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Abstract We present the generic system framework of Isabelle/Isar un-
derlying recent versions of Isabelle. Among other things, Isar provides an
infrastructure for Isabelle plug-ins, comprising extensible state compo-
nents and extensible syntax that can be bound to tactical ML programs.
Thus the Isabelle/Isar architecture may be understood as an extension
and refinement of the traditional “LCF approach”, with explicit infras-
tructure for building derivative systems. To demonstrate the technical
potential of the framework, we apply it to a concrete formal methods
tool: the HOL-Z 3.0 environment, which is geared towards the analysis
of Z specifications and formal proof of forward-refinements.

1 Introduction

Nearly 15 years ago, Paulson concluded his handbook article on theorem prover
design [18] with the “final advice”:

Don’t write a theorem prover. Try to use someone else’s.

Even today, reuse of existing prover technology is still not common practice —
many recent research projects are still based upon attempts to start from scratch,
in particular if formal methods are implemented. This has mostly three reasons:
Besides (1) general ignorance over or scepticism about the logical framework
approach and (2) concerns about efficiency, it is believed that (3) the overhead
to represent a particular formal method in a generic system is in fact too large.

There is a remarkable body of literature addressing (1) and (2); various forms
of logical embeddings have been studied and applied to a wide range of logics
or specification languages. Furthermore, a wide range of techniques to integrate
decision procedures have been developed. Here the usual alternatives are fully
expansive tactics, or procedures generating checkable proof objects or external
implementations integrated via an oracle-mechanism into the LCF proof engine.

In this paper, we want to address (3) and explore the much less known fact
that underlying the most recent versions of Isabelle (which Paulson had in mind
∗

Supported by BMBF project “Verisoft”.

http://www.in.tum.de/~wenzelm/
http://www.infsec.ethz.ch/people/wolffb


2 Makarius Wenzel and Burkhart Wolff

in the above quote) there is a generic system framework called Isabelle/Isar
that can be compared in a rough analogy to the Eclipse programming system
framework. Some key aspects of Isabelle/Isar are
1. hierarchical organization of theory documents,
2. incremental document processing for interactive theory and proof develop-

ment (with unlimited undo),
3. batch-mode processing for high-quality document preparation (LATEX),
4. extensible syntax for toplevel commands, embedded methods and attributes,

and the inner term language,
5. type-safe programming interfaces for generic user data within the logical

environment,
6. LCF-style programming interfaces for derived rules, tactics etc.

This framework has been applied to build a family of formal method tools. With
this category we refer to a class of tools that provide support for a software spec-
ification formalism and a pragmatics or formalized “method” to use it for soft-
ware analysis. Examples of such FM tools implemented as Isabelle/Isar “plug-
ins” are the test-case generation system HOL-TestGen [11, 2], the environment
for object-oriented modeling HOL-OCL [4, 10], or the proof-environment for
refinement-oriented system development HOL-Z 3.0 [5]. In the present paper we
take the latter as a running example, since the logical embedding [16] and the
proof-support [9] have been described earlier, the overall plug-in is still rela-
tively small (12000 lines of code if the Java-based front-end is included), and
since there exists a “monolithic” implementation [3] of an environment for Z
based on a HOL theorem prover offering the potential of a fair comparison.

The analysis method of HOL-Z 3.0 (built on top of HOL within Isabelle2005)
is based on the idea that a designer writes a specification document in the speci-
fication language Z. This can be done completely independent from Isabelle in an
Emacs/ZETA environment providing type-checking and elementary animation
of Z formulae [1]. In a further step, the designer might want to state a number
of conjectures on his model. In particular, these may be analytical statements
such as “A is refined by B” or “spec A is consistent” in order to describe the
task to proof engineers. Depending on the underlying method, such statements
were compiled to proof-obligations (PO), i. e. formulas to be proven at the end
by the proof-engineer using interactive or automated proof techniques.

The paper proceeds as follows. In §2 we introduce the HOL-Z 3.0 tool as
it appears to end-users. In §3 we outline the main aspects of the Isabelle/Isar
architecture that are relevant for building formal method tools. In §4 we report
on the implementation of HOL-Z 3.0 within the Isabelle/Isar framework. In §5
we compare our Isabelle/HOL-Z system with the more monolithic ProofPower.

