
Tobias Nipkow, Gerwin Klein

Concrete Semantics

with Isabelle/HOL

February 26, 2015

Springer-Verlag

I will not allow books to prove anything.

Jane Austen, Persuasion

Preface

This book is two books. Part I is a practical introduction to working with
the Isabelle proof assistant. It teaches you how to write functional programs
and inductive definitions and how to prove properties about them in Isa-
belle’s structured proof language. Part II is an introduction to the semantics
of imperative languages with an emphasis on applications like compilers and
program analysers. The distinguishing features are that every bit of mathe-
matics has been formalized in Isabelle and that much of it is executable. Part I
focusses on the details of proofs in Isabelle. Part II can be read even without
familiarity with Isabelle’s proof language: all proofs are described in detail
but informally. The Isabelle formalization, including the proofs, is available
online: all the material, including accompanying slides, can be downloaded
from the book’s home page http://www.concrete-semantics.org.

Although the subject matter is semantics and applications, the not-so-
hidden agenda is to teach the reader two things: the art of precise logical
reasoning and the practical use of a proof assistant as a surgical tool for formal
proofs about computer science artefacts. In this sense the book represents a
formal approach to computer science, not just semantics.

Why?

This book is the marriage of two areas: programming languages and theo-
rem proving. Most programmers feel that they understand the programming
language they use and the programs they write. Programming language se-
mantics replaces a warm feeling with precision in the form of mathematical
definitions of the meaning of programs. Unfortunately such definitions are of-
ten still at the level of informal mathematics. They are mental tools, but their
informal nature, their size, and the amount of detail makes them error prone.
Since they are typically written in LATEX, you do not even know whether they

http://www.concrete-semantics.org

VI Preface

would type-check, let alone whether proofs about the semantics, e.g., compiler
correctness, are free of bugs such as missing cases.

This is where theorem proving systems (or “proof asistants”) come in, and
mathematical (im)precision is replaced by logical certainty. A proof assistant is
a software system that supports the construction of mathematical theories as
formal language texts that are checked for correctness. The beauty is that this
includes checking the logical correctness of all proof text. No more ‘proofs’
that look more like LSD trips than coherent chains of logical arguments.
Machine-checked (aka “formal”) proofs offer the degree of certainty required
for reliable software but impossible to achieve with informal methods.

In research, the marriage of programming languages and proof assistants
has led to remarkable success stories like a verified C compiler [53] and a
verified operating system kernel [47]. This book introduces students and pro-
fessionals to the foundations and applications of this marriage.

Concrete?

� The book shows that a semantics is not a collection of abstract symbols
on sheets of paper but formal text that can be checked and executed
by the computer: Isabelle is also a programming environment and most
of the definitions in the book are executable and can even be exported
as programs in a number of (functional) programming languages. For a
computer scientist, this is as concrete as it gets.

� Much of the book deals with concrete applications of semantics: compilers,
type systems, program analysers.

� The predominant formalism in the book is operational semantics, the most
concrete of the various forms of semantics.

� Foundations are made of concrete.

Exercises!

The idea for this book goes back a long way [65]. But only recently have
proof assistants become mature enough for inflicting them on students without
causing the students too much pain. Nevertheless proof assistants still require
very detailed proofs. Learning this proof style (and all the syntactic details
that come with any formal language) requires practice. Therefore the book
contains a large number of exercises of varying difficulty. If you want to learn
Isabelle, you have to work through (some of) the exercises.

A word of warning before you proceed: theorem proving can be addictive!

Preface VII

Acknowledgements

This book has benefited significantly from feedback by John Backes, Harry
Butterworth, Dan Dougherty, Andrew Gacek, Florian Haftmann, Peter John-
son, Yutaka Nagashima, Andrei Popescu, René Thiemann, Andrei Sabelfeld,
David Sands, Sean Seefried, Helmut Seidl, Christian Sternagel and Carl Witty.
Ronan Nugent provided very valuable editorial scrutiny.

The material in this book has been classroom-tested for a number of years.
Sascha Böhme, Johannes Hölzl, Alex Krauss, Peter Lammich and Andrei
Popescu worked out many of the exercises in the book.

Alex Krauss suggested the title Concrete Semantics.
NICTA, Technische Universität München and the DFG Graduiertenkolleg

1480 PUMA supported the writing of this book very generously.

We are very grateful for all these contributions.

Munich TN
Sydney GK
October 2014

Contents

Part I Isabelle

1 Introduction . 3

2 Programming and Proving . 5
2.1 Basics . 5
2.2 Types bool, nat and list . 7
2.3 Type and Function Definitions . 15
2.4 Induction Heuristics . 19
2.5 Simplification . 21

3 Case Study: IMP Expressions . 27
3.1 Arithmetic Expressions . 27
3.2 Boolean Expressions . 32
3.3 Stack Machine and Compilation . 35

4 Logic and Proof Beyond Equality . 37
4.1 Formulas . 37
4.2 Sets . 38
4.3 Proof Automation . 39
4.4 Single Step Proofs . 42
4.5 Inductive Definitions . 45

5 Isar: A Language for Structured Proofs . 53
5.1 Isar by Example . 54
5.2 Proof Patterns . 56
5.3 Streamlining Proofs . 58
5.4 Case Analysis and Induction . 61

X Contents

Part II Semantics

6 Introduction . 73

7 IMP: A Simple Imperative Language . 75
7.1 IMP Commands . 75
7.2 Big-Step Semantics . 77
7.3 Small-Step Semantics . 85
7.4 Summary and Further Reading . 90

8 Compiler . 95
8.1 Instructions and Stack Machine . 95
8.2 Reasoning About Machine Executions . 98
8.3 Compilation . 99
8.4 Preservation of Semantics . 102
8.5 Summary and Further Reading . 112

9 Types . 115
9.1 Typed IMP . 117
9.2 Security Type Systems . 128
9.3 Summary and Further Reading . 140

10 Program Analysis . 143
10.1 Definite Initialization Analysis . 145
10.2 Constant Folding and Propagation . 154
10.3 Live Variable Analysis . 164
10.4 True Liveness . 172
10.5 Summary and Further Reading . 178

11 Denotational Semantics . 179
11.1 A Relational Denotational Semantics . 180
11.2 Summary and Further Reading . 188

12 Hoare Logic . 191
12.1 Proof via Operational Semantics . 191
12.2 Hoare Logic for Partial Correctness . 192
12.3 Soundness and Completeness . 203
12.4 Verification Condition Generation . 208
12.5 Hoare Logic for Total Correctness . 212
12.6 Summary and Further Reading . 215

Contents XI

13 Abstract Interpretation . 219
13.1 Informal Introduction . 220
13.2 Annotated Commands . 224
13.3 Collecting Semantics . 225
13.4 Abstract Values . 236
13.5 Generic Abstract Interpreter . 241
13.6 Executable Abstract States . 253
13.7 Analysis of Boolean Expressions . 259
13.8 Interval Analysis . 264
13.9 Widening and Narrowing . 270
13.10 Summary and Further Reading . 279

A Auxiliary Definitions . 281

B Symbols . 283

C Theories . 285

References . 287

Index . 293

Part I

Isabelle

It’s blatantly clear
You stupid machine, that what
I tell you is true

Michael Norrish

1

Introduction

Isabelle is a generic system for implementing logical formalisms, and Isa-
belle/HOL is the specialization of Isabelle for HOL, which abbreviates Higher-
Order Logic. We introduce HOL step by step following the equation

HOL = Functional Programming+ Logic.

We assume that the reader is used to logical and set-theoretic notation and
is familiar with the basic concepts of functional programming. Open-minded
readers have been known to pick up functional programming through the
wealth of examples in Chapter 2 and Chapter 3.

Chapter 2 introduces HOL as a functional programming language and ex-
plains how to write simple inductive proofs of mostly equational properties
of recursive functions. Chapter 3 contains a small case study: arithmetic and
boolean expressions, their evaluation, optimization and compilation. Chap-
ter 4 introduces the rest of HOL: the language of formulas beyond equality,
automatic proof tools, single-step proofs, and inductive definitions, an essen-
tial specification construct. Chapter 5 introduces Isar, Isabelle’s language for
writing structured proofs.

This introduction to the core of Isabelle is intentionally concrete and
example-based: we concentrate on examples that illustrate the typical cases
without explaining the general case if it can be inferred from the examples. We
cover the essentials (from a functional programming point of view) as quickly
and compactly as possible. After all, this book is primarily about semantics.

For a comprehensive treatment of all things Isabelle we recommend the
Isabelle/Isar Reference Manual [92], which comes with the Isabelle distribu-
tion. The tutorial by Nipkow, Paulson and Wenzel [68] (in its updated version
that comes with the Isabelle distribution) is still recommended for the wealth
of examples and material, but its proof style is outdated. In particular it does
not cover the structured proof language Isar.

4 1 Introduction

Getting Started with Isabelle

If you have not done so already, download and install Isabelle from http:
//isabelle.in.tum.de. You can start it by clicking on the application icon.
This will launch Isabelle’s user interface based on the text editor jedit. Below
you see a typical example snapshot of a jedit session. At this point we merely
explain the layout of the window, not its contents.

The upper part of the window shows the input typed by the user, i.e., the
gradually growing Isabelle text of definitions, theorems, proofs, etc. The inter-
face processes the user input automatically while it is typed, just like modern
Java IDEs. Isabelle’s response to the user input is shown in the lower part of
the window. You can examine the response to any input phrase by clicking
on that phrase or by hovering over underlined text.

This should suffice to get started with the jedit interface. Now you need
to learn what to type into it.

http://isabelle.in.tum.de
http://isabelle.in.tum.de

2

Programming and Proving

This chapter introduces HOL as a functional programming language and
shows how to prove properties of functional programs by induction.

2.1 Basics

2.1.1 Types, Terms and Formulas

HOL is a typed logic whose type system resembles that of functional pro-
gramming languages. Thus there are

base types, in particular bool, the type of truth values, nat, the type of
natural numbers (N), and int , the type of mathematical integers (Z).

type constructors, in particular list, the type of lists, and set, the type of
sets. Type constructors are written postfix, i.e., after their arguments. For
example, nat list is the type of lists whose elements are natural numbers.

function types, denoted by ⇒.
type variables, denoted by ′a, ′b, etc., like in ML.

Note that ′a ⇒ ′b list means " ′a ⇒ (′b list)", not (′a ⇒ ′b) list : postfix
type constructors have precedence over ⇒.

Terms are formed as in functional programming by applying functions to
arguments. If f is a function of type τ1 ⇒ τ2 and t is a term of type τ1 then
f t is a term of type τ2. We write t :: τ to mean that term t has type τ.

There are many predefined infix symbols like + and 6. The name of the cor-
responding binary function is op +, not just +. That is, x + y is nice surface

syntax (“syntactic sugar”) for op + x y .

HOL also supports some basic constructs from functional programming:

6 2 Programming and Proving

(if b then t1 else t2)
(let x = t in u)
(case t of pat1 ⇒ t1 | . . . | patn ⇒ tn)

The above three constructs must always be enclosed in parentheses if they occur
inside other constructs.

Terms may also contain λ-abstractions. For example, λx . x is the identity
function.

Formulas are terms of type bool. There are the basic constants True and
False and the usual logical connectives (in decreasing order of precedence):
¬, ∧, ∨, −→.

Equality is available in the form of the infix function = of type ′a ⇒ ′a
⇒ bool. It also works for formulas, where it means “if and only if”.

Quantifiers are written ∀ x . P and ∃ x . P.
Isabelle automatically computes the type of each variable in a term. This

is called type inference. Despite type inference, it is sometimes necessary
to attach an explicit type constraint (or type annotation) to a variable
or term. The syntax is t :: τ as in m + (n ::nat). Type constraints may be
needed to disambiguate terms involving overloaded functions such as +.

Finally there are the universal quantifier
∧

and the implication =⇒. They
are part of the Isabelle framework, not the logic HOL. Logically, they agree
with their HOL counterparts ∀ and −→, but operationally they behave dif-
ferently. This will become clearer as we go along.

Right-arrows of all kinds always associate to the right. In particular, the formula
A1 =⇒ A2 =⇒ A3 means A1 =⇒ (A2 =⇒ A3). The (Isabelle-specific1) notation

[[A1; . . .; An]] =⇒ A is short for the iterated implicationA1 =⇒ . . . =⇒ An =⇒ A.

Sometimes we also employ inference rule notation:
A1 . . . An

A

2.1.2 Theories

Roughly speaking, a theory is a named collection of types, functions, and
theorems, much like a module in a programming language. All Isabelle text
needs to go into a theory. The general format of a theory T is

theory T
imports T1 . . . T n

begin
definitions, theorems and proofs
end

1 To display implications in this style in Isabelle/jedit you need to set Plugins >
Plugin Options > Isabelle/General > Print Mode to “brackets” and restart.

2.2 Types bool, nat and list 7

where T1 . . . T n are the names of existing theories that T is based on. The
T i are the direct parent theories of T. Everything defined in the parent
theories (and their parents, recursively) is automatically visible. Each theory
T must reside in a theory file named T .thy.

HOL contains a theory Main , the union of all the basic predefined theories like
arithmetic, lists, sets, etc. Unless you know what you are doing, always include

Main as a direct or indirect parent of all your theories.

In addition to the theories that come with the Isabelle/HOL distribution
(see http://isabelle.in.tum.de/library/HOL/) there is also the Archive
of Formal Proofs at http://afp.sourceforge.net, a growing collection of
Isabelle theories that everybody can contribute to.

2.1.3 Quotation Marks

The textual definition of a theory follows a fixed syntax with keywords like
begin and datatype. Embedded in this syntax are the types and formulas of
HOL. To distinguish the two levels, everything HOL-specific (terms and types)
must be enclosed in quotation marks: ". . . ". To lessen this burden, quotation
marks around a single identifier can be dropped. When Isabelle prints a syntax
error message, it refers to the HOL syntax as the inner syntax and the
enclosing theory language as the outer syntax.

2.2 Types bool, nat and list

These are the most important predefined types. We go through them one by
one. Based on examples we learn how to define (possibly recursive) functions
and prove theorems about them by induction and simplification.

2.2.1 Type bool

The type of boolean values is a predefined datatype

datatype bool = True | False

with the two values True and False and with many predefined functions: ¬,
∧, ∨, −→, etc. Here is how conjunction could be defined by pattern matching:

fun conj :: "bool ⇒ bool ⇒ bool" where
"conj True True = True" |

"conj __= False"

Both the datatype and function definitions roughly follow the syntax of func-
tional programming languages.

http://isabelle.in.tum.de/library/HOL/
http://afp.sourceforge.net

8 2 Programming and Proving

2.2.2 Type nat

Natural numbers are another predefined datatype:

datatype nat = 0 | Suc nat

All values of type nat are generated by the constructors 0 and Suc. Thus the
values of type nat are 0, Suc 0, Suc (Suc 0), etc. There are many predefined
functions: +, ∗, 6, etc. Here is how you could define your own addition:

fun add :: "nat ⇒ nat ⇒ nat" where
"add 0 n = n" |

"add (Suc m) n = Suc(add m n)"

And here is a proof of the fact that add m 0 = m :

lemma add_02: "add m 0 = m"
apply(induction m)

apply(auto)
done

The lemma command starts the proof and gives the lemma a name, add_02.
Properties of recursively defined functions need to be established by induction
in most cases. Command apply(induction m) instructs Isabelle to start a proof
by induction on m. In response, it will show the following proof state:

1. add 0 0 = 0

2.
∧
m . add m 0 = m =⇒ add (Suc m) 0 = Suc m

The numbered lines are known as subgoals. The first subgoal is the base case,
the second one the induction step. The prefix

∧
m . is Isabelle’s way of say-

ing “for an arbitrary but fixed m”. The =⇒ separates assumptions from the
conclusion. The command apply(auto) instructs Isabelle to try and prove all
subgoals automatically, essentially by simplifying them. Because both sub-
goals are easy, Isabelle can do it. The base case add 0 0 = 0 holds by def-
inition of add, and the induction step is almost as simple: add (Suc m) 0

= Suc(add m 0) = Suc m using first the definition of add and then the
induction hypothesis. In summary, both subproofs rely on simplification with
function definitions and the induction hypothesis. As a result of that final
done, Isabelle associates the lemma just proved with its name. You can now
inspect the lemma with the command

thm add_02

which displays

add ?m 0 = ?m

2.2 Types bool, nat and list 9

The free variable m has been replaced by the unknown ?m. There is no
logical difference between the two but there is an operational one: unknowns
can be instantiated, which is what you want after some lemma has been
proved.

Note that there is also a proof method induct, which behaves almost like
induction ; the difference is explained in Chapter 5.

Terminology: We use lemma, theorem and rule interchangeably for proposi-
tions that have been proved.

Numerals (0, 1, 2, . . .) and most of the standard arithmetic operations (+, −,
∗, 6, <, etc.) are overloaded: they are available not just for natural numbers

but for other types as well. For example, given the goal x + 0 = x, there is nothing
to indicate that you are talking about natural numbers. Hence Isabelle can only
infer that x is of some arbitrary type where 0 and + exist. As a consequence, you
will be unable to prove the goal. In this particular example, you need to include an
explicit type constraint, for example x+0 = (x ::nat). If there is enough contextual
information this may not be necessary: Suc x = x automatically implies x ::nat
because Suc is not overloaded.

An Informal Proof

Above we gave some terse informal explanation of the proof of add m 0 = m.
A more detailed informal exposition of the lemma might look like this:

Lemma add m 0 = m
Proof by induction on m.

� Case 0 (the base case): add 0 0 = 0 holds by definition of add.
� Case Suc m (the induction step): We assume add m 0 = m, the induction

hypothesis (IH), and we need to show add (Suc m) 0 = Suc m. The proof
is as follows:
add (Suc m) 0 = Suc (add m 0) by definition of add

= Suc m by IH

Throughout this book, IH will stand for “induction hypothesis”.
We have now seen three proofs of add m 0 = 0: the Isabelle one, the terse

four lines explaining the base case and the induction step, and just now a
model of a traditional inductive proof. The three proofs differ in the level of
detail given and the intended reader: the Isabelle proof is for the machine, the
informal proofs are for humans. Although this book concentrates on Isabelle
proofs, it is important to be able to rephrase those proofs as informal text com-
prehensible to a reader familiar with traditional mathematical proofs. Later
on we will introduce an Isabelle proof language that is closer to traditional
informal mathematical language and is often directly readable.

10 2 Programming and Proving

2.2.3 Type list

Although lists are already predefined, we define our own copy for demonstra-
tion purposes:

datatype ′a list = Nil | Cons ′a " ′a list"

� Type ′a list is the type of lists over elements of type ′a. Because ′a is a
type variable, lists are in fact polymorphic: the elements of a list can be
of arbitrary type (but must all be of the same type).

� Lists have two constructors: Nil, the empty list, and Cons, which puts an
element (of type ′a) in front of a list (of type ′a list). Hence all lists are
of the form Nil, or Cons x Nil, or Cons x (Cons y Nil), etc.

� datatype requires no quotation marks on the left-hand side, but on the
right-hand side each of the argument types of a constructor needs to be
enclosed in quotation marks, unless it is just an identifier (e.g., nat or ′a).

We also define two standard functions, append and reverse:

fun app :: " ′a list ⇒ ′a list ⇒ ′a list" where
"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

fun rev :: " ′a list ⇒ ′a list" where
"rev Nil = Nil" |

"rev (Cons x xs) = app (rev xs) (Cons x Nil)"

By default, variables xs, ys and zs are of list type.
Command value evaluates a term. For example,

value "rev(Cons True (Cons False Nil))"

yields the result Cons False (Cons True Nil). This works symbolically, too:

value "rev(Cons a (Cons b Nil))"

yields Cons b (Cons a Nil).

Figure 2.1 shows the theory created so far. Because list, Nil, Cons, etc.
are already predefined, Isabelle prints qualified (long) names when executing
this theory, for example, MyList .Nil instead of Nil. To suppress the qualified
names you can insert the command declare [[names_short]]. This is not
recommended in general but is convenient for this unusual example.

Structural Induction for Lists

Just as for natural numbers, there is a proof principle of induction for lists.
Induction over a list is essentially induction over the length of the list, al-

2.2 Types bool, nat and list 11

theory MyList
imports Main
begin

datatype ’a list = Nil | Cons ’a "’a list"

fun app :: "’a list => ’a list => ’a list" where
"app Nil ys = ys" |
"app (Cons x xs) ys = Cons x (app xs ys)"

fun rev :: "’a list => ’a list" where
"rev Nil = Nil" |
"rev (Cons x xs) = app (rev xs) (Cons x Nil)"

value "rev(Cons True (Cons False Nil))"

(* a comment *)

end

Fig. 2.1. A theory of lists

though the length remains implicit. To prove that some property P holds for
all lists xs, i.e., P xs , you need to prove

1. the base case P Nil and
2. the inductive case P (Cons x xs) under the assumption P xs, for some

arbitrary but fixed x and xs.

This is often called structural induction for lists.

2.2.4 The Proof Process

We will now demonstrate the typical proof process, which involves the for-
mulation and proof of auxiliary lemmas. Our goal is to show that reversing a
list twice produces the original list.

theorem rev_rev [simp]: "rev(rev xs) = xs"

Commands theorem and lemma are interchangeable and merely indicate the
importance we attach to a proposition. Via the bracketed attribute simp we
also tell Isabelle to make the eventual theorem a simplification rule: future
proofs involving simplification will replace occurrences of rev (rev xs) by xs.
The proof is by induction:

apply(induction xs)

12 2 Programming and Proving

As explained above, we obtain two subgoals, namely the base case (Nil) and
the induction step (Cons):

1. rev (rev Nil) = Nil
2.

∧
x1 xs .
rev (rev xs) = xs =⇒ rev (rev (Cons x1 xs)) = Cons x1 xs

Let us try to solve both goals automatically:

apply(auto)

Subgoal 1 is proved, and disappears; the simplified version of subgoal 2 be-
comes the new subgoal 1:

1.
∧
x1 xs .
rev (rev xs) = xs =⇒
rev (app (rev xs) (Cons x1 Nil)) = Cons x1 xs

In order to simplify this subgoal further, a lemma suggests itself.

A First Lemma

We insert the following lemma in front of the main theorem:

lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)"

There are two variables that we could induct on: xs and ys. Because app is
defined by recursion on the first argument, xs is the correct one:

apply(induction xs)

This time not even the base case is solved automatically:

apply(auto)
1. rev ys = app (rev ys) Nil
A total of 2 subgoals ...

Again, we need to abandon this proof attempt and prove another simple
lemma first.

A Second Lemma

We again try the canonical proof procedure:

lemma app_Nil2 [simp]: "app xs Nil = xs"
apply(induction xs)
apply(auto)
done

2.2 Types bool, nat and list 13

Thankfully, this worked. Now we can continue with our stuck proof attempt
of the first lemma:

lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)"
apply(induction xs)
apply(auto)

We find that this time auto solves the base case, but the induction step merely
simplifies to

1.
∧
x1 xs .
rev (app xs ys) = app (rev ys) (rev xs) =⇒
app (app (rev ys) (rev xs)) (Cons x1 Nil) =

app (rev ys) (app (rev xs) (Cons x1 Nil))

The missing lemma is associativity of app, which we insert in front of the
failed lemma rev_app.

Associativity of app

The canonical proof procedure succeeds without further ado:

lemma app_assoc [simp]: "app (app xs ys) zs = app xs (app ys zs)"
apply(induction xs)
apply(auto)
done

Finally the proofs of rev_app and rev_rev succeed, too.

Another Informal Proof

Here is the informal proof of associativity of app corresponding to the Isabelle
proof above.

Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on xs.

� Case Nil : app (app Nil ys) zs = app ys zs = app Nil (app ys zs) holds
by definition of app.

� Case Cons x xs : We assume

app (app xs ys) zs = app xs (app ys zs) (IH)

and we need to show

app (app (Cons x xs) ys) zs = app (Cons x xs) (app ys zs).

14 2 Programming and Proving

The proof is as follows:
app (app (Cons x xs) ys) zs
= app (Cons x (app xs ys)) zs by definition of app
= Cons x (app (app xs ys) zs) by definition of app
= Cons x (app xs (app ys zs)) by IH
= app (Cons x xs) (app ys zs) by definition of app

Didn’t we say earlier that all proofs are by simplification? But in both cases,
going from left to right, the last equality step is not a simplification at all!
In the base case it is app ys zs = app Nil (app ys zs). It appears almost
mysterious because we suddenly complicate the term by appending Nil on
the left. What is really going on is this: when proving some equality s = t ,
both s and t are simplified until they “meet in the middle”. This heuristic
for equality proofs works well for a functional programming context like ours.
In the base case both app (app Nil ys) zs and app Nil (app ys zs) are
simplified to app ys zs, the term in the middle.

2.2.5 Predefined Lists

Isabelle’s predefined lists are the same as the ones above, but with more
syntactic sugar:

� [] is Nil ,
� x # xs is Cons x xs ,
� [x1, . . ., x n] is x1 # . . . # x n # [], and
� xs @ ys is app xs ys.

There is also a large library of predefined functions. The most important ones
are the length function length :: ′a list ⇒ nat (with the obvious definition),
and the map function that applies a function to all elements of a list:

fun map :: "(′a ⇒ ′b) ⇒ ′a list ⇒ ′b list" where
"map f Nil = Nil" |

"map f (Cons x xs) = Cons (f x) (map f xs)"

Also useful are the head of a list, its first element, and the tail, the rest
of the list:

fun hd :: ′a list ⇒ ′a
hd (x # xs) = x

fun tl :: ′a list ⇒ ′a list
tl [] = [] |

tl (x # xs) = xs

2.3 Type and Function Definitions 15

Note that since HOL is a logic of total functions, hd [] is defined, but we do
now know what the result is. That is, hd [] is not undefined but underdefined.

From now on lists are always the predefined lists.

Exercises

Exercise 2.1. Use the value command to evaluate the following expressions:
"1 + (2::nat)", "1 + (2::int)", "1 − (2::nat)" and "1 − (2::int)".

Exercise 2.2. Start from the definition of add given above. Prove that add
is associative and commutative. Define a recursive function double :: nat ⇒
nat and prove double m = add m m.

Exercise 2.3. Define a function count :: ′a ⇒ ′a list ⇒ nat that counts the
number of occurrences of an element in a list. Prove count x xs 6 length xs.

Exercise 2.4. Define a recursive function snoc :: ′a list ⇒ ′a ⇒ ′a list
that appends an element to the end of a list. With the help of snoc define
a recursive function reverse :: ′a list ⇒ ′a list that reverses a list. Prove
reverse (reverse xs) = xs.

Exercise 2.5. Define a recursive function sum :: nat ⇒ nat such that sum n
= 0 + ... + n and prove sum n = n ∗ (n + 1) div 2.

2.3 Type and Function Definitions

Type synonyms are abbreviations for existing types, for example

type_synonym string = "char list"

Type synonyms are expanded after parsing and are not present in internal
representation and output. They are mere conveniences for the reader.

2.3.1 Datatypes

The general form of a datatype definition looks like this:

datatype (′a1,. . .,
′an)t = C1 "τ1,1" . . . "τ1,n1

"
| . . .
| Ck "τk,1" . . . "τk,nk

"

It introduces the constructors Ci :: τi,1 ⇒ · · · ⇒ τi,ni
⇒ (′a1,. . .,

′an)t
and expresses that any value of this type is built from these constructors in
a unique manner. Uniqueness is implied by the following properties of the
constructors:

16 2 Programming and Proving

� Distinctness: Ci . . . 6= Cj . . . if i 6= j
� Injectivity: (Ci x1 . . . xni

= Ci y1 . . . yni
) =

(x1 = y1 ∧ . . .∧ xni
= yni

)

The fact that any value of the datatype is built from the constructors implies
the structural induction rule: to show P x for all x of type (′a1,. . .,

′an)t,
one needs to show P(Ci x1 . . . xni

) (for each i) assuming P(xj) for all j where
τi,j = (′a1,. . .,

′an)t. Distinctness and injectivity are applied automatically
by auto and other proof methods. Induction must be applied explicitly.

Like in functional programming languages, datatype values can be taken
apart with case expressions, for example

(case xs of [] ⇒ 0 | x # _⇒ Suc x)

Case expressions must be enclosed in parentheses.
As an example of a datatype beyond nat and list, consider binary trees:

datatype ′a tree = Tip | Node " ′a tree" ′a " ′a tree"

with a mirror function:

fun mirror :: " ′a tree ⇒ ′a tree" where
"mirror Tip = Tip" |

"mirror (Node l a r) = Node (mirror r) a (mirror l)"

The following lemma illustrates induction:

lemma "mirror(mirror t) = t"
apply(induction t)

yields

1. mirror (mirror Tip) = Tip
2.

∧
t1 x2 t2.
[[mirror (mirror t1) = t1; mirror (mirror t2) = t2]]
=⇒ mirror (mirror (Node t1 x2 t2)) = Node t1 x2 t2

The induction step contains two induction hypotheses, one for each subtree.
An application of auto finishes the proof.

A very simple but also very useful datatype is the predefined

datatype ′a option = None | Some ′a

Its sole purpose is to add a new element None to an existing type ′a. To
make sure that None is distinct from all the elements of ′a, you wrap them
up in Some and call the new type ′a option. A typical application is a lookup
function on a list of key-value pairs, often called an association list:

fun lookup :: "(′a ∗ ′b) list ⇒ ′a ⇒ ′b option" where

2.3 Type and Function Definitions 17

"lookup [] x = None" |

"lookup ((a ,b) # ps) x = (if a = x then Some b else lookup ps x)"

Note that τ1 ∗ τ2 is the type of pairs, also written τ1 × τ2. Pairs can be taken
apart either by pattern matching (as above) or with the projection functions
fst and snd : fst (x , y) = x and snd (x , y) = y. Tuples are simulated by
pairs nested to the right: (a , b, c) is short for (a , (b, c)) and τ1 × τ2 × τ3
is short for τ1 × (τ2 × τ3).

2.3.2 Definitions

Non-recursive functions can be defined as in the following example:

definition sq :: "nat ⇒ nat" where
"sq n = n ∗ n"

Such definitions do not allow pattern matching but only f x1 . . . x n = t,
where f does not occur in t.

2.3.3 Abbreviations

Abbreviations are similar to definitions:

abbreviation sq ′ :: "nat ⇒ nat" where
"sq ′ n ≡ n ∗ n"

The key difference is that sq ′ is only syntactic sugar: after parsing, sq ′ t is
replaced by t ∗ t ; before printing, every occurrence of u ∗ u is replaced by
sq ′ u . Internally, sq ′ does not exist. This is the advantage of abbreviations
over definitions: definitions need to be expanded explicitly (Section 2.5.5)
whereas abbreviations are already expanded upon parsing. However, abbrevi-
ations should be introduced sparingly: if abused, they can lead to a confusing
discrepancy between the internal and external view of a term.

The ASCII representation of ≡ is == or \<equiv>.

2.3.4 Recursive Functions

Recursive functions are defined with fun by pattern matching over datatype
constructors. The order of equations matters, as in functional programming
languages. However, all HOL functions must be total. This simplifies the logic
— terms are always defined — but means that recursive functions must ter-
minate. Otherwise one could define a function f n = f n + 1 and conclude
0 = 1 by subtracting f n on both sides.

18 2 Programming and Proving

Isabelle’s automatic termination checker requires that the arguments of
recursive calls on the right-hand side must be strictly smaller than the ar-
guments on the left-hand side. In the simplest case, this means that one
fixed argument position decreases in size with each recursive call. The size is
measured as the number of constructors (excluding 0-ary ones, e.g., Nil). Lex-
icographic combinations are also recognized. In more complicated situations,
the user may have to prove termination by hand. For details see [49].

Functions defined with fun come with their own induction schema that
mirrors the recursion schema and is derived from the termination order. For
example,

fun div2 :: "nat ⇒ nat" where
"div2 0 = 0" |

"div2 (Suc 0) = 0" |

"div2 (Suc(Suc n)) = Suc(div2 n)"

does not just define div2 but also proves a customized induction rule:

P 0 P (Suc 0)
∧

n . P n =⇒ P (Suc (Suc n))

P m

This customized induction rule can simplify inductive proofs. For example,

lemma "div2(n) = n div 2"
apply(induction n rule : div2.induct)

(where the infix div is the predefined division operation) yields the subgoals

1. div2 0 = 0 div 2
2. div2 (Suc 0) = Suc 0 div 2
3.

∧
n . div2 n = n div 2 =⇒

div2 (Suc (Suc n)) = Suc (Suc n) div 2

An application of auto finishes the proof. Had we used ordinary structural
induction on n, the proof would have needed an additional case analysis in
the induction step.

This example leads to the following induction heuristic:

Let f be a recursive function. If the definition of f is more complicated
than having one equation for each constructor of some datatype, then
properties of f are best proved via f .induct.

The general case is often called computation induction, because the
induction follows the (terminating!) computation. For every defining equation

f (e) = . . . f (r1) . . . f (r k) . . .

2.4 Induction Heuristics 19

where f (r i), i=1. . .k, are all the recursive calls, the induction rule f .induct
contains one premise of the form

P(r1) =⇒ . . . =⇒ P(r k) =⇒ P(e)

If f :: τ1 ⇒ . . . ⇒ τn ⇒ τ then f .induct is applied like this:

apply(induction x1 . . . x n rule : f .induct)

where typically there is a call f x1 . . . x n in the goal. But note that the
induction rule does not mention f at all, except in its name, and is applicable
independently of f.

Exercises

Exercise 2.6. Starting from the type ′a tree defined in the text, define a
function contents :: ′a tree ⇒ ′a list that collects all values in a tree in a list,
in any order, without removing duplicates. Then define a function treesum
:: nat tree ⇒ nat that sums up all values in a tree of natural numbers and
prove treesum t = listsum (contents t).

Exercise 2.7. Define a new type ′a tree2 of binary trees where values are
also stored in the leaves of the tree. Also reformulate the mirror function
accordingly. Define two functions pre_order and post_order of type ′a tree2
⇒ ′a list that traverse a tree and collect all stored values in the respective
order in a list. Prove pre_order (mirror t) = rev (post_order t).

Exercise 2.8. Define a function intersperse :: ′a ⇒ ′a list ⇒ ′a list such
that intersperse a [x1, ..., x n] = [x1, a , x2, a , ..., a , x n]. Now prove that
map f (intersperse a xs) = intersperse (f a) (map f xs).

2.4 Induction Heuristics

We have already noted that theorems about recursive functions are proved by
induction. In case the function has more than one argument, we have followed
the following heuristic in the proofs about the append function:

Perform induction on argument number i
if the function is defined by recursion on argument number i.

The key heuristic, and the main point of this section, is to generalize the
goal before induction. The reason is simple: if the goal is too specific, the
induction hypothesis is too weak to allow the induction step to go through.
Let us illustrate the idea with an example.

20 2 Programming and Proving

Function rev has quadratic worst-case running time because it calls ap-
pend for each element of the list and append is linear in its first argument.
A linear time version of rev requires an extra argument where the result is
accumulated gradually, using only #:

fun itrev :: " ′a list ⇒ ′a list ⇒ ′a list" where
"itrev [] ys = ys" |

"itrev (x#xs) ys = itrev xs (x#ys)"

The behaviour of itrev is simple: it reverses its first argument by stacking
its elements onto the second argument, and it returns that second argument
when the first one becomes empty. Note that itrev is tail-recursive: it can be
compiled into a loop; no stack is necessary for executing it.

Naturally, we would like to show that itrev does indeed reverse its first
argument provided the second one is empty:

lemma "itrev xs [] = rev xs"

There is no choice as to the induction variable:

apply(induction xs)
apply(auto)

Unfortunately, this attempt does not prove the induction step:

1.
∧
a xs . itrev xs [] = rev xs =⇒ itrev xs [a] = rev xs @ [a]

The induction hypothesis is too weak. The fixed argument, [], prevents it from
rewriting the conclusion. This example suggests a heuristic:

Generalize goals for induction by replacing constants by variables.

Of course one cannot do this naively: itrev xs ys = rev xs is just not true.
The correct generalization is

lemma "itrev xs ys = rev xs @ ys"

If ys is replaced by [], the right-hand side simplifies to rev xs, as required. In
this instance it was easy to guess the right generalization. Other situations
can require a good deal of creativity.

Although we now have two variables, only xs is suitable for induction, and
we repeat our proof attempt. Unfortunately, we are still not there:

1.
∧
a xs .
itrev xs ys = rev xs @ ys =⇒
itrev xs (a # ys) = rev xs @ a # ys

The induction hypothesis is still too weak, but this time it takes no intuition
to generalize: the problem is that the ys in the induction hypothesis is fixed,

2.5 Simplification 21

but the induction hypothesis needs to be applied with a # ys instead of ys.
Hence we prove the theorem for all ys instead of a fixed one. We can instruct
induction to perform this generalization for us by adding arbitrary : ys .

apply(induction xs arbitrary : ys)

The induction hypothesis in the induction step is now universally quantified
over ys :

1.
∧
ys . itrev [] ys = rev [] @ ys

2.
∧
a xs ys .
(
∧
ys . itrev xs ys = rev xs @ ys) =⇒

itrev (a # xs) ys = rev (a # xs) @ ys

Thus the proof succeeds:

apply auto
done

This leads to another heuristic for generalization:

Generalize induction by generalizing all free variables
(except the induction variable itself).

Generalization is best performed with arbitrary : y1 . . . yk. This heuristic
prevents trivial failures like the one above. However, it should not be applied
blindly. It is not always required, and the additional quantifiers can complicate
matters in some cases. The variables that need to be quantified are typically
those that change in recursive calls.

Exercises

Exercise 2.9. Write a tail-recursive variant of the add function on nat :
itadd. Tail-recursive means that in the recursive case, itadd needs to call
itself directly: itadd (Suc m) n = itadd Prove itadd m n = add m n.

2.5 Simplification

So far we have talked a lot about simplifying terms without explaining the
concept. Simplification means

� using equations l = r from left to right (only),
� as long as possible.

To emphasize the directionality, equations that have been given the simp
attribute are called simplification rules. Logically, they are still symmetric,

22 2 Programming and Proving

but proofs by simplification use them only in the left-to-right direction. The
proof tool that performs simplifications is called the simplifier. It is the basis
of auto and other related proof methods.

The idea of simplification is best explained by an example. Given the
simplification rules

0 + n = n (1)

Suc m + n = Suc (m + n) (2)

(Suc m 6 Suc n) = (m 6 n) (3)

(0 6 m) = True (4)

the formula 0 + Suc 0 6 Suc 0 + x is simplified to True as follows:

(0 + Suc 0 6 Suc 0 + x)
(1)
=

(Suc 0 6 Suc 0 + x)
(2)
=

(Suc 0 6 Suc (0 + x))
(3)
=

(0 6 0 + x)
(4)
=

True

Simplification is often also called rewriting and simplification rules rewrite
rules.

2.5.1 Simplification Rules

The attribute simp declares theorems to be simplification rules, which the
simplifier will use automatically. In addition, datatype and fun commands im-
plicitly declare some simplification rules: datatype the distinctness and injec-
tivity rules, fun the defining equations. Definitions are not declared as simpli-
fication rules automatically! Nearly any theorem can become a simplification
rule. The simplifier will try to transform it into an equation. For example, the
theorem ¬ P is turned into P = False.

Only equations that really simplify, like rev (rev xs) = xs and xs @
[] = xs, should be declared as simplification rules. Equations that may be
counterproductive as simplification rules should only be used in specific proof
steps (see Section 2.5.4 below). Distributivity laws, for example, alter the
structure of terms and can produce an exponential blow-up.

2.5.2 Conditional Simplification Rules

Simplification rules can be conditional. Before applying such a rule, the sim-
plifier will first try to prove the preconditions, again by simplification. For
example, given the simplification rules

2.5 Simplification 23

p 0 = True
p x =⇒ f x = g x,

the term f 0 simplifies to g 0 but f 1 does not simplify because p 1 is not
provable.

2.5.3 Termination

Simplification can run forever, for example if both f x = g x and g x = f x are
simplification rules. It is the user’s responsibility not to include simplification
rules that can lead to nontermination, either on their own or in combination
with other simplification rules. The right-hand side of a simplification rule
should always be “simpler” than the left-hand side — in some sense. But since
termination is undecidable, such a check cannot be automated completely and
Isabelle makes little attempt to detect nontermination.

When conditional simplification rules are applied, their preconditions are
proved first. Hence all preconditions need to be simpler than the left-hand
side of the conclusion. For example

n < m =⇒ (n < Suc m) = True

is suitable as a simplification rule: both n < m and True are simpler than
n < Suc m . But

Suc n < m =⇒ (n < m) = True

leads to nontermination: when trying to rewrite n < m to True one first has
to prove Suc n < m , which can be rewritten to True provided Suc (Suc n)
< m, ad infinitum.

2.5.4 The simp Proof Method

So far we have only used the proof method auto. Method simp is the key
component of auto, but auto can do much more. In some cases, auto is
overeager and modifies the proof state too much. In such cases the more
predictable simp method should be used. Given a goal

1. [[P1; . . .; Pm]] =⇒ C

the command

apply(simp add : th1 . . . thn)

simplifies the assumptions P i and the conclusion C using

� all simplification rules, including the ones coming from datatype and fun,
� the additional lemmas th1 . . . thn, and

24 2 Programming and Proving

� the assumptions.

In addition to or instead of add there is also del for removing simplification
rules temporarily. Both are optional. Method auto can be modified similarly:

apply(auto simp add : . . . simp del : . . .)

Here the modifiers are simp add and simp del instead of just add and del
because auto does not just perform simplification.

Note that simp acts only on subgoal 1, auto acts on all subgoals. There
is also simp_all, which applies simp to all subgoals.

2.5.5 Rewriting with Definitions

Definitions introduced by the command definition can also be used as sim-
plification rules, but by default they are not: the simplifier does not expand
them automatically. Definitions are intended for introducing abstract con-
cepts and not merely as abbreviations. Of course, we need to expand the
definition initially, but once we have proved enough abstract properties of the
new constant, we can forget its original definition. This style makes proofs
more robust: if the definition has to be changed, only the proofs of the ab-
stract properties will be affected.

The definition of a function f is a theorem named f_def and can be added
to a call of simp like any other theorem:

apply(simp add : f_def)

In particular, let-expressions can be unfolded by making Let_def a simplifi-
cation rule.

2.5.6 Case Splitting With simp

Goals containing if-expressions are automatically split into two cases by simp
using the rule

P (if A then s else t) = ((A −→ P s) ∧ (¬ A −→ P t))

For example, simp can prove

(A ∧ B) = (if A then B else False)

because both A −→ (A ∧ B) = B and ¬ A −→ (A ∧ B) = False simplify
to True.

We can split case-expressions similarly. For nat the rule looks like this:

P (case e of 0 ⇒ a | Suc n ⇒ b n) =

((e = 0 −→ P a) ∧ (∀n . e = Suc n −→ P (b n)))

2.5 Simplification 25

Case expressions are not split automatically by simp, but simp can be in-
structed to do so:

apply(simp split : nat .split)

splits all case-expressions over natural numbers. For an arbitrary datatype t
it is t .split instead of nat .split. Method auto can be modified in exactly the
same way. The modifier split : can be followed by multiple names. Splitting
if or case-expressions in the assumptions requires split : if_splits or split :
t .splits.

Exercises

Exercise 2.10. Define a datatype tree0 of binary tree skeletons which do not
store any information, neither in the inner nodes nor in the leaves. Define a
function nodes :: tree0 ⇒ nat that counts the number of all nodes (inner
nodes and leaves) in such a tree. Consider the following recursive function:

fun explode :: "nat ⇒ tree0 ⇒ tree0" where
"explode 0 t = t" |

"explode (Suc n) t = explode n (Node t t)"

Find an equation expressing the size of a tree after exploding it (nodes
(explode n t)) as a function of nodes t and n. Prove your equation. You
may use the usual arithmetic operators, including the exponentiation opera-
tor “^”. For example, 2 ^ 2 = 4.

Hint: simplifying with the list of theorems algebra_simps takes care of
common algebraic properties of the arithmetic operators.

Exercise 2.11. Define arithmetic expressions in one variable over integers
(type int) as a data type:

datatype exp = Var | Const int | Add exp exp | Mult exp exp

Define a function eval :: exp ⇒ int ⇒ int such that eval e x evaluates e at
the value x.

A polynomial can be represented as a list of coefficients, starting with the
constant. For example, [4, 2, − 1, 3] represents the polynomial 4+2x−x2+3x3.
Define a function evalp :: int list ⇒ int ⇒ int that evaluates a polynomial at
the given value. Define a function coeffs :: exp ⇒ int list that transforms an
expression into a polynomial. This may require auxiliary functions. Prove that
coeffs preserves the value of the expression: evalp (coeffs e) x = eval e x.
Hint: consider the hint in Exercise 2.10.

3

Case Study: IMP Expressions

The methods of the previous chapter suffice to define the arithmetic and
boolean expressions of the programming language IMP that is the subject
of this book. In this chapter we define their syntax and semantics, write
little optimizers for them and show how to compile arithmetic expressions
to a simple stack machine. Of course we also prove the correctness of the
optimizers and compiler!

3.1 Arithmetic Expressions thy

3.1.1 Syntax

Programming languages have both a concrete and an abstract syntax. Con-
crete syntax means strings. For example, "a + 5 * b" is an arithmetic ex-
pression given as a string. The concrete syntax of a language is usually defined
by a context-free grammar. The expression "a + 5 * b" can also be viewed
as the following tree:

+
@
@
@

�
�
�a *

A
AA

�
��

5 b

The tree immediately reveals the nested structure of the object and is the
right level for analysing and manipulating expressions. Linear strings are more
compact than two-dimensional trees, which is why they are used for reading
and writing programs. But the first thing a compiler, or rather its parser,
will do is to convert the string into a tree for further processing. Now we

http://isabelle.in.tum.de/library/HOL/HOL-IMP/AExp.html

28 3 Case Study: IMP Expressions

are at the level of abstract syntax and these trees are abstract syntax
trees. To regain the advantages of the linear string notation we write our
abstract syntax trees as strings with parentheses to indicate the nesting (and
with identifiers instead of the symbols + and *), for example like this: Plus a
(Times 5 b). Now we have arrived at ordinary terms as we have used them
all along. More precisely, these terms are over some datatype that defines the
abstract syntax of the language. Our little language of arithmetic expressions
is defined by the datatype aexp:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

where int is the predefined type of integers and vname stands for variable
name. Isabelle strings require two single quotes on both ends, for example
′ ′abc ′ ′. The intended meaning of the three constructors is as follows: N rep-
resents numbers, i.e., constants, V represents variables, and Plus represents
addition. The following examples illustrate the intended correspondence:

Concrete Abstract
5 N 5

x V ′ ′x ′ ′

x + y Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′)
2 + (z + 3) Plus (N 2) (Plus (V ′ ′z ′ ′) (N 3))

It is important to understand that so far we have only defined syntax, not
semantics! Although the binary operation is called Plus, this is merely a
suggestive name and does not imply that it behaves like addition. For example,
Plus (N 0) (N 0) 6= N 0, although you may think of them as semantically
equivalent — but syntactically they are not.

Datatype aexp is intentionally minimal to let us concentrate on the essen-
tials. Further operators can be added as desired. However, as we shall discuss
below, not all operators are as well behaved as addition.

3.1.2 Semantics

The semantics, or meaning of an expression, is its value. But what is the value
of x+1? The value of an expression with variables depends on the values of its
variables. The value of all variables is recorded in the (program) state. The
state is a function from variable names to values.

type_synonym val = int
type_synonym state = vname ⇒ val

In our little toy language, the only values are integers.
The value of an arithmetic expression is computed like this:

3.1 Arithmetic Expressions 29

fun aval :: "aexp ⇒ state ⇒ val" where
"aval (N n) s = n" |

"aval (V x) s = s x" |

"aval (Plus a1 a2) s = aval a1 s + aval a2 s"

Function aval carries around a state and is defined by recursion over the form
of the expression. Numbers evaluate to themselves, variables to their value in
the state, and addition is evaluated recursively. Here is a simple example:

value "aval (Plus (N 3) (V ′ ′x ′ ′)) (λx . 0)"

returns 3. However, we would like to be able to write down more interesting
states than λx . 0 easily. This is where function update comes in.

To update the state, that is, change the value of some variable name, the
generic function update notation f (a := b) is used: the result is the same as
f, except that it maps a to b:

f (a := b) = (λx . if x = a then b else f x)

This operator allows us to write down concrete states in a readable fashion.
Starting from the state that is 0 everywhere, we can update it to map certain
variables to given values. For example, ((λx . 0) (′ ′x ′ ′ := 7)) (′ ′y ′ ′ := 3) maps
′ ′x ′ ′ to 7, ′ ′y ′ ′ to 3 and all other variable names to 0. Below we employ the
following more compact notation

< ′ ′x ′ ′ := 7, ′ ′y ′ ′ := 3>

which works for any number of variables, even for none: <> is syntactic sugar
for λx . 0.

It would be easy to add subtraction and multiplication to aexp and extend
aval accordingly. However, not all operators are as well behaved: division by
zero raises an exception and C’s ++ changes the state. Neither exceptions nor
side effects can be supported by an evaluation function of the simple type
aexp ⇒ state ⇒ val ; the return type has to be more complicated.

3.1.3 Constant Folding

Program optimization is a recurring theme of this book. We start with an
extremely simple example, constant folding, i.e., the replacement of con-
stant subexpressions by their value. It is performed routinely by compilers.
For example, the expression Plus (V ′ ′x ′ ′) (Plus (N 3) (N 1)) is simplified
to Plus (V ′ ′x ′ ′) (N 4). Function asimp_const performs constant folding
in a bottom-up manner:

fun asimp_const :: "aexp ⇒ aexp" where
"asimp_const (N n) = N n" |

30 3 Case Study: IMP Expressions

"asimp_const (V x) = V x" |

"asimp_const (Plus a1 a2) =

(case (asimp_const a1, asimp_const a2) of
(N n1, N n2) ⇒ N (n1+n2) |

(b1,b2) ⇒ Plus b1 b2)"

Neither N nor V can be simplified further. Given a Plus, first the two subex-
pressions are simplified. If both become numbers, they are added. In all other
cases, the results are recombined with Plus.

