. For the names of monad rules we write (for example) (E2N) to mean
rule (E2) for the monad N , that is, extN unitN = id.

unit : α→ αM

map : (α→ β) → (αM → βM)

join : αMM → αM

ext : (α→ βM) → (αM → βM)

bind : αM → (α→ βM) → βM (infix)

⊙ : (β → γM) → (α→ βM) → (α→ γM) (infix)

This set of functions is not minimal, they are related by the rules shown
below. Note that id and ◦ denote the identity function and function composition
respectively, and that bind and ⊙ are written in infix notation. (Infix operators
have a lower precedence than function application).

m bind f = ext f m

ext f = join ◦ map f

join = ext id

map f = ext (unit ◦ f)

g ⊙ f = ext g ◦ f

ext g = g ⊙ id

2

ForM and the functions to qualify as a monad, a set of rules must be satisfied.
Several sets of rules have been given. Firstly, when the functions unit, map and
join are given, rules (1) to (7) must be satisfied. This is the “monoid form”
presentation of an algebraic theory of Manes [6, Chapter 1, Definition 3.17]. A
premonad satisfies rules (1) to (3).

map id = id (1)

map f ◦ map g = map (f ◦ g) (2)

unit ◦ f = map f ◦ unit (3)

join ◦ map (map f) = map f ◦ join (4)

join ◦ unit = id (5)

join ◦ map unit = id (6)

join ◦ map join = join ◦ join (7)

ext f = join ◦ map f (8)

ext (g ◦ f) = ext g ◦ map f (9)

Then (8) defines ext in terms of join and map. At this point it is convenient
to note rule (9), which clearly follows from (8) and (2).

Alternatively, a monad can be defined in terms of unit and ext. Wadler [8]
shows the equivalence to analogues (in terms of bind) of rules (E1), (E2) and
(E3′), which are given by Moggi [7]. This is also the “extension form” presenta-
tion of an algebraic theory of Manes [6, Chapter 1, §3, Exercise 12].

ext f ◦ unit = f (E1)

ext unit = id (E2)

ext (ext g ◦ f) = ext g ◦ ext f (E3′)

join = ext id (E4)

map f = ext (unit ◦ f) (E5)

If a monad is defined by giving unit, map and join, satisfying the rules (1)
to (7), and if ext is defined by (8), then rules (E1), (E2), (E3′), (E4) and (E5)
hold. Conversely, if a monad is defined by giving unit and ext, satisfying rules
(E1), (E2) and (E3′), and if join and map are defined by (E4) and (E5), then
the rules (1) to (8) hold. (Wadler states the analogous result for the formulation
of rules (E1), (E2) and (E3′) in terms of bind.)

1.2 Some Category Theory

Monads have been known (sometimes under different names) as part of category
theory before their use in describing computations, eg [5, 6]. A category consists
of a collection of objects and a collection of arrows. Each arrow f has a source
object s(f) and a target object t(f). Two arrows f and g, such that t(f) = s(g),
can be composed to give another arrow which we write g ◦ f , with source s(f)
and target t(g). Composition of arrows is associative. For each object α there is
an identity arrow idα, such that idα ◦ f = f = f ◦ idα. See [5] for more details.

3

Clearly then, if we let the objects be types (eg, α, β), and the arrows func-
tions, such as f : α→ β, we have a category T , where s(f) = α and t(f) = β.

A functor from one category to another (or to the same category) is a map-
ping θ which takes objects to objects and arrows to arrows, and preserves

– the sources and targets of arrows, ie s(θf) = θ(s(f)) and t(θf) = θ(t(f))
– composition of arrows, ie θ(g ◦ f) = θg ◦ θf

– identity arrows, ie θ(idα) = idθ(α)

If M and map satisfy the type information in §1.1 and the rules (1) and (2),
then M and map give a functor θ from the category of types and functions to
itself, where θ(α) = αM and θ(f) = map f . (By an abuse of terminology we
will often refer to the action of a function on arrows, such as map, or ext or kl
below, as a “functor”).

However there is another interesting category associated with a monad,
namely the Kleisli category KM (see [5, ChVI, §5]). We describe it in func-
tional programming terms. Its objects are the types (eg, α, β), but an arrow
with source α and target β is a function of type α → βM . The identity for ob-
ject α is the function unit : α→ αM , and composition is the function ⊙ . There
is a functor from the “ordinary” category T of types and functions to the Kleisli
category KM . We call it kl (“Kleisli lift”) and define its action (on arrows) by

kl : (α→ β) → (α→ βM)

kl f = unit ◦ f

The function ext is a functor from KM to T (on objects, the functor takes a
type α to the type α M), and we may note that the rule (E5) tells us that the
composition of the functors ext and kl is the functor map. See [5, ChVI, §5,
Theorem 1] for these results.

2 Axioms for a Single Monad

2.1 A Weaker Set of Monad Rules

First we give a set of monad rules (E1) to (E3) which is similar to those in §1.1,
but replacing (E3′) by (E3). Note also that (E2) and (E3) express the fact that
ext is a functor. Rule (E3) is apparently easier to satisfy than (E3′) since we
may choose ⊙ arbitrarily: if we add to (E3) the extra requirement of (E6) then
we get (E3′). But in fact (E6) can be proved from rules (E1) and (E3).

ext f ◦ unit = f (E1)

ext unit = id (E2)

ext (g ⊙ f) = ext g ◦ ext f (E3)

g ⊙ f = ext g ◦ f (E6)

In fact we can prove (E6), identity and associativity in the Kleisli category,
and some other useful results, from rules (E1) to (E3).

4

Theorem 1. Assuming rules (E1) to (E3)

g ⊙ f = ext g ◦ f (E6)

(h ⊙ g) ◦ f = h ⊙ (g ◦ f) (A6)

ext f = ext g ⇒ f = g (EI)

f ⊙ unit = f (A1)

unit ⊙ f = f (A2)

h ⊙ (g ⊙ f) = (h ⊙ g) ⊙ f (A3)

Proof. (E6): By (E3), ext (g ⊙ f) ◦ unit = ext g ◦ ext f ◦ unit. Using (E1),
this simplifies to g ⊙ f = ext g ◦ f .

(EI): If ext f = ext g then ext f ◦ unit = ext g ◦ unit, that is, by (E1), f = g.
(A6): Using (E6), both sides are equal to ext h ◦ g ◦ f .
(A1,A2,A3): One proof of these would proceed by rewriting these, using (E6)

and (E3), to eliminate all uses of ⊙ . Then they follow from (E1), (E2) and
the associativity of ◦ (since both sides of (A3) become ext h ◦ ext g ◦ f).
But another proof which better reflects our focus on categories and functors
is to observe that in each case, by (EI), it suffices to prove ext(lhs) = ext(rhs).
In each case, this may be proved using the fact that ext is a functor, ie, using
(E3) and (E2). That is, we use the identity and associativity rules for id and
◦ to prove the corresponding rules for unit and ⊙ .
for (A1): ext (f ⊙ unit) = ext f ◦ ext unit = ext f ◦ id = ext f
for (A2): ext (unit ⊙ f) = ext unit ◦ ext f = id ◦ ext f = ext f
for (A3): ext (h ⊙ (g ⊙ f)) = ext h ◦ (ext g ◦ ext f) =

(ext h ◦ ext g) ◦ ext f = ext ((h ⊙ g) ⊙ f) ⊓⊔

The following theorem is useful later.

Theorem 2. In a monad the following are equivalent

(i) ext g = g ◦ join
(ii) g = ext (g ◦ unit)
(iii) there exists f such that g = ext f
(iv) for all h, ext (g ◦ h) = g ◦ ext h

Proof. (i) ⇒ (ii): Assume (i). Then ext g ◦ map unit = g ◦ join ◦ map unit and
so, by (9) and (6), ext (g ◦ unit) = g.

(ii) ⇒ (iii): is obvious.
(iii) ⇒ (iv): When g = ext f, (iv) is just (E3′).
(iv) ⇒ (i): Set h = id and use (E4).
(iv) ⇒ (ii): Set h = unit and use (E2). ⊓⊔

Note also that in a monad, these properties of g are preserved under compo-
sition, that is, if they hold for g1 and g2 then they hold for g1 ◦ g2. This can be
seen for (iii) from (E3), or for (i) from (8) and (9).

Finally, we include a proof that kl is a functor [5, ChVI, §5].

Theorem 3. kl is a functor.