2 A Guided Tour through HOL-Z

2.1 The HOL-Z 3.0 System Architecture

As shown in Figure 1, the model development process with Isabelle/HOL-Z
is divided into two phases. In the modeling phase, the designer concentrates
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his attention on describing a model of the system in Z. The model (a LATEX
document) is type-checked by ZETA [1] and passed to the verification phase.
In the latter, the proof engineer can prove proof obligations — e. g. stemming
from an interactive refinement — using proof commands. The theorem proving
process is recorded in proof documents. Both ZETA as well as HOL-Z sup-
port “literate specifications”, where formal specifications and proofs are mixed
with informal explanations and the system generates a final document after
checking all proofs. Technically, Isabelle/HOL-Z consists of a shallow embed-

(.tex file)

ZETA ProofGeneral

HOL−Z

(.tex file)(.holz file)

Z specification

modelling phase

documentation

verification phase

specification

Editor

(e.g., Emacs)

(.thy file)
HOL−Z

Figure 1. The HOL-Z system architecture perspective

ding of the Z language constructs, a library called the mathematical toolkit, a
compiler converting ZETA-output into the logical representation, a number of
generic proof-procedures providing automatic support for Z-specific constructs
like schemas (sets of records), or the schema calculus with its own quantifier
and logical connectives. HOL-Z also provides proof-obligation management in-
stantiated with a concrete method, namely the forward refinement method for Z
as described in Spivey’s book [19]. A complete HOL-Z spec and proof documen-
tation for Spivey’s “BirthdayBook” example, a toy data-base system presented
in an abstract and a concrete version and related via refinement proofs, can be
downloaded as “standard example” via the HOL-Z home page [5]. There are also
references to substantial case-studies that have been done with the system.

2.2 The HOL-Z 3.0 Workflow

The proof document can be processed interactively via Proof General [6]. Sub-
sequently, we highlight the main steps taken when verifying the birthday book
example; the reader interested in the details is referred to the complete down-
load of the “standard example”. We start by loading the output of ZETA when
type-checking the model of the designer:

1 load_holz "BBSpec"

This results in an environment holding all definitions and various automatically
derived simplification rules. In particular, this includes the state invariants for
the abstract state BirthdayBook and the concrete BirthdayBook1, the abstract
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insertion operation AddBirthday and its concrete counterpart AddBirthday1 and
the abstraction relation Abs. In the BirthdayBook example, all these definitions
are presented in the Z idiom as schemas. By typing

set_abs "Abs" [functional]

we inform the refinement package that the Abs schema represents the abstraction
relation and set the system in a mode for functional refinement (i. e. it will
generate simplified POs). This setting will also generate a PO requiring that
Abs actually represents a function, i. e. any concrete state is in fact related to a
unique abstract state. After the statement:

refine_op AddBirthday Addbirthday1

we will have two new POs (we will show the second below) in the proof obligation
database, which can be listed and inspected by the user. The concrete instance
for the second PO resulting from the statement above can be referenced via a
PO name. For example, if we discharge this PO, we can refer to it by:

po "BBSpec_functional.fw_refinementOp_AddBirthday"

The system reacts by displaying this well-known condition of forward-simulation.
In more detail, this means that whenever the concrete system transition re-
lation AddBirthday1 relates a concrete state in BirthdayBook1 to a state in
BirthdayBook1′ and whenever an abstract state BirthdayBook can be related
via Abs to a state in BirthdayBook1, then AddBirthday must allow a transition
to the abstract state BirthdayBook ′ which is an abstraction of BirthdayBook1′:

∀BirthdayBook • ∀BirthdayBook ′ • ∀BirthdayBook1 • ∀BirthdayBook1′ •
(∀ date? : DATE .∀name? : NAME .

preAddBirthday ∧ Abs ∧ AddBirthday1 ∧ Abs ′ ⇒ AddBirthday)

Recall that in the above Z formula BirthdayBook etc. refer to schemas, which
implies that there are implicit parameters (occasionally decorated by ′). The
Z specific binding structure is suppressed in pretty-printing. The po command
initializes the proof state, which may now be refined by a sequence of regular
Isabelle proof commands [21] (such as apply) that refer to proof methods from
generic Isabelle/HOL or specific ones from HOL-Z.

After reaching the final proof state, one can state

discharged

whereby this PO will be erased from the proof obligation database.