It is easy to show that asimp_const is correct. Correctness means that
asimp_const does not change the semantics, i.e., the value of its argument:

lemma "aval (asimp_const a) s = aval a s"

The proof is by induction on a. The two base cases N and V are trivial. In
the Plus a1 a2 case, the induction hypotheses are aval (asimp_const a i) s
= aval a i s for i=1,2. If asimp_const a i = N n i for i=1,2, then

aval (asimp_const (Plus a1 a2)) s
= aval (N (n1+n2)) s = n1+n2

= aval (asimp_const a1) s + aval (asimp_const a2) s
= aval (Plus a1 a2) s.

Otherwise
aval (asimp_const (Plus a1 a2)) s
= aval (Plus (asimp_const a1) (asimp_const a2)) s
= aval (asimp_const a1) s + aval (asimp_const a2) s
= aval (Plus a1 a2) s.

This is rather a long proof for such a simple lemma, and boring to boot. In
the future we shall refrain from going through such proofs in such excessive
detail. We shall simply write “The proof is by induction on a.” We will not even
mention that there is a case distinction because that is obvious from what we
are trying to prove, which contains the corresponding case expression, in the
body of asimp_const. We can take this attitude because we merely suppress
the obvious and because Isabelle has checked these proofs for us already and
you can look at them in the files accompanying the book. The triviality of
the proof is confirmed by the size of the Isabelle text:

apply (induction a)
apply (auto split : aexp.split)
done

The split modifier is the hint to auto to perform a case split whenever it sees
a case expression over aexp. Thus we guide auto towards the case distinction
we made in our proof above.

Let us extend constant folding: Plus (N 0) a and Plus a (N 0) should be
replaced by a. Instead of extending asimp_const we split the optimization

3.1 Arithmetic Expressions 31

process into two functions: one performs the local optimizations, the other tra-
verses the term. The optimizations can be performed for each Plus separately
and we define an optimizing version of Plus :

fun plus :: "aexp ⇒ aexp ⇒ aexp" where
"plus (N i1) (N i2) = N (i1+i2)" |

"plus (N i) a = (if i=0 then a else Plus (N i) a)" |

"plus a (N i) = (if i=0 then a else Plus a (N i))" |

"plus a1 a2 = Plus a1 a2"

It behaves like Plus under evaluation:

lemma aval_plus: "aval (plus a1 a2) s = aval a1 s + aval a2 s"

The proof is by induction on a1 and a2 using the computation induction rule
for plus (plus .induct). Now we replace Plus by plus in a bottom-up manner
throughout an expression:

fun asimp :: "aexp ⇒ aexp" where
"asimp (N n) = N n" |

"asimp (V x) = V x" |

"asimp (Plus a1 a2) = plus (asimp a1) (asimp a2)"

Correctness is expressed exactly as for asimp_const :

lemma "aval (asimp a) s = aval a s"

The proof is by structural induction on a ; the Plus case follows with the help
of Lemma aval_plus.

Exercises

Exercise 3.1. To show that asimp_const really folds all subexpressions of
the form Plus (N i) (N j), define a function optimal :: aexp ⇒ bool that
checks that its argument does not contain a subexpression of the form Plus
(N i) (N j). Then prove optimal (asimp_const a).

Exercise 3.2. In this exercise we verify constant folding for aexp where we
sum up all constants, even if they are not next to each other. For example, Plus
(N 1) (Plus (V x) (N 2)) becomes Plus (V x) (N 3). This goes beyond asimp.
Define a function full_asimp :: aexp ⇒ aexp that sums up all constants and
prove its correctness: aval (full_asimp a) s = aval a s.

Exercise 3.3. Substitution is the process of replacing a variable by an ex-
pression in an expression. Define a substitution function subst :: vname ⇒
aexp ⇒ aexp ⇒ aexp such that subst x a e is the result of replacing every
occurrence of variable x by a in e. For example:

32 3 Case Study: IMP Expressions

subst ′ ′x ′ ′ (N 3) (Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′)) = Plus (N 3) (V ′ ′y ′ ′)

Prove the so-called substitution lemma that says that we can either
substitute first and evaluate afterwards or evaluate with an updated state:
aval (subst x a e) s = aval e (s(x := aval a s)). As a consequence prove
aval a1 s = aval a2 s =⇒ aval (subst x a1 e) s = aval (subst x a2 e) s.

Exercise 3.4. Take a copy of theory AExp and modify it as follows. Extend
type aexp with a binary constructor Times that represents multiplication.
Modify the definition of the functions aval and asimp accordingly. You can
remove asimp_const. Function asimp should eliminate 0 and 1 from multi-
plications as well as evaluate constant subterms. Update all proofs concerned.

Exercise 3.5. Define a datatype aexp2 of extended arithmetic expressions
that has, in addition to the constructors of aexp, a constructor for modelling
a C-like post-increment operation x++, where x must be a variable. Define an
evaluation function aval2 :: aexp2 ⇒ state ⇒ val × state that returns both
the value of the expression and the new state. The latter is required because
post-increment changes the state.

Extend aexp2 and aval2 with a division operation. Model partiality of
division by changing the return type of aval2 to (val × state) option. In
case of division by 0 let aval2 return None. Division on int is the infix div.

Exercise 3.6. The following type adds a LET construct to arithmetic ex-
pressions:

datatype lexp = Nl int | Vl vname | Plusl lexp lexp | LET vname lexp lexp

The LET constructor introduces a local variable: the value of LET x e1 e2

is the value of e2 in the state where x is bound to the value of e1 in the
original state. Define a function lval :: lexp ⇒ state ⇒ int that evaluates
lexp expressions. Remember s(x := i).

Define a conversion inline :: lexp ⇒ aexp. The expression LET x e1 e2

is inlined by substituting the converted form of e1 for x in the converted form
of e2. See Exercise 3.3 for more on substitution. Prove that inline is correct
w.r.t. evaluation.

3.2 Boolean Expressions thy

In keeping with our minimalist philosophy, our boolean expressions contain
only the bare essentials: boolean constants, negation, conjunction and com-
parison of arithmetic expressions for less-than:

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

http://isabelle.in.tum.de/library/HOL/HOL-IMP/BExp.html

3.2 Boolean Expressions 33

Note that there are no boolean variables in this language. Other operators
like disjunction and equality are easily expressed in terms of the basic ones.

Evaluation of boolean expressions is again by recursion over the abstract
syntax. In the Less case, we switch to aval :

fun bval :: "bexp ⇒ state ⇒ bool" where
"bval (Bc v) s = v" |

"bval (Not b) s = (¬ bval b s)" |

"bval (And b1 b2) s = (bval b1 s ∧ bval b2 s)" |

"bval (Less a1 a2) s = (aval a1 s < aval a2 s)"

3.2.1 Constant Folding

Constant folding, including the elimination of True and False in compound
expressions, works for bexp like it does for aexp: define optimizing versions
of the constructors

fun not :: "bexp ⇒ bexp" where
"not (Bc True) = Bc False" |

"not (Bc False) = Bc True" |

"not b = Not b"

fun "and" :: "bexp ⇒ bexp ⇒ bexp" where
"and (Bc True) b = b" |

"and b (Bc True) = b" |

"and (Bc False) b = Bc False" |

"and b (Bc False) = Bc False" |

"and b1 b2 = And b1 b2"

fun less :: "aexp ⇒ aexp ⇒ bexp" where
"less (N n1) (N n2) = Bc(n1 < n2)" |

"less a1 a2 = Less a1 a2"

and replace the constructors in a bottom-up manner:

fun bsimp :: "bexp ⇒ bexp" where
"bsimp (Bc v) = Bc v" |

"bsimp (Not b) = not(bsimp b)" |

"bsimp (And b1 b2) = and (bsimp b1) (bsimp b2)" |

"bsimp (Less a1 a2) = less (asimp a1) (asimp a2)"

Note that in the Less case we must switch from bsimp to asimp.

34 3 Case Study: IMP Expressions

Exercises

Exercise 3.7. Define functions Eq, Le :: aexp ⇒ aexp ⇒ bexp and prove
bval (Eq a1 a2) s = (aval a1 s = aval a2 s) and bval (Le a1 a2) s =

(aval a1 s 6 aval a2 s).

Exercise 3.8. Consider an alternative type of boolean expressions featuring
a conditional:

datatype ifexp = Bc2 bool | If ifexp ifexp ifexp | Less2 aexp aexp

First define an evaluation function ifval :: ifexp ⇒ state ⇒ bool analogously
to bval. Then define two functions b2ifexp :: bexp ⇒ ifexp and if2bexp ::

ifexp ⇒ bexp and prove their correctness, i.e., that they preserve the value
of an expression.

Exercise 3.9. Define a new type of purely boolean expressions

datatype pbexp =

VAR vname | NOT pbexp | AND pbexp pbexp | OR pbexp pbexp

where variables range over values of type bool :

fun pbval :: "pbexp ⇒ (vname ⇒ bool) ⇒ bool" where
"pbval (VAR x) s = s x" |

"pbval (NOT b) s = (¬ pbval b s)" |

"pbval (AND b1 b2) s = (pbval b1 s ∧ pbval b2 s)" |

"pbval (OR b1 b2) s = (pbval b1 s ∨ pbval b2 s)"

Define a function is_nnf :: pbexp ⇒ bool that checks whether a boolean
expression is in NNF (negation normal form), i.e., if NOT is only applied
directly to VARs. Also define a function nnf :: pbexp ⇒ pbexp that converts
a pbexp into NNF by pushing NOT inwards as much as possible. Prove that
nnf preserves the value (pbval (nnf b) s = pbval b s) and returns an NNF
(is_nnf (nnf b)).

An expression is in DNF (disjunctive normal form) if it is in NNF and if
no OR occurs below an AND. Define a corresponding test is_dnf :: pbexp ⇒
bool. An NNF can be converted into a DNF in a bottom-up manner. The crit-
ical case is the conversion of AND b1 b2. Having converted b1 and b2, apply
distributivity of AND over OR. Define a conversion function dnf_of_nnf ::

pbexp ⇒ pbexp from NNF to DNF. Prove that your function preserves the
value (pbval (dnf_of_nnf b) s = pbval b s) and converts an NNF into a
DNF (is_nnf b =⇒ is_dnf (dnf_of_nnf b)).

3.3 Stack Machine and Compilation 35

3.3 Stack Machine and Compilation thy

This section describes a simple stack machine and compiler for arithmetic
expressions. The stack machine has three instructions:

datatype instr = LOADI val | LOAD vname | ADD

The semantics of the three instructions will be the following: LOADI n (load
immediate) puts n on top of the stack, LOAD x puts the value of x on top of
the stack, and ADD replaces the two topmost elements of the stack by their
sum. A stack is simply a list of values:

type_synonym stack = "val list"

The top of the stack is its first element, the head of the list (see Sec-
tion 2.2.5). We define two further abbreviations: hd2 xs ≡ hd (tl xs) and
tl2 xs ≡ tl (tl xs).

An instruction is executed in the context of a state and transforms a stack
into a new stack:

fun exec1 :: "instr ⇒ state ⇒ stack ⇒ stack" where
"exec1 (LOADI n) _ stk = n # stk" |

"exec1 (LOAD x) s stk = s(x) # stk" |

"exec1 ADD _ stk = (hd2 stk + hd stk) # tl2 stk"

A list of instructions is executed one by one:

fun exec :: "instr list ⇒ state ⇒ stack ⇒ stack" where
"exec [] _ stk = stk" |

"exec (i#is) s stk = exec is s (exec1 i s stk)"

The simplicity of this definition is due to the absence of jump instructions.
Forward jumps could still be accommodated, but backward jumps would cause
a serious problem: execution might not terminate.

Compilation of arithmetic expressions is straightforward:

fun comp :: "aexp ⇒ instr list" where
"comp (N n) = [LOADI n]" |

"comp (V x) = [LOAD x]" |

"comp (Plus e1 e2) = comp e1 @ comp e2 @ [ADD]"

The correctness statement says that executing a compiled expression is the
same as putting the value of the expression on the stack:

lemma "exec (comp a) s stk = aval a s # stk"

The proof is by induction on a and relies on the lemma

exec (is1 @ is2) s stk = exec is2 s (exec is1 s stk)

http://isabelle.in.tum.de/library/HOL/HOL-IMP/ASM.html

36 3 Case Study: IMP Expressions

which is proved by induction in is1.
Compilation of boolean expressions is covered later and requires condi-

tional jumps.

Exercises

Exercise 3.10. A stack underflow occurs when executing an ADD instruc-
tion on a stack of size less than 2. In our semantics stack underflow leads to a
term involving hd [], which is not an error or exception — HOL does not have
those concepts — but some unspecified value. Modify theory ASM such that
stack underflow is modelled by None and normal execution by Some, i.e.,
the execution functions have return type stack option. Modify all theorems
and proofs accordingly.

Exercise 3.11. This exercise is about a register machine and compiler for
aexp. The machine instructions are

datatype instr = LDI int reg | LD vname reg | ADD reg reg

where type reg is a synonym for nat. Instruction LDI i r loads i into register
r, LD x r loads the value of x into register r, and ADD r1 r2 adds register
r2 to register r1.

Define the execution of an instruction given a state and a register state
(= function from registers to integers); the result is the new register state:

fun exec1 :: instr ⇒ state ⇒ (reg ⇒ int) ⇒ reg ⇒ int

Define the execution exec of a list of instructions as for the stack machine.
The compiler takes an arithmetic expression a and a register r and pro-

duces a list of instructions whose execution places the value of a into r. The
registers > r should be used in a stack-like fashion for intermediate results,
the ones < r should be left alone. Define the compiler and prove it correct:
exec (comp a r) s rs r = aval a s.

Exercise 3.12. This is a variation on the previous exercise. Let the instruc-
tion set be

datatype instr0 = LDI0 val | LD0 vname | MV0 reg | ADD0 reg

All instructions refer implicitly to register 0 as the source (MV0) or target
(all others). Define a compiler pretty much as explained above except that
the compiled code leaves the value of the expression in register 0. Prove that
exec (comp a r) s rs 0 = aval a s.

4

Logic and Proof Beyond Equality

4.1 Formulas

The core syntax of formulas (form below) provides the standard logical con-
structs, in decreasing order of precedence:

form ::= (form) | True | False | term = term
| ¬ form | form ∧ form | form ∨ form | form −→ form
| ∀ x . form | ∃ x . form

Terms are the ones we have seen all along, built from constants, variables,
function application and λ-abstraction, including all the syntactic sugar like
infix symbols, if, case, etc.

Remember that formulas are simply terms of type bool. Hence = also works for
formulas. Beware that = has a higher precedence than the other logical operators.

Hence s = t ∧ A means (s = t) ∧ A, and A ∧ B = B ∧ A means A ∧ (B = B)

∧ A. Logical equivalence can also be written with ←→ instead of =, where ←→ has
the same low precedence as −→. Hence A ∧ B ←→ B ∧ A really means (A ∧ B)

←→ (B ∧ A).

Quantifiers need to be enclosed in parentheses if they are nested within other
constructs (just like if, case and let).

The most frequent logical symbols and their ASCII representations are shown
in Fig. 4.1. The first column shows the symbols, the other columns ASCII
representations. The \<...> form is always converted into the symbolic form
by the Isabelle interfaces, the treatment of the other ASCII forms depends on
the interface. The ASCII forms /\ and \/ are special in that they are merely
keyboard shortcuts for the interface and not logical symbols by themselves.

38 4 Logic and Proof Beyond Equality

∀ \<forall> ALL
∃ \<exists> EX
λ \<lambda> %
−→ -->
←→ <->
∧ /\ &
∨ \/ |
¬ \<not> ~
6= \<noteq> ~=

Fig. 4.1. Logical symbols and their ASCII forms

The implication =⇒ is part of the Isabelle framework. It structures theorems
and proof states, separating assumptions from conclusions. The implication −→

is part of the logic HOL and can occur inside the formulas that make up the as-
sumptions and conclusion. Theorems should be of the form [[A1; . . .; An]] =⇒ A,
not A1 ∧ . . . ∧ An −→ A. Both are logically equivalent but the first one works
better when using the theorem in further proofs.

4.2 Sets

Sets of elements of type ′a have type ′a set . They can be finite or infinite.
Sets come with the usual notation:

� {}, {e1,. . .,en}
� e ∈ A, A ⊆ B
� A ∪ B , A ∩ B , A − B, − A

(where A − B and −A are set difference and complement) and much more.
UNIV is the set of all elements of some type. Set comprehension is written
{x . P } rather than {x | P }.

In {x . P } the x must be a variable. Set comprehension involving a proper term
t must be written {t | x y . P }, where x y are those free variables in t that occur

in P. This is just a shorthand for {v . ∃ x y . v = t ∧ P }, where v is a new variable.
For example, {x + y |x . x ∈ A} is short for {v . ∃ x . v = x+y ∧ x ∈ A}.

Here are the ASCII representations of the mathematical symbols:

∈ \<in> :
⊆ \<subseteq> <=
∪ \<union> Un
∩ \<inter> Int

Sets also allow bounded quantifications ∀ x∈A. P and ∃ x∈A. P.
For the more ambitious, there are also

⋃
and

⋂
:

4.3 Proof Automation 39⋃
A = {x . ∃B∈A. x ∈ B }

⋂
A = {x . ∀B∈A. x ∈ B }

The ASCII forms of
⋃

are \<Union> and Union, those of
⋂

are \<Inter>
and Inter. There are also indexed unions and intersections:

(
⋃

x∈A B x) = {y . ∃ x∈A. y ∈ B x }
(
⋂

x∈A B x) = {y . ∀ x∈A. y ∈ B x }

The ASCII forms are UN x:A. B and INT x:A. B where x may occur in B.
If A is UNIV you can write UN x. B and INT x. B.

Some other frequently useful functions on sets are the following:

set :: ′a list ⇒ ′a set converts a list to the set of its elements
finite :: ′a set ⇒ bool is true iff its argument is finite
card :: ′a set ⇒ nat is the cardinality of a finite set

and is 0 for all infinite sets
f ‘ A = {y . ∃ x∈A. y = f x } is the image of a function over a set

See [64] for the wealth of further predefined functions in theory Main.

Exercises

Exercise 4.1. Start from the data type of binary trees defined earlier:

datatype ′a tree = Tip | Node " ′a tree" ′a " ′a tree"

Define a function set :: ′a tree ⇒ ′a set that returns the elements in a tree
and a function ord :: int tree ⇒ bool that tests if an int tree is ordered.

Define a function ins that inserts an element into an ordered int tree
while maintaining the order of the tree. If the element is already in the tree,
the same tree should be returned. Prove correctness of ins : set (ins x t) =

{x } ∪ set t and ord t =⇒ ord (ins i t).

4.3 Proof Automation

So far we have only seen simp and auto: Both perform rewriting, both can
also prove linear arithmetic facts (no multiplication), and auto is also able to
prove simple logical or set-theoretic goals:

lemma "∀ x . ∃ y . x = y"
by auto

lemma "A ⊆ B ∩ C =⇒ A ⊆ B ∪ C"
by auto

where

40 4 Logic and Proof Beyond Equality

by proof-method

is short for

apply proof-method
done

The key characteristics of both simp and auto are

� They show you where they got stuck, giving you an idea how to continue.
� They perform the obvious steps but are highly incomplete.

A proof method is complete if it can prove all true formulas. There is no
complete proof method for HOL, not even in theory. Hence all our proof
methods only differ in how incomplete they are.

A proof method that is still incomplete but tries harder than auto is
fastforce . It either succeeds or fails, it acts on the first subgoal only, and it
can be modified like auto, e.g., with simp add. Here is a typical example of
what fastforce can do:

lemma "[[∀ xs ∈ A. ∃ ys . xs = ys @ ys ; us ∈ A]]

=⇒ ∃n . length us = n+n"
by fastforce

This lemma is out of reach for auto because of the quantifiers. Even fastforce
fails when the quantifier structure becomes more complicated. In a few cases,
its slow version force succeeds where fastforce fails.

The method of choice for complex logical goals is blast . In the following
example, T and A are two binary predicates. It is shown that if T is total,
A is antisymmetric and T is a subset of A, then A is a subset of T :

lemma
"[[∀ x y . T x y ∨ T y x ;
∀ x y . A x y ∧ A y x −→ x = y ;
∀ x y . T x y −→ A x y]]

=⇒ ∀ x y . A x y −→ T x y"
by blast

We leave it to the reader to figure out why this lemma is true. Method blast

� is (in principle) a complete proof procedure for first-order formulas, a
fragment of HOL. In practice there is a search bound.

� does no rewriting and knows very little about equality.
� covers logic, sets and relations.
� either succeeds or fails.

Because of its strength in logic and sets and its weakness in equality reasoning,
it complements the earlier proof methods.

4.3 Proof Automation 41

4.3.1 Sledgehammer

Command sledgehammer calls a number of external automatic theorem provers
(ATPs) that run for up to 30 seconds searching for a proof. Some of these ATPs
are part of the Isabelle installation, others are queried over the internet. If
successful, a proof command is generated and can be inserted into your proof.
The biggest win of sledgehammer is that it will take into account the whole
lemma library and you do not need to feed in any lemma explicitly. For
example,

lemma "[[xs @ ys = ys @ xs ; length xs = length ys]] =⇒ xs = ys"

cannot be solved by any of the standard proof methods, but sledgehammer
finds the following proof:

by (metis append_eq_conv_conj)

We do not explain how the proof was found but what this command means.
For a start, Isabelle does not trust external tools (and in particular not the
translations from Isabelle’s logic to those tools!) and insists on a proof that it
can check. This is whatmetis does. It is given a list of lemmas and tries to find
a proof using just those lemmas (and pure logic). In contrast to using simp and
friends who know a lot of lemmas already, using metis manually is tedious
because one has to find all the relevant lemmas first. But that is precisely
what sledgehammer does for us. In this case lemma append_eq_conv_conj
alone suffices:

(xs @ ys = zs) = (xs = take (length xs) zs ∧ ys = drop (length xs) zs)

We leave it to the reader to figure out why this lemma suffices to prove the
above lemma, even without any knowledge of what the functions take and
drop do. Keep in mind that the variables in the two lemmas are independent
of each other, despite the same names, and that you can substitute arbitrary
values for the free variables in a lemma.

Just as for the other proof methods we have seen, there is no guarantee
that sledgehammer will find a proof if it exists. Nor is sledgehammer superior to
the other proof methods. They are incomparable. Therefore it is recommended
to apply simp or auto before invoking sledgehammer on what is left.

4.3.2 Arithmetic

By arithmetic formulas we mean formulas involving variables, numbers, +,
−, =, <, 6 and the usual logical connectives ¬, ∧, ∨, −→, ←→. Strictly
speaking, this is known as linear arithmetic because it does not involve
multiplication, although multiplication with numbers, e.g., 2∗n, is allowed.
Such formulas can be proved by arith :

42 4 Logic and Proof Beyond Equality

lemma "[[(a ::nat) 6 x + b; 2∗x < c]] =⇒ 2∗a + 1 6 2∗b + c"
by arith

In fact, auto and simp can prove many linear arithmetic formulas already,
like the one above, by calling a weak but fast version of arith. Hence it is
usually not necessary to invoke arith explicitly.

The above example involves natural numbers, but integers (type int) and
real numbers (type real) are supported as well. As are a number of further
operators like min and max. On nat and int, arith can even prove theorems
with quantifiers in them, but we will not enlarge on that here.

4.3.3 Trying Them All

If you want to try all of the above automatic proof methods you simply type

try

You can also add specific simplification and introduction rules:

try simp: . . . intro: . . .

There is also a lightweight variant try0 that does not call sledgehammer.

4.4 Single Step Proofs

Although automation is nice, it often fails, at least initially, and you need
to find out why. When fastforce or blast simply fail, you have no clue why.
At this point, the stepwise application of proof rules may be necessary. For
example, if blast fails on A ∧ B, you want to attack the two conjuncts A and
B separately. This can be achieved by applying conjunction introduction

?P ?Q

?P ∧ ?Q
conjI

to the proof state. We will now examine the details of this process.

4.4.1 Instantiating Unknowns

We had briefly mentioned earlier that after proving some theorem, Isabelle re-
places all free variables x by so called unknowns ?x. We can see this clearly in
rule conjI. These unknowns can later be instantiated explicitly or implicitly:

� By hand, using of . The expression conjI [of "a=b" "False"] instantiates
the unknowns in conjI from left to right with the two formulas a=b and
False, yielding the rule

4.4 Single Step Proofs 43

a = b False

a = b ∧ False

In general, th [of string1 . . . stringn] instantiates the unknowns in the
theorem th from left to right with the terms string1 to stringn.

� By unification. Unification is the process of making two terms syntacti-
cally equal by suitable instantiations of unknowns. For example, unifying
?P ∧ ?Q with a = b ∧ False instantiates ?P with a = b and ?Q with
False.

We need not instantiate all unknowns. If we want to skip a particular one we
can write _ instead, for example conjI [of _ "False"]. Unknowns can also be
instantiated by name using where , for example conjI [where ?P = "a=b"
and ?Q = "False"].

4.4.2 Rule Application

Rule application means applying a rule backwards to a proof state. For
example, applying rule conjI to a proof state

1. . . . =⇒ A ∧ B

results in two subgoals, one for each premise of conjI :

1. . . . =⇒ A
2. . . . =⇒ B

In general, the application of a rule [[A1; . . .; An]] =⇒ A to a subgoal
. . . =⇒ C proceeds in two steps:

1. Unify A and C, thus instantiating the unknowns in the rule.
2. Replace the subgoal C with n new subgoals A1 to An.

This is the command to apply rule xyz :

apply(rule xyz)

This is also called backchaining with rule xyz.

4.4.3 Introduction Rules

Conjunction introduction (conjI) is one example of a whole class of rules
known as introduction rules. They explain under which premises some
logical construct can be introduced. Here are some further useful introduction
rules:

?P =⇒ ?Q

?P −→ ?Q
impI

∧
x . ?P x

∀ x . ?P x
allI

44 4 Logic and Proof Beyond Equality

?P =⇒ ?Q ?Q =⇒ ?P

?P = ?Q
iffI

These rules are part of the logical system of natural deduction (e.g., [44]).
Although we intentionally de-emphasize the basic rules of logic in favour of
automatic proof methods that allow you to take bigger steps, these rules are
helpful in locating where and why automation fails. When applied backwards,
these rules decompose the goal:

� conjI and iffI split the goal into two subgoals,
� impI moves the left-hand side of a HOL implication into the list of as-

sumptions,
� and allI removes a ∀ by turning the quantified variable into a fixed local

variable of the subgoal.

Isabelle knows about these and a number of other introduction rules. The
command

apply rule

automatically selects the appropriate rule for the current subgoal.
You can also turn your own theorems into introduction rules by giving

them the intro attribute, analogous to the simp attribute. In that case blast,
fastforce and (to a limited extent) auto will automatically backchain with
those theorems. The intro attribute should be used with care because it in-
creases the search space and can lead to nontermination. Sometimes it is better
to use it only in specific calls of blast and friends. For example, le_trans, tran-
sitivity of 6 on type nat, is not an introduction rule by default because of the
disastrous effect on the search space, but can be useful in specific situations:

lemma "[[(a ::nat) 6 b; b 6 c; c 6 d ; d 6 e]] =⇒ a 6 e"
by(blast intro: le_trans)

Of course this is just an example and could be proved by arith, too.

4.4.4 Forward Proof

Forward proof means deriving new theorems from old theorems. We have
already seen a very simple form of forward proof: the of operator for instan-
tiating unknowns in a theorem. The big brother of of is OF for applying
one theorem to others. Given a theorem A =⇒ B called r and a theorem
A ′ called r ′, the theorem r [OF r ′] is the result of applying r to r ′, where
r should be viewed as a function taking a theorem A and returning B. More
precisely, A and A ′ are unified, thus instantiating the unknowns in B, and
the result is the instantiated B. Of course, unification may also fail.

4.5 Inductive Definitions 45

Application of rules to other rules operates in the forward direction: from the
premises to the conclusion of the rule; application of rules to proof states operates

in the backward direction, from the conclusion to the premises.

In general r can be of the form [[A1; . . .; An]] =⇒ A and there can be
multiple argument theorems r1 to rm (with m 6 n), in which case r [OF r1
. . . rm] is obtained by unifying and thus proving Ai with r i, i = 1. . .m. Here
is an example, where refl is the theorem ?t = ?t :

thm conjI [OF refl [of "a"] refl [of "b"]]

yields the theorem a = a ∧ b = b. The command thm merely displays the
result.

Forward reasoning also makes sense in connection with proof states.
Therefore blast, fastforce and auto support a modifier dest which instructs
the proof method to use certain rules in a forward fashion. If r is of the
form A =⇒ B , the modifier dest : r allows proof search to reason forward
with r, i.e., to replace an assumption A ′, where A ′ unifies with A, with
the correspondingly instantiated B. For example, Suc_leD is the theorem
Suc m 6 n =⇒ m 6 n , which works well for forward reasoning:

lemma "Suc(Suc(Suc a)) 6 b =⇒ a 6 b"
by(blast dest : Suc_leD)

In this particular example we could have backchained with Suc_leD, too, but
because the premise is more complicated than the conclusion this can easily
lead to nontermination.

To ease readability we will drop the question marks in front of unknowns from
now on.

4.5 Inductive Definitions

Inductive definitions are the third important definition facility, after datatypes
and recursive function. In fact, they are the key construct in the definition of
operational semantics in the second part of the book.

4.5.1 An Example: Even Numbers

Here is a simple example of an inductively defined predicate:

� 0 is even
� If n is even, so is n+ 2.

46 4 Logic and Proof Beyond Equality

The operative word “inductive” means that these are the only even numbers.
In Isabelle we give the two rules the names ev0 and evSS and write

inductive ev :: "nat ⇒ bool" where
ev0: "ev 0" |

evSS : "ev n =⇒ ev (n + 2)"

To get used to inductive definitions, we will first prove a few properties of ev
informally before we descend to the Isabelle level.

How do we prove that some number is even, e.g., ev 4? Simply by com-
bining the defining rules for ev :

ev 0 =⇒ ev (0 + 2) =⇒ ev((0 + 2) + 2) = ev 4

Rule Induction

Showing that all even numbers have some property is more complicated. For
example, let us prove that the inductive definition of even numbers agrees
with the following recursive one:

fun evn :: "nat ⇒ bool" where
"evn 0 = True" |

"evn (Suc 0) = False" |

"evn (Suc(Suc n)) = evn n"

We prove ev m =⇒ evn m. That is, we assume ev m and by induction on
the form of its derivation prove evn m. There are two cases corresponding to
the two rules for ev :

Case ev0: ev m was derived by rule ev 0:
=⇒ m = 0 =⇒ evn m = evn 0 = True

Case evSS : ev m was derived by rule ev n =⇒ ev (n + 2):
=⇒ m = n + 2 and by induction hypothesis evn n
=⇒ evn m = evn(n + 2) = evn n = True

What we have just seen is a special case of rule induction. Rule induction
applies to propositions of this form

ev n =⇒ P n

That is, we want to prove a property P n for all even n. But if we assume
ev n, then there must be some derivation of this assumption using the two
defining rules for ev. That is, we must prove

Case ev0: P 0

Case evSS : [[ev n ; P n]] =⇒ P (n + 2)

4.5 Inductive Definitions 47

The corresponding rule is called ev .induct and looks like this:

ev n P 0
∧

n . [[ev n ; P n]] =⇒ P (n + 2)

P n

The first premise ev n enforces that this rule can only be applied in situations
where we know that n is even.

Note that in the induction step we may not just assume P n but also
ev n , which is simply the premise of rule evSS. Here is an example where the
local assumption ev n comes in handy: we prove ev m =⇒ ev (m − 2) by
induction on ev m. Case ev0 requires us to prove ev (0 − 2), which follows
from ev 0 because 0 − 2 = 0 on type nat. In case evSS we have m = n + 2

and may assume ev n, which implies ev (m − 2) because m − 2 = (n +

2) − 2 = n. We did not need the induction hypothesis at all for this proof
(it is just a case analysis of which rule was used) but having ev n at our
disposal in case evSS was essential. This case analysis of rules is also called
“rule inversion” and is discussed in more detail in Chapter 5.

In Isabelle

Let us now recast the above informal proofs in Isabelle. For a start, we use
Suc terms instead of numerals in rule evSS :

ev n =⇒ ev (Suc (Suc n))

This avoids the difficulty of unifying n+2 with some numeral, which is not
automatic.

The simplest way to prove ev (Suc (Suc (Suc (Suc 0)))) is in a forward
direction: evSS [OF evSS [OF ev0]] yields the theorem ev (Suc (Suc (Suc
(Suc 0)))). Alternatively, you can also prove it as a lemma in backwards
fashion. Although this is more verbose, it allows us to demonstrate how each
rule application changes the proof state:

lemma "ev(Suc(Suc(Suc(Suc 0))))"

1. ev (Suc (Suc (Suc (Suc 0))))

apply(rule evSS)

1. ev (Suc (Suc 0))

apply(rule evSS)

1. ev 0

48 4 Logic and Proof Beyond Equality

apply(rule ev0)
done

Rule induction is applied by giving the induction rule explicitly via the
rule : modifier:

lemma "ev m =⇒ evn m"
apply(induction rule : ev .induct)
by(simp_all)

Both cases are automatic. Note that if there are multiple assumptions of the
form ev t, method induction will induct on the leftmost one.

As a bonus, we also prove the remaining direction of the equivalence of ev
and evn :

lemma "evn n =⇒ ev n"
apply(induction n rule : evn .induct)

This is a proof by computation induction on n (see Section 2.3.4) that sets
up three subgoals corresponding to the three equations for evn :

1. evn 0 =⇒ ev 0
2. evn (Suc 0) =⇒ ev (Suc 0)
3.

∧
n . [[evn n =⇒ ev n ; evn (Suc (Suc n))]] =⇒ ev (Suc (Suc n))

The first and third subgoals follow with ev0 and evSS, and the second subgoal
is trivially true because evn (Suc 0) is False :

by (simp_all add : ev0 evSS)

The rules for ev make perfect simplification and introduction rules because
their premises are always smaller than the conclusion. It makes sense to turn
them into simplification and introduction rules permanently, to enhance proof
automation. They are named ev .intros by Isabelle:

declare ev .intros [simp,intro]

The rules of an inductive definition are not simplification rules by default be-
cause, in contrast to recursive functions, there is no termination requirement
for inductive definitions.

Inductive Versus Recursive

We have seen two definitions of the notion of evenness, an inductive and a
recursive one. Which one is better? Much of the time, the recursive one is more
convenient: it allows us to do rewriting in the middle of terms, and it expresses
both the positive information (which numbers are even) and the negative
information (which numbers are not even) directly. An inductive definition

4.5 Inductive Definitions 49

only expresses the positive information directly. The negative information,
for example, that 1 is not even, has to be proved from it (by induction or
rule inversion). On the other hand, rule induction is tailor-made for proving
ev n =⇒ P n because it only asks you to prove the positive cases. In the
proof of evn n =⇒ P n by computation induction via evn .induct, we are also
presented with the trivial negative cases. If you want the convenience of both
rewriting and rule induction, you can make two definitions and show their
equivalence (as above) or make one definition and prove additional properties
from it, for example rule induction from computation induction.

But many concepts do not admit a recursive definition at all because
there is no datatype for the recursion (for example, the transitive closure of
a relation), or the recursion would not terminate (for example, an interpreter
for a programming language). Even if there is a recursive definition, if we are
only interested in the positive information, the inductive definition may be
much simpler.

4.5.2 The Reflexive Transitive Closure

Evenness is really more conveniently expressed recursively than inductively.
As a second and very typical example of an inductive definition we define
the reflexive transitive closure. It will also be an important building block for
some of the semantics considered in the second part of the book.

The reflexive transitive closure, called star below, is a function that maps
a binary predicate to another binary predicate: if r is of type τ ⇒ τ ⇒ bool
then star r is again of type τ ⇒ τ ⇒ bool, and star r x y means that x and
y are in the relation star r. Think r∗ when you see star r, because star r
is meant to be the reflexive transitive closure. That is, star r x y is meant
to be true if from x we can reach y in finitely many r steps. This concept is
naturally defined inductively:

inductive star :: "(′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool" for r where
refl : "star r x x" |

step: "r x y =⇒ star r y z =⇒ star r x z"

The base case refl is reflexivity: x = y. The step case step combines an r
step (from x to y) and a star r step (from y to z) into a star r step (from
x to z). The “for r ” in the header is merely a hint to Isabelle that r is a
fixed parameter of star, in contrast to the further parameters of star, which
change. As a result, Isabelle generates a simpler induction rule.

By definition star r is reflexive. It is also transitive, but we need rule
induction to prove that:

lemma star_trans : "star r x y =⇒ star r y z =⇒ star r x z"

50 4 Logic and Proof Beyond Equality

apply(induction rule : star .induct)

The induction is over star r x y (the first matching assumption) and we try
to prove star r y z =⇒ star r x z , which we abbreviate by P x y. These are
our two subgoals:

1.
∧
x . star r x z =⇒ star r x z

2.
∧
u x y .
[[r u x ; star r x y ; star r y z =⇒ star r x z ; star r y z]]
=⇒ star r u z

The first one is P x x, the result of case refl, and it is trivial:

apply(assumption)

Let us examine subgoal 2, case step. Assumptions r u x and star r x y are
the premises of rule step. Assumption star r y z =⇒ star r x z is P x y , the
IH coming from star r x y. We have to prove P u y, which we do by assuming
star r y z and proving star r u z. The proof itself is straightforward: from
star r y z the IH leads to star r x z which, together with r u x, leads to
star r u z via rule step:

apply(metis step)
done

4.5.3 The General Case

Inductive definitions have approximately the following general form:

inductive I :: "τ ⇒ bool" where

followed by a sequence of (possibly named) rules of the form

[[I a1; . . .; I an]] =⇒ I a

separated by |. As usual, n can be 0. The corresponding rule induction prin-
ciple I .induct applies to propositions of the form

I x =⇒ P x

where P may itself be a chain of implications.

Rule induction is always on the leftmost premise of the goal. Hence I x must be
the first premise.

Proving I x =⇒ P x by rule induction means proving for every rule of I that
P is invariant:

[[I a1; P a1; . . .; I an; P an]] =⇒ P a

4.5 Inductive Definitions 51

The above format for inductive definitions is simplified in a number of re-
spects. I can have any number of arguments and each rule can have additional
premises not involving I, so-called side conditions. In rule inductions, these
side conditions appear as additional assumptions. The for clause seen in the
definition of the reflexive transitive closure simplifies the induction rule.

Exercises

Exercise 4.2. Formalize the following definition of palindromes

� The empty list and a singleton list are palindromes.
� If xs is a palindrome, so is a # xs @ [a].

as an inductive predicate palindrome :: ′a list ⇒ bool and prove that rev xs
= xs if xs is a palindrome.

Exercise 4.3. We could also have defined star as follows:

inductive star ′ :: "(′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool" for r where
refl ′: "star ′ r x x" |

step ′: "star ′ r x y =⇒ r y z =⇒ star ′ r x z"

The single r step is performed after rather than before the star ′ steps. Prove
star ′ r x y =⇒ star r x y and star r x y =⇒ star r ′ x y. You may need
lemmas. Note that rule induction fails if the assumption about the inductive
predicate is not the first assumption.

Exercise 4.4. Analogous to star, give an inductive definition of the n-fold
iteration of a relation r : iter r n x y should hold if there are x0, . . . , x n such
that x = x0, x n = y and r x i x i+1 for all i < n. Correct and prove the
following claim: star r x y =⇒ iter r n x y.

Exercise 4.5. A context-free grammar can be seen as an inductive definition
where each nonterminal A is an inductively defined predicate on lists of ter-
minal symbols: A(w) means that w is in the language generated by A. For
example, the production S→ aSb can be viewed as the implication S w =⇒
S (a # w @ [b]) where a and b are terminal symbols, i.e., elements of some
alphabet. The alphabet can be defined like this: datatype alpha = a | b | . . .

Define the two grammars (where ε is the empty word)

S → ε | aSb | SS

T → ε | TaTb

as two inductive predicates. If you think of a and b as “(” and “)”, the
grammar defines strings of balanced parentheses. Prove T w =⇒ S w and
S w =⇒ T w separately and conclude S w = T w.

52 4 Logic and Proof Beyond Equality

Exercise 4.6. In Section 3.1 we defined a recursive evaluation function aval
:: aexp ⇒ state ⇒ val. Define an inductive evaluation predicate aval_rel
:: aexp ⇒ state ⇒ val ⇒ bool and prove that it agrees with the recursive
function: aval_rel a s v =⇒ aval a s = v, aval a s = v =⇒ aval_rel a s v
and thus aval_rel a s v ←→ aval a s = v .

Exercise 4.7. Consider the stack machine from Chapter 3 and recall the
concept of stack underflow from Exercise 3.10. Define an inductive predicate
ok :: nat ⇒ instr list ⇒ nat ⇒ bool such that ok n is n ′ means that with
any initial stack of length n the instructions is can be executed without stack
underflow and that the final stack has length n ′. Prove that ok correctly
computes the final stack size

[[ok n is n ′; length stk = n]] =⇒ length (exec is s stk) = n ′

and that instruction sequences generated by comp cannot cause stack under-
flow: ok n (comp a) ? for some suitable value of ?.

5

Isar: A Language for Structured Proofs

Apply-scripts are unreadable and hard to maintain. The language of choice
for larger proofs is Isar. The two key features of Isar are:

� It is structured, not linear.
� It is readable without its being run because you need to state what you

are proving at any given point.

Whereas apply-scripts are like assembly language programs, Isar proofs are
like structured programs with comments. A typical Isar proof looks like this:

proof
assume "formula0"
have "formula1" by simp
...
have "formulan" by blast
show "formulan+1" by . . .

qed

It proves formula0 =⇒ formulan+1 (provided each proof step succeeds). The
intermediate have statements are merely stepping stones on the way towards
the show statement that proves the actual goal. In more detail, this is the Isar
core syntax:

proof = by method
| proof [method] step∗ qed

step = fix variables
| assume proposition
| [from fact+] (have | show) proposition proof

proposition = [name :] "formula"

fact = name | . . .

54 5 Isar: A Language for Structured Proofs

A proof can either be an atomic by with a single proof method which must
finish off the statement being proved, for example auto, or it can be a proof–
qed block of multiple steps. Such a block can optionally begin with a proof
method that indicates how to start off the proof, e.g., (induction xs).

A step either assumes a proposition or states a proposition together with
its proof. The optional from clause indicates which facts are to be used in the
proof. Intermediate propositions are stated with have, the overall goal is stated
with show. A step can also introduce new local variables with fix. Logically,
fix introduces

∧
-quantified variables, assume introduces the assumption of an

implication (=⇒) and have/show introduce the conclusion.
Propositions are optionally named formulas. These names can be referred

to in later from clauses. In the simplest case, a fact is such a name. But facts can
also be composed with OF and of as shown in Section 4.4.4 — hence the . . .
in the above grammar. Note that assumptions, intermediate have statements
and global lemmas all have the same status and are thus collectively referred
to as facts.

Fact names can stand for whole lists of facts. For example, if f is defined by
command fun, f .simps refers to the whole list of recursion equations defining
f. Individual facts can be selected by writing f .simps(2), whole sublists by
writing f .simps(2−4).

5.1 Isar by Example

We show a number of proofs of Cantor’s theorem that a function from a set
to its powerset cannot be surjective, illustrating various features of Isar. The
constant surj is predefined.

lemma "¬ surj (f :: ′a ⇒ ′a set)"
proof
assume 0: "surj f"
from 0 have 1: "∀A. ∃ a . A = f a" by(simp add : surj_def)
from 1 have 2: "∃ a . {x . x /∈ f x } = f a" by blast
from 2 show "False" by blast

qed

The proof command lacks an explicit method by which to perform the proof.
In such cases Isabelle tries to use some standard introduction rule, in the
above case for ¬:

P =⇒ False

¬ P

In order to prove ¬ P, assume P and show False. Thus we may assume
surj f. The proof shows that names of propositions may be (single!) digits —

5.1 Isar by Example 55

meaningful names are hard to invent and are often not necessary. Both have
steps are obvious. The second one introduces the diagonal set {x . x /∈ f x },
the key idea in the proof. If you wonder why 2 directly implies False : from 2

it follows that (a /∈ f a) = (a ∈ f a).

5.1.1 this, then, hence and thus

Labels should be avoided. They interrupt the flow of the reader who has to
scan the context for the point where the label was introduced. Ideally, the
proof is a linear flow, where the output of one step becomes the input of
the next step, piping the previously proved fact into the next proof, like in
a UNIX pipe. In such cases the predefined name this can be used to refer to
the proposition proved in the previous step. This allows us to eliminate all
labels from our proof (we suppress the lemma statement):

proof
assume "surj f"
from this have "∃ a . {x . x /∈ f x } = f a" by(auto simp: surj_def)
from this show "False" by blast

qed

We have also taken the opportunity to compress the two have steps into one.
To compact the text further, Isar has a few convenient abbreviations:

then = from this
thus = then show

hence = then have

With the help of these abbreviations the proof becomes

proof
assume "surj f"
hence "∃ a . {x . x /∈ f x } = f a" by(auto simp: surj_def)
thus "False" by blast

qed

There are two further linguistic variations:

(have|show) prop using facts = from facts (have|show) prop
with facts = from facts this

The using idiom de-emphasizes the used facts by moving them behind the
proposition.

5.1.2 Structured Lemma Statements: fixes, assumes, shows

Lemmas can also be stated in a more structured fashion. To demonstrate this
feature with Cantor’s theorem, we rephrase ¬ surj f a little:

56 5 Isar: A Language for Structured Proofs

lemma
fixes f :: " ′a ⇒ ′a set"
assumes s : "surj f"
shows "False"

The optional fixes part allows you to state the types of variables up front
rather than by decorating one of their occurrences in the formula with a type
constraint. The key advantage of the structured format is the assumes part that
allows you to name each assumption; multiple assumptions can be separated
by and. The shows part gives the goal. The actual theorem that will come out
of the proof is surj f =⇒ False, but during the proof the assumption surj f
is available under the name s like any other fact.

proof −
have "∃ a . {x . x /∈ f x } = f a" using s
by(auto simp: surj_def)

thus "False" by blast
qed

Note the hyphen after the proof command. It is the null method that does
nothing to the goal. Leaving it out would be asking Isabelle to try some suitable

introduction rule on the goal False — but there is no such rule and proof would fail.

In the have step the assumption surj f is now referenced by its name s. The
duplication of surj f in the above proofs (once in the statement of the lemma,
once in its proof) has been eliminated.

Stating a lemma with assumes-shows implicitly introduces the name assms
that stands for the list of all assumptions. You can refer to individual assump-
tions by assms(1), assms(2), etc., thus obviating the need to name them
individually.

5.2 Proof Patterns

We show a number of important basic proof patterns. Many of them arise
from the rules of natural deduction that are applied by proof by default. The
patterns are phrased in terms of show but work for have and lemma, too.

We start with two forms of case analysis: starting from a formula P we
have the two cases P and ¬ P, and starting from a fact P ∨ Q we have the
two cases P and Q :

5.2 Proof Patterns 57

show "R"
proof cases
assume "P"
...

show "R" . . .

next
assume "¬ P"
...

show "R" . . .

qed

have "P ∨ Q" . . .

then show "R"
proof
assume "P"
...

show "R" . . .

next
assume "Q"
...

show "R" . . .

qed
How to prove a logical equivalence:

show "P ←→ Q"
proof
assume "P"
...

show "Q" . . .

next
assume "Q"
...

show "P" . . .

qed

Proofs by contradiction (ccontr stands for “classical contradiction”):

show "¬ P"
proof
assume "P"
...

show "False" . . .

qed

show "P"
proof (rule ccontr)
assume "¬P"
...

show "False" . . .

qed
How to prove quantified formulas:

show "∀ x . P(x)"
proof
fix x
...

show "P(x)" . . .

qed

show "∃ x . P(x)"
proof
...

show "P(witness)" . . .

qed

In the proof of ∀ x . P(x), the step fix x introduces a locally fixed variable
x into the subproof, the proverbial “arbitrary but fixed value”. Instead of x

58 5 Isar: A Language for Structured Proofs

we could have chosen any name in the subproof. In the proof of ∃ x . P(x),
witness is some arbitrary term for which we can prove that it satisfies P.

How to reason forward from ∃ x . P(x):

have "∃ x . P(x)" . . .

then obtain x where p: "P(x)" by blast

After the obtain step, x (we could have chosen any name) is a fixed local
variable, and p is the name of the fact P(x). This pattern works for one or
more x. As an example of the obtain command, here is the proof of Cantor’s
theorem in more detail:

lemma "¬ surj (f :: ′a ⇒ ′a set)"
proof
assume "surj f"
hence "∃ a . {x . x /∈ f x } = f a" by(auto simp: surj_def)
then obtain a where "{x . x /∈ f x } = f a" by blast
hence "a /∈ f a ←→ a ∈ f a" by blast
thus "False" by blast

qed

Finally, how to prove set equality and subset relationship:

show "A = B"
proof
show "A ⊆ B" . . .

next
show "B ⊆ A" . . .

qed

show "A ⊆ B"
proof
fix x
assume "x ∈ A"
...

show "x ∈ B" . . .

qed

5.3 Streamlining Proofs

5.3.1 Pattern Matching and Quotations

In the proof patterns shown above, formulas are often duplicated. This can
make the text harder to read, write and maintain. Pattern matching is an
abbreviation mechanism to avoid such duplication. Writing

show formula (is pattern)

matches the pattern against the formula, thus instantiating the unknowns in
the pattern for later use. As an example, consider the proof pattern for ←→:

show "formula1 ←→ formula2" (is "?L ←→ ?R")

5.3 Streamlining Proofs 59

proof
assume "?L"
...

show "?R" . . .

next
assume "?R"
...

show "?L" . . .

qed

Instead of duplicating formula i in the text, we introduce the two abbrevia-
tions ?L and ?R by pattern matching. Pattern matching works wherever a
formula is stated, in particular with have and lemma.