5

Proof. Clearly kl preserves identity: kl id = unit ◦ id = unit. For composition:

kl g ⊙ kl f = (unit ◦ g) ⊙ (unit ◦ f)

= ((unit ◦ g) ⊙ unit) ◦ f (A6)

= (unit ◦ g) ◦ f = kl (g ◦ f) (A1) �

From rules (E1) to (E3), and so (E6), we have (E3′), and so, assuming (E4)
and (E5) as definitions, we can therefore assume rules (1) to (8) (Wadler[8,
§2.10]). However it is now easy to outline proofs of rules (1) to (8). Using (E4)
and (E5), (8) is proved using (E3′) and (E1). Using (8), (6) is just (E2). Using
(8), then (E5) and (E4) respectively, (4) and (7) are special cases of Theorem 2,
(iii) ⇒ (i). Using (E5) and (E4) respectively, (3) and (5) are cases of (E1).
Finally, as noted earlier, (E5) shows that map = ext ◦ kl. As ext and kl are
functors, so is map, which gives us (1) and (2).

2.2 Monad Rules Based on the Kleisli Category

We have proved the three rules, (A1) to (A3), which reflect that the Kleisli cat-
egory is indeed a category. We may ask whether these are sufficient to establish
a monad. If we could assume also (E6), then it would be easy to show rules (E1)
to (E3). However, if we are (hoping to) define a monad in terms of these rules,
and in terms of the functions unit and ⊙ , then we can take (A5) as a definition,
but that does not give us (E6).

If we add a fourth rule, (A4) (see below), governing ⊙ , then that is sufficient.
For, clearly, (A4) and (A5) imply (E6). Note that (A4) is the special case g = id
of (A6) (shown again below) and is therefore true in any monad, see Theorem 1.
Therefore we have the following theorem. Note that, if we replaced (A4) by (A4′),
we would get, in effect, the “clone form” presentation of an algebraic theory of
Manes [6, Chapter 1, Definition 3.2]. In fact it is easy to show (A6) directly from
either (A4) or (A4′) using the associativity of ◦ or ⊙ respectively.

f ⊙ unit = f (A1)

unit ⊙ f = f (A2)

h ⊙ (g ⊙ f) = (h ⊙ g) ⊙ f (A3)

(h ⊙ id) ◦ f = h ⊙ f (A4)

h ⊙ (unit ◦ f) = h ◦ f (A4′)

ext g = g ⊙ id (A5)

(h ⊙ g) ◦ f = h ⊙ (g ◦ f) (A6)

Theorem 4. Rules (A1) to (A4) and definitions (A5), (E4), (E5) give a monad.

In Appendix B are some examples showing how easy it often is to prove
the monad rules when using rules (A1) to (A4). These include two examples of
compound monads, formed by starting with a monad M and developing a more
complex monad from it.

6

2.3 A Free Theorem

In the examples in Appendix B it is trivial to prove rules (A1) to (A3); in these
examples the rule (A4) is the only one of the four whose proof is not quite im-
mediate (that is, although easy, it is tedious, involving several steps). We may
therefore ask whether it is really necessary. It turns out that in typical cases it is
a “free theorem” (Wadler [9]). We consider it in the “naive set-theoretic” fashion
of [9, §2,§3]. The latter sections of that paper indicate the semantic complexities
involved in applying such results in a setting such as a typical functional pro-
gramming language, where the types cannot be regarded as sets. Therefore the
application of these results to any particular functional programming language
depends on the semantics of that language and its type system. First, we state a
more general result. In category theoretic terms, this result it that θ is a natural
transformation between the functors (→ β) and (→ γ).

Proposition 5. If θ : ∀α. (α → β) → (α → γ) is a function which is polymor-
phic in α, but where β and γ are fixed types, then

(i) there exists h : β → γ such that (for all f : α→ β) θf = h ◦ f

(ii) for all f : α→ α′ and g : α′ → β, θ (g ◦ f) = θ g ◦ f

The result (i) may be explained intuitively as follows. Since θ is polymorphic
in α, the coding of the function θ cannot use any information about the type α.
That is, although an argument a : α to the function θf may be an integer, tree
of strings, or whatever, θ (on its own) can only treat a as a “black box”. So the
only thing that θf can do with a (other than ignore it) is to apply f to it.

Wadler [9, §3] shows how to obtain results of this nature about particular
polymorphic functions, and we follow his approach. In particular, we write the
proof as though types were sets.

Proof. Clearly the two parts are equivalent (h being θ id). We prove (ii). Wadler’s
general result is θ ∼ θ, where ∼ denotes the relation appropriate to the type of
the terms related, which, for θ, is ∀α. (α→ β) → (α→ γ). This means that for
all α, α′ and relation ∼ ⊆ α×α′, for all k : α→ β, k′ : α′ → β, a : α and a′ : α′,
whenever k ∼ k′ and a ∼ a′, then θ k a ∼ θ k′ a′. Now k ∼ k′ means whenever
x ∼ x′, for x : α and x′ : α′, then k x ∼ k′ x′.

We choose the relation ∼ ⊆ α× α′ to be a ∼ a′ ⇐⇒ a′ = f a; the relations
on (fixed) types β and γ are the identity. So we can simplify the above. We get
k ∼ k′ iff, for all x : α, k x = k′ (f x), that is, k = k′ ◦ f . Then, letting k′ = g

and k = g ◦ f , we have k ∼ k′. So for all a : α, we can let a′ = f a, so a ∼ a′ and
θ k a ∼ θ k′ a′, that is, θ (g ◦ f) a = θ g (f a). Therefore, θ (g ◦ f) = θ g ◦ f . ⊓⊔

Proposition 6. Assuming that ⊙ : (β → γM) → (α → βM) → (α → γM) is
polymorphic in α, the rule (A6) holds.

Proof. Given h : β → γM , define θ g ≡ h⊙ g. Then Theorem 5(ii) gives
h ⊙ (g ◦ f) = (h ⊙ g) ◦ f , as required. ⊓⊔

7

3 Compound Monad Constructions

If type constructors M and N , with associated functions, are monads, then
although it is not necessarily the case that we can combine these two monads to
form a third, this is sometimes possible.

Compound monads can arise naturally and be practically useful ([8], [3]). In
this section we consider two constructions for compound monads and discuss the
rules that need to be satisfied in each case. We note that when the conditions are
satisfied for both constructions to be applicable, then we have the distributive
law for monads described by Manes [6] and Barr & Wells [1]: see §3.8. In this
case the monads are “compatible” [1, §9.2], and our results show how some of
the conditions given in [1] for this are redundant.

3.1 Compound Monads via Partial Extension

Let M be a monad, and consider compound monads where the compound monad
type is (αN)M , which we will just write as αNM . To define a compound monad
NM , we will need a function extNM , so-called, presumably, because it “extends”
a function f from a “smaller” domain, α, to a “larger” one, αNM . Consider,
therefore, a “partial extension” function pext which does part of this job:

extNM : (α→ βNM) → (αNM → βNM)

pext : (α→ βNM) → (αN → βNM)

Rules (E1K) to (E3K) are sufficient to define a compound monad using such a
function pext. We assume nothing about the functions ⊙NM or unitNM , except
that they have the appropriate types. We need not assume that N is a monad,
although in many examples rules (E1K) to (E3K) are proved to hold for any
monad M , when setting M to the identity monad gives a monad N .

pext f ⊙M unitNM = f (E1K)

pext unitNM = unitM (E2K)

pext (g ⊙NM f) = pext g ⊙M pext f (E3K)

kjoin = pext unitM (E4K)

kmap f = pext (unitNM ⊙M f) (E5K)

g ⊙NM f = pext g ⊙M f (E6K)

By comparing (E1K) to (E3K) with (E1) to (E3) we see that we have the
three rules needed for a monad N in KM , the Kleisli category of M . We will refer
to this monad as NKM . Thus the treatment of a single monad described in §1,
§2.1 and §2.2 applies to this monad. We define the counterparts of map and join,
calling them kmap and kjoin: note how rules (E4K) and (E5K) correspond to
(E4) and (E5). As in §2.1, we deduce (E6K), giving ⊙NM in tems of pext. The
various functions and theorems involved have counterparts of which examples

8

are tabulated below, where the left-hand side shows the standard treatment (set
out as for a monad N), and the right-hand side shows the monad NKM in KM .

id : α→ α unitM : α→ αM

unitN : α→ αN unitNM : α→ αNM

mapN : (α→ β) → αN → βN kmap : (α→ βM) → αN → βNM

joinN : αNN → αN kjoin : αNN → αNM

extN : (α→ βN) → αN → βN pext : (α→ βNM) → αN → βNM

extN g = g ⊙N id pext g = g ⊙NM unitM
g ⊙N f = extN g ◦ f g ⊙NM f = pext g ⊙M f

joinN = extN id kjoin = pext unitM
mapN f = extN (unitN ◦ f) kmap f = pext (unitNM ⊙M f)

extN f = joinN ◦ mapN f pext f = kjoin ⊙M kmap f

h ⊙N f = (h ⊙N id) ◦ f h ⊙NM f = (h ⊙NM unitM) ⊙M f

We will refer to the rules and results about this monad by putting “K” after
the names used in §1 and §2. We also obtain rules (1K) to (8K) which are the
counterparts of (1) to (8). Then, just as in §1, these seven rules, with pext and
⊙NM defined from kjoin and kmap by (8K) and (E6K), are sufficient to show
rules (E1K) to (E3K) and the converse definitions of kjoin and kmap in terms
of pext, (E4K) and (E5K).