3 Internals: The Isabelle/Isar System Architecture

The system architecture of Isabelle/Isar [22] extends the original “LCF ap-
proach”. We briefly review the latter, before explaining our additional concepts.
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3.1 The “LCF approach”

The “LCF approach” was pioneered by the original LCF system due to Robin
Milner [14]. LCF means “Logic of Computable Functions”, but the underlying
logic is not really relevant for the architecture. The same principles have been
transferred later to the HOL family [13, 12], and some traces are also present in
Coq [7]. The main idea of the “LCF approach” is twofold:

1. A full functional programming language acts as “meta language” (ML),
which allows arbitrary manipulations of term entities represented as values.
ML is not part of the logic, but provides access to its implementation.

2. The strong type-discipline of ML ensures “correctness-by-construction”, as
all critical information is wrapped into abstract datatypes. In particular, an
abstract type thm guarantees that any value of that type is in fact derivable,
relative to a small kernel implementing the primitive inferences of the logic.

Figure 2 illustrates the main ML types of a typical “LCF-style” system. In
this diagram a solid line means structural containment (reading downwards, e. g.
a term is contained in a thm), while dashed lines link operand-operation pairs
(e. g. a tactic operates on a goal). The three columns categorize entities accord-
ing to their typical use: basic values (manipulated directly), state information
(handled implicitly), and the main “active” operations invoked by the user.

term

thm rule

tacticgoal

basic

values

state

information

main

operations

Figure 2. The original “LCF approach”

The concrete datatype term provides a syntactic model of λ-terms (consist-
ing of free/bound variables, abstraction, application), with the usual operations
(substitution, reduction etc.). Terms are annotated by explicit type-information,
which may have to be re-checked explicitly for critical operations (this is usually
easy due to the restriction to simple types).

The abstract type thm implements primitive inference objects of the underly-
ing logic (e. g. HOL). Since ML enforces type-safety, the thm type does not need
to store any explicit information about the inferences that lead to a particular
theorem. Some systems provide an explicit proof trace as an option, but this
typically increases space requirements by several orders of magnitude.

Type rule covers functions that produce theorems, e. g. unary thm → thm,
binary thm → thm → thm, or parameterized ones term → thm → thm. Gen-
eral rules programmed in ML need to replay the constituent inferences for every
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application at run-time. An important special class of immediate derived rules
may be implemented more efficiently, using auxiliary theorems that internalize
the rule as a statement of the logic; this technique essentially exploits the De-
duction Theorem. In Isabelle, derived rules are internalized by default, using
the

∧
quantifier and =⇒ connective of the Pure logical framework to represent

Natural Deduction schemes [17]. Note that in conclusions, the outermost prefix
of

∧
x quantifiers is turned into schematic variables ?x of Isabelle.

Beyond primitive inferences, the LCF approach includes some minimal in-
frastructure for tactical theorem proving, which supports backwards reasoning
from a goal by a sequence of tactic applications. In Isabelle, a goal is again a
thm stating that the sub-goals entail the main conclusion, and a tactic is a lazy
function goal → goal∗∗ that enumerates possible follow-up goals [17]. The tac-
tical layer of the LCF approach imposes a particular discipline of goal-oriented
reasoning, which has turned out quite successful very early [14]: the art of rep-
resenting problems as goals (including auxiliary facts within the statement) and
complex manipulations as tactics has thrived over several decades.

Beyond programming tactics, people have also managed to build advanced
specification mechanisms that turn high-level user input into primitive defini-
tions and proven theorems. This approach has been employed many times to
implement inductive sets and datatypes, recursive functions etc. on top of the
core logic implementation. E. g. see [15] or [8] for techniques of bootstrapping
higher specification concepts in HOL.

Limitations. Despite this success in building complex logical environments
from basic principles, there has traditionally been very little general system
infrastructure to support this task systematically. Consequently, “LCF system
programming” has often a flavor of working on bare-metal. Moreover, imple-
mentors of particular extensions often re-invent auxiliary infrastructure, which
duplicates work and tends to result in a diversity of incompatible features.