The unknown ?thesis is implicitly matched against any goal stated by
lemma or show. Here is a typical example:

lemma "formula"
proof −
...

show ?thesis . . .

qed

Unknowns can also be instantiated with let commands

let ?t = "some-big-term"

Later proof steps can refer to ?t :

have ". . . ?t . . . "

Names of facts are introduced with name : and refer to proved theorems. Un-
knowns ?X refer to terms or formulas.

Although abbreviations shorten the text, the reader needs to remember
what they stand for. Similarly for names of facts. Names like 1, 2 and 3 are not
helpful and should only be used in short proofs. For longer proofs, descriptive
names are better. But look at this example:

have x_gr_0: "x > 0"
...
from x_gr_0 . . .

The name is longer than the fact it stands for! Short facts do not need names;
one can refer to them easily by quoting them:

60 5 Isar: A Language for Structured Proofs

have "x > 0"
...
from ‘x>0‘ . . .

Note that the quotes around x>0 are back quotes. They refer to the fact
not by name but by value.

5.3.2 moreover

Sometimes one needs a number of facts to enable some deduction. Of course
one can name these facts individually, as shown on the right, but one can also
combine them with moreover, as shown on the left:

have "P1" . . .

moreover have "P2" . . .

moreover
...
moreover have "Pn" . . .

ultimately have "P" . . .

have lab1: "P1" . . .

have lab2: "P2" . . .
...
have labn: "Pn" . . .

from lab1 lab2 . . .
have "P" . . .

The moreover version is no shorter but expresses the structure more clearly
and avoids new names.

5.3.3 Raw Proof Blocks

Sometimes one would like to prove some lemma locally within a proof, a
lemma that shares the current context of assumptions but that has its own
assumptions and is generalized over its locally fixed variables at the end. This
is what a raw proof block does:

{ fix x1 . . . x n

assume A1 . . . Am
...
have B

}

proves [[A1; . . . ; Am]] =⇒ B where all x i have been replaced by unknowns
?x i.

The conclusion of a raw proof block is not indicated by show but is simply the
final have.

As an example we prove a simple fact about divisibility on integers. The
definition of dvd is (b dvd a) = (∃ k . a = b ∗ k).

5.4 Case Analysis and Induction 61

lemma fixes a b :: int assumes "b dvd (a+b)" shows "b dvd a"
proof −
{ fix k assume k : "a+b = b∗k"
have "∃ k ′. a = b∗k ′"
proof
show "a = b∗(k − 1)" using k by(simp add : algebra_simps)

qed }
then show ?thesis using assms by(auto simp add : dvd_def)

qed

Note that the result of a raw proof block has no name. In this example it was
directly piped (via then) into the final proof, but it can also be named for
later reference: you simply follow the block directly by a note command:

note name = this

This introduces a new name name that refers to this, the fact just proved, in
this case the preceding block. In general, note introduces a new name for one
or more facts.

Exercises

Exercise 5.1. Give a readable, structured proof of the following lemma:

lemma assumes T : "∀ x y . T x y ∨ T y x"
and A: "∀ x y . A x y ∧ A y x −→ x = y"
and TA: "∀ x y . T x y −→ A x y" and "A x y"
shows "T x y"

Exercise 5.2. Give a readable, structured proof of the following lemma:

lemma "(∃ ys zs . xs = ys @ zs ∧ length ys = length zs)
∨ (∃ ys zs . xs = ys @ zs ∧ length ys = length zs + 1)"

Hint: There are predefined functions take :: nat ⇒ ′a list ⇒ ′a list and drop
:: nat ⇒ ′a list ⇒ ′a list such that take k [x1,. . .] = [x1,. . .,x k] and drop k
[x1,. . .] = [x k+1,. . .]. Let sledgehammer find and apply the relevant take and
drop lemmas for you.

5.4 Case Analysis and Induction

5.4.1 Datatype Case Analysis

We have seen case analysis on formulas. Now we want to distinguish which
form some term takes: is it 0 or of the form Suc n, is it [] or of the form x #
xs, etc. Here is a typical example proof by case analysis on the form of xs :

62 5 Isar: A Language for Structured Proofs

lemma "length(tl xs) = length xs − 1"
proof (cases xs)
assume "xs = []"
thus ?thesis by simp

next
fix y ys assume "xs = y#ys"
thus ?thesis by simp

qed

Function tl (”tail”) is defined by tl [] = [] and tl (x21.0 # x22.0) = x22.0.
Note that the result type of length is nat and 0 − 1 = 0.

This proof pattern works for any term t whose type is a datatype. The
goal has to be proved for each constructor C :

fix x1 . . . x n assume "t = C x1 . . . x n"

Each case can be written in a more compact form by means of the case com-
mand:

case (C x1 . . . x n)

This is equivalent to the explicit fix-assume line but also gives the assumption
"t = C x1 . . . x n" a name: C, like the constructor. Here is the case version
of the proof above:

proof (cases xs)
case Nil
thus ?thesis by simp

next
case (Cons y ys)
thus ?thesis by simp

qed

Remember that Nil and Cons are the alphanumeric names for [] and #. The
names of the assumptions are not used because they are directly piped (via
thus) into the proof of the claim.

5.4.2 Structural Induction

We illustrate structural induction with an example based on natural num-
bers: the sum (

∑
) of the first n natural numbers ({0..n ::nat }) is equal to

n ∗ (n + 1) div 2. Never mind the details, just focus on the pattern:

lemma "
∑

{0..n ::nat } = n∗(n+1) div 2"
proof (induction n)
show "

∑
{0..0::nat } = 0∗(0+1) div 2" by simp

5.4 Case Analysis and Induction 63

next
fix n assume "

∑
{0..n ::nat } = n∗(n+1) div 2"

thus "
∑

{0..Suc n} = Suc n∗(Suc n+1) div 2" by simp
qed

Except for the rewrite steps, everything is explicitly given. This makes the
proof easily readable, but the duplication means it is tedious to write and
maintain. Here is how pattern matching can completely avoid any duplication:

lemma "
∑

{0..n ::nat } = n∗(n+1) div 2" (is "?P n")
proof (induction n)
show "?P 0" by simp

next
fix n assume "?P n"
thus "?P(Suc n)" by simp

qed

The first line introduces an abbreviation ?P n for the goal. Pattern matching
?P n with the goal instantiates ?P to the function λn .

∑
{0..n} = n ∗ (n +

1) div 2. Now the proposition to be proved in the base case can be written as
?P 0, the induction hypothesis as ?P n, and the conclusion of the induction
step as ?P(Suc n).

Induction also provides the case idiom that abbreviates the fix-assume step.
The above proof becomes

proof (induction n)
case 0
show ?case by simp

next
case (Suc n)
thus ?case by simp

qed

The unknown ?case is set in each case to the required claim, i.e., ?P 0 and
?P(Suc n) in the above proof, without requiring the user to define a ?P. The
general pattern for induction over nat is shown on the left-hand side:

64 5 Isar: A Language for Structured Proofs

show "P(n)"
proof (induction n)
case 0
...
show ?case . . .

next
case (Suc n)
...
show ?case . . .

qed

let ?case = "P(0)"

fix n assume Suc: "P(n)"
let ?case = "P(Suc n)"

On the right side you can see what the case command on the left stands for.
In case the goal is an implication, induction does one more thing: the

proposition to be proved in each case is not the whole implication but only
its conclusion; the premises of the implication are immediately made assump-
tions of that case. That is, if in the above proof we replace show "P(n)" by
show "A(n) =⇒ P(n)" then case 0 stands for

assume 0: "A(0)"
let ?case = "P(0)"

and case (Suc n) stands for

fix n
assume Suc: "A(n) =⇒ P(n)"

"A(Suc n)"
let ?case = "P(Suc n)"

The list of assumptions Suc is actually subdivided into Suc.IH, the induction
hypotheses (here A(n) =⇒ P(n)), and Suc.prems, the premises of the goal
being proved (here A(Suc n)).

Induction works for any datatype. Proving a goal [[A1(x); . . .; Ak(x)]]

=⇒ P(x) by induction on x generates a proof obligation for each constructor
C of the datatype. The command case (C x1 . . . x n) performs the following
steps:

1. fix x1 . . . x n

2. assume the induction hypotheses (calling them C .IH) and the premises
Ai(C x1 . . . x n) (calling them C .prems) and calling the whole list C

3. let ?case = "P(C x1 . . . x n)"

5.4.3 Rule Induction

Recall the inductive and recursive definitions of even numbers in Section 4.5:

5.4 Case Analysis and Induction 65

inductive ev :: "nat ⇒ bool" where
ev0: "ev 0" |

evSS : "ev n =⇒ ev(Suc(Suc n))"

fun even :: "nat ⇒ bool" where
"even 0 = True" |

"even (Suc 0) = False" |

"even (Suc(Suc n)) = even n"

We recast the proof of ev n =⇒ Isar .even n in Isar. The left column shows
the actual proof text, the right column shows the implicit effect of the two
case commands:

lemma "ev n =⇒ even n"
proof(induction rule : ev .induct)
case ev0
show ?case by simp

next
case evSS

thus ?case by simp
qed

let ?case = "even 0"

fix n
assume evSS : "ev n"

"even n"
let ?case = "even(Suc(Suc n))"

The proof resembles structural induction, but the induction rule is given
explicitly and the names of the cases are the names of the rules in the inductive
definition. Let us examine the two assumptions named evSS : ev n is the
premise of rule evSS, which we may assume because we are in the case where
that rule was used; Isar .even n is the induction hypothesis.

Because each case command introduces a list of assumptions named like the case
name, which is the name of a rule of the inductive definition, those rules now

need to be accessed with a qualified name, here ev .ev0 and ev .evSS.

In the case evSS of the proof above we have pretended that the system
fixes a variable n. But unless the user provides the name n, the system will
just invent its own name that cannot be referred to. In the above proof, we
do not need to refer to it, hence we do not give it a specific name. In case one
needs to refer to it one writes

case (evSS m)

like case (Suc n) in earlier structural inductions. The name m is an arbi-
trary choice. As a result, case evSS is derived from a renamed version of rule

66 5 Isar: A Language for Structured Proofs

evSS : ev m =⇒ ev(Suc(Suc m)). Here is an example with a (contrived)
intermediate step that refers to m :

lemma "ev n =⇒ even n"
proof(induction rule : ev .induct)
case ev0 show ?case by simp

next
case (evSS m)

have "even(Suc(Suc m)) = even m" by simp
thus ?case using ‘even m‘ by blast

qed

In general, let I be a (for simplicity unary) inductively defined predicate
and let the rules in the definition of I be called rule1, . . . , rulen. A proof by
rule induction follows this pattern:

show "I x =⇒ P x"
proof(induction rule : I .induct)
case rule1
...
show ?case . . .

next
...
next
case rulen
...
show ?case . . .

qed

One can provide explicit variable names by writing case (rule i x1 . . . x k),
thus renaming the first k free variables in rule i to x1 . . . x k, going through
rule i from left to right.

5.4.4 Assumption Naming

In any induction, case name sets up a list of assumptions also called name,
which is subdivided into three parts:

name .IH contains the induction hypotheses.
name .hyps contains all the other hypotheses of this case in the induction

rule. For rule inductions these are the hypotheses of rule name, for struc-
tural inductions these are empty.

name .prems contains the (suitably instantiated) premises of the statement
being proved, i.e., the Ai when proving [[A1; . . .; An]] =⇒ A.

5.4 Case Analysis and Induction 67

Proof method induct differs from induction only in this naming policy: induct
does not distinguish IH from hyps but subsumes IH under hyps.

More complicated inductive proofs than the ones we have seen so far often
need to refer to specific assumptions — just name or even name .prems and
name .IH can be too unspecific. This is where the indexing of fact lists comes
in handy, e.g., name .IH (2) or name .prems(1−2).

5.4.5 Rule Inversion

Rule inversion is case analysis of which rule could have been used to de-
rive some fact. The name rule inversion emphasizes that we are reasoning
backwards: by which rules could some given fact have been proved? For the
inductive definition of ev, rule inversion can be summarized like this:

ev n =⇒ n = 0 ∨ (∃ k . n = Suc (Suc k) ∧ ev k)

The realisation in Isabelle is a case analysis. A simple example is the proof
that ev n =⇒ ev (n − 2). We already went through the details informally
in Section 4.5.1. This is the Isar proof:

assume "ev n"
from this have "ev(n − 2)"
proof cases
case ev0 thus "ev(n − 2)" by (simp add : ev .ev0)

next
case (evSS k) thus "ev(n − 2)" by (simp add : ev .evSS)

qed

The key point here is that a case analysis over some inductively defined pred-
icate is triggered by piping the given fact (here: from this) into a proof by
cases. Let us examine the assumptions available in each case. In case ev0 we
have n = 0 and in case evSS we have n = Suc (Suc k) and ev k. In each
case the assumptions are available under the name of the case; there is no
fine-grained naming schema like there is for induction.

Sometimes some rules could not have been used to derive the given fact
because constructors clash. As an extreme example consider rule inversion
applied to ev (Suc 0): neither rule ev0 nor rule evSS can yield ev (Suc 0)
because Suc 0 unifies neither with 0 nor with Suc (Suc n). Impossible cases
do not have to be proved. Hence we can prove anything from ev (Suc 0):

assume "ev(Suc 0)" then have P by cases

That is, ev (Suc 0) is simply not provable:

lemma "¬ ev(Suc 0)"

68 5 Isar: A Language for Structured Proofs

proof
assume "ev(Suc 0)" then show False by cases

qed

Normally not all cases will be impossible. As a simple exercise, prove that
¬ ev (Suc (Suc (Suc 0))).

5.4.6 Advanced Rule Induction

So far, rule induction was always applied to goals of the form I x y z =⇒
. . . where I is some inductively defined predicate and x, y, z are variables.
In some rare situations one needs to deal with an assumption where not all
arguments r, s, t are variables:

lemma "I r s t =⇒ . . ."

Applying the standard form of rule induction in such a situation will lead to
strange and typically unprovable goals. We can easily reduce this situation to
the standard one by introducing new variables x, y, z and reformulating the
goal like this:

lemma "I x y z =⇒ x = r =⇒ y = s =⇒ z = t =⇒ . . ."

Standard rule induction will work fine now, provided the free variables in r,
s, t are generalized via arbitrary.

However, induction can do the above transformation for us, behind the
curtains, so we never need to see the expanded version of the lemma. This is
what we need to write:

lemma "I r s t =⇒ . . ."
proof(induction "r" "s" "t" arbitrary : . . . rule : I .induct)

Like for rule inversion, cases that are impossible because of constructor clashes
will not show up at all. Here is a concrete example:

lemma "ev (Suc m) =⇒ ¬ ev m"
proof(induction "Suc m" arbitrary : m rule : ev .induct)
fix n assume IH : "

∧
m . n = Suc m =⇒ ¬ ev m"

show "¬ ev (Suc n)"
proof — contradiction
assume "ev(Suc n)"
thus False
proof cases — rule inversion
fix k assume "n = Suc k" "ev k"
thus False using IH by auto

qed

5.4 Case Analysis and Induction 69

qed
qed

Remarks:

� Instead of the case and ?case magic we have spelled all formulas out. This
is merely for greater clarity.

� We only need to deal with one case because the ev0 case is impossible.
� The form of the IH shows us that internally the lemma was expanded as

explained above: ev x =⇒ x = Suc m =⇒ ¬ ev m .
� The goal ¬ ev (Suc n) may suprise. The expanded version of the lemma

would suggest that we have a fixm assume Suc (Suc n) = Suc m and need
to show ¬ ev m. What happened is that Isabelle immediately simplified
Suc (Suc n) = Suc m to Suc n = m and could then eliminatem. Beware
of such nice surprises with this advanced form of induction.

This advanced form of induction does not support the IH naming schema ex-
plained in Section 5.4.4: the induction hypotheses are instead found under the

name hyps, as they are for the simpler induct method.

Exercises

Exercise 5.3. Give a structured proof by rule inversion:

lemma assumes a : "ev(Suc(Suc n))" shows "ev n"

Exercise 5.4. Give a structured proof of ¬ ev (Suc (Suc (Suc 0))) by rule
inversions. If there are no cases to be proved you can close a proof immedi-
ateley with qed.

Exercise 5.5. Recall predicate star from Section 4.5.2 and iter from Exer-
cise 4.4. Prove iter r n x y =⇒ star r x y in a structured style; do not just
sledgehammer each case of the required induction.

Exercise 5.6. Define a recursive function elems :: ′a list ⇒ ′a set and prove
x ∈ elems xs =⇒ ∃ ys zs . xs = ys @ x # zs ∧ x /∈ elems ys.

Part II

Semantics

It is all very well to aim for a more “abstract” and a “cleaner”
approach to semantics, but if the plan is to be any good, the
operational aspects cannot be completely ignored.

Dana Scott [82]

6

Introduction

Welcome to the second part of this book. In the first part you have mastered
the basics of interactive theorem proving and are now able to navigate the
depths of higher-order logic. In this second part, we put these skills to concrete
use in the semantics of programming languages.

Why formal semantics? Because there is no alternative when it comes
to an unambiguous foundation of what is at the heart of computer science:
programs. A formal semantics provides the much needed foundation for their
work not just to programmers who want to reason about their programs but
also to developers of tools (e.g., compilers, refactoring tools and program
analysers) and ultimately to language designers themselves.

This second part of the book is based entirely on a small imperative lan-
guage called IMP. IMP is our vehicle for showing not just how to formally
define the semantics of a programming language but also how to use the
semantics to reason about the language, about the behaviour of programs,
and about program analyses. Specifically, we examine the following topics:
operational semantics, compiler correctness, type systems, program analysis,
denotational semantics, Hoare logic, and abstract interpretation.

IMP is a minimal language, with just enough expressive power to be
Turing-complete. It does not come with the bells and whistles of a real,
mainstream programming language. This is by design: our aim is to show
the essence of the techniques, analyses, and transformations that we study
in this book, not to get bogged down in detail and sheer volume. This does
not mean that formal, machine-checked semantics cannot scale to mainstream
languages such as C or Java or more complex features such as object orienta-
tion. In fact, this is where proof assistants shine: the ability to automatically
check a large amount of error-prone detail relieves the tedium of any sizeable
formalization. At the end of each chapter we give pointers to further reading
and recent successful applications of the techniques we discuss.

74 6 Introduction

Isabelle

Although the reader will get the most out of this second part of the book if she
has studied Isabelle before, it can be read without knowledge of interactive
theorem proving. We describe all proofs in detail, but in contrast to the first
part of the book, we describe them informally. Nevertheless, everything has
been formalized and proved in Isabelle. All these theories can be found in the
directory src/HOL/IMP of the Isabelle distribution. HTML versions are avail-
able online at http://isabelle.in.tum.de/library/HOL/HOL-IMP. Many
section headings have a link to the corresponding Isabelle theory attached
that looks like this: thy . Appendix C contains a table that shows which sec-
tions are based on which theories.

In this second part of the book we simplify the Isabelle syntax in two
minor respects to improve readability:

� We no longer enclose types and terms in quotation marks.
� We no longer separate clauses in function definitions or inductive defini-

tions with “ |”.

Finally, a note on terminology: We call a proof “automatic” if it requires
only a single invocation of a basic Isabelle proof method like simp, auto,
blast or metis, possibly modified with specific lemmas. Inductions are not
automatic, although each case can be.

http://isabelle.in.tum.de/library/HOL/HOL-IMP
http://isabelle.in.tum.de/library/HOL/HOL-IMP/Com.html

7

IMP: A Simple Imperative Language

To talk about semantics, we first need a programming language. This chapter
defines one: a minimalistic imperative programming language called IMP.

The main aim of this chapter is to introduce the concepts of commands
and their abstract syntax, and to use them to illustrate two styles of defining
the semantics of a programming language: big-step and small-step operational
semantics. Our first larger theorem about IMP will be the equivalence of these
two definitions of its semantics. As a smaller concrete example, we will apply
our semantics to the concept of program equivalence.

7.1 IMP Commands thy

Before we jump into any formalization or define the abstract syntax of com-
mands, we need to determine which constructs the language IMP should con-
tain. The basic constraints are given by our aim to formalize the semantics
of an imperative language and to keep things simple. For an imperative lan-
guage, we will want the basics such as assignments, sequential composition
(semicolon), and conditionals (IF). To make it Turing-complete, we will want
to include WHILE loops. To be able to express other syntactic forms, such
as an IF without an ELSE branch, we also include the SKIP command
that does nothing. The right-hand side of variable assignments will be the
arithmetic expressions already defined in Chapter 3, and the conditions in IF
and WHILE will be the boolean expressions defined in the same chapter. A
program is simply a, possibly complex, command in this language.

We have already seen the formalization of expressions and their semantics
in Chapter 3. The abstract syntax of commands is:

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Com.html

76 7 IMP: A Simple Imperative Language

datatype com = SKIP
| Assign vname aexp
| Seq com com
| If bexp com com
| While bexp com

In the definitions, proofs, and examples further along in this book, we will
often want to refer to concrete program fragments. To make such fragments
more readable, we also introduce concrete infix syntax in Isabelle for the
four compound constructors of the com datatype. The term Assign x a for
instance can be written as x ::= a , the term Seq c1 c2 as c1;; c2, the term
If b c1 c2 as IF b THEN c1 ELSE c2, and the while loop While b c as
WHILE b DO c. Sequential composition is denoted by “;;” to distinguish it
from the “;” that separates assumptions in the [[. . .]] notation. Nevertheless we
still pronounce “;;” as “semicolon”.

Example 7.1. The following is an example IMP program with two assign-
ments.

′ ′x ′ ′ ::= Plus (V ′ ′y ′ ′) (N 1);; ′ ′y ′ ′ ::= N 2

We have not defined its meaning yet, but the intention is that it assigns the
value of variable y incremented by 1 to the variable x, and afterwards sets
y to 2. In a more conventional concrete programming language syntax, we
would have written

x := y + 1; y := 2

We will occasionally use this more compact style for examples in the text,
with the obvious translation into the formal form.

We write concrete variable names as strings enclosed in double quotes, just as in
the arithmetic expressions in Chapter 3. Examples are V ′ ′x ′ ′ or ′ ′x ′ ′ ::= exp.

If we write V x instead, x is a logical variable for the name of the program variable.
That is, in x ::= exp, the x stands for any concrete name ′ ′x ′ ′, ′ ′y ′ ′, and so on, the
same way exp stands for any arithmetic expression.

In our language, semicolon associates to the left. This means c1 ;; c2 ;; c3 =

(c1 ;; c2) ;; c3. We will later prove that semantically it does not matter whether
semicolon associates to the left or to the right.

The compound commands IF and WHILE bind stronger than semicolon. That
means WHILE b DO c1;; c2 = (WHILE b DO c1);; c2.

While more convenient than writing abstract syntax trees, as we have seen
in the example, even the more concrete Isabelle notation above is occasion-
ally somewhat cumbersome to use. This is not a fundamental restriction of
the theorem prover or of mechanised semantics. If one were interested in a

7.2 Big-Step Semantics 77

more traditional concrete syntax for IMP, or if one were to formalize a larger,
more realistic language, one could write separate parsing/printing ML code
that integrates with Isabelle and implements the concrete syntax of the lan-
guage. This is usually only worth the effort when the emphasis is on program
verification as opposed to meta-theorems about the programming language.

A larger language may also contain a so-called syntactic de-sugaring phase,
where more complex constructs in the language are transformed into simple
core concepts. For instance, our IMP language does not have syntax for Java
style for-loops, or repeat . . . until loops. For our purpose of analysing pro-
gramming language semantics in general these concepts add nothing new, but
for a full language formalization they would be required. De-sugaring would
take the for-loop and do . . . while syntax and translate it into the standard
WHILE loops that IMP supports. Therefore definitions and theorems about
the core language only need to worry about one type of loop, while still sup-
porting the full richness of a larger language. This significantly reduces proof
size and effort for the theorems that we discuss in this book.

7.2 Big-Step Semantics thy

In the previous section we defined the abstract syntax of the IMP language.
In this section we show its semantics. More precisely, we will use a big-step
operational semantics to give meaning to commands.

In an operational semantics setting, the aim is to capture the meaning
of a program as a relation that describes how a program executes. Other styles
of semantics may be concerned with assigning mathematical structures as
meanings to programs, e.g., in the so-called denotational style in Chapter 11,
or they may be interested in capturing the meaning of programs by describing
how to reason about them, e.g., in the axiomatic style in Chapter 12.

7.2.1 Definition

In big-step operational semantics, the relation to be defined is between pro-
gram, initial state, and final state. Intermediate states during the execution
of the program are not visible in the relation. Although the inductive rules
that define the semantics will tell us how the execution proceeds internally,
the relation itself looks as if the whole program was executed in one big step.

We formalize the big-step execution relation in the theorem prover as a
ternary predicate big_step. The intended meaning of big_step c s t is that
execution of command c starting in state s terminates in state t. To display
such predicates in a more intuitive form, we use Isabelle’s syntax mechanism
and the more conventional notation (c, s) ⇒ t instead of big_step c s t.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Big_Step.html

78 7 IMP: A Simple Imperative Language

(SKIP , s) ⇒ s
Skip

(x ::= a , s) ⇒ s(x := aval a s)
Assign

(c1, s1) ⇒ s2 (c2, s2) ⇒ s3
(c1;; c2, s1) ⇒ s3

Seq

bval b s (c1, s) ⇒ t

(IF b THEN c1 ELSE c2, s) ⇒ t
IfTrue

¬ bval b s (c2, s) ⇒ t

(IF b THEN c1 ELSE c2, s) ⇒ t
IfFalse

¬ bval b s

(WHILE b DO c, s) ⇒ s
WhileFalse

bval b s1 (c, s1) ⇒ s2 (WHILE b DO c, s2) ⇒ s3
(WHILE b DO c, s1) ⇒ s3

WhileTrue

Fig. 7.1. The big-step rules of IMP

It remains for us to define which c, s and s ′ this predicate is made up
of. Given the recursive nature of the abstract syntax, it will not come as a
surprise that our choice is an inductive definition. Figure 7.1 shows its rules.
Predicates such as (c, s) ⇒ t that are defined by a set of rules are often
also called judgements, because the rules decide for which parameters the
predicate is true. However, there is nothing special about them, they are
merely ordinary inductively defined predicates.

Let us go through the rules and rephrase each of them in natural language:

� If the command is SKIP, the initial and final state must be the same.
� If the command is an assignment x ::= a and the initial state is s, then

the final state is the same state s where the value of variable x is replaced
by the evaluation of the expression a in state s.

� If the command is a sequential composition, rule Seq says the combined
command c1;; c2 started in s1 terminates in s3 if the the first command
started in s1 terminates in some intermediate state s2 and c2 takes this
s2 to s3.

� The conditional is the first command that has two rules, depending on the
value of its boolean expression in the current state s. If that value is True,
then the IfTrue rule says that the execution terminates in the same state
t that the command c1 terminates in if started in s. The IfFalse rule does
the same for the command c2 in the False case.

� WHILE loops are slightly more interesting. If the condition evaluates to
False, the whole loop is skipped, which is expressed in rule WhileFalse.
However, if the condition evaluates to True in state s1 and the body c
of the loop takes this state s1 to some intermediate state s2, and if the

7.2 Big-Step Semantics 79

inductive
big_step :: com × state ⇒ state ⇒ bool (infix ⇒ 55)

where
Skip: (SKIP ,s) ⇒ s |

Assign : (x ::= a ,s) ⇒ s(x := aval a s) |

Seq : [[(c1,s1) ⇒ s2; (c2,s2) ⇒ s3]] =⇒ (c1;;c2, s1) ⇒ s3 |

IfTrue : [[bval b s ; (c1,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t |

IfFalse : [[¬bval b s ; (c2,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t |

WhileFalse : ¬bval b s =⇒ (WHILE b DO c,s) ⇒ s |

WhileTrue :
[[bval b s1; (c,s1) ⇒ s2; (WHILE b DO c, s2) ⇒ s3]]

=⇒ (WHILE b DO c, s1) ⇒ s3

Fig. 7.2. Isabelle definition of the big-step semantics

same WHILE loop started in s2 terminates in s3, then the entire loop
also terminates in s3.

Designing the right set of introduction rules for a language is not nec-
essarily hard. The idea is to have at least one rule per syntactic construct
and to add further rules when case distinctions become necessary. For each
single rule, one starts with the conclusion, for instance (c1;; c2, s) ⇒ s ′,
and then constructs the assumptions of the rule by thinking about which
conditions have to be true about s, s ′, and the parameters of the abstract
syntax constructor. In the c1;; c2 example, the parameters are c1 and c2. If
the assumptions collapse to an equation about s ′ as in the SKIP and x ::=

a cases, s ′ can be replaced directly.
Following the rules of Figure 7.1, the corresponding Isabelle definition

shown in Figure 7.2 is straightforward, using the command inductive (see Sec-
tion 4.5). The type of big_step is com × state ⇒ state ⇒ bool rather than
the canonical com ⇒ state ⇒ state ⇒ bool merely because that permits us
to introduce the concrete syntax (_,_) ⇒ _by declaring the transition arrow
“⇒” as an infix symbol.

The striking similarity between the rules in the Isabelle definition in Fig-
ure 7.2 and the rules in Figure 7.1 is no accident: Figure 7.1 is generated
automatically from the Isabelle definition with the help of Isabelle’s LATEX
pretty-printing facility. In the future we will display inductive definitions only
in their pretty-printed form. The interested reader will find the full details in
the accompanying Isabelle theories.

7.2.2 Deriving IMP Executions

Figure 7.3 shows a so-called derivation tree, i.e., a composition of the rules
from Figure 7.1 that visualizes a big-step execution: we are executing the

80 7 IMP: A Simple Imperative Language

(′ ′x ′ ′ ::= N 5, s) ⇒ s(′ ′x ′ ′ := 5) (′ ′y ′ ′ ::= V ′ ′x ′ ′, s(′ ′x ′ ′ := 5)) ⇒ s ′

(′ ′x ′ ′ ::= N 5;; ′ ′y ′ ′ ::= V ′ ′x ′ ′, s) ⇒ s ′

where s ′ = s(′ ′x ′ ′ := 5, ′ ′y ′ ′ := 5)

Fig. 7.3. Derivation tree for execution of an IMP program

command ′ ′x ′ ′ ::= N 5;; ′ ′y ′ ′ ::= V ′ ′x ′ ′, starting it in an arbitrary state
s. Our claim is that at the end of this execution, we get the same state s,
but with both x and y set to 5. We construct the derivation tree from its
root, the bottom of Figure 7.3, starting with the Seq rule, which gives us
two obligations, one for each assignment. Working on ′ ′x ′ ′ ::= N 5 first, we
can conclude via the Assign rule that it results in the state s (′ ′x ′ ′ := 5).
We feed this intermediate state into the execution of the second assignment,
and again with the assignment rule complete the derivation tree. In general,
a derivation tree consists of rule applications at each node and of applications
of axioms (rules without premises) at the leaves.

We can conduct the same kind of argument in the theorem prover. The
following is the example from Figure 7.3 in Isabelle. Instead of telling the
prover what the result state is, we state the lemma with a schematic variable
and let Isabelle compute its value as the proof progresses.

schematic_lemma ex : (′ ′x ′ ′ ::= N 5;; ′ ′y ′ ′ ::= V ′ ′x ′ ′, s) ⇒ ?t
apply(rule Seq)
apply(rule Assign)
apply simp
apply(rule Assign)
done

After the proof is finished, Isabelle instantiates the lemma statement, and
after simplification we get the expected (′ ′x ′ ′ ::= N 5;; ′ ′y ′ ′ ::= V ′ ′x ′ ′, s)
⇒ s(′ ′x ′ ′ := 5, ′ ′y ′ ′ := 5).

We could use this style of lemma to execute IMP programs symbolically.
However, a more convenient way to execute the big-step rules is to use Isa-
belle’s code generator. The following command tells it to generate code for
the predicate⇒ and thus make the predicate available in the values command,
which is similar to value, but works on inductive definitions and computes a
set of possible results.

code_pred big_step .

We could now write

values {t . (SKIP , λ_. 0) ⇒ t }

7.2 Big-Step Semantics 81

but this only shows us {_}, i.e., that the result is a set containing one el-
ement. Functions cannot always easily be printed, but lists can be, so we
just ask for the values of a list of variables we are interested in, using the
set-comprehension notation introduced in Section 4.2:

values {map t [′ ′x ′ ′, ′ ′y ′ ′] |t . (′ ′x ′ ′ ::= N 2, λ_. 0) ⇒ t }

This has the result {[2,0]}.
This section showed us how to construct program derivations and how to

execute small IMP programs according to the big-step semantics. In the next
section, we instead deconstruct executions that we know have happened and
analyse all possible ways we could have gotten there.

7.2.3 Rule Inversion

What can we conclude from (SKIP , s)⇒ t? Clearly t = s. This is an example
of rule inversion which we had discussed previously in Section 5.4.5. It is a
consequence of the fact that an inductively defined predicate is only true if
the rules force it to be true, i.e., only if there is some derivation tree for it.

Inversion of the rules for big-step semantics tells us what we can infer from
(c, s) ⇒ t. For the different commands we obtain the following inverted rules:

(SKIP , s) ⇒ t =⇒ t = s

(x ::= a , s) ⇒ t =⇒ t = s(x := aval a s)

(c1;; c2, s1) ⇒ s3 =⇒ ∃ s2. (c1, s1) ⇒ s2 ∧ (c2, s2) ⇒ s3

(IF b THEN c1 ELSE c2, s) ⇒ t =⇒
bval b s ∧ (c1, s) ⇒ t ∨ ¬ bval b s ∧ (c2, s) ⇒ t

(WHILE b DO c, s) ⇒ t =⇒
¬ bval b s ∧ t = s ∨

bval b s ∧ (∃ s ′. (c, s) ⇒ s ′ ∧ (WHILE b DO c, s ′) ⇒ t)

As an example, we paraphrase the final implication: if (WHILE b DO c, s)
⇒ t then either b is false and t = s, i.e., rule WhileFalse was used, or b
is true and there is some intermediate state s ′ such that (c, s) ⇒ s ′ and
(WHILE b DO c, s ′) ⇒ t , i.e., rule WhileTrue was used.

These inverted rules can be proved automatically by Isabelle from the
original rules. Moreover, proof methods like auto and blast can be instructed
to use both the introduction and the inverted rules automatically during proof
search. For details see theory Big_Step.

One can go one step further and combine the above inverted rules with
the original rules to obtain equivalences rather than implications, for example

82 7 IMP: A Simple Imperative Language

(c1;; c2, s1) ⇒ s3 ←→ (∃ s2. (c1, s1) ⇒ s2 ∧ (c2, s2) ⇒ s3)

Every =⇒ in the inverted rules can be turned into ←→ because the ⇐=
direction follows from the original rules.

As an example of the two proof techniques in this and the previous section
consider the following lemma. It states that the syntactic associativity of
semicolon has no semantic effect. We get the same result, no matter if we
group semicolons to the left or to the right.

Lemma 7.2. (c1;; c2;; c3, s) ⇒ s ′ ←→ (c1;; (c2;; c3), s) ⇒ s ′

Proof. We show each direction separately. Consider first the execution where
the semicolons are grouped to the left: ((c1;; c2);; c3, s) ⇒ s ′. By rule
inversion we can decompose this execution twice and obtain the intermediate
states s1 and s2 such that (c1, s) ⇒ s1, as well as (c2, s1) ⇒ s2 and (c3,
s2) ⇒ s ′. From this, we can construct a derivation for (c1;; (c2;; c3), s) ⇒
s ′ by first concluding (c2;; c3, s1) ⇒ s ′ with the Seq rule and then using
the Seq rule again, this time on c1, to arrive at the final result. The other
direction is analogous. ut

7.2.4 Equivalence of Commands

In the previous section we have applied rule inversion and introduction rules
of the big-step semantics to show equivalence between two particular IMP
commands. In this section, we define semantic equivalence as a concept in its
own right.

We call two commands c and c ′ equivalent w.r.t. the big-step semantics
when c started in s terminates in t iff c ′ started in s also terminates in
t. Formally, we define it as an abbreviation:

abbreviation
equiv_c :: com ⇒ com ⇒ bool (infix ∼ 50) where
c ∼ c ′ ≡ (∀ s t . (c,s) ⇒ t = (c ′,s) ⇒ t)

Note that the ∼ symbol in this definition is not the standard tilde ∼, but the
symbol \<sim> instead.

Experimenting with this concept, we see that Isabelle manages to prove
many simple equivalences automatically. One example is the unfolding of
while loops:

Lemma 7.3.
WHILE b DO c ∼ IF b THEN c;; WHILE b DO c ELSE SKIP

Another example is a trivial contraction of IF :

7.2 Big-Step Semantics 83

Lemma 7.4. IF b THEN c ELSE c ∼ c

Of course not all equivalence properties are trivial. For example, the con-
gruence property

Lemma 7.5. c ∼ c ′ =⇒ WHILE b DO c ∼ WHILE b DO c ′

is a corollary of

Lemma 7.6.
[[(WHILE b DO c, s) ⇒ t ; c ∼ c ′]] =⇒ (WHILE b DO c ′, s) ⇒ t

This lemma needs the third main proof technique for inductive definitions:
rule induction. We covered rule induction in Section 4.5.1. Recall that for
the big-step semantics, rule induction applies to properties of the form
(c, s) ⇒ s ′ =⇒ P c s s ′. To prove statements of this kind, we need to con-
sider one case for each introduction rule, and we are allowed to assume P as
an induction hypothesis for each occurrence of the inductive relation ⇒ in
the assumptions of the respective introduction rule. The proof of Lemma 7.6
requires the advanced form of rule induction described in Section 5.4.6 be-
cause the big-step premise in the lemma involves not just variables but the
proper term WHILE b DO c.

This concept of semantic equivalence also has nice algebraic properties.
For instance, it forms a so-called equivalence relation.

Definition 7.7. A relation R is called an equivalence relation iff it is

reflexive: R x x,
symmetric: R x y =⇒ R y x, and
transitive: [[R x y ; R y z]] =⇒ R x z.

Equivalence relations can be used to partition a set into sets of equivalent
elements — in this case, commands that are semantically equivalent belong
to the same partition. The standard equality = can be seen as the most fine-
grained equivalence relation for a given set.

Lemma 7.8. The semantic equivalence ∼ is an equivalence relation. It is
reflexive (c ∼ c), symmetric (c ∼ c ′ =⇒ c ′ ∼ c), and transitive ([[c ∼ c ′;
c ′ ∼ c ′ ′]] =⇒ c ∼ c ′ ′).

Proof. All three properties are proved automatically. ut

Our relation ∼ is also a so-called congruence on the syntax of commands:
it respects the structure of commands — if all sub-commands are equivalent,
so will be the compound command. This is why we called Lemma 7.5 a con-
gruence property: it establishes that ∼ is a congruence relation w.r.t.WHILE.
We can easily prove further such rules for semicolon and IF.

84 7 IMP: A Simple Imperative Language

We have used the concept of semantic equivalence in this section as a first
example of how semantics can be useful: to prove that two programs always
have the same behaviour. An important example of where such equivalences
are used in practice is the transformation of programs in compiler optimiza-
tions, some of which we will show in later chapters of this book.

7.2.5 Execution in IMP is Deterministic

So far, we have proved properties about particular IMP commands and we
have introduced the concept of semantic equivalence. We have not yet in-
vestigated properties of the language itself. One such property is whether
IMP is deterministic or not. A language is called deterministic if, for every
command and every start state, there is at most one possible final state. Con-
versely, a language is called non-deterministic if it admits multiple final
states. Having defined the semantics of the language as a relation, it is not
immediately obvious if execution in this language is deterministic or not.

Formally, a language is deterministic if any two executions of the same
command from the same initial state will always arrive in the same final
state. The following lemma expresses this in Isabelle.

Lemma 7.9 (IMP is deterministic).
[[(c, s) ⇒ t ; (c, s) ⇒ t ′]] =⇒ t ′ = t

Proof. The proof is by induction on the big-step semantics. With our inver-
sion and introduction rules from above, each case is solved automatically by
Isabelle. Note that the automation in this proof is not completely obvious.
Merely using the proof method auto after the induction for instance leads
to non-termination, but the backtracking capabilities of blast manage to solve
each subgoal. Experimenting with different automated methods is encouraged
if the standard ones fail. ut

While the above proof is nice for showing off Isabelle’s proof automation,
it does not give much insight into why the property is true. Figure 7.4 shows
an Isar proof that expands the steps of the only interesting case and omits
the boring cases using automation. This is much closer to a blackboard pre-
sentation.

So far, we have defined the big-step semantics of IMP, we have explored the
proof principles of derivation trees, rule inversion, and rule induction in the
context of the big-step semantics, and we have explored semantic equivalence
as well as determinism of the language. In the next section we will look at a
different way of defining the semantics of IMP.

7.3 Small-Step Semantics 85

theorem
(c,s) ⇒ t =⇒ (c,s) ⇒ t ′ =⇒ t ′ = t

proof (induction arbitrary : t ′ rule : big_step.induct)
— the only interesting case, WhileTrue :
fix b c s s1 t t ′

— The assumptions of the rule:
assume bval b s and (c,s) ⇒ s1 and (WHILE b DO c,s1) ⇒ t
— Ind.Hyp; note the

∧
because of arbitrary:

assume IHc:
∧
t ′. (c,s) ⇒ t ′ =⇒ t ′ = s1

assume IHw :
∧
t ′. (WHILE b DO c,s1) ⇒ t ′ =⇒ t ′ = t

— Premise of implication:
assume (WHILE b DO c,s) ⇒ t ′

with ‘bval b s‘ obtain s ′1 where
c: (c,s) ⇒ s ′1 and
w : (WHILE b DO c,s ′1) ⇒ t ′

by auto
from c IHc have s ′1 = s1 by blast
with w IHw show t ′ = t by blast

qed blast+ — prove the rest automatically

Fig. 7.4. IMP is deterministic

7.3 Small-Step Semantics thy

The big-step semantics executes a program from an initial to the final state in
one big step. Short of inspecting the derivation tree of big-step introduction
rules, it does not allow us to explicitly observe intermediate execution states.
That is the purpose of a small-step semantics.

Small-step semantics lets us explicitly observe partial executions and
make formal statements about them. This enables us, for instance, to talk
about the interleaved, concurrent execution of multiple programs. The main
idea for representing a partial execution is to introduce the concept of how
far execution has progressed in the program. There are many ways of doing
this. Traditionally, for a high-level language like IMP, we modify the type of
the big-step judgement from com × state ⇒ state ⇒ bool to something
like com × state ⇒ com × state ⇒ bool. The second com × state com-
ponent of the judgement is the result state of one small, atomic execution
step together with a modified command that represents what still has to be
executed. We call a com × state pair a configuration of the program, and
use the command SKIP to indicate that execution has terminated.

The idea is easiest to understand by looking at the set of rules. They define
one atomic execution step. The execution of a command is then a sequence
of such steps.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Small_Step.html

86 7 IMP: A Simple Imperative Language

(x ::= a , s) → (SKIP , s(x := aval a s))
Assign

(SKIP ;; c2, s) → (c2, s)
Seq1

(c1, s) → (c ′1, s
′)

(c1;; c2, s) → (c ′1;; c2, s
′)

Seq2

bval b s

(IF b THEN c1 ELSE c2, s) → (c1, s)
IfTrue

¬ bval b s

(IF b THEN c1 ELSE c2, s) → (c2, s)
IfFalse

(WHILE b DO c, s) → (IF b THEN c;; WHILE b DO c ELSE SKIP , s)
While

Fig. 7.5. The small-step rules of IMP

Going through the rules in Figure 7.5 we see that:

� Variable assignment is an atomic step. As mentioned above, SKIP repre-
sents the terminated program.

� There are two rules for semicolon: either the first part is fully executed
already (signified by SKIP), in which case we continue with the second
part, or the first part can be executed further, in which case we perform
the execution step and replace this first part with its reduced version.

� An IF reduces either to the command in the THEN branch or the ELSE
branch, depending on the value of the condition.

� The final rule is for the WHILE loop: we define its semantics by merely
unrolling the loop once. The subsequent execution steps will take care of
testing the condition and possibly executing the body.

Note that we could have used the unrolling definition of WHILE in the
big-step semantics as well. We were, after all, able to prove it as an equivalence
in Section 7.2.4. However, such an unfolding is less natural in the big-step
case, whereas in the small-step semantics the whole idea is to transform the
command bit by bit to model execution.

Had we wanted to observe partial execution of arithmetic or boolean ex-
pressions, we could have introduced a small-step semantics for these as well
(see Exercise 7.4) and made the corresponding small-step rules for assignment,
IF, and WHILE non-atomic in the same way as the semicolon rules.

We can now define the execution of a program as the reflexive transitive
closure of the small_step judgement →, using the star operator defined in
Section 4.5.2:

7.3 Small-Step Semantics 87

abbreviation op →∗ :: com × state ⇒ com × state ⇒ bool where
x →∗ y ≡ star small_step x y

Example 7.10. To look at an example execution of a command in the small-
step semantics, we again use the values command. This time, we will get
multiple elements in the set that it returns — all partial executions of the
program. Given the command c with

c = ′ ′x ′ ′ ::= V ′ ′z ′ ′;; ′ ′y ′ ′ ::= V ′ ′x ′ ′

and an initial state s with

s = < ′ ′x ′ ′ := 3, ′ ′y ′ ′ := 7, ′ ′z ′ ′ := 5>

we issue the following query to Isabelle

values {(c ′,map t [′ ′x ′ ′, ′ ′y ′ ′, ′ ′z ′ ′]) |c ′ t . (c,s) →∗ (c ′,t)}

The result contains four execution steps, starting with the original program
in the initial state, proceeding through partial execution of the the two as-
signments, and ending in the final state of the final program SKIP :

{(′ ′x ′ ′ ::= V ′ ′z ′ ′;; ′ ′y ′ ′ ::= V ′ ′x ′ ′, [3, 7, 5]),
(SKIP ;; ′ ′y ′ ′ ::= V ′ ′x ′ ′, [5, 7, 5]),
(′ ′y ′ ′ ::= V ′ ′x ′ ′, [5, 7, 5]),
(SKIP , [5, 5, 5])}

As a further test of whether our definition of the small-step semantics is
useful, we prove that the rules still give us a deterministic language, like the
big-step semantics.

Lemma 7.11. [[cs → cs ′; cs → cs ′ ′]] =⇒ cs ′ ′ = cs ′

Proof. After induction on the first premise (the small-step semantics), the
proof is as automatic as for the big-step semantics. ut

Recall that both sides of the small-step arrow→ are configurations, that is, pairs
of commands and states. If we don’t need to refer to the individual components,

we refer to the configuration as a whole, such as cs in the lemma above.

We could conduct further tests like this, but since we already have a
semantics for IMP, we can use it to show that our new semantics defines
precisely the same behaviour. The next section does this.

7.3.1 Equivalence with Big-Step Semantics

Having defined an alternative semantics for the same language, the first in-
teresting question is of course if our definitions are equivalent. This section

88 7 IMP: A Simple Imperative Language

shows that this is the case. Both directions are proved separately: for any
big-step execution, there is an equivalent small-step execution and vice versa.

We start by showing that any big-step execution can be simulated by a
sequence of small steps ending in SKIP :

Lemma 7.12. cs ⇒ t =⇒ cs →∗ (SKIP , t)

This is proved in the canonical fashion by rule induction on the big-step
judgement. Most cases follow directly. As an example we look at rule IfTrue :

bval b s (c1, s) ⇒ t

(IF b THEN c1 ELSE c2, s) ⇒ t

By IH we know that (c1, s)→∗ (SKIP , t). This yields the required small-step
derivation:

bval b s

(IF b THEN c1 ELSE c2, s) → (c1, s) (c1, s) →∗ (SKIP , t)

(IF b THEN c1 ELSE c2, s) →∗ (SKIP , t)

Only rule Seq does not go through directly:

(c1, s1) ⇒ s2 (c2, s2) ⇒ s3
(c1;; c2, s1) ⇒ s3

The IHs are (c1, s1) →∗ (SKIP , s2) and (c2, s2) →∗ (SKIP , s3) but we
need a reduction (c1;;c2, s1) →∗ The following lemma bridges the gap:
it lifts a →∗ derivation into the context of a semicolon:

Lemma 7.13.
(c1, s1) →∗ (c, s2) =⇒ (c1;; c2, s1) →∗ (c;; c2, s2)

Proof. The proof is by induction on the reflexive transitive closure star. The
base case is trivial and the step is not much harder: If (c1, s1) → (c ′1, s

′
1)

and (c ′1, s
′
1) →∗ (c, s2), we have (c ′1;; c2, s

′
1) →∗ (c;; c2, s2) by IH. Rule

Seq2 and the step rule for star do the rest:

(c1, s1) → (c ′1, s
′
1)

(c1;; c2, s1) → (c ′1;; c2, s
′
1) (c ′1;; c2, s

′
1) →∗ (c;; c2, s2)

(c1;; c2, s1) →∗ (c;; c2, s2)
ut

Returning to the proof of the Seq case, Lemma 7.13 turns the first IH into
(c1;; c2, s1) →∗ (SKIP ;; c2, s2). From rule Seq1 and the second IH we have
(SKIP ;; c2, s2) →∗ (SKIP , s3):

(SKIP ;; c2, s2) → (c2, s2) (c2, s2) →∗ (SKIP , s3)

(SKIP ;; c2, s2) →∗ (SKIP , s3)

7.3 Small-Step Semantics 89

By transitivity of star we finally arrive at (c1;; c2, s1) →∗ (SKIP , s3), thus
finishing the Seq case and the proof of Lemma 7.12.