This monad NKM in KM , the Kleisli category for M , gives rise to a further
Kleisli category, which we may describe as the Kleisli category for NKM in KM .
Its identity is unitNM and its composition function is ⊙NM . Note also that the
two rules (E2K) and (E3K) express the fact that pext is (the action on arrows
of) a functor, from this compound Kleisli category to KM .

kmap unitM = unitM (1K)

kmap f ⊙M kmap g = kmap (f ⊙M g) (2K)

unitNM ⊙M f = kmap f ⊙M unitNM (3K)

kjoin ⊙M kmap (kmap f) = kmap f ⊙M kjoin (4K)

kjoin ⊙M unitNM = unitM (5K)

kjoin ⊙M kmap unitNM = unitM (6K)

kjoin ⊙M kmap kjoin = kjoin ⊙M kjoin (7K)

pextf = kjoin ⊙M kmap f (8K)

This monad can also be characterised by four rules analogous to (A1) to (A4):
that is, the rules (A1K) to (A4K). We also show (A5K) and (A6K).

f ⊙NM unitNM = f (A1K)

unitNM ⊙NM f = f (A2K)

h ⊙NM (g ⊙NM f) = (h ⊙NM g) ⊙NM f (A3K)

(h ⊙NM unitM) ⊙M f = h ⊙NM f (A4K)

pext g = g ⊙NM unitM (A5K)

(h ⊙NM g) ⊙M f = h ⊙NM (g ⊙M f) (A6K)

9

Now, to show that NM is a compound monad, we also need to show four rules
analogous to (A1) to (A4), namely (A1NM) to (A4NM). Of these, the first three,
(A1NM) to (A3NM), are the same as (A1K) to (A3K); only (A4NM) is different.
So to show that NM (defined by unitNM and ⊙NM) is a monad, we need only
show (A4NM), and to do this we have available both (A4K) and (A4M).

(h ⊙NM id) ◦ f = h ⊙NM f (A4NM)

(h ⊙M id) ◦ f = h ⊙M f (A4M)

Theorem 7. Assume that M is a monad and that functions pext, ⊙NM and
unitNM of the appropriate types are given, satisfying rules (E1K) to (E3K).
Then ⊙NM and unitNM define a monad, and, using (A5NM) to define extNM ,

extNM f = extM (pext f) (EC)

pext f = extNM f ◦ unitM (PE)

extM (extNM f) = extNM f ◦ joinM (J1S)

Proof. Rules (E1K) to (E3K) establish that pext, ⊙NM and unitNM define a
monad in KM , and so rules (A1K) to (A4K) are satisfied. Since M is a monad,
(A4M) holds, and so we use (A4M) and (A4K) to show (A4NM) as follows:

(h ⊙NM id) ◦ f = ((h ⊙NM unitM) ⊙M id) ◦ f (A4K)

= (h ⊙NM unitM) ⊙M f = h ⊙NM f (A4M, A4K)

(EC): By (A5M) and (A5NM) this is (E6K).
(PE): By (E6NM) this is (A5K).
(J1S): By Theorem 2 for M , (iii) ⇒ (i), this follows from (EC). ⊓⊔

In Theorem 7 we proved rules (A1) to (A4) for NM , so proving that NM is
a monad. However, we note that it is also trivial to prove rules (E1) to (E3) for
NM . In fact, using (EC), each rule for NM follows from the same rule for M
and the corresponding rule from among (E1K) to (E3K).

We may next ask which compound monads can be constructed from such a
function pext, satisfying rules (E1K) to (E3K). Taking as read the requirement
that the monadic type is (αN)M , (which we will regard as implicit in the no-
tation NM), the previous theorem provides a necessary condition, namely that
(J1S) holds. In fact, this condition is also sufficient.

Theorem 8. Let M and NM be monads, such that (J1S) (see Theorem 7)
holds. Then ⊙NM also defines a monad in the category KM , and, using (PE)
to define pext, (EC) holds.

Proof. We need to show that ⊙NM satisfies the four rules (A1K) to (A4K).
Now (A1K) to (A3K) are the same as (A1NM) to (A3NM), which hold as NM
is a monad. So we need only (A4K), which we show follows from (J1S).

(h ⊙NM unitM) ⊙M f = extM (extNM h ◦ unitM) ◦ f (E6NM, E6M)

= extM (extNM h) ◦ mapM unitM ◦ f (9M)

= extNM h ◦ joinM ◦ mapM unitM ◦ f (J1S)

= extNM h ◦ f = h ⊙NM f (6M, E6NM)

10

Then NM is a monad in which pext is defined by (A5K); but, by (E6NM),
this is equivalent to (PE). Then (EC) follows from Theorem 7 (alternatively,
from (J1S) by Theorem 2 for M , (i) ⇒ (ii)). ⊓⊔

This shows that, given a monad M , that the compound monads NM ob-
tainable using the construction via a monad N in KM are precisely the monads
NM such that (J1S) is satisfied.

3.2 Relation to the prod construction of Jones & Duponcheel

We have, in Theorems 7 and 8, shown that the compound monads which can be
defined in terms of a function pext (equivalently, in terms of functions kjoin and
kmap) are precisely those satisfying (J1S).

Jones & Duponcheel [3] consider only compound monads which satisfy (UC)
and (MC). Note that, as shown in [3, §3], when M and N are premonads and
(UC) and (MC) hold, then NM is a premonad. Assuming that M is a monad
and that N is a premonad, they show how to define a compound monad given a
function prod, satisfying four rules P(1) to P(4) (see Appendix A.1), and show
that the compound monads NM which can be defined using prod are precisely
those satisfying (J1) (which is the case f = id of (J1S)). In fact (MC) and
(J1) are sufficient to imply (J1S). We also give a condition (E1D), which is also
implied by (MC) and its case f = id, and which, assuming (UC), is equivalent
to (J1S). The proof of (J1S) from (E1D) is thanks to an observation by Michael
Barr (see §3.8).

unitNM f = unitM (unitN f) (UC)

mapNM f = mapM (mapN f) (MC)

extM joinNM = joinNM ◦ joinM (J1)

extNM f ◦ mapM unitN = extM f (E1D)

joinNM ◦ mapM unitN = joinM (E1DI)

Lemma 9. If M and NM are monads, then

(i) (MC) and (J1) imply (J1S)

(ii) (MC) and (E1DI) imply (E1D)

(iii) assuming (UC), (J1S) and (E1D) are equivalent.

Proof. (i) By Theorem 2 for M , (i) ⇒ (iii), we can assume, from (J1), that
joinNM = extM g. By Theorem 2, (iii) ⇒ (i), for any given f , it is enough
to find h such that extNM f = extM h.

extNM f = joinNM ◦ mapNM f (8NM)

= extM g ◦ mapM (mapN f) (MC)

= extM (g ◦ mapN f) (9M)

11

(ii) Assuming (E1DI),

extNM f ◦ mapM unitN = joinNM ◦ mapNM f ◦ mapM unitN (8NM)

= joinNM ◦ mapM (mapN f ◦ unitN) (MC, 2M)

= joinNM ◦ mapM unitN ◦ mapM f (3N, 2M)

= joinM ◦ mapM f = extM f (E1DI, E4M)

(iii) Let (J1S) hold; we show (E1D). Using Theorem 2 for NM , (i) ⇒ (ii),

extNM f ◦ mapM unitN = extM (extNM f ◦ unitM) ◦ mapM unitN
= extM (extNM f ◦ unitM ◦ unitN) (9M)

= extM (extNM f ◦ unitNM) = extM f (UC, E1NM)

Now, suppose that (E1D) holds; we show (J1S).

extM (extNM f) = extNM (extNM f) ◦ mapM unitN (E1D)

= extNM f ◦ extNM id ◦ mapM unitN (E3′NM)

= extNM f ◦ extM id = extNM f ◦ joinM (E1D, E4M)

Thus the pext construction is applicable whenever the prod construction is,
and the converse is true if we can assume that (UC) and (MC) hold. We give
another useful lemma.