To illustrate the limitations of raw LCF, consider the problem of combining
advanced tactics in classic Isabelle. Given tactic simp (the Simplifier, imple-
mented by N.) that depends on a private rule collection, which is represented by
type simpset and maintained by addsimp, delsimp : thm → simpset → simpset ;
given another family of tactics fast , blast etc. (the Classical Reasoner, imple-
mented by P.) that depend on a claset with similar operations; then a combined
tactic force (implemented by O.) depends on clasimpset = claset×simpset . This
is slightly awkward, since declarations on the individual components (addsimp
on simpset etc.) need to be lifted to the tupled container, and users need to
know which container type is passed to which tactic exactly. Even worse, this
technique requires the participant tactic families and corresponding container
types to be known in advance. So this naive composition does not scale well.

Our refined LCF approach addresses such issues by a generic environment
that assimilates arbitrary data in a type-safe fashion. So all tactics may depend
on a uniform context , which is maintained by declarations on the same type.
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3.2 The Isabelle/Isar Framework

Although the original motivation for Isabelle/Isar is to support human-readable
proof texts [20], the internal system organization has been quite generic from
early on, continuing the original idea of Isabelle as a “logical framework” [17] in
a broader sense. Consequently, the mechanisms for structured proofs are merely
another application of considerably more general infrastructure, which may be
re-used in completely different applications as well. Figure 3 gives an overview of
the main constituents of the Isabelle/Isar framework. In this diagram, a solid or
dashed line means the same as in Figure 2, while an arrow means a backwards
reference that may mutate in a monotonic fashion (as explained below).

basic

values

state

information

main

operations

term

thm

attribute

methodproof−state

theory

context

toplevel command

data (private)

document

Figure 3. Main concepts of Isabelle/Isar

Here the original entities of the “LCF approach” are still present, although
some have been elevated to more sophisticated concepts.

Generic data, which can be modeled by the user as arbitrary ML types, is
organized explicitly within a theory or context . Operations on data are private
to the particular module implementation; access is mediated by higher elements,
notably attribute, method , or command .

A term is exactly the same as in raw LCF, but a thm holds an additional
reference to the enclosing theory as an explicit certificate. A context is certified
against its background theory in the same way. An attribute covers primitive
operations on theorems, as well as declarations to the theory or context .

An Isar proof-state wraps the raw LCF goal into a rich block-structured
configuration, with an explicit context at each position. A method supersedes
tactic as the main goal refinement mechanism, depending on additional structure
from the context and immediate theorems presented in the proof text.

The Isar toplevel integrates the main state components, and encapsulates all
operations by a transaction concept that supports recovery from errors and un-
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limited undo. The Isar toplevel loop replaces the bare-bones ML toplevel of LCF:
end-users are no longer exposed to the underlying programming environment.

A document consists of a command sequence, interleaved with the resulting
toplevel state at each position. This allows to generate output for LATEX type-
setting, involving both the original sources and pretty printed output of logical
entities (using “antiquotations” for term and thm in the text).

We shall now take a closer look at the key concepts required for building
formal reasoning tools within the Isabelle/Isar framework.

Logical Environments. Our central concepts of theory and context are moti-
vated by certain aspects of the underlying calculus. Derivations in Isabelle/Pure
[17] (and the HOL family in general [13]) can be described as a judgment Γ `Θ ϕ,
meaning that proposition ϕ is derivable from assumptions Γ , within theory Θ.
Both Θ and Γ act as a logical environment, but have different characteristics: Θ
holds global declarations of polymorphic type constructors, term constants, and
axioms; Γ covers locally fixed type variables, term variables, and hypotheses.
The following main principles operate on Γ and Θ wrt. the conclusion ϕ:

– Transfer: due to monotonicity of derivations, results may be transferred into
a larger environment, i. e. Γ `Θ ϕ implies Γ ′ `Θ′ ϕ for Θ′ ⊇ Θ and Γ ′ ⊇ Γ .

– Export: by discharging assumptions, results may be exported into a smaller
environment, i. e. Γ ′ `Θ ϕ implies Γ `Θ ∆ =⇒ ϕ where Γ ′ ⊇ Γ and
∆ = Γ ′ − Γ . Note that Θ remains unchanged here, discharge of theory
content is not directly supported.

Isabelle/Isar elevates raw Θ to a theory and Γ to a context , both supporting
arbitrarily typed data, being introduced by the user at compile time.

Theories. A theory is a named data container with a unique identifier. Theories
are related by a nominal sub-theory relation, which corresponds to the depen-
dency graph of the original construction; each theory is derived from a certain
sub-graph of ancestor theories. Locally, a theory is updated in a strictly linear
discipline, which reduces the total number of theory identifiers. This organization
is able to support large-scale logical environments efficiently.