Let us now consider the other direction:

Lemma 7.14 (Small-step implies big-step).
cs →∗ (SKIP , t) =⇒ cs ⇒ t

The proof is again canonical, namely by rule induction on the premise, the
reflexive transitive closure. The base case cs = (SKIP , t) is trivial. In the
induction step we have cs → cs ′ and cs ′ →∗ (SKIP , t) and the IH cs ′ ⇒
t. That this implies cs ⇒ t is proved as a separate lemma:

Lemma 7.15 (Step case). [[cs → cs ′; cs ′ ⇒ t]] =⇒ cs ⇒ t

Proof. The proof is automatic after rule induction on the small-step seman-
tics. ut

This concludes the proof of Lemma 7.14. Both directions together (Lemma 7.12
and Lemma 7.14) let us derive the equivalence we were aiming for in the first
place:

Corollary 7.16. (c, s) ⇒ t ←→ (c, s) →∗ (SKIP , t)

This concludes our proof that the small-step and big-step semantics of IMP
are equivalent. Such equivalence proofs are useful whenever there are different
formal descriptions of the same artefact. The reason one might want different
descriptions of the same thing is that they differ in what they can be used
for. For instance, big-step semantics are relatively intuitive to define, while
small-step semantics allow us to make more fine-grained formal observations.
The next section exploits the fine-grained nature of the small-step semantics
to elucidate the big-step semantics.

7.3.2 Final Configurations, Infinite Reductions, and Termination

In contrast to the big-step semantics, in the small-step semantics it is possible
to speak about non-terminating executions directly. We can easily distinguish
final configurations from those that can make further progress:

definition final :: com × state ⇒ bool where
final cs ←→ ¬ (∃ cs ′. cs → cs ′)

In our semantics, these happen to be exactly the configurations that have
SKIP as their command.

Lemma 7.17. final (c, s) = (c = SKIP)

90 7 IMP: A Simple Imperative Language

Proof. One direction is easy: clearly, if the command c is SKIP, the configura-
tion is final. The other direction is not much harder. It is proved automatically
after inducting on c. ut

With this we can show that ⇒ yields a final state iff → terminates:

Lemma 7.18. (∃ t . cs ⇒ t) ←→ (∃ cs ′. cs →∗ cs ′ ∧ final cs ′)

Proof. Using Lemma 7.17 we can replace final with configurations that have
SKIP as the command. The rest follows from the equivalence of small and
big-step semantics. ut

This lemma says that in IMP the absence of a big-step result is equivalent to
non-termination. This is not necessarily the case for any language. Another
reason for the absence of a big-step result may be a runtime error in the
execution of the program that leads to no rule being applicable. In the big-
step semantics this is often indistinguishable from non-termination. In the
small-step semantics the concept of final configurations neatly distinguishes
the two causes.

Since IMP is deterministic, there is no difference between “may” and “must”
termination. Consider a language with non-determinism.

In such a language, Lemma 7.18 is still valid and both sides speak about
possible (may) termination. In fact, the big-step semantics cannot speak
about necessary (must) termination at all, whereas the small-step semantics
can: there must not be an infinite reduction cs0 → cs1 →

7.4 Summary and Further Reading

This concludes the chapter on the operational semantics for IMP. In the first
part of this chapter, we have defined the abstract syntax of IMP commands,
we have defined the semantics of IMP in terms of a big-step operational se-
mantics, and we have experimented with the concepts of semantic equivalence
and determinism. In the second part of this chapter, we have defined an al-
ternative form of operational semantics, namely small-step semantics, and
we have proved that this alternative form describes the same behaviours as
the big-step semantics. The two forms of semantics have different application
trade-offs: big-step semantics were easier to define and understand, small-
step semantics let us talk explicitly about intermediate states of execution
and about termination.

We have looked at three main proof techniques: derivation trees, rule in-
version and rule induction. These three techniques form the basic tool set
that will accompany us in the following chapters.

7.4 Summary and Further Reading 91

Operational semantics in its small-step form goes back to Plotkin [70,
71, 72], who calls it structural operational semantics. Big-step semantics was
popularised by Kahn [46] under the name of natural semantics.

There are many programming language constructs that we left out of IMP.
Some examples that are relevant for imperative and object-oriented languages
are the following.

Syntax. For loops, do . . . while loops, the if . . . then command, etc. are just
further syntactic forms of the basic commands above. They could either
be formalized directly, or they could be transformed into equivalent basic
forms by syntactic de-sugaring.

Jumps. The goto construct, although considered harmful [27], is relatively
easy to formalize. It merely requires the introduction of some notion of
program position, be it as an explicit program counter, or a set of la-
bels for jump targets. We will see jumps as part of a machine language
formalization in Chapter 8.

Blocks and local variables. Like the other constructs they do not add
computational power but are an important tool for programmers to
achieve data hiding and encapsulation. The main formalization challenge
with local variables is their visibility scope. Nielson and Nielson [62] give
a good introduction to this topic.

Procedures. Parameters to procedures introduce issues similar to local vari-
ables, but they may have additional complexities depending on which call-
ing conventions the language implements (call by reference, call by value,
call by name, etc.). Recursion is not usually a problem to formalize. Pro-
cedures also influence the definition of what a program is: instead of a
single command, a program now usually becomes a list or collection of
procedures. Nielson and Nielson cover this topic as well [62].

Exceptions. Throwing and catching exceptions is usually reasonably easy to
integrate into a language formalization. However, exceptions may inter-
act with features like procedures and local variables, because exceptions
provide new ways to exit scopes and procedures. The Jinja [48] language
formalization is an example of such rich interactions.

Data types, structs, pointers, arrays. Additional types such as fixed size
machine words, records, and arrays are easy to include when the corre-
sponding high-level concept is available in the theorem prover, but IEEE
floating point values for instance may induce an interesting amount of
work [24]. The semantics of pointers and references is a largely orthogo-
nal issue and can be treated at various levels of detail, from raw bytes [87]
up to multiple heaps separated by type and field names [13].

Objects, classes, methods. Object-oriented features have been the target
of a large body of work in the past decade. Objects and methods lead

92 7 IMP: A Simple Imperative Language

to a stronger connection between control structures and memory. Which
virtual method will be executed, for instance, depends on the type of
the object in memory at runtime. It is by now well understood how to
formalize them in a theorem prover. For a study on a Java-like language
in Isabelle/HOL, see for instance Jinja [48] or Featherweight Java [45].

All of the features above can be formalized in a theorem prover. Many add
interesting complications, but the song remains the same. Schirmer [78], for
instance, shows an Isabelle formalization of big-step and small-step semantics
in the style of this chapter for the generic imperative language Simpl. The
formalization includes procedures, blocks, exceptions, and further advanced
concepts. With techniques similar to those described Chapter 12, he develops
the language to a point where it can directly be used for large-scale program
verification.

Exercises

Exercise 7.1. Define a function assigned :: com ⇒ vname set that com-
putes the set of variables that are assigned to in a command. Prove that if
some variable is not assigned to in a command, then that variable is never
modified by the command: [[(c, s) ⇒ t ; x /∈ assigned c]] =⇒ s x = t x.

Exercise 7.2. Define a recursive function skip :: com ⇒ bool that determines
if a command behaves like SKIP. Prove skip c =⇒ c ∼ SKIP.

Exercise 7.3. Define a recursive function deskip :: com ⇒ com that elimi-
nates as many SKIPs as possible from a command. For example:

deskip (SKIP ;; WHILE b DO (x ::= a ;; SKIP)) = WHILE b DO x ::= a

Prove deskip c ∼ c by induction on c. Remember Lemma 7.5 for the WHILE
case.

Exercise 7.4. Define a small-step semantics for the evaluation of arithmetic
expressions:

inductive astep :: aexp × state ⇒ aexp ⇒ bool (infix 50) where
(V x , s) N (s x) |

(Plus (N i) (N j), s) N (i + j) |

Complete the definition with two rules for Plus that model a left-to-right
evaluation strategy: reduce the first argument with if possible, reduce the
second argument with if the first argument is a number.

Prove that each step preserves the value of the expression: (a , s)
a ′ =⇒ aval a s = aval a ′ s. Use the modified induction rule astep.induct

7.4 Summary and Further Reading 93

[split_format (complete)]. Do not use the case idiom but write down explic-
itly what you assume and show in each case: fix . . . assume . . . show

Exercise 7.5. Prove or disprove (by giving a counterexample):

� IF And b1 b2 THEN c1 ELSE c2 ∼

IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2
� WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c
� WHILE Or b1 b2 DO c ∼ WHILE Or b1 b2 DO c;; WHILE b1 DO c

where Or b1 b2 = Not (And (Not b1) (Not b2)).

Exercise 7.6. Define a new loop construct DO c WHILE b (where c is
executed once before b is tested) in terms of the existing constructs in com :
DO c WHILE b = Define a recursive translation dewhile :: com ⇒
com that replaces all WHILE b DO c by suitable commands that use DO
c WHILE b instead. Prove that your translation preserves the semantics:
dewhile c ∼ c.

Exercise 7.7. Let C :: nat ⇒ com be an infinite sequence of commands
and S :: nat ⇒ com an infinite sequence of states such that C 0 = c;; d
and ∀n . (C n , S n) → (C (Suc n), S (Suc n)). Prove that either all C n
are of the form cn;; d and it is always cn that is reduced, or cn eventually
becomes SKIP :

[[C 0 = c;; d ; ∀n . (C n , S n) → (C (Suc n), S (Suc n))]]
=⇒ (∀n . ∃ c1 c2.

C n = c1;; d ∧

C (Suc n) = c2;; d ∧ (c1, S n) → (c2, S (Suc n))) ∨

(∃ k . C k = SKIP ;; d)

For the following exercises copy theories Com, Big_Step and Small_Step
and modify them as required.

Exercise 7.8. Extend IMP with a REPEAT c UNTIL b command. Adjust
the definitions of big-step and small-step semantics, the proof that the big-
step semantics is deterministic and the equivalence proof between the two
semantics.

Exercise 7.9. Extend IMP with a new command c1 OR c2 that is a non-
deterministic choice: it may execute either c1 or c2. Adjust the definitions
of big-step and small-step semantics, prove (c1 OR c2) ∼ (c2 OR c1) and
update the equivalence proof between the two semantics.

Exercise 7.10. Extend IMP with exceptions. Add two constructorsTHROW
and TRY c1 CATCH c2 to datatype com. Command THROW throws

94 7 IMP: A Simple Imperative Language

an exception. The only command that can catch an exception is TRY c1
CATCH c2: if an exception is thrown by c1, execution continues with c2,
otherwise c2 is ignored. Adjust the definitions of big-step and small-step se-
mantics as follows. The big-step semantics is now of type com × state ⇒
com × state. In a big step (c,s) ⇒ (x ,t), x can only be SKIP (signalling
normal termination) or THROW (signalling that an exception was thrown
but not caught). The small-step semantics is of the same type as before. There
are two final configurations now, (SKIP , t) and (THROW , t). Exceptions
propagate upwards until an enclosing handler catches them.

Adjust the equivalence proof between the two semantics such that you
obtain cs ⇒ (SKIP ,t) ←→ cs →∗ (SKIP ,t) and cs ⇒ (THROW ,t) ←→
cs →∗ (THROW ,t). Also revise the proof of (∃ cs ′. cs ⇒ cs ′) ←→ (∃ cs ′.
cs →∗ cs ′ ∧ final cs ′).

8

Compiler

This chapter presents a first application of programming language semantics:
proving compiler correctness. To this end, we will define a small machine
language based on a simple stack machine. Stack machines are common low-
level intermediate languages; the Java Virtual Machine is one example. We
then write a compiler from IMP to this language and prove that the compiled
program has the same semantics as the source program. The compiler will
perform a very simple standard optimization for boolean expressions, but is
otherwise non-optimizing.

As in the other chapters, the emphasis here is on showing the structure
and main setup of such a proof. Our compiler proof shows the core of the
argument, but compared to real compilers we make drastic simplifications: our
target language is comparatively high-level, we do not consider optimizations,
we ignore the compiler front-end, and our source language does not contain
any concepts that are particularly hard to translate into machine language.

8.1 Instructions and Stack Machine thy

We begin by defining the instruction set architecture and semantics of our
stack machine. We have already seen a very simple stack machine language
in Section 3.3. In this section, we extend this language with memory writes
and jump instructions.

Working with proofs on the machine language, we will find it convenient
for the program counter to admit negative values, i.e., to be of type int in-
stead of the initially more intuitive nat. The effect of this choice is that various
decomposition lemmas about machine executions have nicer algebraic prop-
erties and fewer preconditions than their nat counterparts. Such effects are
usually discovered during the proof.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Compiler.html

96 8 Compiler

As in Section 3.3, our machine language models programs as lists of in-
structions. Our int program counter will need to index into these lists. Isabelle
comes with a predefined list index operator nth, but it works on nat. Instead
of constantly converting between int and nat and dealing with the arising
side conditions in proofs, we define our own int version of nth, i.e., for i ::

int :

(x # xs) !! i = (if i = 0 then x else xs !! (i − 1))

However, we still need the conversion int :: nat ⇒ int because the length of
a list is of type nat. To reduce clutter we introduce the abbreviation

size xs ≡ int(length xs)

The !! operator distributes over @ in the expected way:

Lemma 8.1. If 0 6 i,
(xs @ ys) !! i = (if i < size xs then xs !! i else ys !! (i − size xs))

We are now ready to define the machine itself. To keep things simple,
we directly reuse the concepts of values and variable names from the source
language. In a more realistic setting, we would explicitly map variable names
to memory locations, instead of using strings as addresses. We skip this step
here for clarity, adding it does not pose any fundamental difficulties.

The instructions in our machine are the following. The first three are
familiar from Section 3.3:

datatype instr =

LOADI int | LOAD vname | ADD | STORE vname |

JMP int | JMPLESS int | JMPGE int

The instruction LOADI loads an immediate value onto the stack, LOAD
loads the value of a variable, ADD adds the two topmost stack values,
STORE stores the top of stack into memory, JMP jumps by a relative value,
JMPLESS compares the two topmost stack elements and jumps if the sec-
ond one is less, and finally JMPGE compares and jumps if the second one is
greater or equal.

These few instructions are enough to compile IMP programs. A real ma-
chine would have significantly more arithmetic and comparison operators,
different addressing modes that are useful for implementing procedure stacks
and pointers, potentially a number of primitive data types that the machine
understands, and a number of instructions to deal with hardware features such
as the memory management subsystem that we ignore in this formalization.

As in the source language, we proceed by defining the state such programs
operate on, followed by the definition of the semantics itself.

8.1 Instructions and Stack Machine 97

Program configurations consist of an int program counter, a memory state
for which we re-use the type state from the source language, and a stack which
we model as a list of values:

type_synonym stack = val list
type_synonym config = int × state × stack

We now define the semantics of machine execution. Similarly to the small-
step semantics of the source language, we do so in multiple levels: first, we
define what effect a single instruction has on a configuration, then we define
how an instruction is selected from the program, and finally we take the
reflexive transitive closure to get full machine program executions.

We encode the behaviour of single instructions in the function iexec. The
program counter is i, usually incremented by 1, except for the jump instruc-
tions. Variables are loaded from and stored into the variable state s with
function application and function update. For the stack stk, we use standard
list constructs as well as hd2 xs ≡ hd (tl xs) and tl2 xs ≡ tl (tl xs) from
Section 3.3.

fun iexec :: instr ⇒ config ⇒ config where

iexec (LOADI n) (i , s , stk) = (i + 1, s , n # stk)
iexec (LOAD x) (i , s , stk) = (i + 1, s , s x # stk)
iexec ADD (i , s , stk) = (i + 1, s , (hd2 stk + hd stk) # tl2 stk)
iexec (STORE x) (i , s , stk) = (i + 1, s(x := hd stk), tl stk)
iexec (JMP n) (i , s , stk) = (i + 1 + n , s , stk)
iexec (JMPLESS n) (i , s , stk) =

(if hd2 stk < hd stk then i + 1 + n else i + 1, s , tl2 stk)
iexec (JMPGE n) (i , s , stk) =

(if hd stk 6 hd2 stk then i + 1 + n else i + 1, s , tl2 stk)

The next level up, a single execution step selects the instruction the pro-
gram counter (pc) points to and uses iexec to execute it. For execution to
be well defined, we additionally check if the pc points to a valid location in
the list. We call this predicate exec1 and give it the notation P ` c → c ′ for
program P executes from configuration c to configuration c ′.

definition exec1 :: instr list ⇒ config ⇒ config ⇒ bool where

P ` c → c ′ =
(∃ i s stk . c = (i , s , stk) ∧ c ′ = iexec (P !! i) c ∧ 0 6 i < size P)

where x 6 y < z ≡ x 6 y ∧ y < z as usual in mathematics.
The last level is the lifting from single step execution to multiple steps

using the standard reflexive transitive closure definition that we already used
for the small-step semantics of the source language, that is:

98 8 Compiler

abbreviation P ` c →∗ c ′ ≡ star (exec1 P) c c ′

This concludes our definition of the machine and its semantics. As usual
in this book, the definitions are executable. This means, we can try out a
simple example. Let P = [LOAD ′ ′y ′ ′, STORE ′ ′x ′ ′], s ′ ′x ′ ′ = 3, and
s ′ ′y ′ ′ = 4. Then

values {(i , map t [′ ′x ′ ′, ′ ′y ′ ′], stk) |i t stk . P ` (0, s , []) →∗ (i , t , stk)}

will produce the following sequence of configurations:

{(0, [3, 4], []), (1, [3, 4], [4]), (2, [4, 4], [])}

8.2 Reasoning About Machine Executions thy

The compiler proof is more involved than the short proofs we have seen so
far. We will need a small number of technical lemmas before we get to the
compiler correctness problem itself. Our aim in this section is to execute
machine programs symbolically as far as possible using Isabelle’s proof tools.
We will then use this ability in the compiler proof to assemble multiple smaller
machine executions into larger ones.

A first lemma to this end is that execution results are preserved if we
append additional code to the left or right of a program. Appending at the
right side is easy:

Lemma 8.2. P ` c →∗ c ′ =⇒ P @ P ′ ` c →∗ c ′

Proof. The proof is by induction on the reflexive transitive closure. For the
step case, we observe after unfolding of exec1 that appending program context
on the right does not change the result of indexing into the original instruction
list. ut

Appending code on the left side requires shifting the program counter.

Lemma 8.3.
P ` (i , s , stk) →∗ (i ′, s ′, stk ′) =⇒
P ′ @ P ` (size P ′ + i , s , stk) →∗ (size P ′ + i ′, s ′, stk ′)

Proof. The proof is again by induction on the reflexive transitive closure and
reduction to exec1 in the step case. To show the lemma for exec1, we unfold
its definition and observe Lemma 8.4. ut

The execution of a single instruction can be relocated arbitrarily:

Lemma 8.4.
(n + i ′, s ′, stk ′) = iexec x (n + i , s , stk) ←→
(i ′, s ′, stk ′) = iexec x (i , s , stk)

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Compiler.html

8.3 Compilation 99

Proof. We observe by case distinction on the instruction x that the only com-
ponent of the result configuration that is influenced by the program counter
i is the first one, and in this component only additively. For instance, in the
LOADI n instruction, we get on both sides s ′ = s and stk ′ = n # stk. The
pc field for input i on the right-hand side is i ′ = i + 1. The pc field for n +

i on the left-hand side becomes n + i + 1, which is n + i ′ as required. The
other cases are analogous. ut

Taking these two lemmas together, we can compose separate machine ex-
ecutions into one larger one.

Lemma 8.5 (Composing machine executions).

[[P ` (0, s , stk) →∗ (i ′, s ′, stk ′); size P 6 i ′;
P ′ ` (i ′ − size P , s ′, stk ′) →∗ (i ′ ′, s ′ ′, stk ′ ′)]]
=⇒ P @ P ′ ` (0, s , stk) →∗ (size P + i ′ ′, s ′ ′, stk ′ ′)

Proof. The proof is by suitably instantiating Lemma 8.2 and Lemma 8.3. ut

8.3 Compilation thy

We are now ready to define the compiler, and will do so in the three usual
steps: first for arithmetic expressions, then for boolean expressions, and finally
for commands. We have already seen compilation of arithmetic expressions in
Section 3.3. We define the same function for our extended machine language:

fun acomp :: aexp ⇒ instr list where

acomp (N n) = [LOADI n]
acomp (V x) = [LOAD x]
acomp (Plus a1 a2) = acomp a1 @ acomp a2 @ [ADD]

The correctness statement is not as easy any more as in Section 3.3, because
program execution now is a relation, not simply a function. For our extended
machine language a function is not suitable because we now have potentially
non-terminating executions. This is not a big obstacle: we can still express
naturally that the execution of a compiled arithmetic expression will leave
the result on top of the stack, and that the program counter will point to the
end of the compiled expression.

Lemma 8.6 (Correctness of acomp).
acomp a ` (0, s , stk) →∗ (size (acomp a), s , aval a s # stk)

Proof. The proof is by induction on the arithmetic expression. ut

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Compiler.html

100 8 Compiler

code for b code for c
?

6

Fig. 8.1. Compilation of WHILE b DO c

The compilation schema for boolean expressions is best motivated by a
preview of the layout of the code generated from WHILE b DO c shown in
Figure 8.1. Arrows indicate jump instructions. Let cb be code generated from
b. If b evaluates to True, the execution of cb should lead to the end of cb,
continue with the execution of the code for c and jump back to the beginning
of cb. If b evaluates to False, the execution of cb should jump behind all of
the loop code. For example, when executing the compiled code for WHILE
And b1 b2 DO c, after having found that b1 evaluates to False we can safely
jump out of the loop. There can be multiple such jumps: think of And b1
(And b2 b3).

To support this schema, the bexp compiler takes two further parameters in
addition to b: an offset n and a flag f :: bool that determines for which value
of b the generated code should jump to offset n. This enables us to perform a
small bit of optimization: boolean constants do not need to execute any code;
they either compile to nothing or to a jump to the offset, depending on the
value of f. The Not case simply inverts f. The And case performs shortcut
evaluation as explained above. The Less operator uses the acomp compiler
for a1 and a2 and then selects the appropriate compare and jump instruction
according to f.

fun bcomp :: bexp ⇒ bool ⇒ int ⇒ instr list where

bcomp (Bc v) f n = (if v = f then [JMP n] else [])

bcomp (Not b) f n = bcomp b (¬ f) n
bcomp (And b1 b2) f n =
(let cb2 = bcomp b2 f n ;

m = if f then size cb2 else size cb2 + n ;
cb1 = bcomp b1 False m

in cb1 @ cb2)
bcomp (Less a1 a2) f n =

acomp a1 @ acomp a2 @ (if f then [JMPLESS n] else [JMPGE n])

Example 8.7. Boolean constants are optimized away:

value bcomp (And (Bc True) (Bc True)) False 3
returns []

8.3 Compilation 101

value bcomp (And (Bc False) (Bc True)) True 3
returns [JMP 1, JMP 3]

value bcomp (And (Less (V ′ ′x ′ ′) (V ′ ′y ′ ′)) (Bc True)) False 3
returns [LOAD ′ ′x ′ ′, LOAD ′ ′y ′ ′, JMPGE 3]

The second example shows that the optimization is not perfect: it may gen-
erate dead code.

The correctness statement is the following: the stack and state should
remain unchanged and the program counter should indicate if the expression
evaluated to True or False. If f = False then we end at size (bcomp b f
n) in the True case and size (bcomp b f n) + n in the False case. If f =

True it is the other way around. This statement only makes sense for forward
jumps, so we require n to be non-negative.

Lemma 8.8 (Correctness of bcomp).
Let pc ′ = size (bcomp b f n) + (if f = bval b s then n else 0). Then
0 6 n =⇒ bcomp b f n ` (0, s , stk) →∗ (pc ′, s , stk)

Proof. The proof is by induction on b. The constant and Less cases are solved
automatically. For the Not case, we instantiate the induction hypothesis man-
ually to ¬ f. For And, we get two recursive cases. The first needs the induction
hypothesis instantiated with size (bcomp b2 f n) + (if f then 0 else n) for
n, and with False for f, and the second goes through with simply n and f. ut

With both expression compilers in place, we can now proceed to the com-
mand compiler ccomp. The idea is to compile c into a program that will
perform the same state transformation as c and that will always end with the
program counter at size (ccomp c). It may push and consume intermediate
values on the stack for expressions, but at the end, the stack will be the same
as in the beginning. Because of this modular behaviour of the compiled code,
the compiler can be defined recursively as follows:

� SKIP compiles to the empty list;
� for assignment, we compile the expression and store the result;
� sequential composition appends the corresponding machine programs;
� IF is compiled as shown in Figure 8.2;
� WHILE is compiled as shown in Figure 8.1.

Figure 8.3 shows the formal definition.
Since everything in ccomp is executable, we can inspect the results of

compiler runs directly in the theorem prover. For example, let p1 be the
command for IF u < 1 THEN u := u + 1 ELSE v := u. Then

value ccomp p1

102 8 Compiler

code for b code for c1
?

code for c2
6

Fig. 8.2. Compilation of IF b THEN c1 ELSE c2

fun ccomp :: com ⇒ instr list where

ccomp SKIP = []

ccomp (x ::= a) = acomp a @ [STORE x]
ccomp (c1;; c2) = ccomp c1 @ ccomp c2
ccomp (IF b THEN c1 ELSE c2) =
(let cc1 = ccomp c1; cc2 = ccomp c2;

cb = bcomp b False (size cc1 + 1)

in cb @ cc1 @ JMP (size cc2) # cc2)
ccomp (WHILE b DO c) =
(let cc = ccomp c; cb = bcomp b False (size cc + 1)

in cb @ cc @ [JMP (− (size cb + size cc + 1))])

Fig. 8.3. Definition of ccomp

results in

[LOAD ′ ′u ′ ′, LOADI 1, JMPGE 5, LOAD ′ ′u ′ ′, LOADI 1, ADD ,
STORE ′ ′u ′ ′, JMP 2, LOAD ′ ′u ′ ′, STORE ′ ′v ′ ′]

Similarly for loops. Let p2 be WHILE u < 1 DO u := u + 1. Then

value ccomp p2

results in

[LOAD ′ ′u ′ ′, LOADI 1, JMPGE 5, LOAD ′ ′u ′ ′, LOADI 1, ADD ,
STORE ′ ′u ′ ′, JMP (− 8)]

8.4 Preservation of Semantics thy

This section shows the correctness proof of our small toy compiler. For IMP,
the correctness statement is fairly straightforward: the machine program
should have precisely the same behaviour as the source program. It should
cause the same state change and nothing more than that. It should terminate
if and only if the source program terminates. Since we use the same type for
states at the source level and machine level, the first part of the property is
easy to express. Similarly, it is easy to say that the stack should not change.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Compiler2.html

8.4 Preservation of Semantics 103

Finally, we can express correct termination by saying that the machine exe-
cution started at pc = 0 should stop at the end of the machine code with pc
= size (ccomp c). In total, we have

(c, s) ⇒ t ←→ ccomp c ` (0, s , stk) →∗ (size (ccomp c), t , stk)

In other words, the compiled code executes from s to t if and only if the
big-step semantics executes the source code from s to t.

s t

s ′ t ′

c

∗
ccomp c

s t

s ′ t ′

c

∗
ccomp c

Fig. 8.4. Compiler correctness as two simulations

The two directions of the “←→” are shown diagrammatically in Figure 8.4.
The upper level is the big-step execution (s , c) ⇒ t. The lower level is
stack machine execution. The relationship between states and configurations
is given by s ′ = (0, s , stk) and t ′ = (size (ccomp c), t , stk).

Such diagrams should be read as follows: the solid lines and arrows imply
the existence of the dashed ones. Thus the left diagram depicts the “−→” di-
rection (source code can be simulated by compiled code) and the right diagram
depicts the “←−” direction (compiled code can be simulated by source code).
We have already seen the analogous simulation relations between big-step and
small-step semantics in Section 7.3.1 and will see more such simulations later
in the book.

In the case of the compiler, the crucial direction is the simulation of the
compiled code by the source code: it tells us that every final state produced
by the compiled code is justified by the source code semantics. Therefore we
can trust all results produced by the compiled code, if it terminates. But it is
still possible that the compiled code does not terminate although the source
code does. That can be ruled out by proving also that the compiled code
simulates the source code.

We will now prove the two directions of our compiler correctness statement
separately. Simulation of the source code by the compiled code is compara-
tively easy.

Lemma 8.9 (Correctness of ccomp).
If the source program executes from s to t, so will the compiled program.
Formally:

104 8 Compiler

(c, s) ⇒ t =⇒ ccomp c ` (0, s , stk) →∗ (size (ccomp c), t , stk)

Proof. The proof is by rule induction on the big-step semantics. We go
through each of the cases step by step.

SKIP :
The SKIP case translates to the empty machine program and trivially
satisfies the correctness statement.

x ::= a:
In the assignment case, we use the correctness of arithmetic expres-
sion compilation (Lemma 8.6) together with the composition lemma
(Lemma 8.5) for appending the store instruction. We let the prover sym-
bolically execute this store instruction after the expression evaluation to
conclude that the state is updated correctly.

c1;; c2:
For sequential composition, we get correctness of the two executions for
c1 and c2 as induction hypothesis, and merely need to lift them into the
context of the entire program using our machine execution composition
lemmas.

IF b THEN c1 ELSE c2:
The two cases for IF are solved entirely automatically using correctness
of boolean expression compilation (Lemma 8.8), symbolic execution of
the jump instruction and the appropriate induction hypothesis for the
respective branch.

WHILE b DO c:
The False case of the loop is automatic and follows directly from the
correctness lemma for boolean expressions (Lemma 8.8). In the True case,
we have the two source level executions (c, s1) ⇒ s2 and (WHILE b DO
c, s2) ⇒ s3 with corresponding induction hypotheses for the compiled
body ccomp c started in s1 and the compiled code of the entire loop
started in s2 ending in s3. From this we need to construct an execution
of the entire loop from s1 to s3. We again argue by correctness of boolean
expression compilation (Lemma 8.8). We know that the True case of that
compiled code will end in a program counter pointing to the beginning
of the compiled body ccomp c. We use the induction hypothesis and the
composition lemma (Lemma 8.5) to execute this code into state s2 with a
pc pointing to the jump instruction that returns us to the beginning of the
loop. Executing this jump instruction symbolically, we get to the machine
configuration that lets us use the induction hypothesis that executes the
rest of the loop into the desired state s3.

ut

8.4 Preservation of Semantics 105

The second direction of the compiler correctness proof is more involved.
We have to show that if the machine code executes from state s to t, so does
the source code: the source code simulates the compiled code. Formally:

ccomp c ` (0, s , stk) →∗ (size (ccomp c), t , stk ′) =⇒ (c, s) ⇒ t

The main reason this direction is harder to show than the other one is the
lack of a suitable structural induction principle that we could apply. Since
rule induction on the semantics is not applicable, we have only two further
induction principles left in the arsenal we have learned so far: structural in-
duction on the command c or induction on the length of the →∗ execution.
Neither is strong enough on its own. The solution is to combine them: we will
use an outside structural induction on c which will take care of all cases but
WHILE, and then a nested, inner induction on the length of the execution
for the WHILE case.

This idea takes care of the general proof structure. The second problem we
encounter is the one of decomposing larger machine executions into smaller
ones. Consider the semicolon case. We will have an execution of the form
ccomp c1 @ ccomp c2 ` cfg →∗ cfg ′, and our first induction hypothesis will
come with the precondition ccomp c1 ` cfg →∗ cfg ′ ′. It may seem intuitive
that if cs1 @ cs2 ` cfg →∗ cfg ′ then there must be some intermediate
executions cs1 ` cfg →∗ cfg ′ ′ and cs2 ` cfg ′ ′ →∗ cfg, but this is not
true in general for arbitrary code sequences cs1 and cs2 or configurations
cfg and cfg ′. For instance, the code may be jumping between cs1 and cs2
continuously, and neither execution may make sense in isolation.

However, the code produced from our compiler is particularly well be-
haved: execution of compiled code will never jump outside that code and
will exit at precisely pc = size (ccomp c). We merely need to formalize this
concept and prove that it is adhered to. This requires a few auxiliary notions.

First we define isuccs, the possible successor program counters of a given
instruction at position n :

definition isuccs :: instr ⇒ int ⇒ int set where
isuccs i n = (case i of
JMP j ⇒ {n + 1 + j } |
JMPLESS j ⇒ {n + 1 + j , n + 1} |

JMPGE j ⇒ {n + 1 + j , n + 1} |
_⇒ {n +1})

Then we define succs P n which yields the successor program counters of
an instruction sequence P which itself may be embedded in a larger program
at position n. The possible successors program counters of an instruction list
are the union of all instruction successors:

106 8 Compiler

definition succs :: instr list ⇒ int ⇒ int set where
succs P n = {s . ∃ i>0. i < size P ∧ s ∈ isuccs (P !! i) (n + i)}

Finally, we remove all jump targets internal to P from succs P 0 and arrive
at the possible exit program counters of P. The notation {a ..<b} stands for
the set of numbers > a and < b. Similarly, {a ..b} is the set of numbers > a
and 6 b.

definition exits :: instr list ⇒ int set where
exits P = succs P 0 − {0..<size P }

Unsurprisingly, we will need to reason about the successors and exits of
composite instruction sequences.

Lemma 8.10 (Successors over append).
succs (cs @ cs ′) n = succs cs n ∪ succs cs ′ (n + size cs)

Proof. The proof is by induction on the instruction list cs. To solve each case,
we derive the equations for Nil and Cons in succs separately:

succs [] n = {}

succs (x # xs) n = isuccs x n ∪ succs xs (1 + n)
ut

We could prove a similar lemma about exits (cs @ cs ′), but this lemma
would have a more complex right-hand side. For the results below it is easier
to reason about succs first and then apply the definition of exits to the result
instead of decomposing exits directly.

Before we proceed to reason about decomposing machine executions and
compiled code, we note that instead of using the reflexive transitive closure
of single-step execution, we can equivalently talk about n steps of execution.
This will give us a more flexible induction principle and allow us to talk
more precisely about sequences of execution steps. We write P ` c →^n c ′

to mean that the execution of program P starting in configuration c can reach
configuration c ′ in n steps and define:

P ` c →^0 c ′ = (c ′ = c)
P ` c →^(Suc n) c ′ ′ = (∃ c ′. P ` c → c ′ ∧ P ` c ′ →^n c ′ ′)

Our old concept of P ` c →∗ c ′ is equivalent to saying that there exists an
n such that P ` c →^n c ′.

Lemma 8.11. (P ` c →∗ c ′) = (∃n . P ` c →^n c ′)

Proof. One direction is by induction on n, the other by induction on the
reflexive transitive closure. ut

8.4 Preservation of Semantics 107

The more flexible induction principle mentioned above is complete induc-
tion on n : (

∧
n . ∀m<n . P m =⇒ P n) =⇒ P n. That is, to show that a

property P holds for any n, it suffices to show that it holds for an arbitrary
n under the assumption that P already holds for any m < n. In our context,
this means we are no longer limited to splitting off single execution steps at
a time.

We can now derive lemmas about the possible exits for acomp, bcomp, and
ccomp. Arithmetic expressions are the easiest, they don’t contain any jump
instructions, and we only need our append lemma for succs (Lemma 8.10).

Lemma 8.12. exits (acomp a) = {size (acomp a)}

Proof. The proof is by first computing all successors of acomp, and then
deriving the exits from that result. For the successors of acomp, we show

succs (acomp a) n = {n + 1..n + size (acomp a)}

by induction on a. The set from n + 1 to n + size (acomp a) is not empty,
because we can show 1 6 size (acomp a) by induction on a. ut

Compilation for boolean expressions is less well behaved. The main idea is
that bcomp has two possible exits, one for True, one for False. However, as we
have seen in the examples, compiling a boolean expression might lead to the
empty list of instructions, which has no successors or exits. More generally,
the optimization that bcomp performs may statically exclude one or both of
the possible exits. Instead of trying to precisely describe each of these cases,
we settle for providing an upper bound on the possible successors of bcomp.
We are also only interested in positive offsets i.

Lemma 8.13. If 0 6 i, then
exits (bcomp b f i) ⊆ {size (bcomp b f i), i + size (bcomp b f i)}

Proof. Again, we reduce exits to succs, and first prove

0 6 i =⇒
succs (bcomp b f i) n
⊆ {n ..n + size (bcomp b f i)} ∪ {n + i + size (bcomp b f i)}

After induction on b, this proof is mostly automatic. We merely need to
instantiate the induction hypothesis for the And case manually. ut

Finally, we come to the exits of ccomp. Since we are building on the lemma
for bcomp, we can again only give an upper bound: there are either no exits,
or the exit is precisely size (ccomp c). As an example that the former case
can occur as a result of ccomp, consider the compilation of an endless loop

ccomp (WHILE Bc True DO SKIP) = [JMP (− 1)]

108 8 Compiler

That is, we get one jump instruction that jumps to itself and

exits [JMP (− 1)] = {}

Lemma 8.14. exits (ccomp c) ⊆ {size (ccomp c)}

Proof. We first reduce the lemma to succs :

succs (ccomp c) n ⊆ {n ..n + size (ccomp c)}

This proof is by induction on c and the corresponding succs results for acomp
and bcomp. ut

We have derived these exits results about acomp, bcomp and ccomp be-
cause we wanted to show that the machine code produced by these functions
is well behaved enough that larger executions can be decomposed into smaller
separate parts. The main lemma that describes this decomposition is some-
what technical. It states that, given an n-step execution of machine instruc-
tions cs that are embedded in a larger program (P @ cs @ P ′), we can find
a k -step sub-execution of cs in isolation, such that this sub-execution ends at
one of the exit program counters of cs, and such that it can be continued to
end in the same state as the original execution of the larger program. For this
to be true, the initial pc of the original execution must point to somewhere
within cs, and the final pc ′ to somewhere outside cs. Formally, we get the
following.

Lemma 8.15 (Decomposition of machine executions).

[[P @ cs @ P ′ ` (size P + pc, stk , s) →^n (pc ′, stk ′, s ′);
pc ∈ {0..<size cs}; pc ′ /∈ {size P ..<size P + size cs}]]
=⇒ ∃ pc ′ ′ stk ′ ′ s ′ ′ k m .

cs ` (pc, stk , s) →^k (pc ′ ′, stk ′ ′, s ′ ′) ∧

pc ′ ′ ∈ exits cs ∧

P @ cs @ P ′ ` (size P + pc ′ ′, stk ′ ′, s ′ ′) →^m (pc ′, stk ′, s ′) ∧

n = k + m

Proof. The proof is by induction on n. The base case is trivial, and the step
case essentially reduces the lemma to a similar property for a single execution
step:

[[P @ cs @ P ′ ` (size P + pc, stk , s) → (pc ′, stk ′, s ′);
pc ∈ {0..<size cs}]]
=⇒ cs ` (pc, stk , s) → (pc ′ − size P , stk ′, s ′)

This property is proved automatically after unfolding the definition of single-
step execution and case distinction on the instruction to be executed.

8.4 Preservation of Semantics 109

Considering the step case for n + 1 execution steps in our induction again,
we note that this step case consists of one single step in the larger context
and the n-step rest of the execution, also in the larger context. Additionally
we have the induction hypothesis, which gives us our property for executions
of length n.

Using the property above, we can reduce the single-step execution to cs.
To connect this up with the rest of the execution, we make use of the induction
hypothesis in the case where the execution of cs is not at an exit yet, which
means the pc is still inside cs, or we observe that the execution has left cs
and the pc must therefore be at an exit of cs. In this case k is 1 and m = n,
and we can just append the rest of the execution from our assumptions. ut

The accompanying Isabelle theories contain a number of more convenient
instantiations of this lemma. We omit these here, and directly move on to
proving the correctness of acomp, bcomp, ccomp.

As always, arithmetic expressions are the least complex case.

Lemma 8.16 (Correctness of acomp, reverse direction).

acomp a ` (0, s , stk) →^n (size (acomp a), s ′, stk ′) =⇒
s ′ = s ∧ stk ′ = aval a s # stk

Proof. The proof is by induction on the expression, and most cases are solved
automatically, symbolically executing the compilation and resulting machine
code sequence. In the Plus case, we decompose the execution manually using
Lemma 8.15, apply the induction hypothesis for the parts, and combine the
results symbolically executing the ADD instruction. ut

The next step is the compilation of boolean expressions. Correctness here
is mostly about the pc ′ at the end of the expression evaluation. Stack and
state remain unchanged.

Lemma 8.17 (Correctness of bcomp, reverse direction).

[[bcomp b f j ` (0, s , stk) →^n (pc ′, s ′, stk ′);
size (bcomp b f j) 6 pc ′; 0 6 j]]
=⇒ pc ′ = size (bcomp b f j) + (if f = bval b s then j else 0) ∧

s ′ = s ∧ stk ′ = stk

Proof. The proof is by induction on the expression. The And case is the only
interesting one. We first split the execution into one for the left operand b1
and one for the right operand b2 with a suitable instantiation of our splitting
lemma above (Lemma 8.15). We then determine by induction hypothesis that
stack and state did not change for b1 and that the program counter will either
exit directly, in which case we are done, or it will point to the instruction
sequence of b2, in which case we apply the second induction hypothesis to
conclude the case and the lemma. ut

110 8 Compiler

We are now ready to tackle the main lemma for ccomp.

Lemma 8.18 (Correctness of ccomp, reverse direction).

ccomp c ` (0, s , stk) →^n (size (ccomp c), t , stk ′) =⇒
(c, s) ⇒ t ∧ stk ′ = stk

Proof. As mentioned before, the main proof is an induction on c, and in
the WHILE case there is a nested complete induction on the length of the
execution. The cases of the structural induction are the following.

SKIP :
This case is easy and automatic.

x ::= a:
The assignment case makes use of the correct compilation of arithmetic
expressions (Lemma 8.16) and is otherwise automatic.

c1;; c2:
This case comes down to using Lemma 8.15 and combining the induction
hypotheses as usual.

IF b THEN c1 ELSE c2:
The IF case is more interesting. Let I stand for the whole IF expression.
We start by noting that we need to prove

ccomp I ` (0, s , stk) →^n (size (ccomp I), t , stk ′) =⇒
(I , s) ⇒ t ∧ stk ′ = stk

and that we have the same property available for ccomp c1 and ccomp c2
as induction hypotheses. After splitting off the execution of the boolean
expression using Lemma 8.17 and Lemma 8.15, we know

ccomp c1 @ JMP (size (ccomp c2)) # ccomp c2
` (if bval b s then 0 else size (ccomp c1) + 1, s , stk) →^m
(1 + size (ccomp c1) + size (ccomp c2), t , stk ′)

We proceed by case distinction on bval b s, and use the corresponding
induction hypothesis for c1 and c2 respectively to conclude the IF case.

WHILE b DO c:
In the WHILE case, let w stand for the loop WHILE b DO c, and cs
for the compiled loop ccomp w. Our induction hypothesis is

ccomp c ` (0, s , stk) →^n (size (ccomp c), t , stk ′) =⇒
(c, s) ⇒ t ∧ stk ′ = stk

for any s, stk, n, t, and stk ′. We need to show
cs ` (0, s , stk) →^n (size cs , t , stk ′) =⇒
(w , s) ⇒ t ∧ stk ′ = stk

As mentioned, the induction hypothesis above is not strong enough to
conclude the goal. Instead, we continue the proof with complete induction
on n : we still need to show the same goal, for a new arbitrary n, but we
get the following additional induction hypothesis for an arbitrary s.

8.4 Preservation of Semantics 111

∀m<n . cs ` (0, s , stk) →^m (size cs , t , stk ′) −→
(w , s) ⇒ t ∧ stk ′ = stk

We can now start decomposing the machine code of the WHILE loop.
Recall the definition of compilation for WHILE :

ccomp (WHILE b DO c) =

(let cc = ccomp c; cb = bcomp b False (size cc + 1)

in cb @ cc @ [JMP (− (size cb + size cc + 1))])

As in the IF case, we start with splitting off the execution of the boolean
expression followed by a case distinction on its result bval b s. The False
case is easy, it directly jumps to the exit and we can conclude our goal. In
the True case, we drop into the execution of ccomp c. Here, we first need
to consider whether ccomp c = [] or not, because our decomposition
lemma only applies when the program counter points into the code of
ccomp c, which is not possible when that is empty (e.g., compiled from
SKIP). If it is empty, the only thing left to do in the WHILE loop is to
jump back to the beginning. After executing that instruction symbolically,
we note that we are now in a situation where our induction hypothesis
applies: we have executed at least one instruction (the jump), so m < n,
and we can directly conclude (w , s) ⇒ t ∧ stk ′ = stk. In this specific
situation, we could also try to prove that the loop will never terminate
and that therefore our assumption that machine execution terminates is
False, but it is easier to just apply the induction hypothesis here.
The other case, where ccomp c 6= [], lets us apply the decomposi-
tion lemma to isolate the execution of ccomp c to some intermediate
(s ′ ′, stk ′ ′) with pc ′ ′ = size (ccomp c). With our induction hypoth-
esis about c from the outer induction, we conclude (c, s) ⇒ s ′ ′ and
stk ′ ′ = stk .
Symbolically executing the final jump instruction transports us to the
beginning of the compiled code again, into a situation where the inner
induction hypothesis applies, because we have again executed at least one
instruction, so the number of remaining execution steps m is less than the
original n. That is, we can conclude (w , s ′ ′) ⇒ t ∧ stk ′ = stk. Together
with bval b s and (c, s) ⇒ s ′ ′, we arrive at (w , s) ⇒ t ∧ stk ′ = stk,
which is what we needed to show. ut

Combining the above lemma with the first direction, we get our full compiler
correctness theorem:

Theorem 8.19 (Compiler correctness).
ccomp c ` (0, s , stk) →∗ (size (ccomp c), t , stk) ←→ (c, s) ⇒ t

Proof. Follows directly from Lemma 8.18, Lemma 8.9, and Lemma 8.11. ut

112 8 Compiler

It is worth pointing out that in a deterministic language like IMP, this
second direction reduces to preserving termination: if the machine program
terminates, so must the source program. If that were the case, we could con-
clude that, starting in s, the source must terminate in some t ′. Using the first
direction of the compiler proof and by determinism of the machine language,
we could then conclude that t ′ = t and that therefore the source execution
was already the right one. However, showing that machine-level termination
implies source-level termination is not much easier than showing the second
direction of our compiler proof directly, and so we did not take this path here.

8.5 Summary and Further Reading

This section has shown the correctness of a simple, non-optimizing compiler
from IMP to an idealised machine language. The main technical challenge was
reasoning about machine code sequences and their composition and decom-
position. Apart from this technical hurdle, formally proving the correctness
of such a simple compiler is not as difficult as one might initially suspect.

Two related compiler correctness proofs in the literature are the compiler
in the Java-like language Jinja [48] in a style that is similar to the one pre-
sented here, and, more recently, the fully realistic, optimizing C compiler
CompCert by Leroy et al. [53], which compiles to PowerPC, x86, and ARM
architectures. Both proofs are naturally more complex than the one presented
here, both working with the concept of intermediate languages and multiple
compilation stages. This is done to simplify the argument and to concentrate
on specific issues on each level.

Modelling the machine program as a list of instructions is an abstraction. A
real CPU would implement a von Neumann machine, which adds fetching and
decoding of instructions to the execution cycle. The main difference is that
our model does not admit self-modifying programs, which is not necessary
for IMP. It is entirely possible to model low-level machine code in a theorem
prover. The CompCert project has done this as part of its compiler correct-
ness statement, but there are also other independent machine language mod-
els available in the literature, for instance a very detailed and well-validated
model of multiple ARM processor versions from Cambridge [31, 32], and a
similarly detailed, but less complete model of the Intel x86 instruction set
architecture by Morrisett et al. [57].

For our compiler correctness, we presented a proof of semantics preserva-
tion in both directions: from source to machine and from machine to source.
Jinja only presents one direction; CompCert does both, but uses a different
style of argument for the more involved direction from machine to source,

8.5 Summary and Further Reading 113

which involves interpreting the semantics co-inductively to include reasoning
about non-terminating programs directly.

Exercises

For the following exercises copy and adjust theory Compiler. Intrepid readers
only should attempt to adjust theory Compiler2 too.

Exercise 8.1. Modify the definition of ccomp such that it generates fewer
instructions for commands of the form IF b THEN c ELSE SKIP. Adjust
the proof of Lemma 8.9 if needed.

Exercise 8.2. Building on Exercise 7.8, extend the compiler ccomp and its
correctness theorem ccomp_bigstep to REPEAT loops. Hint: the recursion
pattern of the big-step semantics and the compiler for REPEAT should
match.

Exercise 8.3. Modify the machine language such that instead of variable
names to values, the machine state maps addresses (integers) to values. Adjust
the compiler and its proof accordingly.

In the simple version of this exercise, assume the existence of a globally
bijective function addr_of :: vname ⇒ int with bij addr_of to adjust the
compiler. Use the search facility of the interface to find applicable theorems
for bijective functions.

For the more advanced version and a slightly larger project, assume that
the function works only on a finite set of variables: those that occur in the
program. For the other, unused variables, it should return a suitable default
address. In this version, you may want to split the work into two parts: first,
update the compiler and machine language, assuming the existence of such
a function and the (partial) inverse it provides. Second, separately construct
this function from the input program, having extracted the properties needed
for it in the first part. In the end, rearrange your theory file to combine both
into a final theorem.

Exercise 8.4. This is a slightly more challenging project. Based on Exer-
cise 8.3, and similarly to Exercise 3.11 and Exercise 3.12, define a second ma-
chine language that does not possess a built-in stack, but a stack pointer reg-
ister in addition to the program counter. Operations that previously worked
on the stack now work on memory, accessing locations based on the stack
pointer.

For instance, let (pc, s , sp) be a configuration of this new machine consist-
ing of program counter, store, and stack pointer. Then the configuration after

114 8 Compiler

an ADD instruction is (pc + 1, s(sp + 1 := s (sp + 1) + s sp), sp + 1),
that is, ADD dereferences the memory at sp + 1 and sp, adds these two
values and stores them at sp + 1, updating the values on the stack. It also
increases the stack pointer by 1 to pop one value from the stack and leave the
result at the top of the stack. This means the stack grows downwards.

Modify the compiler from Exercise 8.3 to work on this new machine lan-
guage. Reformulate and reprove the easy direction of compiler correctness.

Hint: Let the stack start below 0, growing downwards, and use type nat
for addressing variable in LOAD and STORE instructions, so that it is clear
by type that these instructions do not interfere with the stack.

Hint: When the new machine pops a value from the stack, this now unused
value is left behind in the store. This means, even after executing a purely
arithmetic expression, the values in initial and final stores are not all equal.
But they are equal above a given address. Define an abbreviation for this
concept and use it to express the intermediate correctness statements.