Lemma 10. Assume NM is constructed as in §3.1. If (MC) holds, then

pext (g ◦ f) = pext g ◦ mapN f (PO)

kmap (g ◦ f) = kmap g ◦ mapN f (KO)

and if (UC) holds, then

pext f ◦ unitN = f (E1K′)

extNM f ◦ mapM unitN = extM f (E1D)

Proof. Using (PE), the following gives (PO).

extNM (g ◦ f) ◦ unitM = extNM g ◦ mapNM f ◦ unitM (9NM)

= extNM g ◦ unitM ◦ mapN f (MC,3M)

(KO): kmap (g ◦ f) = pext (unitNM ⊙M g ◦ f) (E5K, A6M)

= pext (unitNM ⊙M g) ◦ mapN f (PO)

= kmap g ◦ mapN f (E5K)

(E1K′): pext f ◦ unitN = pext f ⊙M (unitM ◦ unitN) (A4′M)

= pext f ⊙M unitNM = f (UC, E1K)

(E1D): extNM f ◦ mapM unitN = extM (pext f) ◦ mapM unitN (EC)

= extM (pext f ◦ unitN) = extM f (9M, E1K′) �

Then the relationships between prod and pext are given by these equalities,
which are equivalent when (PO) and (1N) hold. See Appendix §A.1 for details.

prod = pext id pext f = prod ◦ mapN f

12

3.3 Lifting monad N to KM

By a lifting of one monad to another (maybe in different categories) we under-
stand a functor F which is also a functor between their Kleisli categories. We
consider whether the monad NKM in the Kleisli category KM is a lifting of the
monad N . This would require

F id = unitM (LI)

F (g ◦ f) = F g ⊙M F f (LO)

F unitN = unitNM (LU)

F (g ⊙N f) = F g ⊙NM F f (LA)

Instead of (LA), we may use (LE), or (LM) and (LJ).

F (extN f) = pext f (LE)

F (mapN f) = kmap f (LM)

F joinN = kjoin (LJ)

Assuming (UC), F = kl, where kl f = unitM ◦ f satisfies (LI), (LO) and (LU).
With F = kl, note that (LJ) is just (KJ) of Theorem 14, and, indeed, kl is a

lifting if and only if (J2) (see §3.5) holds.

3.4 A generalisation of earlier axiom systems

We now present a generalisation of the system of axioms (1) to (8), and their
equivalence to (E1) to (E5). This was motivated by the construction by Jones
& Duponcheel [3, §3.3] using their function dorp (see §3.5).

We found that the rules (G1) to (G8), which are analogous to rules (1) to (8),
are sufficient to establish that NM is a monad, without assuming that either
N or M is even a premonad. In these rules, we make no assumptions about the
functions we call extNM , joinNM , mapNM , unitNM or unitM .

These rules also use three more functions of the following types:

dunit : αM → αNM

dmap : (α→ βM) → (αNM → βNM)

djoin : αNNM → αNM

dmap unitM = id (G1)

dmap (f ◦ h) = dmap f ◦ mapNM h (G2)

dmap f ◦ unitNM = dunit ◦ f (G3)

djoin ◦ dmap (dmap f) = dmap f ◦ joinNM (G4)

djoin ◦ dunit = id (G5)

djoin ◦ dmap unitNM = id (G6)

djoin ◦ dmap djoin = djoin ◦ joinNM (G7)

extNM f = djoin ◦ dmap f (G8)

13

Theorem 11. Assume rules (G1) to (G8). Then extNM , joinNM , mapNM and
unitNM give a monad NM , where also

djoin = extNM unitM (G9)

dmap f = extNM (dunit ◦ f) (G10)

unitNM = dunit ◦ unitM (G11)

mapNM f = dmap (unitM ◦ f) (G12)

Proof. We prove rules (E1), (E2), (E3′), (E4) and (E5) for NM ; this proof
corresponds almost step-by-step to the proof of these rules from (1) to (8).

(E1NM): use (G8), (G3) and (G5).
(E2NM): use (G8) and (G6).
(E4NM): use (G8), (G4) and (G1).
(9NM): use (G8) and (G2).
(8NM): use (E4NM) and (9NM).
(E5NM): use (9NM) and (E2NM).
(G9): use (G8) and (G1).
(G11): use (G3) and (G1).
(G12): use (G2) and (G1).

(G10): extNM (dunit ◦ f) = extNM (dmap f ◦ unitNM) (G3)

= extNM (dmap f) ◦ mapNM unitNM (9NM)

= dmap f ◦ joinNM ◦ mapNM unitNM (G8, G4)

= dmap f (8NM, E2NM)

(E3′NM): extNM (extNM g ◦ f)

= djoin ◦ dmap (djoin ◦ dmap g ◦ f) (G8)

= djoin ◦ joinNM ◦ mapNM (dmap g ◦ f) (G2, G7)

= djoin ◦ djoin ◦ dmap (dmap g ◦ f) (8NM, G8)

= djoin ◦ dmap g ◦ joinNM ◦ mapNM f (G2, G4)

= extNM g ◦ extNM f (G8, 8NM) �

The following converse result tells us when a monad NM can be defined in
this way. Note that we are still not assuming that M or N is a monad.

Theorem 12. Assume that NM is a monad. Also assume that rules (G5) and
(G9) to (G11) hold. Then the remaining rules among (G1) to (G8) hold.

Proof. (G1): use (G10), (G11) and (E2NM).
(G2): use (G10) and (9NM).
(G3): use (G10) and (E1NM).
(G8): use (G9), (G10), (E3′NM) and (G5).
(G6): use (G8) and (E2NM).
(G4)/(G7): use (G8), Theorem 2 for NM , (iii) ⇒ (i), and (G10)/(G9). ⊓⊔

14

Given a monad NM , we consider when it can be constructed using Theo-
rem 11. First we note that if NM is constructed as in §3.1, and (UC) holds,
then we can define functions dunit, dmap and djoin by (DU), (G10) and (G9).
Then (G11) holds by (3M), and (G5) becomes (G5′) which holds by (E1D) (see
Lemma 10) and (E2M). Thus Theorem 12 holds.

dunit = mapM unitN (DU)

extNM unitM ◦ mapM unitN = id (G5′)

3.5 Relation to the dorp construction of Jones & Duponcheel

Jones & Duponcheel [3] also show how to define a compound monad using a
function dorp, satisfying four rules D(1) to D(4) (see Appendix A.2), and, as-
suming (UC) and (MC) and that M is a premonad and N is a monad, show
that the compound monads which can be defined using dorp are precisely those
satisfying (J2). We show corresponding results about when a compound monad
can be constructed using (G1) to (G8).

joinNM ◦ mapNM (mapM joinN) = mapM joinN ◦ joinNM (J2)

extNM (mapM joinN) = mapM joinN ◦ joinNM (J2′)

We first relate (J2) to the conditions of Theorem 12.

Lemma 13. Assume that NM is a monad, that M is a premonad and N is a
monad, and that (UC) holds. Then (J2) (equivalently, (J2′)) holds if and only if
extNM unitM = mapM joinN .

Proof. ⇐: by Theorem 2 for NM , (iii) ⇒ (i).
⇒: by applying Theorem 2, (i) ⇒ (ii), to (J2′), gives

mapM joinN = extNM (mapM joinN ◦ unitNM)

= extNM (mapM joinN ◦ unitM ◦ unitN) (UC)

= extNM (unitM ◦ joinN ◦ unitN) (3M)

= extNM unitM (6N) �

With the assumptions of Lemma 13, and assuming that (J2) holds, we can
define functions dunit, dmap and djoin by (DU), (G10) and (DJ), then (G9),
(G11) and (G5) hold, so Theorem 12 applies.

djoin = mapM joinN (DJ)

dunit = mapM unitN (DU)

Note that we have shown that either (J1) or (J2) can be used to show that
Theorem 12 holds, and so NM can be constructed using Theorem 11. This is
related to the interesting fact that the equality (G5′) can be proved using either
(J1) or (J2), as it follows easily from (E1D) or from Lemma 13. The same holds
of (DJK) (see §3.6).

15

Finally, if we can define a compound monad NM satisfying (G1) to (G8) by
using (DJ) to define djoin, then (G9) holds by Theorem 11, and so (J2) holds.

We can define the function dorp of Jones & Duponcheel [3] in terms of dmap
and vice versa, as follows, and get the results relating to D(1) to D(4). See
Appendix §A.2 for details.

dorp = dmap id dmap f = dorp ◦ mapNM f

3.6 When both constructions apply

We consider the situation when both the constructions of §3.1 and §3.4 apply,
that is when both (J1) and (J2) hold. In this case, we have a distributive law
for monads: see §3.8. We collect some results involving both constructions. Note
particularly that not all the results require all the assumptions of the theorem.
Indeed, it can be seen that if djoin is defined by (G9), then (DJK) has two
proofs, as given, one relying on (J1) and one on (J2).