The operation merge : theory×theory → theory builds the least upper bound
of two theories, which is trivial for nominally related theories. The operation
begin : name → theory∗ → theory starts a new theory by importing several
parent theories and entering a special draft mode, which is sustained until the
final operation end : theory → theory , where the theory is named and identified
for permanent storage. An intermediate draft theory acts like a linear type, where
updates invalidate earlier versions. The operation checkpoint : theory → theory
produces an intermediate stepping stone that will survive the next update: both
the original and the changed theory remain valid and are related by the sub-
theory relation. Checkpointing essentially recovers pure theory values, at the
expense of extra bookkeeping. The operation copy : theory → theory produces
an auxiliary version with the same content, but detached from the original.
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Theory data may refer to destructive entities, which are maintained in direct
correspondence to the globally graph-structured and locally linear evolution of
theory values, including explicit copies of impure data. A theory data declaration
needs to implement the following ML specification:

type T representation
val empty : T initial value
val copy : T → T refresh impure data
val extend : T → T re-initialize on import
val merge : T × T → T join on import

A theory reference maintains a live link to an evolving theory: updates on
drafts are propagated automatically. Derived entities (notably thm or context)
store a theory reference in order to indicate the enclosing logical environment.
Soundness substantially depends on monotonicity of the underlying calculus, as
the referenced theory may grow spontaneously.

Contexts. A context is a pure data container with a back-reference to the en-
closing theory . The operation init : theory → context creates an empty context
from a given theory. Modifications to draft theories are propagated to the con-
text as explained above. The actual context data does not require any special
bookkeeping, thanks to the lack of destructive features at this point.

Although contexts may be manipulated arbitrarily (analogous to thm values),
the common discipline is to follow block structure: a given context is extended
consecutively, and results are exported back into the original context. Note that
an Isar proof-state models block-structure explicitly (using a stack).

Context data is declared by implementing the following ML specification:

type T representation
val init : theory → T initial value

Generic theory and context data is used in Isabelle/Pure from the very be-
ginning of bootstrapping the system. Even the inference kernel itself depends on
types, constants, and axioms being maintained as theory data. If we liken the
original LCF approach to a “micro-kernel” architecture, we may understand the
Isabelle/Isar data management facility as a “nano-kernel”.

After having boot-strapped the basic functionality of Isabelle/Pure, with
many layers of theory and context data, the same principle is continued in
object-logics like Isabelle/HOL. This includes data for reasoning tools (Sim-
plifier, Classical Reasoner etc.) and derived specification mechanisms (inductive
sets, recursive functions etc.). There is no reason to stop here, of course (cf. §4).

Attributes. An attribute covers any immediate operation on a theorem or the
data within the underlying environment (theory or context):

global-attribute = theory → thm → thm global rule
| thm → theory → theory global declaration

local-attribute = context → thm → thm local rule
| thm → context → context local declaration
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Practically speaking, attributes model various kinds of ad-hoc transforma-
tions and marginal declarations. Attributes may be adjoined to theorems wher-
ever these occur in other Isar elements, using postfix notation thm [attribute].
For example, thm [simp] is a declaration that corresponds to the primitive
addsimp (cf. §3.1), but operates directly on theory or context . Another example
is thm [symmetric] which concludes a symmetric version of the given theorem,
using a suitable symmetry rule picked from the environment.

Proof States and Methods. A proof-state is a stack over context × goal?,
together with some additional information to model the linguistic structure of
an Isar proof text [20]. Unstructured proof scripts are incorporated into this
model as a trivial case, by ignoring part of this structure.

A method operates on the goal field of a proof-state, depending on the proof
context and immediate facts stemming from previous reasoning; the result is
an enumeration of possible successive goal configurations, with optional case
declarations to augment the context of the subsequent proof body:

method = context → thm∗ → goal → (case∗ × goal)∗∗

Non-empty cases only occur in the most advanced methods, notably cases and
induct [21]. Moreover, many methods merely insert the indicated list of theorems
into the goal as local premises, and then continue in the plain-old tactical sense.
Thus the following simplified version suffices for most situations (recall that
tactic = goal → goal∗∗):

simple-method = context → tactic

In other words, a simple method is a plain tactic that refers to the proof context
explicitly, retrieving arbitrary data as required (simp rules etc.). In order to
combine such methods, each constituent part merely needs to pass-on the context
it has received, such that every component will be able select its own data.