9

Types

This chapter introduces types into IMP, first a traditional programming lan-
guage type system, then more sophisticated type systems for information flow
analysis.

Why bother with types? Because they prevent mistakes. They are a sim-
ple, automatic way to find obvious problems in programs before these pro-
grams are ever run.

There are three kinds of types.

The Good Static types that guarantee absence of certain runtime faults.
The Bad Static types that have mostly decorative value but do not guaran-

tee anything at runtime.
The Ugly Dynamic types that detect errors only when it can be too late.

Examples of the first kind are Java, ML and Haskell. In Java, for instance,
the type system enforces that there will be no memory access errors, which
in other languages manifest themselves as segmentation faults. Haskell has an
even more powerful type system, in which, for instance, it becomes visible
whether a function can perform input/output actions or not.

Famous examples of the bad kind are C and C++. These languages have
static type systems, but they can be circumvented easily. The language spec-
ification may not even allow these circumventions, but there is no way for
compilers to guarantee their absence.

Examples for dynamic types are scripting languages such as Perl and
Python. These languages are typed, but typing violations are discovered and
reported at runtime only, which leads to runtime messages such as “TypeEr-
ror: . . . ” in Python for instance.

In all of the above cases, types are useful. Even in Perl and Python, they at
least are known at runtime and can be used to conveniently convert values of
one type into another and to enable object-oriented features such as dynamic
dispatch of method calls. They just don’t provide any compile-time checking.

116 9 Types

In C and C++, the compiler can at least report some errors already at compile
time and alert the programmer to obvious problems. But only static, sound
type systems can enforce the absence of whole classes of runtime errors.

Static type systems can be seen as proof systems, type checking as proof
checking, and type inference as proof search. Every time a type checker passes
a program, it in effect proves a set of small theorems about this program.

The ideal static type system is permissive enough not to get in the pro-
grammer’s way, yet strong enough to guarantee Robin Milner’s slogan

Well-typed programs cannot go wrong [56].

It is the most influential slogan and one of the most influential papers in
programming language theory.

What could go wrong? Some examples of common runtime errors are cor-
ruption of data, null pointer exceptions, nontermination, running out of mem-
ory, and leaking secrets. There exist type systems for all of these, and more,
but in practice only the first is covered in widely used languages such as
Java, C#, Haskell, or ML. We will cover this first kind in Section 9.1, and
information leakage in Section 9.2.

As mentioned above, the ideal for a language is to be type safe. Type
safe means that the execution of a well-typed program cannot lead to certain
errors. Java and the JVM, for instance, have been proved to be type safe. An
execution of a Java program may throw legitimate language exceptions such
as NullPointer or OutOfMemory, but it can never produce data corruption or
segmentation faults other than by hardware defects or calls into native code.
In the following sections we will show how to prove such theorems for IMP.

Type safety is a feature of a programming language. Type soundness
means the same thing, but talks about the type system instead. It means
that a type system is sound or correct with respect to the semantics of the
language: If the type system says yes, the semantics does not lead to an error.
The semantics is the primary definition of behaviour, and therefore the type
system must be justified w.r.t. it.

If there is soundness, how about completeness? Remember Rice’s theorem:

Nontrivial semantic properties of programs are undecidable.

Hence there is no (decidable) type system that accepts precisely the programs
that have a certain semantic property, e.g., termination.

Automatic analysis of semantic program properties
is necessarily incomplete.

This applies not only to type systems but to all automatic semantic analyses
and is discussed in more detail at the beginning of the next chapter.

9.1 Typed IMP 117

9.1 Typed IMP thy

In this section we develop a very basic static type system as a typical applica-
tion of programming language semantics. The idea is to define the type system
formally and to use the semantics for stating and proving its soundness.

The IMP language we have used so far is not well suited for this proof,
because it has only one type of value. This is not enough for even a simple
type system. To make things at least slightly non-trivial, we invent a new
language that computes on real numbers as well as integers.

To define this new language, we go through the complete exercise again,
and define new arithmetic and boolean expressions, together with their values
and semantics, as well as a new semantics for commands. In the theorem
prover we can do this by merely copying the original definitions and tweaking
them slightly. Here, we will briefly walk through the new definitions step by
step.

We begin with values occurring in the language. Our introduction of a
second kind of value means our value type now correspondingly has two al-
ternatives:

datatype val = Iv int | Rv real

This definition means we tag values with their type at runtime (the construc-
tor tells us which is which). We do this so we can observe when things go
wrong, for instance when a program is trying to add an integer to a real. This
does not mean that a compiler for this language would also need to carry this
information around at runtime. In fact, it is the type system that lets us avoid
this overhead! Since it will only admit safe programs, the compiler can opti-
mize and blindly apply the operation for the correct type. It can determine
statically what that correct type is.

Note that the type real stands for the mathematical real numbers, not floating
point numbers, just as we use mathematical integers in IMP instead of finite

machine words. For the purposes of the type system this difference does not mat-
ter. For formalizing a real programming language, one should model values more
precisely.

Continuing in the formalization of our new type language, variable names
and state stay as they are, i.e., variable names are strings and the state is a
function from such names to values.

Arithmetic expressions, however, now have two kinds of constants: int and
real :

datatype aexp = Ic int | Rc real | V vname | Plus aexp aexp

In contrast to vanilla IMP, we can now write arithmetic expressions that make
no sense, or in other words have no semantics. For example, the expression

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Types.html

118 9 Types

taval (Ic i) s (Iv i) taval (Rc r) s (Rv r) taval (V x) s (s x)

taval a1 s (Iv i1) taval a2 s (Iv i2)

taval (Plus a1 a2) s (Iv (i1 + i2))

taval a1 s (Rv r1) taval a2 s (Rv r2)

taval (Plus a1 a2) s (Rv (r1 + r2))

Fig. 9.1. Inductive definition of taval :: aexp ⇒ state ⇒ val ⇒ bool

Plus (Ic 1) (Rc 3) tries to add an integer to a real number. Assuming for
a moment that these are fundamentally incompatible types that cannot pos-
sibly be added, this expression makes no sense. We would like to express
in our semantics that this is not an expression with well-defined behaviour.
One alternative would be to continue using a functional style of semantics
for expressions. In this style we would now return val option with the con-
structor None of the option data type introduced in Section 2.3.1 to denote
the undefined cases. It is quite possible to do so, and in later chapters we will
demonstrate that variant. However, it implies that we would have to explicitly
enumerate all undefined cases.

It is more elegant and concise to only write down the cases that make sense
and leave everything else undefined. The operational semantics judgement
already lets us do this for commands. We can use the same style for arithmetic
expressions. Since we are not interested in intermediate states at this point,
we choose the big-step style.

Our new judgement relates an expression and the state it is evaluated in
to the value it is evaluated to. We refrain from introducing additional syntax
and call this judgement taval for typed arithmetic value of an expression. In
Isabelle, this translates to an inductive definition with type aexp ⇒ state ⇒
val ⇒ bool. We show its introduction rules in Figure 9.1. The term taval a s v
means that arithmetic expression a evaluates in state s to value v.

The definition is straightforward. The first rule taval (Ic i) s (Iv i) for
instance says that an integer constant Ic i always evaluates to the value Iv i ,
no matter what the state is. The interesting cases are the rules that are not
there. For instance, there is no rule to add a real to an int. We only needed
to provide rules for the cases that make sense and we have implicitly defined
what the error cases are. The following is an example derivation for taval
where s ′ ′x ′ ′ = Iv 4.

taval (Ic 3) s (Iv 3) taval (V ′ ′x ′ ′) s (Iv 4)

taval (Plus (Ic 3) (V ′ ′x ′ ′)) s (Iv 7)

9.1 Typed IMP 119

tbval (Bc v) s v

tbval b s bv

tbval (Not b) s (¬ bv)

tbval b1 s bv1 tbval b2 s bv2
tbval (And b1 b2) s (bv1 ∧ bv2)

taval a1 s (Iv i1) taval a2 s (Iv i2)

tbval (Less a1 a2) s (i1 < i2)

taval a1 s (Rv r1) taval a2 s (Rv r2)

tbval (Less a1 a2) s (r1 < r2)

Fig. 9.2. Inductive definition of tbval :: bexp ⇒ state ⇒ bool ⇒ bool

For s ′ ′x ′ ′ = Rv 3 on the other hand, there would be no execution of taval
that we could derive for the same term.

The syntax for boolean expressions remains unchanged. Their evaluation,
however, is different. In order to use the operational semantics for arithmetic
expressions that we just defined, we need to employ the same operational
style for boolean expressions. Figure 9.2 shows the formal definition. Normal
evaluation is straightforward. Then there are the two (missing) error cases
Less (Ic n) (Rc r) and Less (Rc r) (Ic n). Moreover the definition also
propagates errors from the evaluation of arithmetic expressions: if there is no
evaluation for a1 or a2 then there is also no evaluation for Less a1 a2.

The syntax for commands is again unchanged. We now have a choice: do
we define a big-step or a small-step semantics? The answer seems clear: it must
be small-step semantics, because only there can we observe when things are
going wrong in the middle of an execution. In the small-step case, error states
are explicitly visible in intermediate states: if there is an error, the semantics
gets stuck in a non-final configuration with no further progress possible. We
need executions to be able to go wrong if we want a meaningful proof that
they do not.

In fact, the big-step semantics could be adjusted as well to perform the
same function. By default, in the style we have seen so far, a big-step se-
mantics is not suitable for this, because it conflates non-termination, which is
allowed, with runtime errors or undefined execution, which are not. If we mark
errors specifically and distinguish them from non-termination in the big-step
semantics, we can observe errors just as well as in the small-step case.

So we still have a choice. Small-step semantics are more concise and more
traditional for type soundness proofs. Therefore we will choose this one. Later,
in Chapter 10, we will show the other alternative.

After all this discussion, the definition of the small-step semantics for
typed commands is almost the same as that for the untyped case. As shown in
Figure 9.3, it merely refers to the new judgements for arithmetic and boolean
expressions, but does not add any new rules on its own.

120 9 Types

taval a s v

(x ::= a , s) → (SKIP , s(x := v))

(SKIP ;; c, s) → (c, s)

(c1, s) → (c ′1, s
′)

(c1;; c2, s) → (c ′1;; c2, s
′)

tbval b s True

(IF b THEN c1 ELSE c2, s) → (c1, s)

tbval b s False

(IF b THEN c1 ELSE c2, s) → (c2, s)

(WHILE b DO c, s) → (IF b THEN c;; WHILE b DO c ELSE SKIP , s)

Fig. 9.3. Inductive definition of op → :: com × state ⇒ com × state ⇒ bool

As before, the execution of a command is a sequence of small steps, denoted
by star, for example (c, s) →∗ (c ′, s ′).

Example 9.1. For well-behaved programs, our typed executions look as be-
fore. For instance, let s satisfy s ′ ′y ′ ′ = Iv 7. Then we get the following
example execution chain.

(′ ′x ′ ′ ::= V ′ ′y ′ ′;; ′ ′y ′ ′ ::= Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′), s) →
(SKIP ;; ′ ′y ′ ′ ::= Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′), s(′ ′x ′ ′ := Iv 7)) →
(′ ′y ′ ′ ::= Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′), s(′ ′x ′ ′ := Iv 7)) →
(SKIP , s(′ ′x ′ ′ := Iv 7, ′ ′y ′ ′ := Iv 14))

However, programs that contain type errors can get stuck. For example, if
in the same state s we take a slightly different program that adds a constant
of the wrong type, we get:

(′ ′x ′ ′ ::= V ′ ′y ′ ′;; ′ ′y ′ ′ ::= Plus (V ′ ′x ′ ′) (Rc 3), s) →
(SKIP ;; ′ ′y ′ ′ ::= Plus (V ′ ′x ′ ′) (Rc 3), s(′ ′x ′ ′ := Iv 7)) →
(′ ′y ′ ′ ::= Plus (V ′ ′x ′ ′) (Rc 3), s(′ ′x ′ ′ := Iv 7))

The first assignment succeeds as before, but after that no further execution
step is possible because we cannot find an execution for taval on the right-
hand side of the second assignment.

9.1.1 The Type System

Having defined our new language above, we can now define its type system.
The idea of such type systems is to predict statically which values will ap-
pear at runtime and to exclude programs in which unsafe values or value
combinations might be encountered.

9.1 Typed IMP 121

Γ ` Ic i : Ity Γ ` Rc r : Rty Γ ` V x : Γ x

Γ ` a1 : τ Γ ` a2 : τ

Γ ` Plus a1 a2 : τ

Fig. 9.4. Inductive definition of _ ` _ : _ :: tyenv ⇒ aexp ⇒ ty ⇒ bool

Γ ` Bc v

Γ ` b

Γ ` Not b

Γ ` b1 Γ ` b2
Γ ` And b1 b2

Γ ` a1 : τ Γ ` a2 : τ

Γ ` Less a1 a2

Fig. 9.5. Inductive definition of op ` :: tyenv ⇒ bexp ⇒ bool

The type system we use for this is very rudimentary, it has only two types:
int and real, written as the constructors Ity and Rty, corresponding to the
two kinds of values we have introduced. In Isabelle:

datatype ty = Ity | Rty

The purpose of the type system is to keep track of the type of each variable
and to allow only compatible combinations in expressions. For this purpose,
we define a so-called typing environment. Where a runtime state maps variable
names to values, a static typing environment maps variable names to their
static types.

type_synonym tyenv = vname ⇒ ty

For example, we could have Γ ′ ′x ′ ′ = Ity, telling us that variable x has type
integer and that we should therefore not use it in an expression of type real.

With this, we can give typing rules for arithmetic expressions. The idea
is simple: constants have fixed type, variables have the type the typing envi-
ronment Γ prescribes, and Plus can be typed with type τ if both operands
have the same type τ. Figure 9.4 shows the definition in Isabelle. We use the
notation Γ ` a : τ to say that expression a has type τ in context Γ .

The typing rules for booleans in Figure 9.5 are even simpler. We do not
need a result type, because it will always be bool, so the notation is just Γ ` b
for expression b is well-typed in context Γ . For the most part, we just need
to capture that boolean expressions are well-typed if their subexpressions are
well-typed. The interesting case is the connection to arithmetic expressions in
Less. Here we demand that both operands have the same type τ, i.e., either
we compare two ints or two reals, but not an int to a real.

Similarly, commands are well-typed if their subcommands and subexpres-
sions are well-typed. In addition, in an assignment the arithmetic expression

122 9 Types

Γ ` SKIP

Γ ` a : Γ x

Γ ` x ::= a

Γ ` c1 Γ ` c2
Γ ` c1;; c2

Γ ` b Γ ` c1 Γ ` c2
Γ ` IF b THEN c1 ELSE c2

Γ ` b Γ ` c

Γ ` WHILE b DO c

Fig. 9.6. Inductive definition of op ` :: tyenv ⇒ com ⇒ bool

must have the same type as the variable it is assigned to. The full set of
rules is shown in Figure 9.6. We re-use the syntax Γ ` c for command c is
well-typed in context Γ .

This concludes the definition of the type system itself. Type systems can be
arbitrarily complex. The one here is intentionally simple to show the structure
of a type soundness proof without getting side-tracked in interesting type
system details.

Note that there is precisely one rule per syntactic construct in our def-
inition of the type system, and the premises of each rule apply the typing
judgement only to subterms of the conclusion. We call such rule sets syntax-
directed. Syntax-directed rules are a good candidate for automatic applica-
tion and for deriving an algorithm that infers the type simply by applying
them backwards, at least if there are no side conditions in their assumptions.
Since there is exactly one rule per construct, it is always clear which rule to
pick and there is no need for back-tracking. Further, since there is always
at most one rule application per syntax node in the term or expression the
rules are applied to, this process must terminate. This idea can be extended
to allow side conditions in the assumptions of rules, as long as these side
conditions are decidable.

Given such a type system, we can now check whether a specific command
c is well-typed. To do so, we merely need to construct a derivation tree for
the judgment Γ ` c. Such a derivation tree is also called a type derivation.
Let for instance Γ ′ ′x ′ ′ = Ity as well as Γ ′ ′y ′ ′ = Ity. Then our previous
example program is well-typed, because of the following type derivation.

Γ ′ ′y ′ ′ = Ity

Γ ` V ′ ′y ′ ′ : Ity

Γ ` ′ ′x ′ ′ ::= V ′ ′y ′ ′

Γ ′ ′x ′ ′ = Ity

Γ ` V ′ ′x ′ ′ : Ity

Γ ′ ′y ′ ′ = Ity

Γ ` V ′ ′y ′ ′ : Ity

Γ ` Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′) : Ity

Γ ` ′ ′y ′ ′ ::= Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′)

Γ ` ′ ′x ′ ′ ::= V ′ ′y ′ ′;; ′ ′y ′ ′ ::= Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′)

9.1 Typed IMP 123

9.1.2 Well-Typed Programs Do Not Get Stuck

In this section we prove that the type system defined above is sound. As men-
tioned in the introduction to this chapter, Robert Milner coined the phrase
Well-typed programs cannot go wrong, i.e., well-typed programs will not ex-
hibit any runtime errors such as segmentation faults or undefined execution.
In our small-step semantics we have defined precisely what “go wrong” means
formally: a program exhibits a runtime error when the semantics gets stuck.

To prove type soundness we have to prove that well-typed programs never
get stuck. They either terminate successfully, or they make further progress.
Taken literally, the above sentence translates into the following property:

[[(c, s) →∗ (c ′, s ′); Γ ` c]] =⇒ c ′ = SKIP ∨ (∃ cs ′ ′. (c ′, s ′) → cs ′ ′)

Given an arbitrary command c, which is well-typed Γ ` c, any execution
(c, s) →∗ (c ′, s ′) either has terminated successfully with c ′ = SKIP, or can
make another execution step ∃ cs ′ ′. (c ′, s ′) → cs ′ ′. Clearly, this statement is
wrong, though: take c for instance to be a command that computes the sum
of two variables: z := x+y. This command is well-typed, for example, if the
variables are both of type int. However, if we start the command in a state
that disagrees with this type, e.g., where x contains an int but y contains a
real, the execution gets stuck.

Of course, we want the value of a variable to be of type int if the typing says
it should be int. This means we want not only the program to be well-typed,
but the state to be well-typed too.

We so far have the state assigning values to variables and we have the type
system statically assigning types to variables in the program. The concept of
well-typed states connects these two: we define a judgement that determines
if a runtime state is compatible with a typing environment for variables. We
call this formal judgement styping below, written Γ ` s. We equivalently also
say that a state s conforms to a typing environment Γ .

With this judgement, our full statement of type soundness is now

[[(c, s) →∗ (c ′, s ′); Γ ` c; Γ ` s ; c ′ 6= SKIP]] =⇒ ∃ cs ′ ′. (c ′, s ′) → cs ′ ′

Given a well-typed program, started in a well-typed state, any execution
that has not reached SKIP yet can make another step.

We will prove this property by induction on the reflexive transitive closure
of execution steps, which naturally decomposes this type soundness property
into two parts: preservation and progress. Preservation means that well-
typed states stay well-typed during execution. Progress means that in a
well-typed state, the program either terminates successfully or can make one
more step of execution progress.

In the following, we formalize the soundness proof for typed IMP.

124 9 Types

We start the formalization by defining a function from values to types:

fun type :: val ⇒ ty where
type (Iv i) = Ity
type (Rv r) = Rty

Our styping judgement for well-typed states is now very simple: for all vari-
ables, the type of the runtime value must be exactly the type predicted in the
typing environment.

definition op ` :: tyenv ⇒ state ⇒ bool where
Γ ` s ←→ (∀ x . type (s x) = Γ x)

This was easy. In more sophisticated type systems, there may be multiple
types that can be assigned to a value and we may need a compatibility or
subtype relation between types to define the styping judgement.

We now have everything defined to start the soundness proof. The plan is
to prove progress and preservation, and to conclude from that that the final
type soundness statement that an execution of a well-typed command started
in a well-typed state will never get stuck. To prove progress and preserva-
tion for commands, we will first need the same properties for arithmetic and
boolean expressions.

Preservation for arithmetic expressions means the following: if expression
a has type τ under environment Γ , if a evaluates to v in state s, and if s
conforms to Γ , then the type of the result v must be τ:

Lemma 9.2 (Preservation for arithmetic expressions).
[[Γ ` a : τ; taval a s v ; Γ ` s]] =⇒ type v = τ

Proof. The proof is by rule induction on the type derivation Γ ` a : τ. If
we declare rule inversion on taval to be used automatically and unfold the
definition of styping, Isabelle proves the rest. ut

The proof of the progress lemma is slightly more verbose. It is almost the
only place where something interesting is concluded in the soundness proof
— there is the potential of something going wrong: if the operands of a Plus
were of incompatible type, there would be no value v the expression evaluates
to. Of course, the type system excludes precisely this case.

The progress statement is as standard as the preservation statement for
arithmetic expressions: given that a has type τ under environment Γ , and
given a conforming state s, there must exist a result value v such that a
evaluates to v in s.

Lemma 9.3 (Progress for arithmetic expressions).
[[Γ ` a : τ; Γ ` s]] =⇒ ∃ v . taval a s v

9.1 Typed IMP 125

Proof. The proof is again by rule induction on the typing derivation. The
interesting case is Plus a1 a2. The induction hypothesis gives us two values
v1 and v2 for the subexpressions a1 and a2. If v1 is an integer, then, by
preservation, the type of a1 must have been Ity. The typing rule says that
the type of a2 must be the same. This means, by preservation, the type of v2

must be Ity, which in turn means then v2 must be an Iv value and we can
conclude using the taval introduction rule for Plus that the execution has
a result. Isabelle completes this reasoning chain automatically if we carefully
provide it with the right facts and rules. The case for reals is analogous, and
the other typing cases are solved automatically. ut

For boolean expressions, there is no preservation lemma, because tbval,
by its Isabelle type, can only return boolean values. The progress statement
makes sense, though, and follows the standard progress statement schema.

Lemma 9.4 (Progress for boolean expressions).
[[Γ ` b; Γ ` s]] =⇒ ∃ v . tbval b s v

Proof. As always, the proof is by rule induction on the typing derivation. The
interesting case is where something could go wrong, namely where we execute
arithmetic expressions in Less. The proof is very similar to the one for Plus :
we obtain the values of the subexpressions; we perform a case distinction on
one of them to reason about its type; we infer the other has the same type by
typing rules and by preservation on arithmetic expressions; and we conclude
that execution can therefore progress. Again, this case is automatic if written
carefully; the other cases are trivial. ut

For commands, there are two preservation statements, because the con-
figurations in our small-step semantics have two components: command and
state. We first show that the command remains well-typed and then that the
state does. Both proofs are by induction on the small-step semantics. They
could be proved by induction on the typing derivation as well. Often it is
preferable to try induction on the typing derivation first, because the type
system typically has fewer cases. On the other hand, depending on the com-
plexity of the language, the more fine-grained information that is available
in the operational semantics might make the more numerous cases easier to
prove in the other induction alternative. In both cases it pays off to design the
structure of the rules in both systems such that they technically fit together
nicely, for instance such that they decompose along the same syntactic lines.

Theorem 9.5 (Preservation: commands stay well-typed).
[[(c, s) → (c ′, s ′); Γ ` c]] =⇒ Γ ` c ′

Proof. The preservation of program typing is fully automatic in this simple
language. The only mildly interesting case where we are not just transforming

126 9 Types

the command into a subcommand is the while loop. Here we just need to apply
the typing rules for IF and sequential composition and are done. ut

Theorem 9.6 (Preservation: states stay well-typed).
[[(c, s) → (c ′, s ′); Γ ` c; Γ ` s]] =⇒ Γ ` s ′

Proof. Most cases are trivial because the state is not modified. In the second
;; rule the induction hypothesis applies. In the assignment rule the state is
updated with a new value. Type preservation on expressions gives us that the
new value has the same type as the expression, and unfolding the styping
judgement shows that it is unaffected by state updates that are type pre-
serving. In more complex languages, there are likely to be a number of such
update cases and the corresponding lemma is a central piece of type sound-
ness proofs. ut

The next step is the progress lemma for commands. Here, we need to take
into account that the program might have fully terminated. If it has not, and
we have a well-typed program in a well-typed state, we should be able to
make at least one step.

Theorem 9.7 (Progress for commands).
[[Γ ` c; Γ ` s ; c 6= SKIP]] =⇒ ∃ cs ′. (c, s) → cs ′

Proof. This time the only induction alternative is on the typing derivation
again. The cases with arithmetic and boolean expressions make use of the
corresponding progress lemmas to generate the values the small-step rules de-
mand. For IF, we additionally perform a case distinction for picking the corre-
sponding introduction rule. As for the other cases: SKIP is trivial, sequential
composition applies the induction hypotheses and makes a case distinction
whether c1 is SKIP or not, and WHILE always trivially makes progress in
the small-step semantics, because it is unfolded into an IF/WHILE. ut

All that remains is to assemble the pieces into the final type soundness
statement: given any execution of a well-typed program started in a well-
typed state, we are not stuck; we have either terminated successfully, or the
program can perform another step.

Theorem 9.8 (Type soundness).
[[(c, s) →∗ (c ′, s ′); Γ ` c; Γ ` s ; c ′ 6= SKIP]] =⇒ ∃ cs ′ ′. (c ′, s ′) → cs ′ ′

Proof. The proof lifts the one-step preservation and progress results to a
sequence of steps by induction on the reflexive transitive closure. The base
case of zero steps is solved by the progress lemma; the step case needs our
two preservation lemmas for commands. ut

9.1 Typed IMP 127

This concludes the section on typing. We have seen, exemplified by a very
simple type system, what a type soundness statement means, how it interacts
with the small-step semantics, and how it is proved. While the proof itself
will grow in complexity for more interesting languages, the general schema of
progress and preservation remains.

For the type soundness theorem to be meaningful, it is important that
the failures the type system is supposed to prevent are observable in the
semantics, so that their absence can be shown. In a framework like the one
above, the definition of the small-step semantics carries the main meaning
and strength of the type soundness statement.

Our mantra for type systems:

Type systems have a purpose: the static analysis of programs in order
to predict their runtime behaviour. The correctness of this prediction
must be provable.

Exercises

Exercise 9.1. Reformulate the inductive predicates Γ ` a : τ, Γ ` b and
Γ ` c as three functions atype :: tyenv ⇒ aexp ⇒ ty option, bok :: tyenv
⇒ bexp ⇒ bool and cok :: tyenv ⇒ com ⇒ bool and prove the three
equivalences (Γ ` a : τ) = (atype Γ a = Some τ), (Γ ` b) = bok Γ b and
(Γ ` c) = cok Γ c.

Exercise 9.2. Modify the evaluation and typing of aexp by allowing ints to
be coerced to reals with the predefined coercion function real :: int ⇒ real
where necessary. Now every aexp has a value and a type. Define an evaluation
function aval :: aexp ⇒ state ⇒ val and a typing function atyp :: tyenv ⇒
aexp ⇒ ty and prove Γ ` s =⇒ atyp Γ a = type (aval a s).

For the following two exercises copy theory Types and modify it as re-
quired.

Exercise 9.3. Add a REPEAT loop (see Exercise 7.8) to the typed version
of IMP and update the type soundness proof.

Exercise 9.4. Modify the typed version of IMP as follows. Values are now
either integers or booleans. Thus variables can have boolean values too. Merge
the two expression types aexp and bexp into one new type exp of expressions
that has the constructors of both types (of course without real constants).
Combine taval and tbval into one evaluation predicate eval :: exp ⇒ state ⇒
val ⇒ bool. Similarly combine the two typing predicates into one: Γ ` e : τ

where e :: exp and the IMP-type τ can be one of Ity or Bty. Adjust the
small-step semantics and the type soundness proof.

128 9 Types

9.2 Security Type Systems

In the previous section we have seen a simple static type system with sound-
ness proof. However, type systems can be used for more than the traditional
concepts of integers, reals, etc. In theory, type systems can be arbitrarily com-
plex logical systems used to statically predict properties of programs. In the
following, we will look at a type system that aims to enforce a security prop-
erty: the absence of information flows from private data to public observers.
The idea is that we want an easy and automatic way to check if programs
protect private data such as passwords, bank details, or medical records.

Ensuring such information flow control properties based on a program-
ming language analysis such as a type system is a part of so-called language-
based security. Another common option for enforcing information flow con-
trol is the use of cryptography to ensure the secrecy of private data. Cryp-
tography only admits probabilistic arguments (one could always guess the
key), whereas language-based security also allows more absolute statements.
As techniques they are not incompatible: both approaches could be mixed to
enforce a particular information flow property.

Note that absolute statements in language-based security are always with
respect to assumptions on the execution environment. For instance, our proof
below will have the implicit assumption that the machine actually behaves as
our semantics predicts. There are practical ways in which these assumptions
can be broken or circumvented: intentionally introducing hardware-based er-
rors into the computation to deduce private data, direct physical observation
of memory contents, deduction of private data by analysis of execution time,
and more. These attacks make use of details that are not visible on the ab-
straction level of the semantic model our proof is based on — they are covert
channels of information flow.

9.2.1 Security Levels and Expressions thy

We begin developing our security type system by defining security levels.
The idea is that each variable will have an associated security level. The
type system will then enforce the policy that information may only flow from
variables of ‘lower’ security levels to variables of ‘higher’ levels, but never the
other way around.

In the literature, levels are often reduced to just two: high and low. We keep
things slightly more general by making levels natural numbers. We can then
compare security levels by just writing < and we can compute the maximal
or minimal security level of two different variables by taking the maximum or
minimum respectively. The term l < l ′ in this system would mean that l is
less private or confidential than l ′, so level 0 could be equated with ‘public’.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Sec_Type_Expr.html

9.2 Security Type Systems 129

It would be easy to generalize further and just assume a lattice of security
levels with <, join, and meet operations. We could then also enforce that
information does not travel ‘sideways’ between two incomparable security
levels. For the sake of simplicity we refrain from doing so and merely use nat.

type_synonym level = nat

For the type system and security proof below it would be sufficient to merely
assume the existence of a HOL constant that maps variables to security levels.
This would express that we assume each variable to possess a security level
and that this level remains the same during execution of the program.

For the sake of showing examples — the general theory does not rely on
it! — we arbitrarily choose a specific function for this mapping: a variable of
length n has security level n.

The kinds of information flows we would like to avoid are exemplified by
the following two:

� explicit: low := high
� implicit: IF high1 < high2 THEN low := 0 ELSE low := 1

The property we are after is called noninterference: a variation in the
value of high variables should not interfere with the computation or values of
low variables. ‘High should not interfere with low.’

More formally, a program c guarantees noninterference iff for all states s1
and s2: if s1 and s2 agree on low variables (but may differ on high variables!),
then the states resulting from executing (c, s1) and (c, s2) must also agree
on low variables.

As opposed to our previous type soundness statement, this definition com-
pares the outcome of two executions of the same program in different, but re-
lated initial states. It requires again potentially different, but equally related
final states.

With this in mind, we proceed to define the type system that will enforce
this property. We begin by computing the security level of arithmetic and
boolean expressions. We are interested in flows from higher to lower variables,
so we define the security level of an expression as the highest level of any
variable that occurs in it. We make use of Isabelle’s overloading and call the
security level of an arithmetic or boolean expression sec e.

fun sec :: aexp ⇒ level where
sec (N n) = 0

sec (V x) = sec x
sec (Plus a1 a2) = max (sec a1) (sec a2)

130 9 Types

fun sec :: bexp ⇒ level where
sec (Bc v) = 0

sec (Not b) = sec b
sec (And b1 b2) = max (sec b1) (sec b2)
sec (Less a1 a2) = max (sec a1) (sec a2)

A first lemma indicating that we are moving into the right direction will be
that if we change the value of only variables with a higher level than sec e,
the value of e should stay the same.

To express this property, we introduce notation for two states agreeing on
the value of all variables below a certain security level. The concept is light-
weight enough that a syntactic abbreviation is sufficient; this avoids having
to go through the motions of setting up additional proof infrastructure. We
will need 6, but also the strict < later on, so we define both here:

s = s ′ (6 l) ≡ ∀ x . sec x 6 l −→ s x = s ′ x
s = s ′ (< l) ≡ ∀ x . sec x < l −→ s x = s ′ x

With this, the proof of our first two security properties is simple and auto-
matic: The evaluation of an expression e only depends on variables with level
below or equal to sec e.

Lemma 9.9 (Noninterference for arithmetic expressions).
[[s1 = s2 (6 l); sec e 6 l]] =⇒ aval e s1 = aval e s2

Lemma 9.10 (Noninterference for boolean expressions).
[[s1 = s2 (6 l); sec b 6 l]] =⇒ bval b s1 = bval b s2

9.2.2 Syntax-Directed Typing thy

As usual in IMP, the typing for expressions was simple. We now define a
syntax-directed set of security typing rules for commands. This makes the
rules directly executable and allows us to run examples. Checking for explicit
flows, i.e., assignments from high to low variables, is easy. For implicit flows,
the main idea of the type system is to track the security level of variables
that decisions are made on, and to make sure that their level is lower than or
equal to variables assigned to in that context.

We write l ` c to mean that command c contains no information flows to
variables lower than level l, and only safe flows to variables > l.

Going through the rules of Figure 9.7 in detail, we have defined SKIP to
be safe at any level. We have defined assignment to be safe if the level of x is
higher than or equal to both the level of the information source a and the level
l. For semicolon to conform to level l, we recursively demand that both parts
conform to the same level l. As previously shown in the motivating example,

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Sec_Typing.html

9.2 Security Type Systems 131

l ` SKIP

sec a 6 sec x l 6 sec x

l ` x ::= a

l ` c1 l ` c2
l ` c1;; c2

max (sec b) l ` c1 max (sec b) l ` c2
l ` IF b THEN c1 ELSE c2

max (sec b) l ` c

l ` WHILE b DO c

Fig. 9.7. Definition of sec_type :: level ⇒ com ⇒ bool

the IF command could admit implicit flows. We prevent these by demanding
that for IF to conform to l, both c1 and c2 have to conform to level l or
the level of the boolean expression, whichever is higher. We can conveniently
express this with the maximum operator max. The WHILE case is similar to
an IF : the body must have at least the level of b and of the whole command.

Using the max function makes the type system executable if we tell Isa-
belle to treat the level and the program as input to the predicate.

Example 9.11. Testing our intuition about what we have just defined, we
look at four examples for various security levels.

0 ` IF Less (V ′ ′x1 ′ ′) (V ′ ′x ′ ′) THEN ′ ′x1 ′ ′ ::= N 0 ELSE SKIP

The statement claims that the command is well-typed at security level 0:
flows can occur down to even a level 0 variable, but they have to be internally
consistent, i.e., flows must still only be from lower to higher levels. According
to our arbitrary example definition of security levels that assigns the length
of the variable to the level, variable x1 has level 2, and variable x has level
1. This means the evaluation of this typing expression will yield True : the
condition has level 2, and the context is 0, so according to the IF rule, both
commands must be safe up to level 2, which is the case, because the first
assignment sets a level 2 variable, and the second is just SKIP.

Does the same work if we assign to a lower-level variable?

0 ` IF Less (V ′ ′x1 ′ ′) (V ′ ′x ′ ′) THEN ′ ′x ′ ′ ::= N 0 ELSE SKIP

Clearly not. Again, we need to look at the IF rule, which still says the as-
signment must be safe at level 2, i.e., we have to derive 2 ` ′ ′x ′ ′ ::= N 0.
But x is of level 1, and the assignment rule demands that we only assign to
levels higher than the context. Intuitively, the IF decision expression reveals
information about a level 2 variable. If we assign to a level 1 variable in one
of the branches we leak level 2 information to level 1.

What if we demand a higher security context from our original example?

2 ` IF Less (V ′ ′x1 ′ ′) (V ′ ′x ′ ′) THEN ′ ′x1 ′ ′ ::= N 0 ELSE SKIP

Context of level 2 still works, because our highest level in this command is
level 2, and our arguments from the first example still apply.

132 9 Types

What if we go one level higher?

3 ` IF Less (V ′ ′x1 ′ ′) (V ′ ′x ′ ′) THEN ′ ′x1 ′ ′ ::= N 0 ELSE SKIP

Now we get False, because we need to take the maximum of the context and
the boolean expression for evaluating the branches. The intuition is that the
context gives the minimum level to which we may reveal information.

As we can already see from these simple examples, the type system is
not complete: it will reject some safe programs as unsafe. For instance, if the
value of x in the second command was already 0 in the beginning, the context
would not have mattered, we only would have overwritten 0 with 0. As we
know by now, we should not expect otherwise. The best we can hope for is
a safe approximation such that the false alarms are hopefully programs that
rarely occur in practice or that can be rewritten easily.

It is the case that the simple type system presented here, going back to
Volpano, Irvine, and Smith [89], has been criticised as too restrictive. It ex-
cludes too many safe programs. This can be addressed by making the type
system more refined, more flexible, and more context-aware. For demonstrat-
ing the type system and its soundness proof in this book, however, we will
stick to its simplest form.

9.2.3 Soundness

We introduced the correctness statement for this type system as noninterfer-
ence: two executions of the same program started in related states end up in
related states. The relation in our case is that the values of variables below
security level l are the same. Formally, this is the following statement:

[[(c, s) ⇒ s ′; (c, t) ⇒ t ′; 0 ` c; s = t (6 l)]] =⇒ s ′ = t ′ (6 l)

An important property, which will be useful for this lemma, is the so-
called anti-monotonicity of the type system: a command that is typeable
in l is also typeable in any level smaller than l. Anti-monotonicity is also
often called the subsumption rule, to say that higher contexts subsume
lower ones. Intuitively it is clear that this property should hold: we defined
l ` c to mean that there are no flows to variables < l. If we write l ′ ` c with
an l ′ 6 l , then we are only admitting more flows, i.e., we are making a weaker
statement.

Lemma 9.12 (Anti-monotonicity). [[l ` c; l ′ 6 l]] =⇒ l ′ ` c

Proof. The formal proof is by rule induction on the type system. Each of the
cases is then solved automatically. ut

9.2 Security Type Systems 133

The second key lemma in the argument for the soundness of our security
type system is confinement: an execution that is type correct in context
l can only change variables of level l and above, or conversely, all variables
below l will remain unchanged. In other words, the effect of c is confined to
variables of level > l.

Lemma 9.13 (Confinement). [[(c, s) ⇒ t ; l ` c]] =⇒ s = t (< l)

Proof. The first instinct may be to try rule induction on the type sys-
tem again, but the WHILE case will only give us an induction hypothe-
sis about the body when we will have to show our goal for the whole loop.
Therefore, we choose rule induction on the big-step execution instead. In
the IF and WHILE cases, we make use of anti-monotonicity to instan-
tiate the induction hypothesis. In the IfTrue case, for instance, the hy-
pothesis is l ` c1 =⇒ s = t (< l), but from the type system we only know
max (sec b) l ` c1. Since l 6 max (sec b) l , anti-monotonicity allows us to
conclude l ` c1. ut

With these two lemmas, we can start the main noninterference proof.

Theorem 9.14 (Noninterference).
[[(c, s) ⇒ s ′; (c, t) ⇒ t ′; 0 ` c; s = t (6 l)]] =⇒ s ′ = t ′ (6 l)

Proof. The proof is again by induction on the big-step execution. The SKIP
case is easy and automatic, as it should be.

The assignment case is already somewhat interesting. First, we note that
s ′ is the usual state update s(x := aval a s) in the first big-step execution. We
perform rule inversion for the second execution to get the same update for t.
We also perform rule inversion on the typing statement to get the relationship
between security levels of x and a : sec a 6 sec x. Now we show that the two
updated states s ′ and t ′ still agree on all variables below l. For this, it is
sufficient to show that the states agree on the new value if sec x < l, and
that all other variables y with sec y < l still agree as before. In the first case,
looking at x, we know from above that sec a 6 sec x. Hence, by transitivity,
we have that sec a 6 l. This is enough for our noninterference result on
expressions to apply, given that we also know s = t (6 l) from the premises.
This means, we get aval a s = aval a t : the new values for x agree as required.
The case for all other variables y below l follows directly from s = t (6 l).

In the semicolon case, we merely need to compose the induction hypothe-
ses. This is solved automatically.

IF has two symmetric cases as usual. We will look only at the IfTrue
case in more detail. We begin the case by noting via rule inversion that both
branches are type correct to level sec b, since the maximum with 0 is the

134 9 Types

l ` ′ SKIP
sec a 6 sec x l 6 sec x

l ` ′ x ::= a

l ` ′ c1 l ` ′ c2
l ` ′ c1;; c2

sec b 6 l l ` ′ c1 l ` ′ c2
l ` ′ IF b THEN c1 ELSE c2

sec b 6 l l ` ′ c
l ` ′ WHILE b DO c

l ` ′ c l ′ 6 l

l ′ ` ′ c

Fig. 9.8. Definition of sec_type ′ :: level ⇒ com ⇒ bool

identity, i.e., we know sec b ` c1. Then we perform a case distinction: either
the level of b is 6 l or it is not. If sec b 6 l, i.e., the IF decision is on a
more public level than l, then s and t, which agree below l, also agree below
sec b. That in turn means by our noninterference lemma for expressions that
they evaluate to the same result, so bval b s = True and bval b t = True.
We already noted sec b ` c1 by rule inversion, and with anti-monotonicity,
we get the necessary 0 ` c1 to apply the induction hypothesis and conclude
the case. In the other case, if l < sec b, i.e., a condition on a more confi-
dential level than l, then we do not know that both IF commands will take
the same branch. However, we do know that the whole command is a high-
confidentiality computation. We can use the typing rule for IF to conclude
sec b ` IF b THEN c1 ELSE c2 since we know both max (sec b) 0 ` c1
and max (sec b) 0 ` c2. This in turn means we now can apply confinement:
everything below sec b will be preserved — in particular the state of variables
up to l. This is true for t to t ′ as well as s to s ′. Together with the initial
s = t (6 l) we can conclude s ′ = t ′ (6 l). This finishes the IfTrue case.

The IfFalse and WhileFalse cases are analogous. Either the conditions
evaluate to the same value and we can apply the induction hypothesis, or the
security level is high enough such that we can apply confinement.

Even the WhileTrue case is similar. Here, we have to work slightly harder
to apply the induction hypotheses, once for the body and once for the rest of
the loop, but the confinement side of the argument stays the same. ut

9.2.4 The Standard Typing System

The judgement l ` c presented above is nicely intuitive and executable. How-
ever, the standard formulation in the literature is slightly different, replacing
the maximum computation directly with the anti-monotonicity rule. We in-
troduce the standard system now in Figure 9.8 and show equivalence with
our previous formulation.

9.2 Security Type Systems 135

` SKIP : l

sec a 6 sec x

` x ::= a : sec x

` c1 : l1 ` c2 : l2
` c1;; c2 : min l1 l2

sec b 6 min l1 l2 ` c1 : l1 ` c2 : l2
` IF b THEN c1 ELSE c2 : min l1 l2

sec b 6 l ` c : l

` WHILE b DO c : l

Fig. 9.9. Definition of the bottom-up security type system

The equivalence proof goes by rule induction on the respective type system
in each direction separately. Isabelle proves each subgoal of the induction
automatically.

Lemma 9.15. l ` c =⇒ l ` ′ c

Lemma 9.16. l ` ′ c =⇒ l ` c

9.2.5 A Bottom-Up Typing System

The type systems presented above are top-down systems: the level l is passed
from the context or the user and is checked at assignment commands. We can
also give a bottom-up formulation where we compute the greatest l consistent
with variable assignments and check this value at IF andWHILE commands.
Instead of max computations, we now get min computations in Figure 9.9.

We can read the bottom-up statement ` c : l as c has a write-effect of
l, meaning that no variable below l is written to in c.

Again, we can prove equivalence. The first direction is straightforward and
the proof is automatic.

Lemma 9.17. ` c : l =⇒ l ` ′ c

The second direction needs more care. The statement l ` ′ c =⇒ ` c : l
is not true, Isabelle’s nitpick tool quickly finds a counter example:

0 ` ′ ′ ′x ′ ′ ::= N 0, but ¬ ` ′ ′x ′ ′ ::= N 0 : 0

The standard formulation admits anti-monotonicity, the computation of a
minimal l does not. If we take this discrepancy into account, we get the
following statement that is then again proved automatically by Isabelle.

Lemma 9.18. l ` ′ c =⇒ ∃ l ′>l . ` c : l ′

9.2.6 What About Termination? thy

In the previous section we proved the following security theorem (Theo-
rem 9.14):

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Sec_TypingT.html

136 9 Types

[[(c, s) ⇒ s ′; (c, t) ⇒ t ′; 0 ` c; s = t (6 l)]] =⇒ s ′ = t ′ (6 l)

We read it as: If our type system says yes, our data is safe: there will
be no information flowing from high to low variables.

Is this correct? The formal statement is certainly true, we proved it in Isa-
belle. But: it doesn’t quite mean what the sentence above says. It means only
precisely what the formula states: given two terminating executions started
in states we can’t tell apart, we won’t be able to tell apart their final states.

What if we don’t have two terminating executions? Consider, for example,
the following typing statement.

0 ` WHILE Less (V ′ ′x ′ ′) (N 1) DO SKIP

This is a true statement, the program is type correct at context level 0.
Our noninterference theorem holds. Yet, the program still leaks information:
the program will terminate if and only if the higher-security variable x (of
level 1) is not 0. We can infer information about the contents of a secret
variable by observing termination.

This is also called a covert channel, that is, an information flow channel
that is not part of the security theorem or even the security model, and that
the security theorem therefore does not make any claims about.

In our case, termination is observable in the model, but not in the theorem,
because it already assumes two terminating executions from the start. An
example of a more traditional covert channel is timing. Consider the standard
strcmp function in C that compares two strings: it goes through the strings
from left to right, and terminates with false as soon as two characters are not
equal. The more characters are equal in the prefix of the strings, the longer
it takes to execute this function. This time can be measured and the timing
difference is significant enough to be statistically discernible even over network
traffic. Such timing attacks can even be effective against widely deployed
cryptographic algorithms, for instance as used in SSL [15].

Covert channels and the strength of security statements are the bane of
security proofs. The literature is littered with the bodies of security theorems
that have been broken, either because their statement was weak, or their proof
was wrong, or because the model made unreasonably strong assumptions, i.e.,
admitted too many obvious covert channels.

Conducting security proofs in a theorem prover only helps against one of
these: wrong proofs. Strong theorem statements and realistic model assump-
tions, or at least explicit model assumptions, are still our own responsibility.

So what can we do to fix our statement of security? For one, we could
prove separately, and manually, that the specific programs we are interested
in always terminate. Then the problem disappears. Or we could strengthen
the type system and its security statement. The key idea is: WHILE condi-

9.2 Security Type Systems 137

l ` SKIP

sec a 6 sec x l 6 sec x

l ` x ::= a

l ` c1 l ` c2
l ` c1;; c2

max (sec b) l ` c1 max (sec b) l ` c2
l ` IF b THEN c1 ELSE c2

sec b = 0 0 ` c

0 ` WHILE b DO c

Fig. 9.10. Termination-sensitive security type system

tions must not depend on confidential data. If they don’t, then termination
cannot leak information.

In the following, we formalize and prove this idea.

Formalizing our idea means we replace the WHILE -rule with a new one
that does not admit anything higher than level 0 in the condition:

sec b = 0 0 ` c

0 ` WHILE b DO c

This is already it. Figure 9.10 shows the full set of rules, putting the new
one into context.

We now need to change our noninterference statement such that it takes
termination into account. The interesting case was where one execution ter-
minated and the other didn’t. If both executions terminate, our previous
statement already applies; if both do not terminate then there is no informa-
tion leakage, because there is nothing to observe.1 So, since our statement is
symmetric, we now assume one terminating execution, a well-typed program
of level 0 as before, and two start states that agree up to level l, also as before.
We then have to show that the other execution also terminates and that the
final states still agree up to level l.

[[(c, s) ⇒ s ′; 0 ` c; s = t (6 l)]] =⇒ ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ (6 l)

We build up the proof of this new theorem in the same way as before. The
first property is again anti-monotonicity, which still holds.

Lemma 9.19 (Anti-monotonicity).
[[l ` c; l ′ 6 l]] =⇒ l ′ ` c

Proof. The proof is by induction on the typing derivation. Isabelle then solves
each of the cases automatically. ut

Our confinement lemma is also still true.

Lemma 9.20 (Confinement).
[[(c, s) ⇒ t ; l ` c]] =⇒ s = t (< l)

1 Note that if our programs had output, this case might leak information as well.

138 9 Types

Proof. The proof is the same as before, first by induction on the big-step
execution, then by using anti-monotonicity in the IF cases, and automation
on the rest. ut

Before we can proceed to noninterference, we need one new fact about the
new type system: any program that is type correct, but not at level 0 (only
higher), must terminate. Intuitively that is easy to see: WHILE loops are the
only cause of potential nontermination, and they can now only be typed at
level 0. This means, if the program is type correct at some level, but not at
level 0, it does not contain WHILE loops.

Lemma 9.21 (Termination).
[[l ` c; l 6= 0]] =⇒ ∃ t . (c, s) ⇒ t

Proof. The formal proof of this lemma does not directly talk about the occur-
rence of while loops, but encodes the argument in a contradiction. We start
the proof by induction on the typing derivation. The base cases all terminate
trivially, and the step cases terminate because all their branches terminate in
the induction hypothesis. In the WHILE case we have the contradiction: our
assumption says that l 6= 0, but the induction rule instantiates l with 0, and
we get 0 6= 0. ut

Equipped with these lemmas, we can finally proceed to our new statement
of noninterference.

Theorem 9.22 (Noninterference).
[[(c, s) ⇒ s ′; 0 ` c; s = t (6 l)]] =⇒ ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ (6 l)

Proof. The proof is similar to that of the termination-insensitive case, it
merely has to additionally show termination of the second command. For
SKIP, assignment, and semicolon this is easy, the first two because they triv-
ially terminate, the third because Isabelle can put the induction hypotheses
together automatically.

The IF case is slightly more interesting. If the condition does not de-
pend on secret variables, the induction hypothesis is strong enough for us to
conclude the goal directly. However, if the condition does depend on secret
variables, i.e., ¬ sec b 6 l, we make use of confinement again, as we did in
our previous proof. However, we first have to show that the second execution
terminates, i.e., that a final state exists. This follows from our termination
lemma and the fact that if the security level sec b is greater than l, it cannot
be 0. The rest goes through as before.