Theorem 14. Assume that NM , M and N are monads, and that (UC), (MC),
(J1) and (J2) hold. Define djoin by (G9) or (DJ), dmap by (G10), dunit by (DU),
pext by (A5K) or (PE), kjoin by (E4K) and kmap by (E5K). Then

dunit = extM unitNM (DUK)

djoin = extM kjoin (DJK)

dmap f = extM (kmap f) (DMK)

kjoin = unitM ◦ joinN (KJ)

Proof. Note that, by Lemma 13, any two of (J2), (G9) and (DJ) imply the third,
and that, by (E6NM), (A5K) holds iff (PE) holds. By Lemma 9(i), (J1S) holds,
and so Theorem 8 applies and (EC) holds.

(DUK): Use (DU), (UC) and (E5M).
(DJK): Use (G9), (EC) and (E4K).

(DMK): extM (kmap f) = extM (pext (unitNM ⊙M f)) (E5K)

= extM (pext (dunit ◦ f)) (E6M, DUK)

= extNM (dunit ◦ f) = dmap f (EC, G10)

(KJ): kjoin = pext unitM = extNM unitM ◦ unitM (E4K, PE)

= mapM joinN ◦ unitM = unitM ◦ joinN (Lemma 13, 3M)

(DJK): Use (DJ), (E5M) and (KJ) ⊓⊔

3.7 Relation to the swap construction of Jones & Duponcheel

Jones & Duponcheel [3] also show how to define a compound monad using a
function swap, satisfying four rules S(1) to S(4), (see Appendix A.3), and, as-
suming (UC) and (MC) and that M and N are monads, show that a compound
monad can be defined using swap iff it satisfies (J1) and (J2).

16

Given a compound monad NM satisfying (J1) and (J2), Lemma 9(i) gives
(J1S), and hence, by Theorem 8, NM can be defined using kjoin and kmap.
Then, defining swap = kmap id we can prove S(1) to S(4) of [3].

Conversely, given monads M and N and a function swap, we can define kmap
in terms of swap as below, but to define the monad NM we also need to define
kjoin, which we can do using (KJ).

The relationships between swap and kmap are given by these equalities, which
are equivalent when (KO) and (1N) hold. See Appendix §A.3 for more details.

swap = kmap id kmap f = swap ◦ mapN f

3.8 Relation to the distributive law for monads

Manes [6] describes a “distributive law” for monads, at Chapter 4, pages 311-2,
Definition 3.6, and page 334, Exercise 6. This is also described by Barr & Wells
in [1], §9.2. Under the conditions of Theorem 14, the compound monad is based
on a distributive law. The distributive law, (ie, the natural transformation λ of
[6] and [1]) is the polymorphic function swap. Further details are in Appendix
§A.4.

When NM , M and N are monads, assuming that (MC) holds, Barr & Wells
give conditions (C1) to (C5) for NM to be “compatible” with N and M . These
are in effect the conditions of Theorem 14, though some of their conditions are
redundant. Of their five conditions, condition (C1) is (in effect) (UC). Condition
(C5) is (J2), and Lemma 13 shows that it is equivalent to (C2).

Condition (C3) is (E1DI), that is, the case f = id of (E1D), and condition
(C4) is (J1), that is, the case f = id of (J1S). These also are equivalent: by
Lemma 9, (ii) and (i) these are equivalent to (E1D) and (J1S) respectively,
which are equivalent by Lemma 9(iii).

Barr & Wells give these conditions in category theory notation, which reveals
a duality between (C2),(C5) on the one hand, and (C3),(C4) on the other.

As Michael Barr has observed, the same duality should hold between the
proofs (C2) ⇔ (C5) and (C3) ⇔ (C4), when these are written out in the category
theory notation (the proof (C3) ⇒ (C4) is thanks to this observation). See
Appendix §A.4 for these proofs.

4 Conclusion

By focussing on the Kleisli category of a monad and the functors to and from it
we have provided simple proofs of some compound monad constructions. This
provided an interesting application of Wadler’s parametricity theorem. We have
described a construction which applies to several compound monads which is a
functor pext from the Kleisli category of the compound monad NM , into KM ,
the Kleisli category of M , and we have shown how this is simply a monad in KM .
Under further conditions, this construction is is equivalent to the prod construc-
tion of Jones & Duponcheel [3]. We have shown how the “map” function of the

17

monad in KM is similarly related to the swap construction of [3]. We developed
a set of axioms generalising those of a monad to describe a way of constructing
a compound monad which is similarly related to the dorp construction of [3].

Acknowledgements I thank unnamed referees for drawing my attention to
the work of Manes and of Barr & Wells on a distributive law for monads, and
for alterting me to the semantic issues involved in Propositions 5 and 6.

References

1. Michael Barr and Charles Wells. Toposes, Triples and Theories. Springer-Verlag,
1983, or see http://www.cwru.edu/artsci/math/wells/pub/ttt.html

2. Jeremy Dawson. Isabelle proofs: http://users.rsise.anu.edu.au/~jeremy/

isabelle/monad/.
3. Mark P. Jones and Luc Duponcheel, Composing Monads, Research Report

YALEU/DCS/RR-1004, Yale University, December 1993
4. Sheng Liang, Paul Hudak, and Mark P Jones. Monad Transformers and Modular

Interpreters. In Symposium on Principles of Programming Languages (POPL’95),
1995, 333–343.

5. Saunders MacLane. Categories for the Working Mathematician. Graduate Texts
in Mathematics, Springer, 1971.

6. Ernest G Manes. Algebraic theories. Graduate Texts in Mathematics, Springer,
1976.

7. Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of
Logic in Computer Science (LICS’89), 1989.

8. Philip Wadler. The Essence of Functional Programming. In Symposium on Prin-
ciples of Programming Languages (POPL’92), 1992, 1–14.

9. Philip Wadler. Theorems for free! In 4’th International Conference on Functional
Programming and Computer Architecture, ACM Press, 1989, 347–359.

18

A Relation between our constructions and others
previously described

In this section we compare our constructions with those of Jones & Duponcheel
[3], and also with the distributive law for monads of Manes [6]. and Barr & Wells
[1, §9.2].

Throughout this section we assume at least that M and N are premonads,
and that we have functions unitNM and mapNM for which (UC) and (MC) hold.
We note that when N and M are premonads, then (UC) and (MC) give that
NM is a premonad [3, §3].

A.1 Relation between the pext construction and the prod

construction of Jones & Duponcheel

In this subsection we further assume that M is a monad. Under these assump-
tions Jones & Duponcheel [3, §3.2,§4.1] show that the compound monads NM
which can be defined using prod and the four rules P(1) to P(4) are precisely
those satisfying (J1).

prod ◦ mapN (mapNM f) = mapNM f ◦ prod P(1)

prod ◦ unitN = id P(2)

prod ◦ mapN unitNM = unitM P(3)

prod ◦ mapN joinNM = joinNM ◦ prod P(4)

We relate prod to pext, and list other relevant equalities, with an easy lemma
relating them.

prod = pext id (PP1)

pext f = prod ◦ mapN f (PP2)

pext (g ◦ f) = pext g ◦ mapN f (PO)

pext f ◦ unitN = f (E1K′)

Lemma 15. (i) (PP2) holds iff (PP1) and (PO) hold.
(ii) (E1K′) holds iff (E1K) holds.
(iii) assuming (PP2), P(2) holds iff (E1K′) holds.
(iv) assuming (PP2), P(3) is just (E2K).

Theorem 16. Assume that NM is a compound monad, for which (J1) holds.
Use (PE) to define pext, and (PP1) to define prod. Then (J1S) holds, and (PP2),
(PO) and P(1) to P(4) hold.

Proof. By Lemma 9(i), (J1S) holds. We now have that Theorems 8 and 7 hold,
and Lemma 10 gives (PO), from which (PP2) follows. To prove P(1) and P(4),
we use the following result.

pext (extNM g) = pext (g ⊙NM id) (A5NM)

= g ⊙NM pext id (E3K, E6K)

= extNM g ◦ prod (E6NM, PP1)

19

From this we use (PP2), and (E5NM) and (E4NM) respectively, to get P(1) and
P(4). Finally, Lemma 15 gives P(2) and P(3). ⊓⊔

We note that our definition of prod gives prod = pext id = extNM id ◦

unitM = joinNM ◦ unitM which is the definition used in [3, §4.1].

The following converse theorem is [3, §3.2].

Theorem 17. Let function prod be given, and define joinNM by joinNM =
extM prod. Let P(1) to P(4) be satisfied. Then NM is a monad, satisfying (J1).