Toplevel Commands. The Isar toplevel maintains an implicit state that is
transformed by a sequence of commands, either interactively or in batch-mode. In
interactive mode, toplevel state transitions are encapsulated as safe transactions,
such that both failure and undo are handled conveniently, without destroying the
underlying draft theory. In batch mode, transitions operate in a strictly linear
fashion, so an error will abort the present attempt to process the input.

A toplevel state consists of a history over empty | theory | proof-state.
Special control commands may revert to previous states (undo), or abort the
present theory or proof construction (kill). Regular commands operate on the
topmost history entry, transforming the current theory or proof-state. The fol-
lowing typed interfaces allow to compose such toplevel commands:

Toplevel .theory : (theory → theory) → transformer
Toplevel .begin-proof : (theory → proof-state) → transformer
Toplevel .proof : (proof-state → proof-state∗∗) → transformer
Toplevel .end-proof : (proof-state → theory) → transformer
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Here are some example Isabelle/Isar commands [21] that are based on these.

Toplevel .theory : types, consts, axioms, defs, . . .
Toplevel .begin-proof : lemma, theorem, typedef , . . .
Toplevel .proof : apply, proof , fix, assume, show, . . .
Toplevel .end-proof : done, qed, sorry, . . .

Both Toplevel .theory and Toplevel .begin-proof may be understood as theory
specification elements, the latter with a separate proof obligation; variations on
these are regularly introduced by add-on tools. In contrast, Toplevel .proof and
Toplevel .end-proof refer to the Isar proof language [20], which is not so easily
extended beyond the predefined elements: deeper insight into the proof engine
is required. In practice, it is usually sufficient to plug additional proof tools into
the restricted interface for proof methods.

3.3 Syntax

As an “LCF-style” system, Isabelle/Isar works directly with semantic entities,
modeled as abstract types in ML. Concrete syntax is adjoined superficially be-
tween the core system and the end-user, such that theory sources may be pre-
sented as plain text. There are essentially three syntax layers in Isabelle/Isar:

1. outer syntax: toplevel commands,
2. embedded syntax: attributes and methods,
3. inner syntax: terms and types.

In particular, a command definition includes a parser function to turn a cer-
tain portion of input source into a semantic toplevel transaction. Similar parser
functions may be installed for attributes and methods. Term syntax depends on
an unrestricted context-free grammar maintained within the theory; new gram-
mar productions may be added by mixfix annotations for constants.

The vertical relationship between abstract system concepts and superficial
user syntax may be represented e. g. for type term as the pair of functions
read : context → string → term and print : context → term → string . Inter-
nally, all components communicate directly in a horizontal manner, bypassing
concrete syntax altogether. This works uniformly for pre-defined primitives and
add-on tools alike. Taking the detour via generated sources is not recommended:
both efficiency and robustness would suffer due to the full round-trip through
various (extensible!) syntax layers. This also means that decent tools are obliged
to provide proper internal interfaces by default, not just concrete syntax for
end-users. Otherwise, the tool development chain would be broken here.

4 Application: Implementing HOL-Z 3.0

We now present concrete instances for the generic slots outlined above.
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4.1 Theory Data: Z Environment

HOL-Z requires its own state capturing specific data for parsing and theorem
proving, called the Z-environment (of ML type Zenv). For example, schema iden-
tifiers must have an internal signature (“schema signature”) assigning to local
names their type and type constraint. This signature is necessary to construct
the binding structure of a schema-logical expression. As an example for proof
support, there is a set of type-constraint information (“f is a partial function”:
f ∈ A 7→ B) that is used to eliminate side-conditions of this form which oc-
cur in many situations throughout proofs. The data-base of currently unproven
proof-obligations is also part of Zenv. Our theory data declaration looks like this:

structure ZEnv_Data = TheoryDataFun

(type T = ZEnv.Zenv

val empty = ZEnv.mt_zenv

fun copy T = T

5 fun extend T = T

val merge = ZEnv.merge)

The core definitions of the Zenv type (not shown here) are passed to the functor
TheoryDataFun, which extends the theory container by an additional data entry in
a type-safe way. This results in access primitives ZEnv_Data.get: theory -> Zenv

and ZEnv_Data.map: (Zenv -> Zenv) -> theory -> theory, which we keep pri-
vate to our module; only some high-level user operations will be exposed later.