The WHILE case becomes easier than in our previous proof. Since we
know from the typing statement that the boolean expression does not contain
any high variables, we know that the loops started in s and t will continue

9.2 Security Type Systems 139

l ` ′ SKIP
sec a 6 sec x l 6 sec x

l ` ′ x ::= a

l ` ′ c1 l ` ′ c2
l ` ′ c1;; c2

sec b 6 l l ` ′ c1 l ` ′ c2
l ` ′ IF b THEN c1 ELSE c2

sec b = 0 0 ` ′ c
0 ` ′ WHILE b DO c

l ` ′ c l ′ 6 l

l ′ ` ′ c

Fig. 9.11. Termination-sensitive security type system — standard formulation

to make the same decision whether to terminate or not. That was the whole
point of our type system change. In the WhileFalse case that is all that is
needed; in the WhileTrue case, we can make use of this fact to access the
induction hypothesis: from the fact that the loop is type correct at level 0,
we know by rule inversion that 0 ` c. We also know, by virtue of being in
the WhileTrue case, that bval b s, (c, s) ⇒ s ′ ′, and (w , s ′ ′) ⇒ s ′. We now
need to construct a terminating execution of the loop starting in t, ending in
some state t ′ that agrees with s ′ below l. We start by noting bval b t using
noninterference for boolean expressions. Per induction hypothesis we conclude
that there is a t ′ ′ with (c, t) ⇒ t ′ ′ that agrees with s ′ ′ below l. Using the
second induction hypothesis, we repeat the process for w, and conclude that
there must be such a t ′ that agrees with s ′ below l. ut

The predicate l ` c is phrased to be executable. The standard formulation,
however, is again slightly different, replacing the maximum computation by
the anti-monotonicity rule. Figure 9.11 introduces the standard system.

As before, we can show equivalence with our formulation.

Lemma 9.23 (Equivalence to standard formulation).
l ` c ←→ l ` ′ c

Proof. As with the equivalence proofs of different security type system formu-
lations in previous sections, this proof goes first by considering each direction
of the if-and-only-if separately, and then by induction on the type system in
the assumption of that implication. As before, Isabelle then proves each sub
case of the respective induction automatically. ut

Exercises

Exercise 9.5. Reformulate the inductive predicate sec_type defined in Fig-
ure 9.7 as a recursive function ok :: level ⇒ com ⇒ bool and prove the
equivalence of the two formulations.

140 9 Types

Try to reformulate the bottom-up system from Figure 9.9 as a function
that computes the security level of a command. What difficulty do you face?

Exercise 9.6. Define a bottom-up termination insensitive security type sys-
tem ` ′ c : l with subsumption rule. Prove equivalence with the bottom-up
system in Figure 9.9: ` c : l =⇒ ` ′ c : l and ` ′ c : l =⇒ ∃ l ′ > l . ` c : l ′.

Exercise 9.7. Define a function erase :: level ⇒ com ⇒ com that erases
those parts of a command that contain variables above some security level.
Function erase l should replace all assignments to variables with security level
> l by SKIP. It should also erase certain IF s and WHILEs, depending on
the security level of the boolean condition. Prove that c and erase l c behave
the same on the variables up to level l :

[[(c, s) ⇒ s ′; (erase l c, t) ⇒ t ′; 0 ` c; s = t (< l)]] =⇒ s ′ = t ′ (< l)

It is recommended to start with the proof of the very similar looking nonin-
terference Theorem 9.14 and modify that.

In the theorem above we assume that both (c, s) and (erase l c, t)
terminate. How about the following two properties?

[[(c, s) ⇒ s ′; 0 ` c; s = t (< l)]]
=⇒ ∃ t ′. (erase l c, t) ⇒ t ′ ∧ s ′ = t ′ (< l)

[[(erase l c, s) ⇒ s ′; 0 ` c; s = t (< l)]]
=⇒ ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ (< l)

Give proofs or counterexamples.

9.3 Summary and Further Reading

In this chapter we have analysed two kinds of type systems: a standard type
system that tracks types of values and prevents type errors at runtime, and
a security type system that prevents information flow from higher-level to
lower-level variables.

Sound, static type systems enjoy widespread application in popular pro-
gramming languages such as Java, C#, Haskell, and ML, but also on low-level
languages such as the Java Virtual Machine and its bytecode verifier [54]. Some
of these languages require types to be declared explicitly, as in Java. In other
languages, such as Haskell, these declarations can be left out, and types are
inferred automatically.

The purpose of type systems is to prevent errors. In essence, a type deriva-
tion is a proof, which means type checking performs basic automatic proofs
about programs.

9.3 Summary and Further Reading 141

The second type system we explored ensured absence of information flow.
The field of language-based security is substantial [76]. As mentioned, the
type system and the soundness statement in the sections above go back to
Volpano, Irvine, and Smith [89], and the termination-sensitive analysis to
Volpano and Smith [90]. While language-based security had been investigated
before Volpano et al., they were the first to give a security type system with
a soundness proof that expresses the enforced security property in terms of
the standard semantics of the language. As we have seen, such non-trivial
properties are comfortably within the reach of machine-checked interactive
proof. Our type system deviated a little from the standard presentation of
Volpano et al.: we derive anti-monotonicity as a lemma, whereas Volpano,
Irvine, and Smith have it as a typing rule. In exchange, they can avoid an
explicit max calculation. We saw that our syntax-directed form of the rules
is equivalent and allowed us to execute examples. Our additional bottom-
up type system can be seen as a simplified description of type inference for
security types. Volpano and Smith [91] gave an explicit algorithm for type
inference and showed that most general types exist if the program is type
correct. We also mentioned that our simple security levels based on natural
numbers can be generalized to arbitrary lattices. This observation goes back
to Denning [26].

A popular alternative to security type systems is dynamic tracking of infor-
mation flows, or so-called taint analysis [81]. It has been long-time folklore
in the field that static security analysis of programs must be more precise
than dynamic analysis, because dynamic (runtime) analysis can only track
one execution of the program at a time, whereas the soundness property of
our static type system compares two executions. Many dynamic taint analy-
sis implementations to date do not track implicit flows. Sabelfeld and Russo
showed for termination-insensitive noninterference that this is not a theoret-
ical restriction, and dynamic monitoring can in fact be more precise than the
static type system [77]. However, since their monitor essentially turns implicit
flow violations into non-termination, the question is still open for the more
restrictive termination-sensitive case. For more sophisticated, so-called flow-
sensitive type systems, the dynamic and static versions are incomparable:
there are some programs where purely dynamic flow-sensitive analysis fails,
but the static type system succeeds, and the other way around [75].

The name non-interference was coined by Goguen and Meseguer [35], but
the property goes back further to Ellis Cohen who called its inverse Strong
Dependency [18]. The concept of covert information flow channels already
precedes this idea [51]. Non-interference can be applied beyond language-
based security, for instance by directly proving the property about a specific
system. This is interesting for systems that have inherent security require-

142 9 Types

ments and are written in low-level languages such as C or in settings where
the security policy cannot directly be attached to variables in a program.
Operating systems are an example of this class, where the security policy is
configurable at runtime. It is feasible to prove such theorems in Isabelle down
to the C code level: the seL4 microkernel is an operating system kernel with
such a non-interference theorem in Isabelle [60].

10

Program Analysis

Program analysis, also known as static analysis, describes a whole field of
techniques for the static (i.e. compile-time) analysis of programs. Most com-
pilers or programming environments perform more or less ambitious program
analyses. The two most common objectives are the following:

Optimization The purpose is to improve the behaviour of the program,
usually by reducing its running time or space requirements.

Error detection The purpose is to detect common programming errors that
lead to runtime exceptions or other undesirable behaviour.

Program optimization is a special case of program transformation (for example
for code refactoring) and consists of two phases: the analysis (to determine if
certain required properties hold) and the transformation.

There are a number of different approaches to program analysis that em-
ploy different techniques to achieve similar aims. In the previous chapter we
used type systems for error detection. In this chapter we employ what is
known as data-flow analysis. We study three analyses (and associated trans-
formations):

1. Definite initialization analysis determines if all variables have been initial-
ized before they are read. This falls into the category of error detection
analyses. There is no transformation.

2. Constant folding is an optimization that tries to replace variables by con-
stants. For example, the second assignment in x := 1; y := x can be
replaced by the (typically faster) y := 1.

3. Live variable analysis determines if a variable is “live” at some point, i.e. if
its value can influence the subsequent execution. Assignments to variables
that are not live can be eliminated: for example, the first assignment in
the sequence x := 0; x := 1 is redundant.

144 10 Program Analysis

Throughout this chapter we continue the naive approach to program anal-
ysis that ignores boolean conditions. That is, we treat them as nondetermin-
istic: we assume that both values are possible every time the conditions are
tested. More precisely, our analyses are correct w.r.t. a (big or small-step)
semantics where we have simply dropped the preconditions involving boolean
expressions from the rules, resulting in a nondeterministic language.

Limitations

Program analyses, no matter what techniques they employ, are always limited.
This is a consequence of Rice’s Theorem from computability theory. It roughly
tells us that Nontrivial semantic properties of programs (e.g. termination)
are undecidable. That is, no nontrivial semantic property P has a magic
analyser that

� terminates on every input program,
� only says Yes if the input program has property P (correctness), and
� only says No if the input program does not have property P (completeness).

For concreteness, let us consider definite initialization analysis of the following
program:

FOR ALL positive integers x, y, z, n DO
IF n > 2 ∧ xn + yn = zn THEN u := u ELSE SKIP

For convenience we have extended our programming language with a FOR ALL
loop and an exponentiation operation: both could be programmed in pure
IMP, although it would be painful. The program searches for a counterex-
ample to Fermat’s conjecture that no three positive integers x, y, and z can
satisfy the equation xn + yn = zn for any integer n > 2. It reads the unini-
tialized variable u (thus violating the definite initialization property) iff such
a counterexample exists. It would be asking a bit much from a humble pro-
gram analyser to determine the truth of a statement that was in the Guinness
Book of World Records for “most difficult mathematical problems” prior to
its 1995 proof by Wiles.

As a consequence, we cannot expect program analysers to terminate, be
correct and be complete. Since we do not want to sacrifice termination and
correctness, we sacrifice completeness: we allow analysers to say No although
the program has the desired semantic property but the analyser was unable
to determine that.

10.1 Definite Initialization Analysis 145

10.1 Definite Initialization Analysis

The first program analysis we investigate is called definite initialization.
The Java Language Specification has the following to say on definite initial-
ization [38, chapter 16, p. 527]:

Each local variable [...] must have a definitely assigned value when any
access of its value occurs. [...] A compiler must carry out a specific conser-
vative flow analysis to make sure that, for every access of a local variable
[...] f, f is definitely assigned before the access; otherwise a compile-time
error must occur.

Java was the first mainstream language to force programmers to initialize
their variables.

In most programming languages, objects allocated on the heap are auto-
matically initialized to zero or a suitable default value, but local variables are
not. Uninitialized variables are a common cause of program defects that are
very hard to find. For instance, a C program, that uses an uninitialized local
integer variable will not necessarily crash on the first access to that integer.
Instead, it will read the value that is stored there by accident. On the de-
veloper’s machine and operating system that value may happen to be 0 and
the defect will go unnoticed. On the user’s machine, that same memory may
contain different values left over from a previous run or from a different appli-
cation. Worse still, this random value might not directly lead to a crash either,
but only cause misbehaviour at a much later point of execution, leading to
bug reports that are next to impossible to reproduce for the developer.

Removing the potential for such errors automatically is the purpose of the
definite initialization analysis.

Consider the following example with an already initialized x. Recall from
Section 7.1 that IF and WHILE bind more strongly than semicolon.

IF x < 1 THEN y := x ELSE y := x + 1; y := y + 1
IF x < x THEN y := y + 1 ELSE y := x; y := y + 1

The first line is clearly fine: in both branches of the IF, y gets initialized before
it is used in the statement after. The second line is also fine: even though the
True branch uses y where it is potentially uninitialized, we know that the
True branch can never be taken. However, we only know that because we
know that x < x will always be False.

What about the following example? Assume x and y are initialized.

WHILE x < y DO z := x; z := z + 1

Here it depends: if x < y, the program is fine (it will never terminate, but at
least it does so without using uninitialized variables), but if x < y is not the

146 10 Program Analysis

case, the program is unsafe. So, if our goal is to reject all potentially unsafe
programs, we have to reject this one.

As mentioned in the introduction, we do not analyse boolean expressions
statically to make predictions about program execution. Instead we take both
potential outcomes into account. This means, the analysis we are about to
develop will only accept the first program, but reject the other two.

Java is more discerning in this case, and will perform the optimization
of constant folding, which we discuss in Section 10.2, before definite ini-
tialization analysis. If during that pass it turns out an expression is always
True or always False, this can be taken into account. This is a nice example
of positive interaction between different kinds of optimization and program
analysis, where one enhances the precision and predictive power of the other.

As discussed, we cannot hope for completeness of any program analysis,
so there will be cases of safe programs that are rejected. For this specific
analysis, this is usually the case when the programmer is smarter than the
boolean constant folding the compiler performs. As with any restriction in a
programming language, some programmers will complain about the shackles
of definite initialization analysis, and Java developer forums certainly contain
such complaints. Completely eliminating this particularly hard-to-find class
of Heisenbugs well justifies the occasional program refactoring, though.

In the following sections, we construct our definite initialization analysis,
define a semantics where initialization failure is observable, and then proceed
to prove the analysis correct by showing that these failures will not occur.

10.1.1 Definite Initialization thy

The Java Language Specification quotes a number of rules that definite ini-
tialization analysis should implement to achieve the desired result. They have
the following form (adjusted for IMP):

Variable x is definitely initialized after SKIP
iff x is definitely initialized before SKIP.

Similar statements exist for each each language construct. Our task is
simply to formalize them. Each of these rules talks about variables, or more
precisely sets of variables. For instance, to check an assignment statement,
we will want to start with a set of variables that is already initialized, we
will check that set against the set of variables that is used in the assignment
expression, and we will add the assigned variable to the initialized set after
the assignment has completed.

So, the first formal tool we need is the set of variables mentioned in an
expression. The Isabelle theory Vars provides an overloaded function vars
for this:

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Def_Init.html

10.1 Definite Initialization Analysis 147

D A SKIP A

vars a ⊆ A

D A (x ::= a) (insert x A)

D A1 c1 A2 D A2 c2 A3

D A1 (c1;; c2) A3

vars b ⊆ A D A c1 A1 D A c2 A2

D A (IF b THEN c1 ELSE c2) (A1 ∩ A2)

vars b ⊆ A D A c A ′

D A (WHILE b DO c) A

Fig. 10.1. Definite initialization D :: vname set ⇒ com ⇒ vname set ⇒ bool

fun vars :: aexp ⇒ vname set where
vars (N n) = {}

vars (V x) = {x }
vars (Plus a1 a2) = vars a1 ∪ vars a2

fun vars :: bexp ⇒ vname set where
vars (Bc v) = {}

vars (Not b) = vars b
vars (And b1 b2) = vars b1 ∪ vars b2
vars (Less a1 a2) = vars a1 ∪ vars a2

With this we can define our main definite initialization analysis. The purpose
is to check whether each variable in the program is assigned to before it is
used. This means we ultimately want a predicate of type com ⇒ bool, but we
have already seen in the examples that we need a slightly more general form
for the computation itself. In particular, we carry around a set of variables
that we know are definitely initialized at the beginning of a command. The
analysis then has to do two things: check whether the command only uses
these variables, and produce a new set of variables that we know are initialized
afterwards. This leaves us with the following type signature:

D :: vname set ⇒ com ⇒ vname set ⇒ bool

We want the notation D A c A ′ to mean:

If all variables in A are initialized before c is executed, then no unini-
tialized variable is accessed during execution, and all variables in A ′ are
initialized afterwards.

Figure 10.1 shows how we can inductively define this analysis with one rule
per syntactic construct. We walk through them step by step:

� The SKIP rule is obvious, and translates exactly the text rule we have
mentioned above.

148 10 Program Analysis

� Similarly, the assignment rule follows our example above: the predicate
D A (x ::= a) A ′ isTrue if the variables of the expression a are contained
in the initial set A, and if A ′ is precisely the initial A plus the variable x
we just assigned to.

� Sequential composition has the by now familiar form: we simply pass
through the result A2 of c1 to c2, and the composition is definitely ini-
tialized if both commands are definitely initialized.

� In the IF case, we check that the variables of the boolean expression
are all initialized, and we check that each of the branches is definitely
initialized. We pass back the intersection of the results produced by c1
and c2, because we do not know which branch will be taken at runtime. If
we were to analyse boolean expression more precisely, we could introduce
further case distinctions into this rule.

� Finally, the WHILE case. It also checks that the variables in the boolean
expression are all in the initialized set A, and it also checks that the com-
mand c is definitely initialized starting in the same set A, but it ignores
the result A ′ of c. Again, this must be so, because we have to be con-
servative: it is possible that the loop will never be executed at runtime,
because b may be already False before the first iteration. In this case no
additional variables will be initialized, no matter what c does. It may be
possible for specific loop structures, such as for-loops, to statically deter-
mine that their body will be executed at least once, but no mainstream
language currently does that.

We can now decide whether a command is definitely initialized, namely
exactly when we can start with the empty set of initialized variables and find
a resulting set such that our inductive predicate D is True :

D c = (∃A ′. D {} c A ′)

Defining a program analysis such as definite initialization by an inductive
predicate makes the connection to type systems clear: in a sense, all program
analyses can be phrased as sufficiently complex type systems. Since our rules
are syntax-directed, they also directly suggest a recursive execution strategy.
In fact, for this analysis it is straightforward to turn the inductive predicate
into two recursive functions in Isabelle that compute our set A ′ if it exists,
and check whether all expressions mention only initialized variables. We leave
this recursive definition and proof of equivalence as an exercise to the reader
and turn our attention to proving correctness of the analysis instead.

10.1.2 Initialization Sensitive Expression Evaluation thy

As in type systems, to phrase what correctness of the definite initialization
analysis means, we first have to identify what could possibly go wrong.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Def_Init_Exp.html

10.1 Definite Initialization Analysis 149

Here, this is easy: we should observe an error when the program uses a
variable that has not been initialized. That is, we need a new, finer-grained
semantics that keeps track of which variables have been initialized and leads
to an error if the program accesses any other variable.

To that end, we enrich our set of values with an additional element that
we will read as uninitialized. As mentioned in Section 2.3.1 in the Isabelle
part in the beginning, Isabelle provides the option data type, which is useful
for precisely such situations:

datatype ′a option = None | Some ′a

We simply redefine our program state as

type_synonym state = vname ⇒ val option

and take None as the uninitialized value. The option data type comes with
additional useful notation: s(x 7→ y) means s(x := Some y), and dom s =

{a . s a 6= None}.
Now that we can distinguish initialized from uninitialized values, we can

check the evaluation of expressions. We have had a similar example of po-
tentially failing expression evaluation in type systems in Section 9.1. There
we opted for an inductive predicate, reasoning that in the functional style
where we would return None for failure, we would have to consider all failure
cases explicitly. This argument also holds here. Nevertheless, for the sake of
variety, we will this time show the functional variant with option. It is less
elegant, but not so horrible as to become unusable. It has the advantage of
being functional, and therefore easier to apply automatically in proofs.

fun aval :: aexp ⇒ state ⇒ val option where
aval (N i) s = Some i
aval (V x) s = s x
aval (Plus a1 a2) s = (case (aval a1 s , aval a2 s) of

(Some i1, Some i2) ⇒ Some(i1+i2)
| _⇒ None)

fun bval :: bexp ⇒ state ⇒ bool option where
bval (Bc v) s = Some v
bval (Not b) s = (case bval b s of

None ⇒ None | Some bv ⇒ Some(¬ bv))
bval (And b1 b2) s = (case (bval b1 s , bval b2 s) of

(Some bv1, Some bv2) ⇒ Some(bv1 ∧ bv2)

| _⇒ None)
bval (Less a1 a2) s = (case (aval a1 s , aval a2 s) of

(Some i1, Some i2) ⇒ Some(i1 < i2)
| _⇒ None)

150 10 Program Analysis

We can reward ourselves for all these case distinctions with two concise lem-
mas that confirm that expressions indeed evaluate without failure if they only
mention initialized variables.

Lemma 10.1 (Initialized arithmetic expressions).
vars a ⊆ dom s =⇒ ∃ i . aval a s = Some i

Lemma 10.2 (Initialized boolean expressions).
vars b ⊆ dom s =⇒ ∃ bv . bval b s = Some bv

Both lemmas are proved automatically after structural induction on the ex-
pression.

10.1.3 Initialization-Sensitive Small-Step Semantics thy

From here, the development towards the correctness proof is standard: we
define a small-step semantics, and we prove progress and preservation as we
would for a type system.

aval a s = Some i

(x ::= a , s) → (SKIP , s(x 7→ i))

(SKIP ;; c, s) → (c, s)

(c1, s) → (c ′1, s
′)

(c1;; c2, s) → (c ′1;; c2, s
′)

bval b s = Some True

(IF b THEN c1 ELSE c2, s) → (c1, s)

bval b s = Some False

(IF b THEN c1 ELSE c2, s) → (c2, s)

(WHILE b DO c, s) → (IF b THEN c;; WHILE b DO c ELSE SKIP , s)

Fig. 10.2. Small-step semantics, initialization-sensitive

In fact, the development is so standard that we only show the small-step
semantics in Figure 10.2 and give one hint for the soundness proof. It needs
the following lemma.

Lemma 10.3 (D is increasing). D A c A ′ =⇒ A ⊆ A ′

Proof. This lemma holds independently of the small-step semantics. The
proof is automatic after structural induction on c. ut

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Def_Init_Small.html

10.1 Definite Initialization Analysis 151

The soundness statement then is as in the type system in Section 9.1.

Theorem 10.4 (D is sound).
If (c, s) →∗ (c ′, s ′) and D (dom s) c A ′ then (∃ cs ′ ′. (c ′, s ′) → cs ′ ′)
∨ c ′ = SKIP .

The proof goes by showing progress and preservation separately and making
use of Lemma 10.3. We leave its details as an exercise and present an alter-
native way of proving soundness of the definite initialization analysis in the
next section instead.

10.1.4 Initialization-Sensitive Big-Step Semantics thy

In the previous section we learned that a formalization in the small-step style
and a proof with progress and preservation as we know them from type sys-
tems are sufficient to prove correctness of definite initialization. In this section,
we investigate how to adjust a big-step semantics such that it can be used for
the same purpose of proving the definite initialization analysis correct. We
will see that this is equally possible and that big-step semantics can be used
for such proofs. This may be attractive for similar kinds of correctness state-
ments, because big-step semantics are often easier to write down. However,
we will also see the price we have to pay: a larger number of big-step rules
and therefore a larger number of cases in inductive proofs about them.

The plan for adjusting the big-step semantics is simple: we need to be able
to observe error states, so we will make errors explicit and propagate them to
the result. Formally, we want something of the form

com × state ⇒ state option

where None would indicate that an error occurred during execution, in our
case that the program accessed an uninitialized variable.

There is a small complication with the type above. Consider for instance
this attempt to write the semicolon rule:

(c1, s1) ⇒ Some s2 (c2, s2) ⇒ s

(c1;; c2, s1) ⇒ s

(c1, s1) ⇒ None

(c1;; c2, s1) ⇒ None

There is no problem with the soundness of these rules. The left rule is the
case where no error occurs, the right rule terminates the execution when an
error does occur. The problem is that we will need at least these two cases for
any construct that has more than one command. It would be nicer to specify
once and for all how error propagates.

We can make the rules more compositional by ensuring that the result
type is the same as the start type for an execution, i.e., that we can plug a

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Def_Init_Big.html

152 10 Program Analysis

result state directly into the start of the next execution without any additional
operation or case distinction for unwrapping the option type. We achieve this
by making the start type state option as well.

com × state option ⇒ state option

We can now write one rule that defines how error (None) propagates:

(c, None) ⇒ None

Consequently, in the rest of the semantics in Figure 10.3 we only have to
locally consider the case where we directly produce an error, and the case of
normal execution. An example of the latter is the assignment rule, where we
update the state as usual if the arithmetic expression evaluates normally:

aval a s = Some i

(x ::= a , Some s) ⇒ Some (s(x 7→ i))

An example of the former is the assignment rule, where expression evaluation
leads to failure:

aval a s = None

(x ::= a , Some s) ⇒ None

The remaining rules in Figure 10.3 follow the same pattern. They only have
to worry about producing errors, not about propagating them.

If we are satisfied that this semantics encodes failure for accessing uninitial-
ized variables, we can proceed to proving correctness of our program analysis
D.

The statement we want in the end is, paraphrasing Milner, well-initialized
programs cannot go wrong.

[[D (dom s) c A ′; (c, Some s) ⇒ s ′]] =⇒ s ′ 6= None

The plan is to use rule induction on the big-step semantics to prove this prop-
erty directly, without the detour over progress and preservation. Looking at
the rules for D A c A ′, it is clear that we will not be successful with a con-
stant pattern of dom s for A, because the rules produce different patterns.
This means, both A and A ′ need to be variables in the statement to produce
suitably general induction hypotheses. Replacing dom s with a plain variable
A in turn means we have to find a suitable side condition such that our state-
ment remains true, and we have to show that this side condition is preserved.
A suitable such condition is A ⊆ dom s, i.e., it is OK if our program analysis
succeeds with fewer variables than are currently initialized in the state. Af-
ter this process of generalizing the statement for induction, we arrive at the
following lemma.

10.1 Definite Initialization Analysis 153

(c, None) ⇒ None (SKIP , s) ⇒ s

aval a s = Some i

(x ::= a , Some s) ⇒ Some (s(x 7→ i))

aval a s = None

(x ::= a , Some s) ⇒ None

(c1, s1) ⇒ s2 (c2, s2) ⇒ s3
(c1;; c2, s1) ⇒ s3

bval b s = Some True (c1, Some s) ⇒ s ′

(IF b THEN c1 ELSE c2, Some s) ⇒ s ′

bval b s = Some False (c2, Some s) ⇒ s ′

(IF b THEN c1 ELSE c2, Some s) ⇒ s ′

bval b s = None

(IF b THEN c1 ELSE c2, Some s) ⇒ None

bval b s = Some False

(WHILE b DO c, Some s) ⇒ Some s

bval b s = Some True (c, Some s) ⇒ s ′ (WHILE b DO c, s ′) ⇒ s ′ ′

(WHILE b DO c, Some s) ⇒ s ′ ′

bval b s = None

(WHILE b DO c, Some s) ⇒ None

Fig. 10.3. Big-step semantics with error propagation

Lemma 10.5 (Soundness of D).
[[(c, Some s) ⇒ s ′; D A c A ′; A ⊆ dom s]]
=⇒ ∃ t . s ′ = Some t ∧ A ′ ⊆ dom t

Proof. The proof is by rule induction on (c, Some s) ⇒ s ′; Isabelle solves
all sub-cases but WHILE automatically. In the WHILE case, we apply the
induction hypothesis to the body c manually and can then let the automa-
tion figure out the rest. Applying the induction hypothesis to c is interest-
ing, because we need to make use of D ’s increasing property we proved in
Lemma 10.3. Recall that the D rule for WHILE requires D A c A ′ for the
body c. Per induction hypothesis, we get that the result state t after execution
of c has the property A ′ ⊆ dom t. To apply the induction hypothesis for the
rest of the WHILE loop, however, we need A ⊆ dom t. From Lemma 10.3
we know that A ⊆ A ′ and can therefore proceed. ut

After this proof, we can now better compare the small-step and big-step
approaches to showing soundness of D : While the small-step semantics is

154 10 Program Analysis

more concise, the soundness proof is longer, and while the big-step semantics
has a larger number of rules, its soundness proof is more direct and shorter.
As always, the trade-off depends on the particular application. With machine-
checked proofs, it is in general better to err on the side of nicer and easier-to-
understand definitions than on the side of shorter proofs.

Exercises

Exercise 10.1. Define the definite initialization analysis as two recursive
functions ivars :: com ⇒ vname set and ok :: vname set ⇒ com ⇒ bool
such that ivars computes the set of definitely initialized variables and ok
checks that only initialized variable are accessed. Prove D A c A ′ =⇒ A ′ =
A ∪ ivars c ∧ ok A c and ok A c =⇒ D A c (A ∪ ivars c).

10.2 Constant Folding and Propagation thy

The previous section presented an analysis that prohibits a common pro-
gramming error, uninitialized variables. This section presents an analysis that
enables program optimizations, namely constant folding and propagation.

Constant folding and constant propagation are two very common compiler
optimizations. Constant folding means computing the value of constant ex-
pressions at compile time and substituting their value for the computation.
Constant propagation means determining if a variable has constant value, and
propagating that constant value to the use-occurrences of that variable, for
instance to perform further constant folding:

x := 42 - 5;
y := x * 2

In the first line, the compiler would fold the expression 42 - 5 into its value
37, and in the second line, it would propagate this value into the expression
x * 2 to replace it with 74 and arrive at

x := 37;
y := 74

Further liveness analysis could then for instance conclude that x is not live
in the program and can therefore be eliminated, which frees up one more
register for other local variables and could thereby improve time as well as
space performance of the program.

Constant folding can be especially effective when used on boolean expres-
sions, because it allows the compiler to recognize and eliminate further dead
code. A common pattern is something like

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Fold.html

10.2 Constant Folding and Propagation 155

IF debug THEN debug_command ELSE SKIP

where debug is a global constant that if set to False could eliminate debugging
code from the program. Other common uses are the explicit construction of
constants from their constituents for documentation and clarity.

Despite its common use for debug statements as above, we stay with our
general policy in this chapter and will not analyse boolean expressions for
constant folding. Instead, we leave it as a medium-sized exercise project for
the reader to apply the techniques covered in this section.

The semantics of full-scale programming languages can make constant
folding tricky (which is why one should prove correctness, of course). For in-
stance, folding of floating point operations may depend on the rounding mode
of the machine, which may only be known at runtime. Some languages de-
mand that errors such as arithmetic overflow or division by zero be preserved
and raised at runtime; others may allow the compiler to refuse to compile
such programs; yet others allow the compiler to silently produce any code it
likes in those cases.

A widely known tale of caution for constant folding is that of the Intel Pen-
tium FDIV bug in 1994 which led to a processor recall costing Intel roughly
half a billion US dollars. In processors exhibiting the fault, the FDIV in-
struction would perform an incorrect floating point division for some specific
operands (1037 combinations would lead to wrong results). Constant folding
was not responsible for this bug, but it gets its mention in the test for the
presence of the FDIV problem. To make it possible for consumers to figure
out if they had a processor exhibiting the defect, a number of small programs
were written that performed the division with specific operands known to trig-
ger the bug. Testing for the incorrect result, the program would then print a
message whether the bug was present or not.

If a developer compiled this test program naively, the compiler would per-
form this computation statically and optimize the whole program to a binary
that just returned a constant yes or no. This way, every single computer in
a whole company could be marked as defective, even though only the devel-
oper’s CPU actually had the bug.

In all of this, the compiler was operating entirely correctly, and would have
acted the same way if it was proved correct. We see that our proofs critically
rely on the extra-logical assumption that the hardware behaves as specified.
Usually, this assumption underlies everything programmers do. However, try-
ing to distinguish correct from incorrect hardware under the assumption that
the hardware is correct is not a good move.

In the following, we are not attempting to detect defective hardware, and
can focus on how constant propagation works, how it can be formalized, and
how it can be proved correct.

156 10 Program Analysis

10.2.1 Folding

As usual, we begin with arithmetic expressions. The first optimization is pure
constant folding: the aim is to write a function that takes an arithmetic ex-
pression and statically evaluates all constant subexpressions within it. In the
first part of this book in Section 3.1.3, after our first contact with arithmetic
expressions, we already wrote such a function.

At that time we could not simplify variables, i.e., we defined

asimp_const (V x) = V x

In this section, however, we are going to mix constant folding with constant
propagation, and, if we know the constant value of a variable by propagation,
we should use it. To do this, we keep a table or environment that tells us
which variables have constant value, and what that value is. This is the same
technique we already used in type systems and other static analyses.

type_synonym tab = vname ⇒ val option

We can now formally define our new function afold that performs constant
folding on arithmetic expressions under the assumption that we already know
constant values for some of the variables.

fun afold :: aexp ⇒ tab ⇒ aexp where
afold (N n) _ = N n
afold (V x) t = (case t x of None ⇒ V x | Some x ⇒ N x)
afold (Plus e1 e2) t = (case (afold e1 t , afold e2 t) of

(N n1, N n2) ⇒ N (n1+n2)

| (e ′1, e
′
2) ⇒ Plus e ′1 e ′2)

For example, the value of afold (Plus (V ′ ′x ′ ′) (N 3)) t now depends on
the value of t at ′ ′x ′ ′. If t ′ ′x ′ ′ = Some 5, for instance, afold will return
N 8. If nothing is known about ′ ′x ′ ′, i.e., t ′ ′x ′ ′ = None, then we get back
the original Plus (V ′ ′x ′ ′) (N 3).

The correctness criterion for this simple optimization is that the result of
execution with optimization is the same as without:

aval (afold a t) s = aval a s

As with type system soundness and its corresponding type environments,
however, we need the additional assumption that the static table t conforms
with, or in this case approximates, the runtime state s. The idea is again that
the static value needs to agree with the dynamic value if the former exists:

definition approx t s = (∀ x k . t x = Some k −→ s x = k)

With this assumption the statement is provable.

10.2 Constant Folding and Propagation 157

Lemma 10.6 (Correctness of afold).
approx t s =⇒ aval (afold a t) s = aval a s

Proof. Automatic, after induction on the expression. ut

The definitions and the proof reflect that the constant folding part of
the folding and propagation optimization is the easy part. For more complex
languages, one would have to consider further operators and cases, but nothing
fundamental changes in the structure of proof or definition.

As mentioned, in more complex languages, care must be taken in the def-
inition of constant folding to preserve the failure semantics of that language.
For some languages it is permissible for the compiler to return a valid result
for an invalid program, for others the program must fail in the right way.

10.2.2 Propagation

At this point, we have a function that will fold constants in arithmetic expres-
sions for us. To lift this to commands for full constant propagation, we apply
the same technique, defining a new function fold :: com ⇒ tab ⇒ com. The
idea is to take a command and a constant table and produce a new command.
The first interesting case in any of these analyses usually is assignment. This
is easy here, because we can use afold :

fold (x ::= a) t = x ::= afold a t

What about sequential composition? Given c1;; c2 and t, we will still need
to produce a new sequential composition, and we will obviously want to use
fold recursively. The question is, which t do we pass to the call fold c2 for
the second command? We need to pick up any new values that might have
been assigned in the execution of c1. This is basically the analysis part of the
optimization, whereas fold is the code adjustment.

We define a new function for this job and call it defs :: com ⇒ tab ⇒
tab for definitions. Given a command and a constant table, it should give us
a new constant table that describes the variables with known constant values
after the execution of this command.

Figure 10.4 shows the main definition. Auxiliary function lvars computes
the set of variables on the left-hand side of assignments (see Appendix A).
Function merge computes the intersection of two tables:

merge t1 t2 = (λm . if t1 m = t2 m then t1 m else None)

Let’s walk through the equations of defs one by one.

� For SKIP there is nothing to do, as usual.

158 10 Program Analysis

fun defs :: com ⇒ tab ⇒ tab where
defs SKIP t = t
defs (x ::= a) t = (case afold a t of

N k ⇒ t(x 7→ k)
| _⇒ t(x :=None))

defs (c1;; c2) t = (defs c2 ◦ defs c1) t
defs (IF b THEN c1 ELSE c2) t = merge (defs c1 t) (defs c2 t)
defs (WHILE b DO c) t = t�(− lvars c)

Fig. 10.4. Definition of defs

� In the assignment case, we attempt to perform constant folding on the
expression. If this is successful, i.e., if we get a constant, we note in the
result that the variable has a known value. Otherwise, we note that the
variable does not have a known value, even if it might have had one before.

� In the semicolon case, we compose the effects of c1 and c2, in that order.
� In the IF case, we can only determine the values of variables with certainty

if they have been assigned the same value after both branches; hence our
use of the table intersection merge defined above.

� The WHILE case, as almost always, is interesting. Since we don’t know
statically whether we will ever execute the loop body, we cannot add
any new variable assignments to the table. The situation is even worse,
though. We need to remove all values from the table that are for variables
mentioned on the left-hand side of assignment statements in the loop body,
because they may contradict what the initial table has stored. A plain
merge as in the IF case would not be strong enough, because it would
only cover the first iteration. Depending on the behaviour of the body,
a different value might be assigned to a variable in the body in a later
iteration. Unless we employ a full static analysis on the loop body as
in Chapter 13, which constant propagation usually does not, we need to
be conservative. The formalization achieves this by first computing the
names of all variables on the left-hand side of assignment statements in c
by means of lvars, and by then restricting the table to the complement of
that set (− lvars c). The notation t�S is defined as follows.

t�S = (λx . if x ∈ S then t x else None)

With all these auxiliary definitions in place, our definition of fold is now
as expected. In the WHILE case, we fold the body recursively, but again
restrict the set of variables to those not written to in the body.

10.2 Constant Folding and Propagation 159

fun fold :: com ⇒ tab ⇒ com where
fold SKIP _ = SKIP
fold (x ::= a) t = x ::= afold a t
fold (c1;; c2) t = fold c1 t ;; fold c2 (defs c1 t)
fold (IF b THEN c1 ELSE c2) t = IF b THEN fold c1 t ELSE fold c2 t
fold (WHILE b DO c) t = WHILE b DO fold c (t�(− lvars c))

Let’s test these definitions with some sample executions. Our first test is
the first line in the example program at the beginning of this section. The
program was:

x := 42 - 5;
y := x * 2

Formally, the first line can be encoded as ′ ′x ′ ′ ::= Plus (N 42) (N (− 5)).
Running fold on this with the empty table gives us ′ ′x ′ ′ ::= N 37. This is
correct. Encoding the second line as a Plus in IMP, and running fold on it in
isolation with the empty table should give us no simplification at all, and this
is what we get: ′ ′y ′ ′ ::= Plus (V ′ ′x ′ ′) (V ′ ′x ′ ′). However, if we provide
a table that sets x to some value, say 1, we should get a simplified result:
′ ′y ′ ′ ::= N 2. Finally, testing propagation over semicolon, we run the whole
statement with the empty table and get ′ ′x ′ ′ ::= N 37;; ′ ′y ′ ′ ::= N 74. This
is also as expected.

As always in this book, programming and testing are not enough. We want
proof that constant folding and propagation are correct. Because we perform
a program transformation, our notion of correctness is semantic equivalence.
Eventually, we are aiming for the following statement, where empty is the
empty table, defined by the abbreviation empty ≡ λx . None.

fold c empty ∼ c

Since all our definitions are recursive in the commands, the proof plan is to
proceed by induction on the command. Unsurprisingly, we need to generalize
the statement from empty tables to arbitrary tables t. Further, we need to add
a side condition for this t, namely the same as in our lemma about expressions:
t needs to approximate the state s the command runs in. This leads us to the
following interlude on equivalence of commands up to a condition.

10.2.3 Conditional Equivalence

This section describes a generalization of the equivalence of commands, where
commands do not need to agree in their executions for all states, but only for
those states that satisfy a precondition. In Section 7.2.4, we defined

(c ∼ c ′) = (∀ s t . (c,s) ⇒ t = (c ′,s) ⇒ t)

160 10 Program Analysis

Extending this concept to take a condition P into account is straightforward.
We read P |= c ∼ c ′ as c is equivalent to c ′ under the assumption P.

definition
(P |= c ∼ c ′) = (∀ s s ′. P s −→ (c, s) ⇒ s ′ = (c ′, s) ⇒ s ′)

We can do the same for boolean expressions:

definition
(P |= b <∼> b ′) = (∀ s . P s −→ bval b s = bval b ′ s)

Clearly, if we instantiate P to the predicate that returns True for all
states, we get our old concept of unconditional semantic equivalence back.

Lemma 10.7. ((λ_. True) |= c ∼ c ′) = (c ∼ c ′)

Proof. By unfolding definitions. ut

For any fixed predicate, our new definition is an equivalence relation, i.e., it
is reflexive, symmetric, and transitive.

Lemma 10.8 (Equivalence Relation).
P |= c ∼ c
(P |= c ∼ c ′) = (P |= c ′ ∼ c)
[[P |= c ∼ c ′; P |= c ′ ∼ c ′ ′]] =⇒ P |= c ∼ c ′ ′

Proof. Again automatic after unfolding definitions. ut

It is easy to prove that, if we already know that two commands are equivalent
under a condition P, we are allowed to weaken the statement by strengthening
that precondition:

[[P |= c ∼ c ′; ∀ s . P ′ s −→ P s]] =⇒ P ′ |= c ∼ c ′

For the old notion of semantic equivalence we had the concept of congruence
rules, where two commands remain equivalent if equivalent sub-commands
are substituted for each other. The corresponding rules in the new setting
are slightly more interesting. Figure 10.5 gives an overview. The first rule, for
sequential composition, has three premises instead of two. The first two are
standard, i.e., equivalence of c and c ′ as well as d and d ′. As for the sets of
initialized variables in the definite initialization analysis of Section 10.1, we
allow the precondition to change. The first premise gets the same P as the
conclusion P |= c;; d ∼ c ′;; d ′, but the second premise can use a new Q. The
third premise describes the relationship between P and Q : Q must hold in
the states after execution of c, provided P held in the initial state.

The rule for IF is simpler; it just demands that the constituent expres-
sions and commands are equivalent under the same condition P. As for the

10.2 Constant Folding and Propagation 161

P |= c ∼ c ′ Q |= d ∼ d ′ ∀ s s ′. (c, s) ⇒ s ′ −→ P s −→ Q s ′

P |= c;; d ∼ c ′;; d ′

P |= b <∼> b ′ P |= c ∼ c ′ P |= d ∼ d ′

P |= IF b THEN c ELSE d ∼ IF b ′ THEN c ′ ELSE d ′

P |= b <∼> b ′

P |= c ∼ c ′ ∀ s s ′. (c, s) ⇒ s ′ −→ P s −→ bval b s −→ P s ′

P |= WHILE b DO c ∼ WHILE b ′ DO c ′

Fig. 10.5. Congruence rules for conditional semantic equivalence

semicolon case, we could provide a stronger rule here that takes into account
which branch of the IF we are looking at, i.e., adding b or ¬ b to the con-
dition P. Since we do not analyse the content of boolean expressions, we will
not need the added power and prefer the weaker, but simpler rule.

The WHILE rule is similar to the semicolon case, but again in a weaker
formulation. We demand that b and b ′ be equivalent under P, as well as c and
c ′. We additionally need to make sure that P still holds after the execution
of the body if it held before, because the loop might enter another iteration.
In other words, we need to prove as a side condition that P is an invariant
of the loop. Since we only need to know this in the iteration case, we can
additionally assume that the boolean condition b evaluates to true.

This concludes our brief interlude into conditional semantic equivalence.
As indicated in Section 7.2.4, we leave the proof of the rules in Figure 10.5
as an exercise, as well as the formulation of the strengthened rules that take
boolean expressions further into account.

10.2.4 Correctness

So far we have defined constant folding and propagation, and we have devel-
oped a tool set for reasoning about conditional equivalence of commands. In
this section, we apply this tool set to show correctness of our optimization.

As mentioned before, the eventual aim for our correctness statement is
unconditional equivalence between the original and the optimized command:

fold c empty ∼ c

To prove this statement by induction, we generalize it by replacing the
empty table with an arbitrary table t. The price we pay is that the equivalence
is now only true under the condition that the table correctly approximates
the state the commands are run from. The statement becomes

approx t |= c ∼ fold c t

162 10 Program Analysis

Note that the term approx t is partially applied. It is a function that takes a
state s and returns True iff t is an approximation of s as defined previously
in Section 10.2.1. Expanding the definition of equivalence we get the more
verbose but perhaps easier to understand form.

∀ s s ′. approx t s −→ (c, s) ⇒ s ′ = (fold c t , s) ⇒ s ′

For the proof it is nicer not to unfold the definition equivalence and work with
the congruence lemmas of the previous section instead. Now, proceeding to
prove this property by induction on c it quickly turns out that we will need
four key lemmas about the auxiliary functions mentioned in fold.

The most direct and intuitive one of these is that our defs correctly ap-
proximates real execution. Recall that defs statically analyses which constant
values can be assigned to which variables.

Lemma 10.9 (defs approximates execution correctly).
[[(c, s) ⇒ s ′; approx t s]] =⇒ approx (defs c t) s ′

Proof. The proof is by rule induction on the big-step execution:

� The SKIP base case is trivial.
� The assignment case needs some massaging to succeed. After unfolding of

definitions, case distinction on the arithmetic expression and simplification
we end up with
∀n . afold a t = N n −→ aval a s = n

where we also know our general assumption approx t s. This is a refor-
mulated instance of Lemma 10.6.

� Sequential composition is simply an application of the two induction hy-
potheses.

� The two IF cases reduce to this property of merge which embodies that
it is an intersection:

approx t1 s ∨ approx t2 s =⇒ approx (merge t1 t2) s
In each of the two IF cases we know from the induction hypothesis that
the execution of the chosen branch is approximated correctly by defs, e.g.,
approx (defs c1 t) s ′. With the above merge lemma, we can conclude
the case.

� In the False case for WHILE we observe that we are restricting the exist-
ing table t, and that approximation is trivially preserved when dropping
elements.

� In the True case we appeal to another lemma about defs. From applying
induction hypotheses, we know approx (defs c t�(− lvars c)) s ′, but our
proof goal for defs applied to the while loop is approx (t�(− lvars c)) s ′.
Lemma 10.10 shows that these are equal.

ut

10.2 Constant Folding and Propagation 163

The last case of our proof above rests on one lemma we have not shown
yet. It says that our restriction to variables that do not occur on the left-hand
sides of assignments is broad enough, i.e., that it appropriately masks any
new table entries we would get by running defs on the loop body.

Lemma 10.10. defs c t�(− lvars c) = t�(− lvars c)

Proof. This proof is by induction on c. Most cases are automatic, merely
for sequential composition and IF Isabelle needs a bit of hand-holding for
applying the induction hypotheses at the right position in the term. In the
IF case, we also make use of this property of merge:

[[t1�S = t�S; t2�S = t�S]] =⇒ merge t1 t2�S = t�S

It allows us to merge the two equations we get for the two branches of the IF
into one. ut

The final lemma we need before we can proceed to the main induction is
again a property about the restriction of t to the complement of lvars. It is
the remaining fact we need for the WHILE case of that induction and it says
that runtime execution can at most change the values of variables that are
mentioned on the left-hand side of assignments.

Lemma 10.11.
[[(c, s) ⇒ s ′; approx (t�(− lvars c)) s]] =⇒ approx (t�(− lvars c)) s ′

Proof. This proof is by rule induction on the big-step execution. Its cases are
very similar to those of Lemma 10.10. ut

Putting everything together, we can now prove our main lemma.

Lemma 10.12 (Generalized correctness of constant folding).
approx t |= c ∼ fold c t

Proof. As mentioned, the proof is by induction on c. SKIP is simple, and
assignment reduces to the correctness of afold, Lemma 10.6. Sequential com-
position uses the congruence rule for semicolon and Lemma 10.9. The IF
case is automatic given the IF congruence rule. The WHILE case reduces to
Lemma 10.11, the WHILE congruence rule, and strengthening of the equiv-
alence condition. The strengthening uses the following property

[[approx t2 s ; t1 ⊆m t2]] =⇒ approx t1 s

where (m1 ⊆m m2) = (m1 = m2 on dom m1) and t�S ⊆m t. ut

This leads us to the final result.

Theorem 10.13 (Correctness of constant folding).
fold c empty ∼ c

Proof. Follows immediately from Lemma 10.12 after observing that approx
empty = (λ_. True). ut

164 10 Program Analysis

Exercises

Exercise 10.2. Extend afold with simplifying addition of 0. That is, for any
expression e, e + 0 and 0 + e should be simplified to e, including the case
where the 0 is produced by knowledge of the content of variables. Re-prove
the results in this section with the extended version.

Exercise 10.3. Strengthen and re-prove the congruence rules for conditional
semantic equivalence in Figure 10.5 to take the value of boolean expressions
into account in the IF and WHILE cases.

Exercise 10.4. Extend constant folding with analysing boolean expressions
and eliminate dead IF branches as well as loops whose body is never executed.
Hint: you will need to make use of stronger congruence rules for conditional
semantic equivalence.

Exercise 10.5. This exercise builds infrastructure for Exercise 10.6, where we
will have to manipulate partial maps from variable names to variable names.

In addition to the function merge from theory Fold, implement two func-
tions remove and remove_all that remove one variable name from the range
of a map, and a set of variable names from the domain and range of a map.

Prove the following properties:

ran (remove x t) = ran t − {x }
ran (remove_all S t) ⊆ − S
dom (remove_all S t) ⊆ − S
remove_all {x } (remove x t) = remove_all {x } t
remove_all A (remove_all B t) = remove_all (A ∪ B) t

Reformulate the property [[t1�S = t�S; t2�S = t�S]] =⇒ merge t1 t2�S = t�S
from Lemma 10.10 for remove_all and prove it.

Exercise 10.6. This is a more challenging exercise. Define and prove cor-
rect copy propagation. Copy propagation is similar to constant folding, but
propagates the right-hand side of assignments if these right-hand sides are
just variables. For instance, the program x := y; z := x + z will be trans-
formed into x := y; z := y + z. The assignment x := y can then be elim-
inated in a liveness analysis. Copy propagation is useful for cleaning up after
other optimization phases.

10.3 Live Variable Analysis thy

This section presents another important analysis that enables program opti-
mizations, namely the elimination of assignments to a variable whose value is
not needed afterwards. Here is a simple example:

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Live.html

10.3 Live Variable Analysis 165

x := 0; y := 1; x := y

The first assignment to x is redundant because x is dead at this point: it is
overwritten by the second assignment to x without x having been read in
between. In contrast, the assignment to y is not redundant because y is live
at that point.