Proof. Define pext using (PP2). Then Lemma 15 gives (PO), (E1K) and (E2K).

To define extNM , we first show the equivalence of two likely definitions.

joinNM ◦ mapNM f = extM prod ◦ mapM (mapN f) (MC)

= extM (prod ◦ mapN f) = extM (pext f) (9M, PP2)

So we define extNM so that (8NM) and (EC) hold, and define ⊙NM using
(E6NM), from which (A5NM) follows.

(E3K): pext (g ⊙NM f) = pext (extNM g ◦ f) (E6NM)

= prod ◦ mapN (joinNM ◦ mapNM g ◦ f) (PP2, 8NM)

= joinNM ◦ prod ◦ mapN (mapNM g ◦ f) (2N, P(4))

= joinNM ◦ mapNM g ◦ prod ◦ mapN f (2N, P(1))

= extNM g ◦ pext f (8NM, PP2)

= extM (pext g) ◦ pext f = pext g ⊙M pext f (EC, E6M)

Thus Theorem 7 applies and so extNM , ⊙NM and unitNM are functions of a
monad NM . To show that joinNM and mapNM are the join and map functions
of this monad, we need (E4) and (E5) for NM .

Since (E4NM) is clear from (8NM), it remains to show (E5NM).

extNM (unitNM ◦ f) = extM (pext unitNM ◦ mapN f) (EC, PO)

= extM (unitM ◦ mapN f) (E2K)

= mapM (mapN f) = mapNM f (E5M, MC)

Finally, (J1), and also (J1S), follow from Theorem 2 for M , (iii) ⇒ (i). ⊓⊔

A.2 Relation between the dmap construction and the dorp

construction of Jones & Duponcheel

In this subsection, as well as assuming that M and N are premonads and that
(UC) and (MC) hold, we further assume that M is a monad. Under these as-
sumptions Jones & Duponcheel [3, §3.3,§4.2] show that the compound monads

20

NM which can be defined using dorp and the four rules D(1) to D(4) are pre-
cisely those satisfying (J2). We relate dorp to dmap as shown.

dorp ◦ mapNM (mapM f) = mapNM f ◦ dorp D(1)

dorp ◦ unitNM = mapM unitN D(2)

dorp ◦ mapNM unitM = id D(3)

dorp ◦ joinNM = joinNM ◦ mapNM dorp D(4)

dorp = dmap id (DD1)

dmap f = dorp ◦ mapNM f (DD2)

Note that, analogously to Lemma 15(i), (DD2) holds iff (DD1) and (G2) hold.

Theorem 18. Assume that NM is a compound monad for which (J2′) holds.
Define djoin by (G9) or (DJ), and dmap and dunit by (G10) and (DU). Then
(DJ) and (G1) to (G12) hold. Further, if dorp is defined by (DD1), then (DD2)
and D(1) to D(4) hold.

Proof. (G11) holds, using (3M). The equivalence of (DJ), that is, djoin =
mapM joinN , and (G9) follows from Lemma 13. Then djoin ◦ dunit =
mapM joinN ◦ mapM unitN = id, by (2M), (5N) and (1M), that is, (G5)
holds. Thus the conditions of Theorem 12 are satisfied, so (G1) to (G8) also
hold, as does, by Theorem 11, (G12).

Now, using (DD1), we get (DD2) from (G2). Then D(3) is just (G1), and
D(4) follows from (G4), by (G8) and (8NM). Using (DU), (G3) gives D(2).

We prove D(1) by

dorp ◦ mapNM (mapM f) = dmap (mapM f) (DD2)

= extNM (dunit ◦ mapM f) (G10)

= extNM (mapNM f ◦ dunit) (MC, 2M, 3N, DU)

= mapNM f ◦ extNM dunit (E5NM, E3′NM)

= mapNM f ◦ dorp (G10, DD1) �

Note that our definition of dorp gives dorp = dmap id = extNM dunit,
which corresponds to the definition used in [3, §4.2].

Jones & Duponcheel [3, §3.3] also show how to define a compound monad
from a function dorp, satifying four rules D(1) to D(4), assuming that M is
a premonad and N is a monad. They use (UC) and (MC) as definitions, and
defining joinNM by

joinNM = mapM joinN ◦ dorp (JD)

They show that in such a compound monad, (J2) holds. We can prove this
theorem via rules (G1) to (G8) and Theorem 11. However in doing so, we have
to prove (4NM) on the way to proving (G4) which is rather unsatisfying.

Theorem 19. [3, §3.3] Let N be a monad and M a premonad. Define unitNM

and mapNM by (UC) and (MC). Define djoin and dunit by (DJ) and (DU).
Let the function dorp satisfy D(1) to D(4), and define dmap by (DD2). Define
joinNM by (JD). Then NM is a monad satisfying (G1) to (G12) and (J2).

21

Proof. (sketched: also proved in Isabelle). Firstly, note that NM is a premonad.
From that fact, using (DD2), we can get (DD1) from (1NM), (G2) from (2NM),
(G3) from (3NM) and D(2), while (G1) is just D(3).

(G5): Use (DJ), (DU), (2M), (5N) and (1M).
(G6): Use (DJ), (UC), (G2), (G1), (MC), (2M), (6N) and (1M).
We use (G8) as a definition, noting also that (8NM) holds, as

joinNM ◦ mapNM f = mapM joinN ◦ dorp ◦ mapNM f (JD)

= djoin ◦ dmap f (DJ, DD2)

From (G8) and (G1) we get (G9).
To prove (G4) and (G7) we derive initially

djoin ◦ dmap mapM g = mapM joinN ◦ mapNM g ◦ dorp (DJ, DD2, D(1))

= mapM (joinN ◦ mapN g) ◦ dorp (MC, 2M)

= mapM (extN g) ◦ dorp (8N)

Then, to get (G7), we set g = joinN in this to get, on the right-hand side,

mapM (extN joinN) ◦ dorp = mapM (joinN ◦ joinN) ◦ dorp (7N, 8N)

= djoin ◦ mapM joinN ◦ dorp = djoin ◦ joinNM (2M, DJ, JD)

and we set g = mapN f in it to get, by a very similar argument, using (4N)
instead of (7N), djoin ◦ dmap mapNM f = mapNM f ◦ joinNM . Rewriting
using (G8) and (8NM), we have (4NM). Thus the property of h that joinNM ◦

mapNM h = h ◦ joinNM holds for h = dorp, by D(4), and for h = mapNM f ,
above. So it is easy to see that this property holds for their composition, h =
dorp ◦ mapNM f , which, again using (G8) and (8NM), gives us (G4).

Thus Theorem 11 applies. As we now have both (G9) and (DJ), Lemma 13
shows that (J2) holds. ⊓⊔

A.3 Relation between the kmap construction and the swap

construction of Jones & Duponcheel

Throughout this section we make the assumptions of §A.1 and of §A.2. That is,
we assume that M and N are monads, and that (UC) and (MC) hold. Under
these assumptions Jones & Duponcheel [3, §3.4,§4.3] show that the compound
monads NM which can be defined using swap and the four rules S(1) to S(4)
(where prod and dorp are defined in terms of swap as shown) are precisely those
satisfying (J1) and (J2).

swap ◦ mapN (mapM f) = mapNM f ◦ swap S(1)

swap ◦ unitN = mapM unitN S(2)

swap ◦ mapN unitM = unitM S(3)

prod ◦ mapN dorp = dorp ◦ prod S(4)

prod = mapM joinN ◦ swap dorp = extM swap

22

swap = kmap id (KS1)

kmap f = swap ◦ mapN f (KS2)

kmap (g ◦ f) = kmap g ◦ mapN f (KO)

Note that, analogously to Lemma 15(i), (KS2) holds iff (KS1) and (KO) hold.

Theorem 20. With the assumptions and definitions of Theorem 14, further
define swap from kmap by (KS1). Then S(1) to S(4) hold.

Proof. By Lemma 9(i), Theorem 8 applies. So by Lemma 10, (KO) and so
(KS2) hold. So S(3) is just (1K). Now by (E5K), (E6M) and (DUK), kmap f =
pext (unitNM ⊙M f) = pext (dunit ◦ f), so swap = pext dunit and, by (E1K′),
swap ◦ unitN = dunit and S(2) follows.