Unlike an immediate implementation of such a state component by a global
ML reference variable, official theory data is subject to toplevel undo operations
performed interactively by the user (as part of the Proof General protocol).

4.2 Toplevel Commands

A common scheme of tool interaction is a facility allowing the import of the
results of a predecessor in the tool-chain. Instead of ad-hoc attempts to gener-
ate Isabelle theory documents indirectly as a text file, we strongly suggest to
base such a facility on the internal Isabelle term-structure and the type-checker.
This way, problems with ambiguous syntax trees can be avoided. Moreover, the
parser for the inner term language is designed for flexibility and power, not for ef-
ficiency! Such an import mechanism is load_holz: string -> theory -> theory

(not further discussed here), which will be bound by the subsequent invocation
to a new toplevel command of the same name:

OuterSyntax.add_parsers

[OuterSyntax.command "load_holz"

OuterKeyword.thy_script

(OuterParse.name >> (Toplevel.theory o load_holz ))]

The construction re-uses a number of combinators from various libraries such as
the parsing combinator library where parsers are functions that map a prefix in
an input stream into a function representing the meaning of this prefix; here, this
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meaning is a transition function on the theory. There are elementary parsers like
OuterParse.name, or infix combinators like >>, which pipes the meaning of the
previously parsed prefix into another function. Summing up, this gives a parser
for load_holz "<holz-file-name>" which results in a transition from a theory
into another one, where the definitions contained in the output file from ZETA
were added. The hint of OuterKeyword.thy_script tells Proof General [6] about
the type of command defined here.

Similarly, the toplevel command zlemma (for the toplevel statement with syn-
tax zlemma <thm-name>: "<goal-text>") is defined; in contrast to the standard
command lemma for starting a proof, zlemma uses the HOL-Z parser for Z formulas
that can make the implicit binding structure in a schema expression explicit.

4.3 Methods and Attributes

Syntactically, methods are embedded into existing toplevel proof commands, such
as apply or by. We bind the specialized tactic intro_sch_all_tac for the introduc-
tion of the universal schema quantifier is passed to the method zintro_sch_all:3

Method.add_methods [...

("zintro_sch_all",

nat_arg (tac2meth_unary intro_sch_all_tac),

"intro schema all quantifier"),

5 ...]

Analogously, attributes can be introduced that provide forward reasoning el-
ements into a domain-specific Isar language extension. By a similar piece of
setup-code, the attribute syntax thm [zstrip] can be defined which applies a
rule in the sense of §3.1 of type context -> thm -> thm to some theorem. In our
example, this transformer applies a number of destructive operations on schema-
operators (similar to intro_sch_all_tac), which lead to a HOL-ified version of
a Z-etish definition. Such adoptions are a prerequisite for Isabelle’s automated
proof methods (simp, blast , auto etc.), such as apply (simp add: thm [zstrip]).

4.4 Operator Syntax for Z

The so-called inner syntax of Isabelle/Isar is used for denoting terms (occurring
in definitions, lemmas, proofs etc.) Inner syntax is usually wrapped inside quotes
"...". The grammar rules are derived from mixfix annotations in constant dec-
larations — probably the syntax mechanism that is best-known to end-users.

Z favors the conciseness of mathematical notation to an usual degree; a lot of
effort in the language design has been put in inventing mathematical symbols and
shortcuts for many operations. The Z standard offers several representations of
the “lexems” of the language. HOL-Z takes this into account and supports several
3 For various reasons, this rule cannot be represented by one single thm. Rather, uni-

versal schema introduction in Z is a rule scheme that has to be instantiated on the
fly for a given goal; see [9] for details.
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of these formats. For example, the operator providing the set of partial functions
is declared by an (internal) operator symbol having a standard denotation in the
email-format (allowing keyboard shortcuts at the GUI level in Proof General).
Moreover, there is a mapping of the internal operator symbol to the xsymbols-
format, which is inspired by the LATEX format of the Z standard.

consts

partial_func ::"[’a set ,’b set] => (’a <=> ’b) set"

("_ -|-> _" [54 ,53] 53)

5 syntax (xsymbols)

partial_func ::"[’a set ,’b set] => (’a <=> ’b) set"

("_ \<pfun > _" [54 ,53] 53)

It is possible to configure Proof General to associate with the xsymbols-format
a specific font that allows this concise notation to be directly used on screen
during proof work. Furthermore, it is also possible to configure LATEX style files
in a way that LATEX macros for these symbols are used during the batch-mode
document generation; then \<pfun> is really shown as 7→.