Semantically, variable x is live before command c if the initial value of
x before execution of c can influence the final state after execution of c. A
weaker but easier to check condition is the following: we call x live before c if
there is some potential execution of c where x is read for the first time before
it is overwritten. For the moment, all variables are implicitly read at the end
of c. A variable is dead if it is not live. The phrase “potential execution” refers
to the fact that we do not analyse boolean expressions.

Example 10.14.

� x := rhs
Variable x is dead before this assignment unless rhs contains x.
Variable y is live before this assignment if rhs contains y.

� IF b THEN x := y ELSE SKIP
Variable y is live before this command because execution could potentially
enter the THEN branch.

� x := y; x := 0; y := 1
Variable y is live before this command (because of x := y) although the
value of y is semantically irrelevant because the second assignment over-
writes the first one. This example shows that the above definition of live-
ness is strictly weaker than the semantic notion. We will improve on this
under the heading of “True Liveness” in Section 10.4.

Let us now formulate liveness analysis as a recursive function. This re-
quires us to generalize the liveness notion w.r.t. a set of variables X that are
implicitly read at the end of a command. The reason is that this set changes
during the analysis. Therefore it needs to be a parameter of the analysis and
we speak of the set of variables live before a command c relative to a set of
variables X. It is computed by the function L c X defined like this:

fun L :: com ⇒ vname set ⇒ vname set where
L SKIP X = X
L (x ::= a) X = vars a ∪ (X − {x })
L (c1;; c2) X = L c1 (L c2 X)

L (IF b THEN c1 ELSE c2) X = vars b ∪ L c1 X ∪ L c2 X
L (WHILE b DO c) X = vars b ∪ X ∪ L c X

In a nutshell, L c X computes the set of variables that are live before c given
the set of variables X that are live after c (hence the order of arguments in
L c X).

166 10 Program Analysis

We discuss the equations for L one by one. The one for SKIP is obvious.
The one for x ::= a expresses that before the assignment all variables in a are
live (because they are read) and that x is not live (because it is overwritten)
unless it also occurs in a. The equation for c1;; c2 expresses that the com-
putation of live variables proceeds backwards. The equation for IF expresses
that the variables of b are read, that b is not analysed and both the THEN
and the ELSE branch could be executed, and that a variable is live if it is
live on some computation path leading to some point — hence the ∪. The
situation for WHILE is similar: execution could skip the loop (hence X is
live) or it could execute the loop body once (hence L c X is live). But what
if the loop body is executed multiple times?

In the following discussion we assume this abbreviation:

w = WHILE b DO c

For a more intuitive understanding of the analysis of loops one should
think of w as the control-flow graph in Figure 10.6. A control-flow graph is

L w X

X L c (L w X)

¬ b b
c

Fig. 10.6. Control-flow graph for WHILE b DO c

a graph whose nodes represent program points and whose edges are labelled
with boolean expressions or commands. The operational meaning is that ex-
ecution moves a state from node to node: a state s moves unchanged across
an edge labelled with b provided bval b s, and moving across an edge labelled
with c transforms s into the new state resulting from the execution of c.

In Figure 10.6 we have additionally annotated each node with the set of
variables live at that node. At the exit of the loop, X should be live, at the
beginning, L w X should be live. Let us pretend we had not defined L w X
yet but were looking for constraints that it must satisfy. An edge Y e−→ Z
(where e is a boolean expression and Y, Z are liveness annotations) should
satisfy vars e ⊆ Y and Z ⊆ Y (because the variables in e are read but no
variable is written). Thus the graph leads to the following three constraints:

10.3 Live Variable Analysis 167

vars b ⊆ L w X
X ⊆ L w X
L c (L w X) ⊆ L w X

 (10.1)

The first two constraints are met by our definition of L, but for the third
constraint this is not clear. To facilitate proofs about L we now rephrase its
definition as an instance of a general analysis.

10.3.1 Generate and Kill Analyses

This is a class of simple analyses that operate on sets. That is, each analysis
in this class is a function A :: com ⇒ τ set ⇒ τ set (for some type τ) that
can be defined as

A c S = gen c ∪ (S − kill c)

for suitable auxiliary functions gen and kill of type com ⇒ τ set that specify
what is to be added and what is to be removed from the input set. Gen/kill
analyses satisfy nice algebraic properties and many standard analyses can be
expressed in this form, in particular liveness analysis. For liveness, gen c are
the variables that may be read in c before they are written and kill c are the
variables that are definitely written in c:

fun kill :: com ⇒ vname set where
kill SKIP = {}

kill (x ::= a) = {x }
kill (c1;; c2) = kill c1 ∪ kill c2
kill (IF b THEN c1 ELSE c2) = kill c1 ∩ kill c2
kill (WHILE b DO c) = {}

fun gen :: com ⇒ vname set where
gen SKIP = {}

gen (x ::= a) = vars a
gen (c1;; c2) = gen c1 ∪ (gen c2 − kill c1)
gen (IF b THEN c1 ELSE c2) = vars b ∪ gen c1 ∪ gen c2
gen (WHILE b DO c) = vars b ∪ gen c

Note that gen uses kill in the only not-quite-obvious equation gen (c1;; c2)
= gen c1 ∪ (gen c2 − kill c1) where gen c2 − kill c1 expresses that variables
that are read in c2 but were written in c1 are not live before c1;; c2 (unless
they are also in gen c1).

Lemma 10.15 (Liveness via gen/kill). L c X = gen c ∪ (X − kill c)

The proof is a simple induction on c. As a consequence of this lemma we
obtain

168 10 Program Analysis

Lemma 10.16. L c (L w X) ⊆ L w X

Proof. By the previous lemma it follows that gen c ⊆ gen w ⊆ L w X and
thus that L c (L w X) = gen c ∪ (L w X − kill c) ⊆ L w X. ut

Moreover, we can prove that L w X is the least solution for the constraint
system (10.1). This shows that our definition of L w X is optimal: the fewer
live variables, the better; from the perspective of program optimization, the
only good variable is a dead variable. To prove that L w X is the least solution
of (10.1), assume that P is a solution of (10.1), i.e., vars b ⊆ P, X ⊆ P and
L c P ⊆ P . Because L c P = gen c ∪ (P − kill c) we also have gen c ⊆
P. Thus L w X = vars b ∪ gen c ∪ X ⊆ P by assumptions.

10.3.2 Correctness

So far we have proved that L w X satisfies the informally derived constraints.
Now we prove formally that L is correct w.r.t. the big-step semantics. Roughly
speaking we want the following: when executing c, the final value of x ∈ X
only depends on the initial values of variables in L c X. Put differently:

If two initial states of the execution of c agree on L c X
then the corresponding final states agree on X.

To formalize this statement we introduce the abbreviation f = g on X for
two functions f , g :: ′a ⇒ ′b being the same on a set X :: ′a set :

f = g on X ≡ ∀ x∈X . f x = g x

With this notation we can concisely express that the value of an expression
only depends of the value of the variables in the expression:

Lemma 10.17 (Coincidence).

1. s1 = s2 on vars a =⇒ aval a s1 = aval a s2
2. s1 = s2 on vars b =⇒ bval b s1 = bval b s2

The proofs are by induction on a and b.
The actual correctness statement for live variable analysis is a simulation

property (see Section 8.4). The diagrammatic form of the statement is shown
in Figure 10.7 where (c, s) ⇒ t is displayed as s c

=⇒ t. Theorem 10.18
expresses the diagram as a formula.

Theorem 10.18 (Correctness of L).
[[(c, s) ⇒ s ′; s = t on L c X]] =⇒ ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ on X

10.3 Live Variable Analysis 169

s s ′

t t ′

c

c

on L c X on X

Fig. 10.7. Correctness of L

Proof. The proof is by rule induction. The only interesting cases are the
assignment rule, which is correct by the Coincidence Lemma, and rule
WhileTrue. For the correctness proof of the latter we assume its hypothe-
ses bval b s1, (c, s1) ⇒ s2 and (w , s2) ⇒ s3. Moreover we assume s1 =

t1 on L w X and therefore in particular s1 = t1 on L c (L w X) because
L c (L w X) ⊆ L w X. Thus the induction hypothesis for (c, s1) ⇒ s2
applies and we obtain t2 such that (c, t1) ⇒ t2 and s2 = t2 on L w X. The
latter enables the application of the induction hypothesis for (w , s2) ⇒ s3,
which yields t3 such that (w , t2) ⇒ t3 and s3 = t3 on X. By means of the
Coincidence Lemma, s1 = t1 on L w X and vars b ⊆ L w X imply bval b
s1 = bval b t1. Therefore rule WhileTrue yields (w , t1) ⇒ t3 as required.
A graphical view of the skeleton of this argument:

s1 s2 s3

t1 t2 t3

c w

c w

on L c (L w X) on L w X on X

ut

Note that the proofs of the loop cases (WhileFalse too) do not rely on the
definition of L but merely on the constraints (10.1).

10.3.3 Optimization

With the help of the analysis we can program an optimizer bury c X that
eliminates assignments to dead variables from c where X is of course the set
of variables live at the end.

fun bury :: com ⇒ vname set ⇒ com where
bury SKIP X = SKIP
bury (x ::= a) X = (if x ∈ X then x ::= a else SKIP)

bury (c1;; c2) X = bury c1 (L c2 X);; bury c2 X
bury (IF b THEN c1 ELSE c2) X =

170 10 Program Analysis

IF b THEN bury c1 X ELSE bury c2 X
bury (WHILE b DO c) X =

WHILE b DO bury c (L (WHILE b DO c) X)

For simplicity assignments to dead variables are replaced with SKIP — elim-
inating such SKIPs in a separate pass was dealt with in Exercise 7.3.

Most of the equations for bury are obvious from our understanding of L.
For the recursive call of bury in the WHILE case note that the variables live
after c are L w X (just look at Figure 10.6).

Now we need to understand in what sense this optimization is correct
and then prove it. Our correctness criterion is the big-step semantics: the
transformed program must be equivalent to the original one: bury c UNIV
∼ c. Note that UNIV (or at least all the variables in c) must be considered
live at the end because c ′ ∼ c requires that the final states in the execution
of c and c ′ are identical.

The proof of bury c UNIV ∼ c is split into two directions. We start with
(c, s) ⇒ s ′ =⇒ (bury c UNIV , s) ⇒ s ′. For the induction to go through
it needs to be generalized to look almost like the correctness statement for L.
Figure 10.8 is the diagrammatic form of Lemma 10.19 and Lemma 10.20.

s s ′

t t ′

c

bury c
on L c X on X

s s ′

t t ′

c

bury c
on L c X on X

Fig. 10.8. Correctness of bury (both directions)

Lemma 10.19 (Correctness of bury, part 1).

[[(c, s) ⇒ s ′; s = t on L c X]]

=⇒ ∃ t ′. (bury c X , t) ⇒ t ′ ∧ s ′ = t ′ on X

The proof is very similar to the proof of correctness of L. Hence there is no
need to go into it.

The other direction (bury c UNIV , s) ⇒ s ′ =⇒ (c, s) ⇒ s ′ needs to be
generalized analogously:

Lemma 10.20 (Correctness of bury, part 2).

[[(bury c X , s) ⇒ s ′; s = t on L c X]]

=⇒ ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ on X

10.3 Live Variable Analysis 171

Proof. The proof is also similar to that of correctness of L but induction
requires the advanced form explained in Section 5.4.6. As a result, in each
case of the induction, there will be an assumption that bury c X is of a
particular form, e.g., c ′1;; c

′
2 = bury c X. Now we need to infer that c must

be a sequential composition too. The following property expresses this fact:

(c ′1;; c
′
2 = bury c X) =

(∃ c1 c2. c = c1;; c2 ∧ c ′2 = bury c2 X ∧ c ′1 = bury c1 (L c2 X))

Its proof is by cases on c; the rest is automatic. This property can either be
proved as a separate lemma or c ′1 and c ′2 can be obtained locally within the
case of the induction that deals with sequential composition. Because bury
preserves the structure of the command, all the required lemmas look similar,
except for SKIP, which can be the result of either a SKIP or an assignment:

(SKIP = bury c X) = (c = SKIP ∨ (∃ x a . c = x ::= a ∧ x /∈ X))

We need only the left-to-right implication of these function inversion proper-
ties but the formulation as an equivalence permits us to use them as simpli-
fication rules. ut

Combining the previous two lemmas we obtain

Corollary 10.21 (Correctness of bury). bury c UNIV ∼ c

Exercises

Exercise 10.7. Prove the following termination-insensitive version of the cor-
rectness of L:

[[(c, s) ⇒ s ′; (c, t) ⇒ t ′; s = t on L c X]] =⇒ s ′ = t ′ on X

Do not derive it as a corollary to the original correctness theorem but prove
it separately. Hint: modify the original proof.

Exercise 10.8. Find a command c such that bury (bury c {}) {} 6= bury c
{}. For an arbitrary command, can you put a limit on the amount of burying
needed until everything that is dead is also buried?

Exercise 10.9. Let lvars c/rvars c be the set of variables that occur on
the left-hand/right-hand side of an assignment in c. Let rvars c additionally
include those variables mentioned in the conditionals of IF andWHILE. Both
functions are predefined in theory Vars. Prove the following two properties
of the small-step semantics. Variables that are not assigned to do not change
their value:

[[(c,s) →∗ (c ′,s ′); lvars c ∩ X = {}]] =⇒ s = s ′ on X

172 10 Program Analysis

The reduction behaviour of a command is only influenced by the variables
read by the command:

[[(c,s) →∗ (c ′,s ′); s = t on X ; rvars c ⊆ X]]

=⇒ ∃ t ′. (c,t) →∗ (c ′,t ′) ∧ s ′ = t ′ on X

Exercise 10.10. An available definitions analysis determines which pre-
vious assignments x := a are valid equalities x = a at later program points.
For example, after x := y+1 the equality x = y+1 is available, but after
x := y+1; y := 2 the equality x = y+1 is no longer available. The moti-
vation for the analysis is that if x = a is available before v := a then v := a
can be replaced by v := x.

Define an available definitions analysis AD :: (vname × aexp) set ⇒
com ⇒ (vname × aexp) set. A call AD A c should compute the available
definitions after the execution of c assuming that the definitions in A are
available before the execution of c. This is a gen/kill analysis! Prove correct-
ness of the analysis: if (c, s) ⇒ s ′ and ∀ (x , a)∈A. s x = aval a s then
∀ (x , a)∈AD A c. s ′ x = aval a s ′.

10.4 True Liveness thy

In Example 10.14 we had already seen that our definition of liveness is too
simplistic: in x := y; x := 0, variable y is read before it can be written,
but it is read in an assignment to a dead variable. Therefore we modify the
definition of L (x ::= a) X to consider vars a live only if x is live:

L (x ::= a) X = (if x ∈ X then vars a ∪ (X − {x }) else X)

As a result, our old analysis of loops is no longer correct.

Example 10.22. Consider for a moment the following specific w and c

w = WHILE Less (N 0) (V x) DO c
c = x ::= V y ;; y ::= V z

where x, y and z are distinct. Then L w {x } = {x , y} but z is live too,
semantically: the initial value of z can influence the final value of x. This is
the computation of L: L c {x } = L (x ::= V y) (L (y ::= V z) {x }) = L (x
::= V y) {x } = {y} and therefore L w {x } = {x } ∪ {x } ∪ L c {x } = {x , y}. The
reason is that L w X = {x ,y} is no longer a solution of the last constraint of
(10.1): L c {x , y} = L (x ::= V y) (L (y ::= V z) {x , y}) = L (x ::= V y)
{x , z } = {y , z } 6⊆ {x , y}.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Live_True.html

10.4 True Liveness 173

Let us now abstract from this example and reconsider (10.1). We still want
L w X to be a solution of (10.1) because the proof of correctness of L depends
on it. An equivalent formulation of (10.1) is

vars b ∪ X ∪ L c (L w X) ⊆ L w X (10.2)

That is, L w X should be some set Y such that vars b ∪ X ∪ L c Y ⊆ Y.
For optimality we want the least such Y. We will now study abstractly under
what conditions a least such Y exists and how to compute it.

10.4.1 The Knaster-Tarski Fixpoint Theorem on Sets

Definition 10.23. A type ′a is a partial order if there is binary predicate
6 on ′a which is

reflexive: x 6 x,
transitive: [[x 6 y ; y 6 z]] =⇒ x 6 z, and
antisymmetric: [[x 6 y ; y 6 x]] =⇒ x = y.

We use “6 is a partial order” and “type ′a is a partial order” interchangeably.

Definition 10.24. If ′a is a partial order and A :: ′a set, then p ∈ A is
a least element of A if p 6 q for all q ∈ A.

Least elements are unique: if p1 and p2 are least elements of A then p1 6 p2

and p2 6 p1 and hence p1 = p2 by antisymmetry.

Definition 10.25. Let τ be a type and f :: τ ⇒ τ. A point p :: τ is a
fixpoint of f if f p = p.

Definition 10.26. Let τ be a type with a partial order 6 and f :: τ ⇒ τ.

� Function f is monotone if x 6 y =⇒ f x 6 f y for all x and y.
� A point p :: τ is a pre-fixpoint of f if f p 6 p.

This definition applies in particular to sets, where the partial order is ⊆.
Hence we can rephrase (10.2) as saying that L w X should be a pre-fixpoint
of λY . vars b ∪ X ∪ L c Y, ideally the least one. The Knaster-Tarski fixpoint
theorem tells us that all we need is monotonicity.

Theorem 10.27. If f :: τ set ⇒ τ set is monotone then
⋂
{P . f P ⊆ P }

is the least pre-fixpoint of f.

Proof. Let M = {P . f P ⊆ P }. First we show that
⋂
M is a pre-fixpoint. For

all P ∈ M we have
⋂
M ⊆ P (by definition of

⋂
) and therefore f (

⋂
M)

⊆ f P ⊆ P (by monotonicity and because P ∈ M). Therefore f (
⋂
M) ⊆⋂

M (by definition of
⋂
). Moreover,

⋂
M is the least pre-fixpoint: if f P ⊆

P then P ∈ M and thus
⋂
M ⊆ P. ut

174 10 Program Analysis

Lemma 10.28. Let f be a monotone function on a partial order 6. Then
a least pre-fixpoint of f is also a least fixpoint.

Proof. Let P be a least pre-fixpoint of f. From f P 6 P and monotonicity
we have f (f P) 6 f P 6 P and therefore P 6 f P because P is a least
pre-fixpoint. Together with f P 6 P this yields f P = P (by antisymmetry).
Moreover, P is the least fixpoint because any fixpoint is a pre-fixpoint and P
is the least pre-fixpoint. ut

The Knaster-Tarski fixpoint theorem is the combination of both results:

Theorem 10.29. If f :: τ set ⇒ τ set is monotone then

lfp f =
⋂
{P . f P ⊆ P }

is the least pre-fixpoint of f, which is also its least fixpoint.

We have separated the two parts because the second part is a generally useful
result about partial orders.

In the Isabelle library this theorem is expressed by two lemmas:

lfp_unfold : mono f =⇒ lfp f = f (lfp f)
lfp_lowerbound : f A 6 A =⇒ lfp f 6 A

where mono_def : mono f = (∀ x y . x 6 y −→ f x 6 f y).
Now we boldly define L w X as a least fixpoint:

L (WHILE b DO c) X = lfp (λY . vars b ∪ X ∪ L c Y)

This is the full definition of our revised L for true liveness:
fun L :: com ⇒ vname set ⇒ vname set where
L SKIP X = X |

L (x ::= a) X = (if x ∈ X then vars a ∪ (X − {x }) else X) |

L (c1;; c2) X = L c1 (L c2 X) |

L (IF b THEN c1 ELSE c2) X = vars b ∪ L c1 X ∪ L c2 X |

L (WHILE b DO c) X = lfp (λY . vars b ∪ X ∪ L c Y)

Only the assignment andWHILE cases differ from the version in Section 10.3.
The definition of the WHILE case is bold for two reasons: we do not yet

know that λY . vars b ∪ X ∪ L c Y is monotone, i.e., that it makes sense
to apply lfp to it, and we have no idea how to compute lfp.

Lemma 10.30. L c is monotone.

Proof. The proof is by induction on c. All cases are essentially trivial because
∪ is monotone in both arguments and set difference is monotone in the first
argument. In the WHILE case we additionally need that lfp is monotone in
the following sense: if f A ⊆ g A for all A, then lfp f ⊆ lfp g. This is obvious
because any pre-fixpoint of f must also be a pre-fixpoint of g. ut

10.4 True Liveness 175

As a corollary we obtain that λY . vars b ∪ X ∪ L c Y is monotone too.
Hence, by the Knaster-Tarski fixpoint theorem, it has a least (pre-)fixpoint.
Hence L w X is defined exactly as required, i.e., it satisfies (10.1).

Lemma 10.31 (Correctness of L).
[[(c, s) ⇒ s ′; s = t on L c X]] =⇒ ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ on X

Proof. This is the same correctness lemma as in Section 10.3, proved in the
same way, but for a modified L. The proof of the WHILE case remains
unchanged because it only relied on the pre-fixpoint constraints (10.1) that
are still satisfied. The proof of correctness of the new definition of L (x ::=

a) X is just as routine as before. ut

How about an optimizer bury as in the previous section? It turns out
that we can reuse that bury function verbatim, with true liveness instead of
liveness. What is more, even the correctness proof carries over verbatim. The
reason: the proof of the WHILE case relies only on the constraints (10.1),
which hold for both L.

10.4.2 Computing the Least Fixpoint

Under certain conditions, the least fixpoint of a function f can be computed
by iterating f, starting from the least element, which in the case of sets is the
empty set. By iteration we mean f n defined as follows:

f 0 x = x
f n + 1 x = f (f n x)

In Isabelle, f n x is input as (f ^^ n) x.

Lemma 10.32. Let f :: τ set ⇒ τ set be a monotone function. If the
chain {} ⊆ f {} ⊆ f 2 {} ⊆ . . . stabilizes after k steps, i.e., f k + 1 {} = f k {},
then lfp f = f k {}.

Proof. From f k + 1 {} = f k {} it follows that f k {} is a fixpoint. It is the least
fixpoint because it is a subset of any other fixpoint P of f : f n {} ⊆ P follows
from monotonicity by an easy induction on n. The fact that the f n {} form a
chain, i.e., f n {} ⊆ f n + 1 {}, follows by a similar induction. ut

This gives us a way to compute the least fixpoint. In general this will not
terminate, as the sets can grow larger and larger. However, in our application
only a finite set of variables is involved, those in the program. Therefore
termination is guaranteed.

Example 10.33. Recall the loop from Example 10.22:

176 10 Program Analysis

w = WHILE Less (N 0) (V x) DO c
c = x ::= V y ;; y ::= V z

To compute L w {x } we iterate f = (λY . {x } ∪ L c Y). For compactness the
notation X 2 c1 X 1 c2 X 0 (where the X i are sets of variables) abbreviates
X 1 = L c2 X 0 and X 2 = L c1 X 1. Figure 10.9 shows the computation of f
{} through f 4 {}. The final line confirms that {x , y , z } is a fixpoint. Of course

{} x ::= V y {} y ::= V z {}

=⇒ f {} = {x } ∪ {} = {x }
{y} x ::= V y {x } y ::= V z {x }

=⇒ f {x } = {x } ∪ {y} = {x , y}
{y , z } x ::= V y {x , z } y ::= V z {x , y}

=⇒ f {x , y} = {x } ∪ {y , z } = {x , y , z }
{y , z } x ::= V y {x , z } y ::= V z {x , y , z }

=⇒ f {x , y , z } = {x } ∪ {y , z } = {x , y , z }

Fig. 10.9. Iteration of f in Example 10.33

this is obvious because {x , y , z } cannot get any bigger: it already contains all
the variables of the program.

Let us make the termination argument more precise and derive some con-
crete bounds. We need to compute the least fixpoint of f = (λY . vars b ∪
X ∪ L c Y). Informally, the chain of the f n {} must stabilize because only a
finite set of variables is involved — we assume that X is finite. In the follow-
ing, let rvars c be the set of variables read in c (see Appendix A). An easy
induction on c shows that L c X ⊆ rvars c ∪ X . Therefore f is bounded
by U = vars b ∪ rvars c ∪ X in the following sense: Y ⊆ U =⇒ f Y ⊆
U. Hence f k {} is a fixpoint of f for some k 6 card U, the cardinality of U.
More precisely, k 6 card (rvars c) + 1 because already in the first step f {}

⊇ vars b ∪ X.
It remains to give an executable definition of L w X. Instead of program-

ming the required function iteration ourselves we use a combinator from the
library theory While_Combinator :

while :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a
while b f x = (if b x then while b f (f x) else x)

The equation makes while executable. Calling while b f x leads to a sequence
of (tail!) recursive calls while b f (f n x), n = 0, 1, . . ., until b (f k x) for
some k. The equation cannot be a definition because it may not terminate.
It is a lemma derived from the actual definition; the latter is a bit tricky and
need not concern us here.

10.4 True Liveness 177

TheoryWhile_Combinator also contains a lemma that tells us that while
can implement lfp on finite sets provided termination is guaranteed:

Lemma 10.34. If f :: ′a set ⇒ ′a set is monotone and there is a finite
set U such that A ⊆ U =⇒ f A ⊆ U for all A, then

lfp f = while (λA. f A 6= A) f {}.

This is a consequence of Lemma 10.32 and allows us to prove

L (WHILE b DO c) X =

(let f = λY . vars b ∪ X ∪ L c Y in while (λY . f Y 6= Y) f {})

for finite X. Finally, L has become executable and for our example

value let b = Less (N 0) (V ′ ′x ′ ′);
c = ′ ′x ′ ′ ::= V ′ ′y ′ ′;; ′ ′y ′ ′ ::= V ′ ′z ′ ′

in L (WHILE b DO c) { ′ ′x ′ ′}

Isabelle computes the expected result { ′ ′x ′ ′, ′ ′y ′ ′, ′ ′z ′ ′}.

To conclude this section we compare true liveness with liveness. The
motivation for true liveness was improved precision, and this was achieved:
L (′ ′x ′ ′ ::= V ′ ′y ′ ′;; ′ ′x ′ ′ ::= N 0) { ′ ′x ′ ′} returns {} for true liveness, as op-
posed to { ′ ′y ′ ′} for liveness, but at the cost of efficiency: true liveness is no
longer a gen/kill analysis that can be performed in a single pass over the
program; analysis of loops now needs iteration to compute least fixpoints.

Exercises

Exercise 10.11. Compute L w {} for w as in Example 10.33. The result will
be nonempty. Explain why it is not strange that even if we are not interested
in the value of any variable after w, some variables may still be live before w.
The correctness lemma for L may be helpful.

Exercise 10.12. Find a family of commands c2, c3, . . . , such that the com-
putation of L (WHILE b DO cn) X (for suitable X and b) requires n itera-
tions to reach the least fixpoint. Hint: generalize Example 10.33. No need to
use Isabelle.

Exercise 10.13. Function bury defined in Section 10.3 is not idempotent
(Exercise 10.8). Now define the textually identical function bury in the con-
text of true liveness analysis and prove that it is idempotent. Start by proving
the following lemma:

X ⊆ Y =⇒ L (bury c Y) X = L c X

178 10 Program Analysis

The proof is straightforward except for the case While b c where reasoning
about lfp is required.

Now idempotence (bury (bury c X) X = bury c X) should be easy.

10.5 Summary and Further Reading

This chapter has explored three different, widely used data-flow analyses
and associated program optimizations: definite initialization analysis, con-
stant propagation, and live variable analysis. They can be classified according
to two criteria:

Forward/backward
A forward analysis propagates information from the beginning to the
end of a program.
A backward analysis propagates information from the end to the be-
ginning of a program.

May/must
A may analysis checks if the given property is true on some path.
A must analysis checks if the given property is true on all paths.

According to this schema

� Definite initialization analysis is a forward must analysis: variables must
be assigned on all paths before they are used.

� Constant propagation is a forward must analysis: a variable must have the
same constant value on all paths.

� Live variable analysis is a backward may analysis: a variable is live if it is
used on some path before it is overwritten.

There are also forward may and backward must analyses.
Data-flow analysis arose in the context of compiler construction and is

treated in some detail in all decent books on the subject, e.g. [2], but in
particular in the book by Muchnik [58]. The book by Nielson, Nielson and
Hankin [61] provides a comprehensive and more theoretical account of pro-
gram analysis.

In Chapter 13 we study “Abstract Interpretation”, a powerful but also com-
plex approach to program analysis that generalizes the algorithms presented
in this chapter.

11

Denotational Semantics thy

So far we have worked exclusively with various operational semantics which
are defined by inference rules that tell us how to execute some command. But
those rules do not tell us directly what the meaning of a command is. This is
what denotational semantics is about: mapping syntactic objects to their
denotation or meaning. In fact, we are already familiar with two examples,
namely the evaluation of arithmetic and boolean expressions. The denotation
of an arithmetic expression is a function from states to values and aval ::

aexp ⇒ (state ⇒ val) (note the parentheses) is the mapping from syntax to
semantics. Similarly, we can think of the meaning of a command as a relation
between initial states and final states and can even define

Big_step c ≡ {(s , t). (c, s) ⇒ t }

If the language is deterministic, this relation is a partial function.
However, Big_step is not a true denotational semantics because all the

work happens on the level of the operational semantics. A denotational se-
mantics is characterised as follows:

There is a type syntax of syntactic objects, a type semantics of deno-
tations and a function D :: syntax ⇒ semantics that is defined by
primitive recursion. That is, for each syntactic construct C there is a
defining equation

D (C x1 . . . x n) = . . . D x1 . . . D x n . . .

In words: the meaning of a compound object is defined as a function of
the meanings of its subcomponents.

Both aval and bval are denotational definitions, but the big-step semantics
is not: the meaning of WHILE b DO c is not defined simply in terms of the
meaning of b and the meaning of c: rule WhileTrue inductively relies on the
meaning of WHILE b DO c in the premise.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Denotational.html

180 11 Denotational Semantics

One motivation for denotational definitions is that proofs can be con-
ducted by the simple and effective proof principles of equational reasoning
and structural induction over the syntax.

11.1 A Relational Denotational Semantics

Although the natural view of the meaning of a deterministic command may
be a partial function from initial to final states, it is mathematically simpler
to work with relations instead. For this purpose we introduce the identity
relation and composition of relations:

Id :: (′a × ′a) set
Id = {p. ∃ x . p = (x , x)}

op © :: (′a × ′b) set ⇒ (′b × ′c) set ⇒ (′a × ′c) set
r © s = {(x , z). ∃ y . (x , y) ∈ r ∧ (y , z) ∈ s}

Note that r © s can be read from left to right: first r, then s.
The denotation of a command is a relation between initial and final states:

type_synonym com_den = (state × state) set

FunctionD maps a command to its denotation. The first four equations should
be self-explanatory:

D :: com ⇒ com_den
D SKIP = Id
D (x ::= a) = {(s , t). t = s(x := aval a s)}
D (c1;; c2) = D c1 © D c2
D (IF b THEN c1 ELSE c2)
= {(s , t). if bval b s then (s , t) ∈ D c1 else (s , t) ∈ D c2}

Example 11.1. Let c1 = ′ ′x ′ ′ ::= N 0 and c2 = ′ ′y ′ ′ ::= V ′ ′x ′ ′.
D c1 = {(s1, s2). s2 = s1(′ ′x ′ ′ := 0)}

D c2 = {(s2, s3). s3 = s2(′ ′y ′ ′ := s2 ′ ′x ′ ′)}
D (c1;; c2) = {(s1, s3). s3 = s1(′ ′x ′ ′ := 0, ′ ′y ′ ′ := 0)}

The definition of D w, where w = WHILE b DO c, is trickier. Ideally we
would like to write the recursion equation

D w = {(s , t). if bval b s then (s , t) ∈ D c © D w else s = t } (∗)

but because D w depends on D w, this is not in denotational style. Worse, it
would not be accepted by Isabelle because it does not terminate and may be

11.1 A Relational Denotational Semantics 181

inconsistent: remember the example of the illegal ‘definition’ f n = f n + 1

where subtracting f n on both sides would lead to 0 = 1. The fact remains
that D w should be a solution of (∗), but we need to show that a solution
exists and to pick a specific one. This is entirely analogous to the problem we
faced when analysing true liveness in Section 10.4, and the solution will be
the same: the lfp operator and the Knaster-Tarski Fixpoint Theorem.

In general, a solution of an equation t = f t such as (∗) is the same as a
fixpoint of f. In the case of (∗), the function f is

W :: (state ⇒ bool) ⇒ com_den ⇒ (com_den ⇒ com_den)
W db dc = (λdw . {(s , t). if db s then (s , t) ∈ dc © dw else s = t })

where we have abstracted the terms bval b, D c and D w in (∗) by the
parameters db, dc and dw. Hence W (bval b) (D c) (D w) is the right-hand
side of (∗). Now we define D w as a least fixpoint:

D (WHILE b DO c) = lfp (W (bval b) (D c))

Why the least? The formal justification will be an equivalence proof between
denotational and big-step semantics. The following example provides some
intuition why leastness is what we want.

Example 11.2. Let w = WHILE Bc True DO SKIP. Then

f = W (bval (Bc True)) (D SKIP) = W (λs . True) Id
= (λdw . {(s , t). (s , t) ∈ Id © dw }) = (λdw . dw)

Therefore any relation is a fixpoint of f, but our intuition tells us that because
w never terminates, its semantics should be the empty relation, which is
precisely the least fixpoint of f.

We still have to prove that W db dc is monotone. Only then can we ap-
peal to the Knaster-Tarski Fixpoint Theorem to conclude that lfp (W db dc)
really is the least fixpoint.

Lemma 11.3. W db dc is monotone.

Proof. For Isabelle, the proof is automatic. The core of the argument rests
on the fact that relation composition is monotone in both arguments: if r ⊆
r ′ and s ⊆ s ′, then r © s ⊆ r ′ © s ′, which can be seen easily from the
definition of ©. If dw ⊆ dw ′ then W db dc dw ⊆ W db dc dw ′ because
dc © dw ⊆ dc © dw ′. ut

We could already defineD without this monotonicity lemma, but we would
not be able to deduce anything about D w without it. Now we can derive (∗).
This is a completely mechanical consequence of the way we defined D w and
W. Given t = lfp f for some monotone f, we obtain

182 11 Denotational Semantics

t = lfp f = f (lfp f) = f t

where the step lfp f = f (lfp f) is the consequence of the Knaster-Tarski
Fixpoint Theorem because f is monotone. Setting t = D w and f =

W (bval b) (D c) in t = f t results in (∗) by definition of W.
An immediate consequence is

D (WHILE b DO c) =

D (IF b THEN c;; WHILE b DO c ELSE SKIP)

Just expand the definition of D for IF and ;; and you obtain (∗). This is an
example of the simplicity of deriving program equivalences with the help of
denotational semantics.

Discussion

Why can’t we just define (∗) as it is but have to go through the indirection of
lfp and prove monotonicity of W ? None of this was required for the opera-
tional semantics! The reason for this discrepancy is that inductive definitions
require a fixed format to be admissible. For this fixed format, it is not hard to
prove that the inductively defined predicate actually exists. Isabelle does this
by converting the inductive definition internally into a function on sets, prov-
ing its monotonicity and defining the inductive predicate as the least fixpoint
of that function. The monotonicity proof is automatic provided we stick to
the fixed format. Once you step outside the format, in particular when using
negation, the definition will be rejected by Isabelle because least fixpoints
may cease to exist and the inductive definition may be plain contradictory:

P x =⇒ ¬ P x
¬ P x =⇒ P x

The analogous recursive ‘definition’ is P x = (¬ P x), which is also rejected
by Isabelle, because it does not terminate.

To avoid the manual monotonicity proof required for our denotational se-
mantics one could put together a collection of basic functions that are all
monotone or preserve monotonicity. One would end up with a little program-
ming language where all functions are monotone and this could be proved
automatically. In fact, one could then even automate the translation of recur-
sion equations like (∗) into lfp format. Creating such a programming language
is at the heart of denotational semantics, but we do not go into it in our brief
introduction to the subject.

In summary: Although our treatment of denotational semantics appears
more complicated than operational semantics because of the explicit lfp, op-
erational semantics is defined as a least fixpoint too, but this is hidden inside
inductive. One can hide the lfp in denotational semantics too and allow direct

11.1 A Relational Denotational Semantics 183

recursive definitions. This is what Isabelle’s partial_function command does
[50, 92].

11.1.1 Equivalence of Denotational and Big-Step Semantics

We show that the denotational semantics is logically equivalent with our gold
standard, the big-step semantics. The equivalence is proved as two separate
lemmas. Both proofs are almost automatic because the denotational semantics
is relational and thus close to the operational one. Even the treatment of
WHILE is the same: D w is defined explicitly as a least fixpoint and the
operational semantics is an inductive definition which is internally defined as
a least fixpoint (see the Discussion above).

Lemma 11.4. (c, s) ⇒ t =⇒ (s , t) ∈ D c

Proof. By rule induction. All cases are automatic. We just look atWhileTrue
where we may assume bval b s1 and the IHs (s1, s2) ∈ D c and (s2, s3) ∈
D (WHILE b DO c). We have to show (s1, s3) ∈ D (WHILE b DO c),
which follows immediately from (∗). ut

The other direction is expressed by means of the abbreviation Big_step
introduced at the beginning of this chapter. The reason is purely technical.

Lemma 11.5. (s , t) ∈ D c =⇒ (s , t) ∈ Big_step c

Proof. By induction on c. All cases are proved automatically except w =

WHILE b DO c, which we look at in detail. Let B = Big_step w and f =

W (bval b) (D c). By definition of W and the big-step ⇒ it follows that
B is a pre-fixpoint of f, i.e., f B ⊆ B : given (s , t) ∈ f B, either bval b s
and there is some s ′ such that (s , s ′) ∈ D c (hence (c, s) ⇒ s ′ by IH) and
(w , s ′) ⇒ t, or ¬ bval b s and s = t ; in either case (w , s) ⇒ t, i.e., (s , t)
∈ B. Because D w is the least fixpoint and also the least pre-fixpoint of f
(see Knaster-Tarski), D w ⊆ B and hence (s , t) ∈ D w =⇒ (s , t) ∈ B as
claimed. ut

The combination of the previous two lemma yields the equivalence:

Theorem 11.6 (Equivalence of denotational and big-step semantics).
(s , t) ∈ D c ←→ (c, s) ⇒ t

As a nice corollary we obtain that the program equivalence ∼ defined in
Section 7.2.4 is the same as denotational equality: if you replace (ci, s) ⇒ t
in the definition of c1 ∼ c2 by (s , t) ∈ D ci this yields ∀ s t . (s , t) ∈ D c1
←→ (s , t) ∈ D c2, which is equivalent with D c1 = D c2 because two sets
are equal iff they contain the same elements.

Corollary 11.7. c1 ∼ c2 ←→ D c1 = D c2

184 11 Denotational Semantics

11.1.2 Continuity

Denotational semantics is usually not based on relations but on (partial) func-
tions. The difficulty with functions is that the Knaster-Tarski Fixpoint The-
orem does not apply. Abstractly speaking, functions do not form a complete
lattice (see Chapter 13) because the union of two functions (as relations) is
not necessarily again a function. Thus one needs some other means of obtain-
ing least fixpoints. It turns out that the functions one is interested in satisfy
a stronger property called continuity which guarantees least fixpoints also
in the space of partial functions. Although we do not need to worry about
existence of fixpoints in our setting, the notion of continuity is interesting
in its own right because it allows a much more intuitive characterisation of
least fixpoints than Knaster-Tarski. This in turn gives rise to a new induction
principle for least fixpoints.

Definition 11.8. A chain is a sequence of sets S0 ⊆ S1 ⊆ S2 ⊆ . . .:

chain :: (nat ⇒ ′a set) ⇒ bool
chain S = (∀ i . S i ⊆ S (Suc i))

Our specific kinds of chains are often called ω-chains.
In the following we make use of the notation

⋃
n A n for the union of all

sets A n (see Section 4.2). If n :: nat this is A 0 ∪ A 1 ∪

Definition 11.9. A function f on sets is called continuous if it commutes
with

⋃
for all chains:

cont :: (′a set ⇒ ′b set) ⇒ bool
cont f = (∀S . chain S −→ f (

⋃
n S n) = (

⋃
n f (S n)))

That is, f (S0 ∪ S1 ∪ . . .) = f S0 ∪ f S1 ∪ . . . for all chains S.

To understand why these notions are relevant for us, think in terms of
relations between states, or, for simplicity, input and output of some com-
putation. For example, the input-output behaviour of a function sum that
sums up the first n numbers can be expressed as this infinite relation Sum
= {(0,0), (1,1), (2,3), (3,6), (4,10), . . .} on nat. We can compute this relation
gradually by starting from {} and adding more pairs in each step: {} ⊆ {(0,0)}

⊆ {(0,0), (1,1)} ⊆ This is why chains are relevant. Each element Sn in the
chain is only a finite approximation of the full semantics of the summation
function which is the infinite set

⋃
n S n.

To understand the computational meaning of monotonicity, consider a sec-
ond summation function sum2 with semantics Sum2 = {(0, 0), (1, 1), (2,

3)}, i.e., sum2 behaves like sum for inputs 6 2 and does not terminate oth-
erwise. Let P[·] be a program where we can plug in different subcomponents.

11.1 A Relational Denotational Semantics 185

Monotonicity of the semantics of P means that because Sum2 ⊆ Sum, any
result that P[sum2] can deliver, P[sum] can deliver too. This makes computa-
tional sense: if P[sum2] delivers an output, it can only have called sum2 with
arguments 6 2 (otherwise the call and thus the whole computation would
not have terminated), in which case P[sum] can follow the same computation
path in P and deliver the same result.

But why continuity? We give an example where non-computability means
non-continuity. Consider the non-computable function T :: (nat × nat) set
⇒ bool set whose output tells us if its input is (the semantics of) an every-
where terminating computation:

T r = (if ∀m . ∃n . (m , n) ∈ r then {True} else {})

This function is monotone but not continuous. For example, let S be the
chain of finite approximations of Sum above. Then T (

⋃
n S n) = {True}

but (
⋃

n T (S n)) = {}. Going back to the P[·] scenario above, continuity
means that a terminating computation of P[f] should only need a finite part
of the semantics of f, which means it can only run f for a finite amount of
time. Again, this makes computational sense.

Now we study chains and continuity formally. It is obvious (and provable
by induction) that in a chain S we have i 6 j =⇒ S i ⊆ S j. But because 6
is total on nat (i 6 j ∨ j 6 i), ⊆ must be total on S too:

Lemma 11.10. chain S =⇒ S i ⊆ S j ∨ S j ⊆ S i

Continuity implies monotonicity:

Lemma 11.11. Every continuous function is monotone.

Proof. Let f be continuous, assume A ⊆ B and consider the chain A ⊆ B
⊆ B ⊆ . . ., i.e., S = (λi . if i = 0 then A else B). Then f B = f (

⋃
n S n)

= (
⋃

n f (S n)) = f A ∪ f B and hence f A ⊆ f B. ut

Our main theorem about continuous functions is that their least fixpoints
can be obtained by iteration starting from {}.

Theorem 11.12 (Kleene fixpoint theorem).
cont f =⇒ lfp f = (

⋃
n f n {})

Proof. Let U = (
⋃

n f n {}). First we show lfp f ⊆ U, then U ⊆ lfp f.
Because f is continuous, it is also monotone. Hence lfp f ⊆ U follows by

Knaster-Tarski if U is a fixpoint of f. Therefore we prove f U = U. Observe
that by Lemma 10.32 the f n {} form a chain.

f U =
⋃

n f n + 1 {} by continuity

= f 0 {} ∪ (
⋃

n f n + 1 {}) because f 0 {} = {}

= U

186 11 Denotational Semantics

For the opposite direction U ⊆ lfp f it suffices to prove f n {} ⊆ lfp f. The
proof is by induction on n. The base case is trivial. Assuming f n {} ⊆ lfp f
we have by monotonicity of f and Knaster-Tarski that f n + 1 {} = f (f n {})

⊆ f (lfp f) = lfp f. ut

This is a generalization of Lemma 10.32 that allowed us to compute lfp in
the true liveness analysis in Section 10.4.2. At the time we could expect the
chain of iterates of f to stabilize, now we have to go to the limit.

The Kleene fixpoint theorem is applicable to W :

Lemma 11.13. Function W b r is continuous.

Proof. Although the Isabelle proof is automatic, we explain the details be-
cause they may not be obvious. Let R :: nat ⇒ com_den be any sequence
of state relations — it does not even need to be a chain. We show that (s , t)
∈ W b r (

⋃
n R n) iff (s , t) ∈ (

⋃
n W b r (R n)). If ¬ b s then (s , t) is

in both sets iff s = t. Now assume b s. Then

(s , t) ∈ W b r (
⋃

n R n) ←→ (s , t) ∈ r © (
⋃

n R n)
←→ ∃ s ′. (s , s ′) ∈ r ∧ (s ′, t) ∈ (

⋃
n R n)

←→ ∃ s ′ n . (s , s ′) ∈ r ∧ (s ′, t) ∈ R n
←→ ∃n . (s , t) ∈ r © R n
←→ (s , t) ∈ (

⋃
n r © R n)

←→ (s , t) ∈ (
⋃

n W b r (R n))

Warning: such ←→ chains are an abuse of notation: A ←→ B ←→ C really
means the logically not equivalent (A ←→ B) ∧ (B ←→ C) which implies
A ←→ C. ut

Example 11.14. In this example we show concretely how iterating W creates
a chain of relations that approximate the semantics of some loop and whose
union is the full semantics. The loop is

WHILE b DO c
where b = Not (Eq (V ′ ′x ′ ′) (N 0))

and c = ′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N (−1)).

Function Eq compares its arguments for equality (see Exercise 3.7). Intu-
itively, the semantics of this loop is the following relation:

S = {(s , t). 0 6 s ′ ′x ′ ′ ∧ t = s(′ ′x ′ ′ := 0)}

Function f expresses the semantics of one loop iteration:

f = W db dc

where db = bval b = (λs . s ′ ′x ′ ′ 6= 0)

and dc = D c = {(s , t). t = s(′ ′x ′ ′ := s ′ ′x ′ ′ − 1)}.

11.1 A Relational Denotational Semantics 187

This is what happens when we iterate f starting from {}:

f 1 {} = {(s , t). if s ′ ′x ′ ′ 6= 0 then (s , t) ∈ dc © {} else s = t }
= {(s , t). s ′ ′x ′ ′ = 0 ∧ s = t }

f 2 {} = {(s , t). if s ′ ′x ′ ′ 6= 0 then (s , t) ∈ dc © f {} else s = t }
= {(s , t). 0 6 s ′ ′x ′ ′ ∧ s ′ ′x ′ ′ < 2 ∧ t = s(′ ′x ′ ′ := 0)}

f 3 {} = {(s , t). if s ′ ′x ′ ′ 6= 0 then (s , t) ∈ dc © f 2 {} else s = t }
= {(s , t). 0 6 s ′ ′x ′ ′ ∧ s ′ ′x ′ ′ < 3 ∧ t = s(′ ′x ′ ′ := 0)}

Note that the first equality f n {} = R follows by definition of W whereas the
second equality R = R ′ requires a few case distinctions. The advantage of
the form R ′ is that we can see a pattern emerging:

f n {} = {(s , t). 0 6 s ′ ′x ′ ′ ∧ s ′ ′x ′ ′ < int n ∧ t = s(′ ′x ′ ′ := 0)}

where function int coerces a nat to an int. This formulation shows clearly
that f n {} is the semantics of our loop restricted to at most n iterations. The
f n {} form a chain and the union is the full semantics: (

⋃
n f n {}) = S. The

latter equality follows because the condition s ′ ′x ′ ′ < int n in
⋃

n f n {} is
satisfied by all large enough n and hence

⋃
n f n {} collapses to S.

As an application of the Kleene fixpoint theorem we show that our deno-
tational semantics is deterministic, i.e., the command denotations returned
by D are single-valued, a predefined notion:

single_valued r = (∀ x y z . (x , y) ∈ r ∧ (x , z) ∈ r −→ y = z)

The only difficult part of the proof is the WHILE case. Here we can now
argue that if W preserves single-valuedness, then its least fixpoint is single-
valued because it is a union of a chain of single-valued relations:

Lemma 11.15. If f :: com_den ⇒ com_den is continuous and preserves
single-valuedness then lfp f is single-valued.

Proof. Because f is continuous we have lfp f = (
⋃

n f n {}). By Lemma 10.32
(because f is also monotone) the f n {} form a chain. All its elements are single-
valued because {} is single-valued and f preserves single-valuedness. The union
of a chain of single-valued relations is obviously single-valued too. ut

Lemma 11.16. single_valued (D c)

Proof. A straightforward induction on c. The WHILE case follows by the
previous lemma because W b r is continuous and preserves single-valuedness
(as can be checked easily, assuming by IH that r is single-valued). ut

188 11 Denotational Semantics

11.2 Summary and Further Reading

A denotational semantics is a compositional mapping from syntax to meaning:
the meaning of a compound construct is a function of the meanings of its
subconstructs. The meaning of iterative or recursive constructs is given as a
least fixpoint. In a relational context, the existence of a least fixpoint can be
guaranteed by monotonicity via the Knaster-Tarski Fixpoint Theorem. For
computational reasons the semantics should be not just monotone but also
continuous, in which case the least fixpoint is the union of all finite iterates
f n {}. Thus we can reason about least fixpoints of continuous functions by
induction on n.

Denotational semantics has its roots in the work of Dana Scott and
Christopher Strachey [82, 83]. This developed into a rich and mathemati-
cally sophisticated theory. We have only presented a simplified set-theoretic
version of the foundations. For the real deal the reader is encouraged to con-
sult textbooks [39, 79] and handbook articles [1, 86] dedicated to denotational
semantics. Some of the foundations of denotational semantics have been for-
malized in theorem provers [11, 43, 59].

Exercises

Exercise 11.1. Building on Exercise 7.8, extend the denotational semantics
and the equivalence proof with the big-step semantics with a REPEAT loop.