We show S(1), after simplifying it using (KS2), as follows:

kmap (mapM f) = kmap ((unitM ◦ f) ⊙M id) (E5M, A5M)

= kmap (unitM ◦ f) ⊙M kmap id (2K)

= (kmap unitM ◦ mapN f) ⊙M swap (KO, KS1)

= extM (unitM ◦ mapN f) ◦ swap (1K, E6M)

= mapNM f ◦ swap (E5M, MC)

Now, for S(4) we first use our definitions of dorp and prod. By (DD1) and (DMK),
dorp = extM (kmap id), and by (E5K) let kmap id be pext g, so we have

prod ◦ mapM dorp = pext (extM (kmap id)) (PP2)

= pext (pext g ⊙M id) (A5M)

= pext g ⊙M pext id (E3′K)

= extM (kmap id) ◦ prod (PP1, E6M)

Finally, to show S(4) precisely as it is stated, we need to check that the
various definitions of prod and dorp are consistent. By our definitions,

prod = pext id = kjoin ⊙M kmap id (PP1, 8K)

= extM kjoin ◦ swap = mapM joinN ◦ swap (E6M, KS1, DJK, DJ)

dorp = dmap id = extM (kmap id) = extM swap (DD1, DMK, KS1)

so our definitions are consistent with those used above in stating S(4). ⊓⊔

We showed in the proof above that swap = pext dunit which is consistent
with the definition of swap used in [3, §4.3].

Conversely, from S(1) to S(4), (KS2) and (KJ) it is possible to prove the rules
of (1K) to (7K) directly. These proofs have been done in Isabelle, see [2], functor
fromSwap. Alternatively, see Jones & Duponcheel [3, §3.4] for proofs from S(1)
to S(4) that NM is a monad.

Another interesting result is that both sides of S(4) equal swap ⊙NM swap.
The key step to prove it is to modify the proof of S(4) above, to give

prod ◦ mapM dorp = pext (pext g ⊙M id) (as above)

= pext (pext g) ⊙M kmap id (9K)

= pext swap ⊙M swap = swap ⊙NM swap (KS1, E6K)

23

A.4 A distributive law for monads

Manes [6] describes a “distributive law” for monads, at Chapter 4, pages 311-2,
Definition 3.6, and page 334, Exercise 6. This is also described by Barr & Wells
in [1], §9.2, where rules (D1) to (D4) are given. His natural transformation λ is
also the polymorphic function swap. Translating these rules into our terminology,
and calling (D1) to (D4) (BWD1) to (BWD4), we have

swap ◦ mapN unitM = unitM (BWD1)

swap ◦ unitN = mapM unitN (BWD2)

swap ◦ mapN joinM = joinM ◦ mapM swap ◦ swap (BWD3)

swap ◦ joinN = mapM joinN ◦ swap ◦ mapN swap (BWD4)

Of these, (BWD2) and (BWD4) are the diagrams in [6, Definition 3.16], and
(BWD1) and (BWD3) are the diagrams in Exercise 6 on page 334 of [6]. He
additionally specifies that swap is a natural transformation.

Theorem 21. With the assumptions and definitions of Theorem 20, (BWD1)
to (BWD4) hold and swap is a natural transformation.

Proof. From Theorem 20 we have S(1) to S(4). That swap is a natural transfor-
mation is just S(1), and (BWD2) and (BWD1) are just S(2) and S(3). We can
translate (BWD3) to kmap (id ⊙M id) = kmap id ⊙M kmap id, an instance of
(2K). To prove (BWD4), we have, by Theorem 2 for KM , (iii) ⇒ (i), and (E5K),

pext (kmap id) = kmap id ⊙M kjoin

= kmap id ⊙M unitM ◦ joinN (KJ, A6M)

= swap ◦ joinN (KS1, A1M)

Now pext (kmap id) = prod ◦ mapN swap which is, by the expression for prod in
§A.3 above, equal to the left-hand side of (BWD4). ⊓⊔

Conversely, from S(1) and (BWD1) to (BWD4), (KS2) and (KJ) it is pos-
sible to prove the rules of (1K) to (7K), and the resulting compound monad
satisfies (J1) and (J2) . These proofs have been done in Isabelle, see [2], functors
fromSextDL and fromSextF.

For monads N , M and NM , where (MC) is assumed, Barr & Wells [1, §9.2]
give five conditions, (C1) to (C5), for the existence of a distributive law, but in
fact (C2) ⇔ (C5) and (C3) ⇔ (C4), as noted in §3.8. These conditions are given
below, as are the proofs of these equivalences, in the category theory notation.

Michael Barr has observed that there is a duality between (C2,C5) and
(C3,C4), when these are written in category theory notation, and so the same
duality should hold between the proofs of implications between these conditions.
The proof (C3) ⇒ (C4) is due to this observation. Interestingly, while the proofs
are dual in a notational sense, the reasons for each step of the proofs are not so.

24

We indicate the correspondence between the category theory notation and
the notation of this paper.

µ joinNM : αNMNM → αNM

µF joinNM : αFNMNM → αFNM

µ, µ1, µ2 joinNM , joinN , joinM

η, η1, η2 unitNM , unitN , unitM

T, T1, T2 mapNM ,mapN ,mapM

T = T2T1 mapNM = mapM ◦ mapN (MC)

µ ◦ ηT = id join ◦ unit = id (5)

µ ◦ Tη = id join ◦ map unit = id (6)

µ ◦ Tµ = µ ◦ µT join ◦ map join = join ◦ join (7)

We first list the conditions (C1) to (C5).

η = T2η1 ◦ η2 = η2T1 ◦ η1 (C1)

µ ◦ Tη2T1 = T2µ1 (C2)

µ ◦ T2η1T = µ2T1 (C3)

µ2T1 ◦ T2µ = µ ◦ µ2T1T (C4)

T2µ1 ◦ µT1 = µ ◦ TT2µ1 (C5)

Finally we show the proofs of equivalence. Note the duality between the
notations of the proofs. Steps with no reasons given rely on either T or Ti being
functors (T (φ ◦ ψ) = Tφ ◦ Tψ) or on the definition of composition of natural
transformations ((φ ◦ ψ)T = φT ◦ ψT). Observe how the duality between the
proofs also uses the duality between rules (5) and (6), and the self-duality of
rule (7) (see the table above). But also note the duality between the specific
uses made of the naturality of η1 and of µ.

(C4) ⇒ (C3): µ ◦ T2η1T = µ ◦ (µ2 ◦ T2η2) T1T ◦ T2η1T (6 for T2)

= µ ◦ µ2T1T ◦ T2η2T1T ◦ T2η1T

= µ ◦ µ2T1T ◦ T2 (η2T1 ◦ η1) T

= µ ◦ µ2T1T ◦ T2ηT (C1)

= µ2T1 ◦ T2µ ◦ T2ηT (C4)

= µ2T1 ◦ T2 (µ ◦ ηT) = µ2T1 (5 for T)

(C3) ⇒ (C4): µ2T1 ◦ T2µ = µ ◦ T2η1T ◦ T2µ (C3)

= µ ◦ T2 (η1T ◦ µ)

= µ ◦ T2 (T1µ ◦ η1T
2) (η1 natural)

= µ ◦ Tµ ◦ T2η1T
2

= µ ◦ µT ◦ T2η1T
2 (7 for T)

= µ ◦ µ2T1T (C3)

25

(C5) ⇒ (C2): µ ◦ Tη2T1 = µ ◦ TT2 (µ1 ◦ η1T1) ◦ Tη2T1 (5 for T1)

= µ ◦ TT2µ1 ◦ TT2η1T1 ◦ Tη2T1

= µ ◦ TT2µ1 ◦ T (T2η1 ◦ η2) T1

= µ ◦ TT2µ1 ◦ TηT1 (C1)

= T2µ1 ◦ µT1 ◦ TηT1 (C5)

= T2µ1 ◦ (µ ◦ Tη) T1 = T2µ1 (6 for T)

(C2) ⇒ (C5): T2µ1 ◦ µT1 = µ ◦ Tη2T1 ◦ µT1 (C2)

= µ ◦ (Tη2 ◦ µ) T1

= µ ◦ (µT2 ◦ T 2η2) T1 (µ natural)

= µ ◦ µT ◦ T 2η2T1

= µ ◦ Tµ ◦ T 2η2T1 (7 for T)

= µ ◦ TT2µ1 (C2)

B Some examples using rules (A1) to (A4)

In this section we give some examples of monads which are easily shown to be
monads using rules (A1) to (A4).

The two examples in §B.2 and §B.3 are (in different senses) compound mon-
ads. In both cases M is an arbitrary monad; we don’t explicitly use the monad
N , but proceed directly to define the compound monad NM . The simple monad
N will be a special case of NM , which could be obtained by setting M to be the
identity monad (in which unit, ext, map and join are all the identity function).