5 A Comparison to ProofPower

It is instructive to compare HOL-Z to ProofPower [3]. The latter has been built
on top of HOL88 in a collaborative project, which ran from 1990 through to the
end of 1992. It is free software with the exception of a component for specifying
and verifying Ada programs (excluded from our comparison).

ProofPower comprises a developer kit (even providing its own parser gen-
erator), an X11/Motif front-end, a HOL prover kernel as well as the key com-
ponent, a Z specification and proof development system including libraries and
customized proof procedures.

ProofPower and HOL-Z have been both used in substantial case studies and
possess a similar architecture; it is therefore possible to compare the systems
in order to highlight the potential of the generic technologies of Isabelle. The
comparison in Figure 4 deliberately excludes generic code from Isabelle/Isar or
Isabelle/HOL. Under “document generation” we summarize only the LATEX style

HOL-Z ProofPower

LATEX-Frontend with Type-Checker 10340 lines (Java) not available
document generation 1200 lines 2400 lines
user interface 100 14000 lines (C)
emb. + lib. + tactics 1521+7150+3543 lines 329965 lines
build process 165 lines 4700 lines

Figure 4. Statistics on the two implementations

files; for HOL-Z, the generation mechanism itself is generic. Under “user inter-
face”, we summarize the code for the Motif frontend, which is roughly equivalent
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to Proof General. The main difference comes in position “logical embedding +
library + tactic support”: for ProofPower, we essentially count all document
files (.doc) of the system comprising the own HOL-system, HOL-libraries al-
ready geared to Z, Z libraries, and the overall proof-technical environment. On
the HOL-Z side, we just consider the embedding in HOL (not Isabelle/HOL it-
self), the Z library, and specialized tactics for proof support and methodological
support (Proof-Obligation Management for consistency and refinement, which is
lacking on the ProofPower side). In our view, the proof-scripts are notably more
concise; this is due to the Isar proof language as well as more automated proof
procedures available in Isabelle.

One could object that counting lines of literate specification .doc files pun-
ishes ProofPower for its excellent documentation. However, even if taking this
into account by a very conservative factor 3, the code size of ProofPower is still an
order of magnitude larger than HOL-Z. Another objection is that a monolithic
development strategy can build sometimes on better components (e.g. Proof
General/Emacs is not really a show-case in GUI design). Further, a generic de-
velopment strategy has also costs in terms of work not reflected in code sizes:
namely, from time to time, new versions of Isabelle are released requiring adop-
tions to modified interfaces; it takes some effort to share the work of others. Still,
we believe that the advantages outweigh these costs by far.

6 Conclusion

Presenting Isabelle/Isar as a framework for building formal method tools might
appear as a bit of a surprise at first sight: the Pure logical framework of Isabelle
[17] was originally conceived as a playground for experimenting with various
versions of constructive type theory; the Isar layer [20] was mainly motivated by
human readable proof texts. None of this is directly relevant to HOL-Z 3.0.

On the other hand, Isabelle has been conceived as a platform for a broad
range of applications from early on. Strictly speaking, this idea is already present
in the original LCF/HOL family, but Isabelle has also managed to reduce the
dependency of a specific logic. This “generic-everything” attitude has been em-
phasized even further when revising the key system concepts for Isar.

Thus the Isabelle/Isar framework (as of Isabelle2005) already comprises a
solid basis for building advanced applications such as Isabelle/HOL, and HOL-Z
as presented here. Nevertheless, this only marks an intermediate stage in fur-
ther development, both of the framework and its applications. For example, in
post-Isabelle2005 versions the notions of theory and context are refined further
into a local-theory , which will support very general notions of derived theory
specifications, relative to local parameters and assumptions.

A more practical limit for the systematic re-use of existing system infrastruc-
ture is that of documentation and education. There is plenty of folklore wisdom
and oral tradition, which is not easily available in a systematized form. The
present paper — together with an ongoing effort to clean up the actual imple-
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mentation and provide up-to-date manuals for implementors — is intended as
an initiative to communicate concepts of the framework at a higher level.
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