B.1 Example: the Continuation Monad

The continuation monad (eg, [8, §3.1]) is given by αK = (α → Ans) → Ans,
where Ans is a fixed type, so α→ βK = α→ (β → Ans) → Ans. We use the func-
tion C, of type (γ → δ → Ans) → (δ → γ → Ans), defined by C f x y = f y x .
Note that C (C f) = f, so C is 1-1, and C x = C y ⇒ x = y. Then we define
⊙K by C (g ⊙K f) = C f ◦ C g, and unitK by C unitK = id.

The ⊙ rules are then easily proved. For each rule lhs = rhs, as C is 1-1, it
suffices to prove C (lhs) = C (rhs).

for (A1): C (f ⊙K unitK) = C unitK ◦ C f = id ◦ C f = C f
for (A2): C (unitK ⊙K f) = C f ◦ C unitK = C f ◦ id = C f
for (A3): C (h ⊙K (g ⊙K f)) = (C f ◦ C g) ◦ C h =

C f ◦ (C g ◦ C h) = C ((h ⊙K g) ⊙K f)

It is simple but tedious to confirm (A4) directly. We now check that this
definition corresponds to the usual ones. Using (A5), we get

unitK a c = C id a c = id c a = c a , and
extK g k c = (g ⊙K id) k c = C (C id ◦ C g) k c =

(C id ◦ C g) c k = C id (C g c) k = id k (C g c) = k (λf. g f c)

Both of these agree with the definitions in [8, §3.1].

26

B.2 Example: the Compound State Monad

Let M be a monad. Let State be a fixed type, representing, for example, a
program state. Then the state monad is given by the type αS = State → α∗State

(where α ∗ β denotes a pair type). This represents a computation which takes a
program state and returns a result of interest and a new state. The “compound”
state monad is given by the type αSM = State → (α ∗ State)M . (Note that
because αSM is neither αSM nor αMS, §3.1 and following are not relevant
to this example, which perhaps should not be called a “compound monad”).
If, for example, M is the list monad, SM could be used to represent a non-
deterministic program, which may behave in any of a number of possible ways,
each way returning a result and new state.

To show that this is a monad, we use the functions curry and unc

curry g x y = g (x, y) unc f (x, y) = f x y

noting that these are mutually inverse (so, in particular, unc is 1-1). Consider a
function f : α→ βSM . Then unc f is of type α ∗ State → (β ∗ State) M . Given
that M is a monad, it is easy to see how to compose functions of such a type –
we define ⊙SM and unitSM by

unc (g ⊙SM f) = unc g ⊙M unc f

unc unitSM = unitM

The ⊙ rules are then easily proved. For each rule lhs = rhs, as unc is 1-1, it
suffices to prove unc (lhs) = unc (rhs). The proofs use the corresponding rules
for the monad M .

for (A1) and (A2):
unc (f ⊙SM unitSM) = unc f ⊙M unc unitSM = unc f ⊙M unitM = unc f
unc (unitSM ⊙SM f) = unc unitSM ⊙M unc f = unitM ⊙M unc f = unc f

for (A3): unc (h ⊙SM (g ⊙SM f)) = unc h ⊙M (unc g ⊙M unc f) =
(unc h ⊙M unc g) ⊙M unc f = unc ((h ⊙SM g) ⊙SM f)

It is simple but tedious to confirm (A4) directly. We need only check that
this definition corresponds to the usual ones. Using (A5),

unitSM a s = curry unitM a s = unitM (a,s) , and
extSM k m s = (k ⊙SM id) m s = curry (unc k ⊙M unc id) m s =

(extM (unc k) ◦ unc id) (m,s) = extM (λ(a, t). k a t) (m s)

Both of these agree with the definitions in [4, §7.1] (modified to switch the
members of pairs).

B.3 Example: the Compound Reader Monad

Again, let M be a monad. Let Env be a fixed type. Then the environment, or
reader, monad is given by the type Env → α (evaluating any monadic value

27

also involves reading the environment). The reader monad is given by the type
αR = Env → α, and the compound reader monad ([4, §7.2], [3, §6.3]) is given
by αRM = Env → αM = (αM)R.

To show that this is a monad, we define a function ape f a = f a e (for
e : Env), of type (γ → Env → δ) → (γ → δ). In similar proofs earlier, we had a
function which was 1-1; here we need to use the property

(∀e.ape f = ape g) ⇒ f = g

We define ⊙RM and unitRM by

(g ⊙RM f) a e = (ape g ⊙M ape f) a
unitRM a e = unitM a

that is,

ape (g ⊙RM f) = ape g ⊙M ape f
ape unitRM = unitM

The ⊙ rules are then easily proved. For each rule lhs = rhs, it suffices to
let e be arbitrary, and then to prove ape(lhs) = ape(rhs). The proofs use the
corresponding rules for the monad M .

for (A1) and (A2):
ape (f ⊙RM unitRM) = ape f ⊙M ape unitRM = ape f ⊙M unitM = ape f
ape (unitRM ⊙RM f) = ape unitRM ⊙M ape f = unitM ⊙M ape f = ape f

for (A3): ape (h ⊙RM (g ⊙RM f)) = ape h ⊙M (ape g ⊙M ape f) =
(ape h ⊙M ape g) ⊙M ape f = ape ((h ⊙RM g) ⊙RM f)

It is straightforward to confirm (A4) directly. We need only check that this
definition corresponds to the usual ones. Using (A5),

unitRM a e = unitM a , and
extRM k m e = (k ⊙RM id) m e = (ape k ⊙M ape id) m =

(extM (ape k) ◦ ape id) m = extM (λa. k a e) (m e)

Both of these agree with the definitions in [4, §7.2].

C Examples of the Compound Monad Constructions

C.1 Example: the Compound Exception Monad

The exception (or error) monad is given by

datatype α E = Ok of α | Err of string

with unitE a = Ok a.
With M an arbitrary monad we define the compound monad αEM by

28

pext f (Ok a) = f a (pext-Ok)
pext f (Err msg) = unitM (Err msg) (pext-Err)

(Letting M be the identity monad gives us the definition of extE, for then pext
is extE). We also define unitEM and ⊙EM by (UC) and (E6K). Then we prove
the pext axioms (E1K) to (E3K) as follows. (E1K) is just (pext-Ok). Using the
definitions just mentioned, we get (E2K) from

pext unitEM (Ok a) = unitEM a = unitM (Ok a)
pext unitEM (Err msg) = unitM (Err msg)

and using these definitions and also (E6M) we get (E3K) from

pext (g ⊙EM f) (Ok a) = (pext g ⊙M f) a (pext-Ok, E6K)
= extM (pext g) (f a) (E6M)
= extM (pext g) (pext f (Ok a)) (pext-Ok)
= (pext g ⊙M pext f) (Ok a) (E6M)

pext (g ⊙EM f) (Err msg) = unitM (Err msg) (pext-Err)
= pext g (Err msg) (pext-Err)
= extM (pext g) (unitM (Err msg)) (E1)
= extM (pext g) (pext f (Err msg)) (pext-Err)
= (pext g ⊙M pext f) (Err msg) (E6M)

C.2 Other Examples; Isabelle Proofs

Example: the Compound Writer Monad Let Monoid be a type representing
a monoid, where we use 0 for the identity value and + for the associative binary
operation. Then let αW = (Monoid ∗ α) and αWM = (αW)M . A function
f : α → βW represents a function from α to β which also produces some
output m of type Monoid; when extW f acts on (acc, a), where acc represents
output already accumulated, the output m is added to that in acc. That is, if
f a = (m, b), then extW f (acc,a) = (acc + m, b). Naturally, unitW a = (0, a).

The compound writer monad is given by

pext f (acc,a) = mapM (λ(m,b). (acc + m, b)) (f a)

That is, the addition of the new output m to the accumulated output acc is
done “under the hood” of the monad M . This makes the proof of the axioms
for pext more difficult, and we omit them. (Jones & Duponcheel [3, §6.5.1] also
omit proofs for this monad).

Example: the Compound Reader Monad This was discussed in §B.3. We
write the monad type as αNR, where R takes the place of M in our general
results. Note that, here, the monad R is fixed, while N is arbitrary. The pext
construction applies to this compound monad, but to use it, we need to show

(i) that R is a monad

29

(ii) that N is a monad
(iii) that the axioms for pext, (E1K) to (E3K), hold

Our treatment of compound monads using the pext axioms requires, as such,
only (i) and (iii), but we need (ii) to prove (iii). These proofs are, however, not
difficult, and are omitted.

Isabelle Proofs The proofs in this paper and the proofs for the compound
reader and writer monads were performed using the theorem prover Isabelle,
and are available at [2], or from the author’s home page.

Jones & Duponcheel, [3, §6.4], discuss the compound list monad – α list M is
a monad provided that M is a commutative monad, and they give proofs of this.
We also have Isabelle proofs of the pext axioms for the compound list monad.

30