Exercise 11.2. Consider Example 11.14 and prove by induction on n that
f n {} = {(s , t). 0 6 s ′ ′x ′ ′ ∧ s ′ ′x ′ ′ < int n ∧ t = s(′ ′x ′ ′ := 0)}.

Exercise 11.3. Consider Example 11.14 but with the loop condition b =

Less (N 0) (V ′ ′x ′ ′). Find a closed expression M (containing n) for f n {}

and prove f n {} = M.

Exercise 11.4. Define an operator B such that you can express the equation
for D (IF b THEN c1 ELSE c2) in a point-free way. In this context, we call
a definition point free if it does not mention the state on the left-hand side.
For example:

D (IF b THEN c1 ELSE c2) = B b O D c1 ∪ B (Not b) O D c2

A point-wise definition would start

D (IF b THEN c1 ELSE c2) s = . . .

Similarly, find a point-free equation for W (bval b) dc and use it to write
down a point-free version of D (WHILE b DO c) (still using lfp). Prove that
your two equations are equivalent to the old ones.

11.2 Summary and Further Reading 189

Exercise 11.5. Let the ‘thin’ part of a relation be its single-valued subset:

thin R = {(a , b). (a , b) ∈ R ∧ (∀ c. (a , c) ∈ R −→ c = b)}

Prove that if f :: (′a ∗ ′a) set ⇒ (′a ∗ ′a) set is monotone and for all R,
f (thin R) ⊆ thin (f R), then single_valued (lfp f).

Exercise 11.6. Generalize our set-theoretic treatment of continuity and least
fixpoints to chain-complete partial orders (cpos), i.e., partial orders 6
that have a least element ⊥ and where every chain c 0 6 c 1 6 . . . has a least
upper bound lub c where c :: nat ⇒ ′a. A function f :: ′a ⇒ ′b between
two cpos ′a and ′b is continuous if f (lub c) = lub (f ◦ c) for all chains c.
Prove that if f is monotone and continuous then lub (λn . (f ^^ n) ⊥) is the
least fixpoint of f.

Exercise 11.7. We define a dependency analysis Dep that maps commands
to relations between variables such that (x , y) ∈ Dep c means that in the
execution of c the initial value of x can influence the final value of y :

fun Dep :: com ⇒ (vname ∗ vname) set where
Dep SKIP = Id |

Dep (x ::=a) = {(u ,v). if v = x then u ∈ vars a else u = v } |
Dep (c1;;c2) = Dep c1 O Dep c2 |

Dep (IF b THEN c1 ELSE c2) = Dep c1 ∪ Dep c2 ∪ vars b × UNIV |

Dep (WHILE b DO c) = lfp(λR. Id ∪ vars b × UNIV ∪ Dep c O R)

where × is the cross product of two sets. Prove monotonicity of the function
lfp is applied to.

For the correctness statement define

abbreviation Deps :: com ⇒ vname set ⇒ vname set where
Deps c X ≡ (

⋃
x∈X . {y . (y ,x) : Dep c})

and prove

lemma [[(c,s) ⇒ s ′; (c,t) ⇒ t ′; s = t on Deps c X]] =⇒ s ′ = t ′ on X

Give an example that the following stronger termination-sensitive property

[[(c, s) ⇒ s ′; s = t on Deps c X]] =⇒ ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ on X

does not hold. Hint: X = {}.
In the definition of Dep (IF b THEN c1 ELSE c2) the variables in b can

influence all variables (UNIV). However, if a variable is not assigned to in c1
and c2, it is not influenced by b (ignoring termination). Theory Vars defines
a function lvars such that lvars c is the set of variables on the left-hand side
of an assignment in c. Modify the definition of Dep as follows: replace UNIV

190 11 Denotational Semantics

by lvars c1 ∪ lvars c2 (in the case IF b THEN c1 ELSE c2) and by lvars c
(in the case WHILE b DO c). Adjust the proof of the above correctness
statement.

12

Hoare Logic

So far we have proved properties of IMP, like type soundness, or properties
of tools for IMP, like compiler correctness, but almost never properties of
individual IMP programs. The Isabelle part of the book has taught us how to
prove properties of functional programs, but not of imperative ones.

Hoare logic (due to Tony Hoare), also known as axiomatic semantics,
is a logic for proving properties of imperative programs. The formulas of Hoare
logic are so-called Hoare triples

{P } c {Q}

which should be read as saying that if formula P is true before the execution
of command c then formula Q is true after the execution of c. This is a simple
example of a Hoare triple:

{x = y} y := y+1 {x < y}

12.1 Proof via Operational Semantics thy

Before introducing the details of Hoare logic we show that in principle we can
prove properties of programs via their operational semantics. Hoare logic can
be viewed as the structured essence of such proofs.

As an example, we prove that the program

y := 0;
WHILE 0 < x DO (y := y+x; x := x-1)

sums up the numbers 1 to x in y. Formally let

wsum = WHILE Less (N 0) (V ′ ′x ′ ′) DO csum

csum = ′ ′y ′ ′ ::= Plus (V ′ ′y ′ ′) (V ′ ′x ′ ′);;
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N (−1))

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Hoare_Examples.html

192 12 Hoare Logic

The summation property can be expressed as a theorem about the program’s
big-step semantics:

(′ ′y ′ ′ ::= N 0;; wsum , s) ⇒ t =⇒ t ′ ′y ′ ′ = sum (s ′ ′x ′ ′) (∗)

where

fun sum :: int ⇒ int where
sum i = (if i 6 0 then 0 else sum (i − 1) + i)

We prove (∗) in two steps. First we show that wsum does the right thing.
This will be an induction, and as usual we have to generalize what we want
to prove from the special situation where y is 0.

(wsum , s) ⇒ t =⇒ t ′ ′y ′ ′ = s ′ ′y ′ ′ + sum (s ′ ′x ′ ′) (∗∗)

This is proved by an induction on the premise. There are two cases.
If the loop condition is false, i.e., if s ′ ′x ′ ′ 6 0, then we have to prove

s ′ ′y ′ ′ = s ′ ′y ′ ′ + sum (s ′ ′x ′ ′), which follows because s ′ ′x ′ ′ < 1 implies
sum (s ′ ′x ′ ′) = 0.

If the loop condition is true, i.e., if 0 < s ′ ′x ′ ′, then we may assume
(csum , s) ⇒ u and the IH t ′ ′y ′ ′ = u ′ ′y ′ ′ + sum (u ′ ′x ′ ′) and we have
to prove the conclusion of (∗∗). From (csum , s) ⇒ u it follows by inversion
of the rules for ;; and ::= (Section 7.2.3) that u = s(′ ′y ′ ′ := s ′ ′y ′ ′ + s ′ ′x ′ ′,
′ ′x ′ ′ := s ′ ′x ′ ′ − 1). Substituting this into the IH yields t ′ ′y ′ ′ = s ′ ′y ′ ′ +
s ′ ′x ′ ′ + sum (s ′ ′x ′ ′ − 1). This is equivalent with the conclusion of (∗∗)
because 0 < s ′ ′x ′ ′.

Having proved (∗∗), (∗) follows easily: From (′ ′y ′ ′ ::= N 0;; wsum , s) ⇒
t it follows by rule inversion that after the assignment the intermediate state
must have been s(′ ′y ′ ′ := 0) and therefore (wsum , s(′ ′y ′ ′ := 0)) ⇒ t. Now
(∗∗) implies t ′ ′y ′ ′ = sum (s ′ ′x ′ ′), thus concluding the proof of (∗).

Hoare logic can be viewed as the structured essence of such operational
proofs. The rules of Hoare logic are (almost) syntax-directed and automate
all those aspects of the proof that are concerned with program execution.
However, there is no free lunch: you still need to be creative to find gen-
eralizations of formulas when proving properties of loops, and proofs about
arithmetic formulas are still up to you (and Isabelle).

We will now move on to the actual topic of this chapter, Hoare logic.

12.2 Hoare Logic for Partial Correctness

The formulas of Hoare logic are the Hoare triples {P } c {Q}, where P is called
the precondition and Q the postcondition. We call {P } c {Q} valid if the
following implication holds:

12.2 Hoare Logic for Partial Correctness 193

If P is true before the execution of c and c terminates
then Q is true afterwards.

Validity is defined in terms of execution, i.e., the operational semantics, our
ultimate point of reference. This notion of validity is called partial correct-
ness because the postcondition is only required to be true if c terminates.
There is also the concept of total correctness:

If P is true before the execution of c
then c terminates and Q is true afterwards.

In a nutshell:

Total correctness = partial correctness + termination

Except for the final section of this chapter, we will always work with the
partial correctness interpretation, because it is easier.

Pre- and postconditions come from some set of logical formulas that we
call assertions. There are two approaches to the language of assertions:

Syntactic: Assertions are concrete syntactic objects, like type bexp.
Semantic: Assertions are predicates on states, i.e., of type state ⇒ bool.

We follow the syntactic approach in the introductory subsection, because it is
nicely intuitive and one can sweep some complications under the carpet. But
for proofs about Hoare logic, the semantic approach is much simpler and we
switch to it in the rest of the chapter.

12.2.1 Syntactic Assertions

Assertions are ordinary logical formulas and include all the boolean expres-
sions of IMP. We are deliberately vague because the exact nature of assertions
is not important for understanding how Hoare logic works. Just as we did for
the simplified notation for IMP, we write concrete assertions and Hoare triples
in typewriter font. Here are some examples of valid Hoare triples:

{x = 5} x := x+5 {x = 10}

{True} x := 10 {x = 10}

{x = y} x := x+1 {x 6= y}

Note that the precondition True is always true; hence the second triple merely
says that from whatever state you start, after x := 10 the postcondition x =
10 is true.

More interesting are the following somewhat extreme examples:

{True} c1 {True}

194 12 Hoare Logic

{True} c2 {False}

{False} c3 {Q}

Which ci make these triples valid? Think about it before you read on. Remem-
ber that we work with partial correctness in this section. Therefore every c1
works because the postcondition True is always true. In the second triple, c2
must not terminate, otherwise False would have to be true, which it certainly
is not. In the final triple, any c3 and Q work because the meaning of the triple
is that “if False is true . . . ”, but False is not true. Note that for the first two
triples, the answer is different under a total correctness interpretation.

Proof System

So far we have spoken of Hoare triples being valid. Now we will present a set
of inference rules or proof system for deriving Hoare triples. This is a new
mechanism and here we speak of Hoare triples being derivable. Of course
being valid and being derivable should have something to do with each other.
When we look at the proof rules in a moment they will all feel very natural
(well, except for one) precisely because they follow our informal understanding
of when a triple is valid. Nevertheless it is essential not to confuse the notions
of validity (which employs the operational semantics) and derivability (which
employs an independent set of proof rules).

The proof rules for Hoare logic are shown in Figure 12.1. We go through
them one by one.

The SKIP rule is obvious, but the assignment rule needs some explana-
tion. It uses the substitution notation

P [a/x] ≡ P with a substituted for x.

For example, (x = 5)[5/x] is 5 = 5 and (x = x)[5+x/x] is 5+x = 5+x.
The latter example shows that all occurrences of x in P are simultaneously
replaced by a, but that this happens only once: if x occurs in a, those oc-
currences are not replaced, otherwise the substitution process would go on
forever. Here are some instances of the assignment rule:

{5 = 5} x := 5 {x = 5}

{x+5 = 5} x := x+5 {x = 5}

{2*(x+5) > 20} x := 2*(x+5) {x > 20}

Simplifying the preconditions that were obtained by blind substitution yields
the more readable triples

{True} x := 5 {x = 5}

{x = 0} x := x+5 {x = 5}

{x > 5} x := 2*(x+5) {x > 20}

12.2 Hoare Logic for Partial Correctness 195

{P } SKIP {P }

{P [a/x]} x ::= a {P }

{P1} c1 {P2} {P2} c2 {P3}

{P1} c1;; c2 {P3}

{P ∧ b} c1 {Q} {P ∧ ¬ b} c2 {Q}

{P } IF b THEN c1 ELSE c2 {Q}

{P ∧ b} c {P }

{P } WHILE b DO c {P ∧ ¬ b}

P ′ −→ P {P } c {Q} Q −→ Q ′

{P ′} c {Q ′}

Fig. 12.1. Hoare logic for partial correctness (syntactic assertions)

The assignment rule may still puzzle you because it seems to go in the wrong
direction by modifying the precondition rather than the postcondition. After
all, the operational semantics modifies the post-state, not the pre-state. Cor-
rectness of the assignment rule can be explained as follows: if initially P [a/x]
is true, then after the assignment x will have the value of a, and hence no
substitution is necessary anymore, i.e., P itself is true afterwards. A forward
version of this rule exists but is more complicated.

The ;; rule strongly resembles its big-step counterpart. Reading it back-
ward it decomposes the proof of c1;; c2 into two proofs involving c1 and c2
and a new intermediate assertion P2.

The IF rule is pretty obvious: you need to prove that both branches lead
from P to Q, where in each proof the appropriate b or ¬ b can be conjoined
to P. That is, each sub-proof additionally assumes the branch condition.

Now we consider the WHILE rule. Its premise says that if P and b are
true before the execution of the loop body c, then P is true again afterwards
(if the body terminates). Such a P is called an invariant of the loop: if you
start in a state where P is true then no matter how often the loop body is
iterated, as long as b is true before each iteration, P stays true too. This
explains the conclusion: if P is true initially, then it must be true at the end
because it is invariant. Moreover, if the loop terminates, then ¬ b must be

196 12 Hoare Logic

true too. Hence P ∧ ¬ b at the end (if we get there). The WHILE rule can
be viewed as an induction rule where the invariance proof is the step.

The final rule in Figure 12.1 is called the consequence rule. It is indepen-
dent of any particular IMP construct. Its purpose is to adjust the precondition
and postcondition. Going from {P } c {Q} to {P ′} c {Q ′} under the given
premises permits us to

� strengthen the precondition: P ′ −→ P
� weaken the postcondition: Q −→ Q ′

where A is called stronger than B if A −→ B. For example, from {x > 0}
c {x > 1} we can prove {x = 5} c {x > 0}. The latter is strictly weaker
than the former because it tells us less about the behaviour of c. Note that the
consequence rule is the only rule where some premises are not Hoare triples
but assertions. We do not have a formal proof system for assertions and rely on
our informal understanding of their meaning to check, for example, that x = 5
−→ x > 0. This informality will be overcome once we consider assertions as
predicates on states.

This completes the discussion of the basic proof rules. Although these
rules are sufficient for all proofs, i.e., the system is complete (which we show
later), the rules for SKIP, ::= and WHILE are inconvenient: they can only
be applied backwards if the pre- or postcondition are of a special form. For
example, for SKIP they need to be identical. Therefore we derive new rules for
those constructs that can be applied backwards irrespective of the pre- and
postcondition of the given triple. The new rules are shown in Figure 12.2.
They are easily derived by combining the old rules with the consequence rule.

P −→ Q

{P } SKIP {Q}

P −→ Q [a/x]

{P } x ::= a {Q}

{P ∧ b} c {P } P ∧ ¬ b −→ Q

{P } WHILE b DO c {Q}

Fig. 12.2. Derived rules (syntactic assertions)

Here is one of the derivations:

P −→ Q [a/x] {Q [a/x]} x ::= a {Q} Q −→ Q

{P } x ::= a {Q}

12.2 Hoare Logic for Partial Correctness 197

Two of the three premises are overlined because they have been proved,
namely with the original assignment rule and with the trivial logical fact
that anything implies itself.

Examples

We return to the summation program from Section 12.1. This time we prove
it correct by means of Hoare logic rather than operational semantics. In Hoare
logic, we want to prove the triple

{x = i} y := 0; wsum {y = sum i}

We cannot write y = sum x in the postcondition because x is 0 at that point.
Unfortunately the postcondition cannot refer directly to the initial state. In-
stead, the precondition x = i allows us to refer to the unchanged i and
therefore to the initial value of x in the postcondition. This is a general trick
for remembering values of variables that are modified.

The central part of the proof is to find and prove the invariant I of the
loop. Note that we have three constraints that must be satisfied:

1. It should be an invariant: {I ∧ 0 < x} csum {I}
2. It should imply the postcondition: I ∧ ¬ 0 < x −→ y = sum i
3. The invariant should be true initially: x = i ∧ y = 0 −→ I

In fact, this is a general design principle for invariants. As usual, it is a case
of generalizing the desired postcondition. During the iteration, y = sum i is
not quite true yet because the first x numbers are still missing from y. Hence
we try the following assertion:

I = (y + sum x = sum i)

It is easy to check that the constraints 2 and 3 are true. Moreover, I is indeed
invariant as the following proof tree shows:

I ∧ 0 < x −→ I[x-1/x][y+x/y]

{I ∧ 0 < x} y := y+x {I[x-1/x]} {I[x-1/x]} x := x-1 {I}

{I ∧ 0 < x} csum {I}

Although we have not given the proof rules names, it is easy to see at any
point in the proof tree which one is used. In the above tree, the left assignment
is proved with the derived rule, the right assignment with the basic rule.

In case you are wondering why I ∧ 0 < x −→ I[x-1/x][y+x/y] is true,
expand the definition of I and carry out the substitutions and you arrive at
the following easy arithmetic truth:

198 12 Hoare Logic

y + sum x = sum i ∧ 0 < x −→ y + x + sum(x-1) = sum i (12.1)

With the loop rule and some more arithmetic we derive

{I ∧ 0 < x} csum {I} I ∧ ¬ 0 < x −→ y = sum i

{I} wsum {y = sum i}

Now we only need to connect this result with the initialization to obtain
the correctness proof for y := 0; wsum:

x = i −→ I[0/y]

{x = i} y := 0 {I} {I} wsum {y = sum i}

{x = i} y := 0; wsum {y = sum i}

The summation program is special in that it always terminates. Hence
it does not demonstrate that the proof system can prove anything about
nonterminating computations, as in the following example:

{True} SKIP {True} True ∧ ¬ True −→ Q

{True} WHILE True DO SKIP {Q}

We have proved that if the loop terminates, any assertion Q is true. It sounds
like magic but is merely the consequence of nontermination. The proof is
straightforward: the invariant is True and Q is trivially implied by the nega-
tion of the loop condition.

As a final example consider swapping two variables:

{P} h := x; x := y; y := h {Q}

where P = (x = a ∧ y = b) and Q = (x = b ∧ y = a). Drawing the full
proof tree for this triple is tedious and unnecessary. A compact form of the
tree can be given by annotating the intermediate program points with the
correct assertions:

{P} h := x; {Q[h/y][y/x]} x := y; {Q[h/y]} y := h {Q}

Both Q[h/y] and Q[h/y][y/x] are simply the result of the basic assign-
ment rule. All that is left to check is the first assignment with the derived
assignment rule, i.e., check P −→ Q[h/y][y/x][x/h]. This is true because
Q[h/y][y/x][x/h] = (y = b ∧ x = a).

It should be clear that this proof procedure works for any sequence of
assignments, thus reducing the proof to pulling back the postcondition (which
is completely mechanical) and checking an implication.

12.2 Hoare Logic for Partial Correctness 199

The Method

If we look at the proof rules and the examples it becomes apparent that there
is a method in this madness: the backward construction of Hoare logic proofs
is partly mechanical. Here are the key points:

� We only need the original rules for ;; and IF together with the derived rules
for SKIP, ::= and WHILE. This is a syntax-directed proof system and
each backward rule application creates new subgoals for the subcommands.
Thus the shape of the proof tree exactly mirrors the shape of the command
in the Hoare triple we want to prove. The construction of the skeleton of
this proof tree is completely automatic.
The consequence rule is built into the derived rules and is not required any-
more. This is crucial: the consequence rule destroys syntax-directedness
because it can be applied at any point.

� When applying the ;; rule backwards we need to provide the intermediate
assertion P2 that occurs in the premises but not the conclusion. It turns
out that we can compute P2 by pulling the final assertion P3 back through
c2. The variable swapping example illustrates this principle.

� There are two aspects that cannot be fully automated (or program veri-
fication would be completely automatic, which is impossible): invariants
must be supplied explicitly, and the implications between assertions in the
premises of the derived rules must be proved somehow.

In a nutshell, Hoare logic can be reduced to finding invariants and proving
assertions. We will carry out this program in full detail in Section 12.4. But
first we need to formalize our informal notion of assertions.

12.2.2 Assertions as Functions thy

Our introduction to Hoare logic so far was informal with an emphasis on
intuition. Now we formalize assertions as predicates on states:

type_synonym assn = state ⇒ bool

As an example of the simplicity of this approach we define validity formally:

|= {P } c {Q} ←→ (∀ s t . P s ∧ (c, s) ⇒ t −→ Q t)

We pronounce |= {P } c {Q} as “{P } c {Q} is valid”.
Hoare logic with functional assertions is defined as an inductive predicate

with the syntax ` {P } c {Q} which is read as “{P } c {Q} is derivable/provable”
(in Hoare logic). The rules of the inductive definition are shown in Figure 12.3;
two derived rules are shown in Figure 12.4. These rules are a direct translation

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Hoare.html

200 12 Hoare Logic

` {P } SKIP {P }
Skip

` {λs . P (s [a/x])} x ::= a {P }
Assign

` {P } c1 {Q} ` {Q} c2 {R}

` {P } c1;; c2 {R}
Seq

` {λs . P s ∧ bval b s} c1 {Q} ` {λs . P s ∧ ¬ bval b s} c2 {Q}

` {P } IF b THEN c1 ELSE c2 {Q}
If

` {λs . P s ∧ bval b s} c {P }

` {P } WHILE b DO c {λs . P s ∧ ¬ bval b s}
While

∀ s . P ′ s −→ P s ` {P } c {Q} ∀ s . Q s −→ Q ′ s

` {P ′} c {Q ′}
conseq

Fig. 12.3. Hoare logic for partial correctness (functional assertions)

of the syntactic ones, taking into account that assertions are predicates on
states. Only rule Assign requires some explanation. The notation s [a/x] is
merely an abbreviation that mimics syntactic substitution into assertions:

s [a/x] ≡ s(x := aval a s)

What does our earlier P[a/x] have to do with P(s [a/x])? We have not for-
malized the syntax of assertions, but we can explain what is going on at the
level of their close relatives, boolean expressions. Assume we have a substi-
tution function bsubst such that bsubst b a x corresponds to b[a/x], i.e.,
substitutes a for x in b. Then we can prove

Lemma 12.1 (Substitution lemma).
bval (bsubst b a x) s = bval b (s [a/x])

It expresses that as far as evaluation is concerned, it does not matter if you
substitute into the expression or into the state.

12.2.3 Example Proof thy

We can now perform Hoare logic proofs in Isabelle. For that purpose we go
back to the apply-style because it allows us to perform such proofs without
having to type in the myriad of intermediate assertions. Instead they are

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Hoare_Examples.html

12.2 Hoare Logic for Partial Correctness 201

∀ s . P s −→ Q (s [a/x])

` {P } x ::= a {Q}
Assign ′

` {λs . P s ∧ bval b s} c {P } ∀ s . P s ∧ ¬ bval b s −→ Q s

` {P } WHILE b DO c {Q}
While ′

Fig. 12.4. Derived rules (functional assertions)

computed by rule application, except for the invariants. As an example we
verify wsum (Section 12.1) once more:

lemma ` {λs . s ′ ′x ′ ′ = i } ′ ′y ′ ′ ::= N 0;; wsum {λs . s ′ ′y ′ ′ = sum i }

Rule Seq creates two subgoals:

apply(rule Seq)

1. ` {λs . s ′ ′x ′ ′ = i } ′ ′y ′ ′ ::= N 0 {?Q}

2. ` {?Q} wsum {λs . s ′ ′y ′ ′ = sum i }

As outlined in The Method above, we left the intermediate assertion open
and will instantiate it by working on the second subgoal first (prefer 2). Since
that is a loop, we have to provide it anyway, because it is the invariant:

prefer 2
apply(rule While ′[where P = λs . (s ′ ′y ′ ′ = sum i − sum (s ′ ′x ′ ′))])

We have rearranged the earlier invariant y + sum x = sum i slightly to
please the simplifier.

The first subgoal of While ′ is preservation of the invariant:

1. ` {λs . s ′ ′y ′ ′ = sum i − sum (s ′ ′x ′ ′) ∧

bval (Less (N 0) (V ′ ′x ′ ′)) s}
csum {λs . s ′ ′y ′ ′ = sum i − sum (s ′ ′x ′ ′)}

A total of 3 subgoals ...

Because csum stands for a sequential composition we proceed as above:

apply(rule Seq)
prefer 2

1. ` {?Q6} ′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N (− 1))

{λs . s ′ ′y ′ ′ = sum i − sum (s ′ ′x ′ ′)}
2. ` {λs . s ′ ′y ′ ′ = sum i − sum (s ′ ′x ′ ′) ∧

bval (Less (N 0) (V ′ ′x ′ ′)) s}
′ ′y ′ ′ ::= Plus (V ′ ′y ′ ′) (V ′ ′x ′ ′) {?Q6}

A total of 4 subgoals ...

202 12 Hoare Logic

Now the two assignment rules (basic and derived) do their job.

apply(rule Assign)
apply(rule Assign ′)

The resulting subgoal is large and hard to read because of the substitutions;
therefore we do not show it. It corresponds to (12.1) and can be proved by
simp (not shown). We move on to the second premise of While ′, the proof
that at the exit of the loop the required postcondition is true:

1. ∀ s . s ′ ′y ′ ′ = sum i − sum (s ′ ′x ′ ′) ∧

¬ bval (Less (N 0) (V ′ ′x ′ ′)) s −→
s ′ ′y ′ ′ = sum i

A total of 2 subgoals ...

This is proved by simp and all that is left is the initialization.

1. ` {λs . s ′ ′x ′ ′ = i } ′ ′y ′ ′ ::= N 0

{λs . s ′ ′y ′ ′ = sum i − sum (s ′ ′x ′ ′)}

apply(rule Assign ′)

The resulting subgoal shows a simple example of substitution into the state:

1. ∀ s . s ′ ′x ′ ′ = i −→
(s [N 0/ ′ ′y ′ ′]) ′ ′y ′ ′ = sum i − sum ((s [N 0/ ′ ′y ′ ′]) ′ ′x ′ ′)

The proof is again a plain simp.

Functional assertions lead to more verbose statements. For the verification of
larger programs one would add some Isabelle syntax magic to make functional
assertions look more like syntactic ones. We have refrained from that as our
emphasis is on explaining Hoare logic rather than verifying concrete programs.

Exercises

Exercise 12.1. Give a concrete counterexample to this naive version of the
assignment rule: {P } x ::= a {P [a/x]}.

Exercise 12.2. Define bsubst and prove the Substitution Lemma 12.1. This
may require a similar definition and proof for aexp.

Exercise 12.3. Define a command cmax that stores the maximum of the
values of the IMP variables x and y in the IMP variable z and prove
that ` {λs . True} cmax {λs . s ′ ′z ′ ′ = max (s ′ ′x ′ ′) (s ′ ′y ′ ′)} where max
is the predefined maximum function.

12.3 Soundness and Completeness 203

Exercise 12.4. Let wsum2 = WHILE Not(Eq (V ′ ′x ′ ′) (N 0)) DO csum
where bval (Eq a1 a2) s = (aval a1 = aval a2) (see Exercise 3.7). Prove
` {λs . s ′ ′x ′ ′ = i ∧ 0 6 i } ′ ′y ′ ′ ::= N 0;; wsum2 {λs . s ′ ′y ′ ′ = sum i }.

Exercise 12.5. Prove

` {λs . s ′ ′x ′ ′ = x ∧ s ′ ′y ′ ′ = y ∧ 0 6 x }
WHILE Less (N 0) (V ′ ′x ′ ′)
DO (′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N (− 1));;

′ ′y ′ ′ ::= Plus (V ′ ′y ′ ′) (N (− 1)))

{λs . s ′ ′y ′ ′ = y − x }

Exercise 12.6. Define a command cmult that stores the product of x and y
in z (assuming 0 6 y) and prove ` {λs . s ′ ′x ′ ′ = x ∧ s ′ ′y ′ ′ = y ∧ 0 6 y}
cmult {λt . t ′ ′z ′ ′ = x ∗ y}.

Exercise 12.7. The following command computes an integer approximation
r of the square root of i > 0, i.e., r2 6 i < (r+1)2. Prove

` {λs . s x = i ∧ 0 6 i }
r ::= N 0;; r2 ::= N 1;;
WHILE Not (Less (V x) (V r2))
DO (r ::= Plus (V r) (N 1);;

r2 ::= Plus (V r2) (Plus (Plus (V r) (V r)) (N 1)))

{λs . s x = i ∧ (s r)2 6 i ∧ i < (s r + 1)2}

For readability, x, r and r2 abbreviate ′ ′x ′ ′, ′ ′r ′ ′ and ′ ′r2 ′ ′. Figure out how
r2 is related to r before formulating the invariant.

Exercise 12.8. Prove ` {P } c {λs . True}.

Exercise 12.9. Design and prove a forward assignment rule of the form
` {P } x ::= a {? } where ? is some suitable postcondition that depends on
P, x and a.

12.3 Soundness and Completeness thy

So far we have motivated the rules of Hoare logic by operational semantics
considerations but we have not proved a precise link between the two. We will
now prove

Soundness of the logic w.r.t. the operational semantics:
if a triple is derivable, it is also valid.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Hoare_Sound_Complete.html

204 12 Hoare Logic

Completeness of the logic w.r.t. the operational semantics:
if a triple is valid, it is also derivable.

Recall the definition of validity:

|= {P } c {Q} ←→ (∀ s t . P s ∧ (c, s) ⇒ t −→ Q t)

Soundness is straightforward:

Lemma 12.2 (Soundness of ` w.r.t. |=).
` {P } c {Q} =⇒ |= {P } c {Q}

Proof. By induction on the derivation of ` {P } c {Q}: we must show that
every rule of the logic preserves validity. This is automatic for all rules ex-
cept While, because these rules resemble their big-step counterparts. Even
assignment is easy: To prove |= {λs . P (s [a/x])} x ::= a {P } we may as-
sume P (s [a/x]) and (x ::= a , s) ⇒ t . Therefore t = s [a/x] and thus P t
as required.

The only other rule we consider is While. We may assume the IH
|= {λs . P s ∧ bval b s} c {P }. First we prove for arbitrary s and t that if
(WHILE b DO c, s) ⇒ t then P s =⇒ P t ∧ ¬ bval b t by induction
on the assumption. There are two cases. If ¬ bval b s and s = t then P s
=⇒ P t ∧ ¬ bval b t is trivial. If bval b s, (c, s) ⇒ s ′ and IH P s ′ =⇒
P t ∧ ¬ bval b t , then we assume P s and prove P t ∧ ¬ bval b t . Because
P s , bval b s and (c, s) ⇒ s ′, the outer IH yields P s ′ and then the inner IH
yields P t ∧ ¬ bval b t , thus finishing the inner induction. Returning to the
While rule we need to prove |= {P } WHILE b DO c {λs . P s ∧ ¬ bval b s}.
Assuming P s and (WHILE b DO c, s) ⇒ t, the lemma we just proved lo-
cally yields the required P t ∧ ¬ bval b t, thus finishing the While rule. ut

Soundness was straightforward, as usual: one merely has to plough through
the rules one by one. Completeness requires new ideas.

12.3.1 Completeness

Completeness, i.e., |= {P } c {Q} =⇒ ` {P } c {Q}, is proved with the help of
the notion of the weakest precondition (in the literature often called the
weakest liberal precondition):

definition wp :: com ⇒ assn ⇒ assn where
wp c Q = (λs . ∀ t . (c, s) ⇒ t −→ Q t)

Thinking of assertions as sets of states, this says that the weakest precondition
of a command c and a postcondition Q is the set of all pre-states such that
if c terminates one ends up in Q.

It is easy to see that wp c Q is indeed the weakest precondition:

12.3 Soundness and Completeness 205

Fact 12.3. |= {P } c {Q} ←→ (∀ s . P s −→ wp c Q s)

The weakest precondition is a central concept in Hoare logic because it
formalizes the idea of pulling a postcondition back through a command to
obtain the corresponding precondition. This idea is central to the construction
of Hoare logic proofs and we have already alluded to it multiple times.

The following nice recursion equations hold for wp. They can be used to
compute the weakest precondition, except for WHILE, which would lead to
nontermination.

wp SKIP Q = Q
wp (x ::= a) Q = (λs . Q (s [a/x]))
wp (c1;; c2) Q = wp c1 (wp c2 Q)

wp (IF b THEN c1 ELSE c2) Q
= (λs . if bval b s then wp c1 Q s else wp c2 Q s)
wp (WHILE b DO c) Q
= (λs . if bval b s then wp (c;; WHILE b DO c) Q s else Q s)

Proof. All equations are easily proved from the definition of wp once you re-
alise that they are equations between functions. Such equations can be proved
with the help of extensionality, one of the basic rules of HOL:∧

x . f x = g x

f = g
ext

It expresses that two functions are equal if they are equal for all arguments.
For example, we can prove wp SKIP Q = Q by proving wp SKIP Q s =

Q s for an arbitrary s. Expanding the definition of wp we have to prove
(∀ t . (SKIP , s) ⇒ t −→ Q t) = Q s , which follows by inversion of the big-
step rule for SKIP. The proof of the other equations is similar. ut

The key property of wp is that it is also a precondition w.r.t. provability:

Lemma 12.4. ` {wp c Q} c {Q}

Proof. By induction on c. We consider only the WHILE case, the other cases
are automatic (with the help of the wp equations). Let w = WHILE b DO c.
We show ` {wp w Q} w {Q} by an application of rule While ′. Its first
premise is ` {λs . wp w Q s ∧ bval b s} c {wp w Q}. It follows from the IH
` {wp c R} c {R} (for any R) where we set R = wp w Q , by precondition
strengthening: the implication wp w Q s ∧ bval b s −→ wp c (wp w Q) s
follows from the wp equations for WHILE and ;;. The second premise we
need to prove is wp w Q s ∧ ¬ bval b s −→ Q s ; it follows from the wp
equation for WHILE. ut

The completeness theorem is an easy consequence:

206 12 Hoare Logic

Theorem 12.5 (Completeness of ` w.r.t. |=).
|= {P } c {Q} =⇒ ` {P } c {Q}

Proof. Because wp is the weakest precondition (Fact 12.3), |= {P } c {Q}

implies ∀ s . P s −→ wp c Q s. Therefore we can strengthen the precondition
of ` {wp c Q} c {Q} and infer ` {P } c {Q}. ut

Putting soundness and completeness together we obtain that a triple is
provable in Hoare logic iff it is provable via the operational semantics:

Corollary 12.6. ` {P } c {Q} ←→ |= {P } c {Q}

Thus one can also view Hoare logic as a reformulation of operational se-
mantics aimed at proving rather than executing — or the other way around.

12.3.2 Incompleteness

Having proved completeness we will now explain a related incompleteness
result. This section requires some background in recursion theory and logic.
It can be skipped on first reading.

Recall from Section 12.2.1 the triple {True} c {False}. We argued that
this triple is valid iff c terminates for no start state. It is well known from
recursion theory that the set of such never terminating programs is not re-
cursively enumerable (r.e.) (see, for example, [42]). Therefore the set of valid
Hoare triples is not r.e. either: an enumeration of all valid Hoare triples could
easily be filtered to yield an enumeration of all valid {True} c {False} and
thus an enumeration of all never terminating programs.

Therefore there is no sound and complete Hoare logic whose provable
triples are r.e.. This is strange because we have just proved that our Hoare
logic is sound and complete, and its inference rules together with the inference
rules for HOL (see, for example, [36]) provide an enumeration mechanism for
all provable Hoare triples. What is wrong here? Nothing. Both our soundness
and completeness results and the impossibility of having a sound and complete
Hoare logic are correct but they refer to subtly different notions of validity of
Hoare triples. The notion of validity used in our soundness and completeness
proofs is defined in HOL and we have shown that we can prove a triple valid iff
we can prove it in the Hoare logic. Thus we have related provability in HOL of
two different predicates. On the other hand, the impossibility result is based
on an abstract mathematical notion of validity and termination independent
of any proof system. This abstract notion of validity is stronger than our HOL-
based definition. That is, there are Hoare triples that are valid in this abstract
sense but whose validity cannot be proved in HOL. Otherwise the equivalence
of |= and ` we proved in HOL would contradict the impossibility of having a
sound and complete Hoare logic (assuming that HOL is consistent).

12.3 Soundness and Completeness 207

What we have just seen is an instance of the incompleteness of HOL,
not Hoare logic: there are sentences in HOL that are true but not provable.
Gödel [34] showed that this is necessarily the case in any sufficiently strong,
consistent and r.e. logic. Cook [20] was the first to analyse this incompleteness
of Hoare logic and to show that, because it is due to the incompleteness of the
assertion language, one can still prove what he called relative completeness
of Hoare logic. The details are beyond the scope of this book. Winskel [93]
provides a readable account.

Exercises

Exercise 12.10. Prove Fact 12.3.

Exercise 12.11. Replace the assignment command with a new command
Do f where f :: state ⇒ state can be an arbitrary state transformer. Up-
date the big-step semantics, Hoare logic and the soundness and completeness
proofs.

Exercise 12.12. Consider the following rule schema:

[[` {P } c {Q}; ` {P ′} c {Q ′}]] =⇒ ` {λs . P s � P ′ s} c {λs . Q s � Q ′ s}

For each � ∈ {∧,∨,−→}, give a proof or a counterexample.

Exercise 12.13. Based on Exercise 7.9, extend Hoare logic and the soundness
and completeness proofs with nondeterministic choice.

Exercise 12.14. Based on Exercise 7.8, extend Hoare logic and the soundness
and completeness proofs with a REPEAT loop.

Exercise 12.15. The dual of the weakest precondition is the strongest
postcondition sp. Define sp :: com ⇒ assn ⇒ assn in analogy with wp via
the big-step semantics. Prove that sp really is the strongest postcondition:
|= {P } c {Q} ←→ (∀ s . sp c P s −→ Q s). In analogy with the derived
equations for wp given in the text, give and prove equations for “calculating”
sp for three constructs: sp (x ::= a) P = Q1, sp (c1;; c2) P = Q2, and sp
(IF b THEN c1 ELSE c2) P = Q3. The Q i must not involve the semantics
and may only call sp recursively on the subcommands ci. Hint: Q1 requires
an existential quantifier.

208 12 Hoare Logic

12.4 Verification Condition Generation thy

This section shows what we have already hinted at: Hoare logic can be au-
tomated. That is, we reduce provability in Hoare logic to provability in the
assertion language, i.e., HOL in our case. Given a triple {P } c {Q} that we
want to prove, we show how to compute an assertion A from it such that
` {P } c {Q} is provable iff A is provable.

We call A a verification condition and the function that computes A
a verification condition generator or VCG. The advantage of working
with a VCG is that no knowledge of Hoare logic is required by the person or
machine that attempts to prove the generated verification conditions. Most
systems for the verification of imperative programs are based on VCGs.

Our VCG works like The Method for Hoare logic we sketched above: it
simulates the backward application of Hoare logic rules and gathers up the
implications between assertions that arise in the process. Of course there is the
problem of loop invariants: where do they come from? We take the easy way
out and let the user provide them. In general this is the only feasible solution
because we cannot expect the machine to come up with clever invariants in all
situations. In Chapter 13 we will present a method for computing invariants
in simple situations.

Invariants are supplied to the VCG as annotations of WHILE loops. For
that purpose we introduce a type acom of annotated commands with the
same syntax as that of type com, except that WHILE is annotated with an
assertion Inv :

{Inv } WHILE b DO C

To distinguish variables of type com and acom, the latter are capitalised.
Function strip :: acom ⇒ com removes all annotations from an annotated
command, thus turning it into an ordinary command.

Verification condition generation is based on two functions: pre is similar
to wp, vc is the actual VCG.

fun pre :: acom ⇒ assn ⇒ assn where
pre SKIP Q = Q
pre (x ::= a) Q = (λs . Q (s [a/x]))
pre (C 1;; C 2) Q = pre C 1 (pre C 2 Q)

pre (IF b THEN C 1 ELSE C 2) Q
= (λs . if bval b s then pre C 1 Q s else pre C 2 Q s)
pre ({I } WHILE b DO C) Q = I

Function pre follows the recursion equations for wp except in the WHILE
case where the annotation is returned. If the annotation is an invariant then
it must also hold before the loop and thus it makes sense for pre to return it.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/VCG.html

12.4 Verification Condition Generation 209

In contrast to pre, vc produces a formula that is independent of the state:

fun vc :: acom ⇒ assn ⇒ bool where
vc SKIP Q = True
vc (x ::= a) Q = True
vc (C 1;; C 2) Q = (vc C 1 (pre C 2 Q) ∧ vc C 2 Q)

vc (IF b THEN C 1 ELSE C 2) Q = (vc C 1 Q ∧ vc C 2 Q)

vc ({I } WHILE b DO C) Q =

((∀ s . (I s ∧ bval b s −→ pre C I s) ∧ (I s ∧ ¬ bval b s −→ Q s)) ∧

vc C I)

Function vc essentially just goes through the command and produces the
following two verification conditions for each {I } WHILE b DO C :

� ∀ s . I s ∧ bval b s −→ pre C I s
It expresses that I and b together imply the precondition that I holds
again after C, i.e., I is an invariant.

� ∀ s . I s ∧ ¬ bval b s −→ Q s
It expresses that at the end of the loop the postcondition holds.

The recursive invocation vc C I merely generates the verification conditions
for any loops inside the body C.

For the other constructs only trivial verification conditions (True) are
generated or the results of subcomputations are combined with ∧.

In examples we revert to syntactic assertions for compactness and read-
ability. We only need to drop the state parameter s and perform substitution
on assertions instead of states.

Example 12.7. We return to our familiar summation program (ignoring the
initialization of y) and define the following abbreviations:

W = {I} WHILE 0 < x DO C C = y := y+x;; x := x-1
I = (y + sum x = sum i) Q = (y = sum i)

The following equations show the computation of vc W Q:

vc W Q = ((I ∧ 0 < x −→ pre C I) ∧ (I ∧ ¬ 0 < x −→ Q)
∧ vc C I)

pre C I = pre (y := y+x) (pre (x := x-1) I)
= pre (y := y+x) (I[x-1/x])
= I[x-1/x][y+x/y] = (y+x + sum (x-1) = sum i)

vc C I = (vc (y := y+x) (pre (x := x-1) I) ∧ vc (x := x-1) I)
= (True ∧ True)

Therefore vc W Q boils down to

(I ∧ 0 < x −→ I[x-1/x][y+x/y]) ∧ (I ∧ x 6 0 −→ Q)

210 12 Hoare Logic

The same conditions arose on pages 197f. in the Hoare logic proof of the triple
{I} wsum {y = sum i} and we satisfied ourselves that they are true.

The example has demonstrated the computation of vc and pre. The gener-
ated verification condition turned out to be true, but it remains unclear what
that proves. We need to show that our VCG is sound w.r.t. Hoare logic. This
will allow us to reduce the problem of proving ` {P } c {Q} to the problem of
proving the verification condition. We will obtain the following result:

Corollary 12.8.
[[vc C Q ; ∀ s . P s −→ pre C Q s]] =⇒ ` {P } strip C {Q}

This can be read as a procedure for proving ` {P } c {Q}:

1. Annotate c with invariants, yielding C such that strip C = c.
2. Prove the verification condition vc C Q and that P implies pre C Q.

The actual soundness lemma is a bit more compact than its above corollary
which follows from it by precondition strengthening.

Lemma 12.9 (Soundness of pre and vc w.r.t. `).
vc C Q =⇒ ` {pre C Q} strip C {Q}

Proof. By induction on c. The WHILE case is routine, the other cases are
automatic. ut

How about completeness? Can we just reverse this implication? Certainly
not: if C is badly annotated, ` {pre C Q} strip C {Q} may be provable but
not vc C Q.

Example 12.10. The triple {x=1} WHILE True DO x := 0 {False} is prov-
able with the help of the invariant True and precondition strengthening:

x=1−→True

True∧True −→ True

{True∧True} x:=0 {True} True∧¬True −→ False

{True} WHILE True DO x:=0 {False}

{x=1} WHILE True DO x := 0 {False}

But starting from the badly annotated W = {x=1} WHILE True DO x := 0
one of the verification conditions will be that x=1 is an invariant, which it is
not. Hence vc W False is not true.

However there always is an annotation that works:

Lemma 12.11 (Completeness of pre and vc w.r.t. `).
` {P } c {Q} =⇒ ∃C . strip C = c ∧ vc C Q ∧ (∀ s . P s −→ pre C Q s)

12.4 Verification Condition Generation 211

Proof. The proof requires two little monotonicity lemmas:

[[∀ s . P s −→ P ′ s ; pre C P s]] =⇒ pre C P ′ s
[[∀ s . P s −→ P ′ s ; vc C P]] =⇒ vc C P ′

Both are proved by induction on c; each case is automatic.
In the rest of the proof the formula ∀ s . P s is abbreviated to P and

∀ s . P s −→ Q s is abbreviated to P → Q.
The proof of the completeness lemma is by rule induction on ` {P } c {Q}.

We only consider the sequential composition rule in detail:

` {P1} c1 {P2} ` {P2} c2 {P3}

` {P1} c1;; c2 {P3}

From the IHs we obtain C 1 and C 2 such that strip C 1 = c1, vc C 1 P2,
P1 → pre C 1 P2, strip C 2 = c2, vc C 2 P3, P2 → pre C 2 P3. We claim
that C ′ = C 1;; C 2 is the required annotated command. Clearly strip C ′ =
c1;; c2. From vc C 1 P2 and P2 → pre C 2 P3 it follows by monotonicity
that vc C 1 (pre C 2 P3); together with vc C 2 P3 this implies vc C ′ P3.
From P2 → pre C 2 P3 it follows by monotonicity of pre that pre C 1 P2 →
pre C 1 (pre C 2 P3); because P1 → pre C 1 P2 we obtain the required P1

→ pre C ′ P3, thus concluding the case of the sequential composition rule.
The WHILE rule is special because we need to synthesise the loop anno-

tation. This is easy: take the invariant P from the WHILE rule.
The remaining rules are straightforward. ut

Exercises

Exercise 12.16. Let asum i be the annotated command y := 0; W where
W is defined in Example 12.7. Prove ` {λs . s ′ ′x ′ ′ = i } strip (asum i) {λs .
s ′ ′y ′ ′ = sum i } with the help of Corollary 12.8.

Exercise 12.17. Solve Exercises 12.4 to 12.7 using the VCG: for every Hoare
triple ` {P } c {Q} from one of those exercises define an annotated version C
of c and prove ` {P } strip C {Q} with the help of Corollary 12.8.

Exercise 12.18. Having two separate functions pre and vc is inefficient.
When computing vc one often needs to compute pre too, leading to mul-
tiple traversals of many subcommands. Define an optimized function prevc ::

acom ⇒ assn × bool that traverses the command only once and prove that
prevc C Q = (pre C Q , vc C Q).

Exercise 12.19. Design a VCG that computes post- rather than precondi-
tions. Start by solving Exercise 12.9. Now modify theory VCG as follows.
Instead of pre define a function post :: acom ⇒ assn ⇒ assn such that

212 12 Hoare Logic

(with the exception of loops) post C P is the strongest postcondition of C
w.r.t. the precondition P (see also Exercise 12.15). Now modify vc such that
it uses post instead of pre and prove its soundness and completeness:

vc C P =⇒ ` {P } strip C {post C P }

` {P } c {Q} =⇒ ∃C . strip C = c ∧ vc C P ∧ (∀ s . post C P s −→ Q s)

12.5 Hoare Logic for Total Correctness thy

Recall the informal definition of total correctness of a triple {P } c {Q}:

If P is true before the execution of c
then c terminates and Q is true afterwards.

Formally, validity for total correctness is defined like this:

|=t {P } c {Q} ←→ (∀ s . P s −→ (∃ t . (c, s) ⇒ t ∧ Q t))

In this section we always refer to this definition when we speak of validity.
Note that this definition assumes that the language is deterministic. Oth-

erwise |=t {P } c {Q} may hold although only some computations starting from
P terminate in Q while others may show any behaviour whatsoever.

Hoare logic for total correctness is defined as for partial correctness, except
that we write `t and that the WHILE rule is augmented with a relation T ::

state ⇒ nat ⇒ bool that guarantees termination:∧
n . `t {λs . P s ∧ bval b s ∧ T s n} c {λs . P s ∧ (∃n ′<n . T s n ′)}

`t {λs . P s ∧ (∃n . T s n)} WHILE b DO c {λs . P s ∧ ¬ bval b s}

The purpose of the universally quantified n :: nat in the premise is to remem-
ber the value of T in the precondition to express that it has decreased in the
postcondition. The name of the rule is again While.

Although this formulation with a relation T has a technical advantage,
the following derived rule formulated with a measure function f :: state ⇒
nat is more intuitive. We call this rule While_fun :∧

n . `t {λs . P s ∧ bval b s ∧ n = f s} c {λs . P s ∧ f s < n}

`t {P } WHILE b DO c {λs . P s ∧ ¬ bval b s}

This is like the partial correctness rule except that it also requires a measure
function that decreases with each iteration. In case you wonder how to derive
the functional version: set T = (λs n . f s = n) in rule While.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Hoare_Total.html

12.5 Hoare Logic for Total Correctness 213

Example 12.12. We redo the proof of wsum from Section 12.2.2. The only
difference is that when applying rule While_fun (combined with postcon-
dition strengthening as in rule While ′) we need not only instantiate P as
previously but also f : f = (λs . nat (s ′ ′x ′ ′)) where the predefined func-
tion nat coerces an int into a nat, coercing all negative numbers to 0. The
resulting invariance subgoal now looks like this:∧
n . `t {λs . s ′ ′y ′ ′ = sum i − sum (s ′ ′x ′ ′) ∧

bval (Less (N 0) (V ′ ′x ′ ′)) s ∧ n = nat (s ′ ′x ′ ′)}
′ ′y ′ ′ ::= Plus (V ′ ′y ′ ′) (V ′ ′x ′ ′);;
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N (− 1))

{λs . s ′ ′y ′ ′ = sum i − sum (s ′ ′x ′ ′) ∧ nat (s ′ ′x ′ ′) < n}

The rest of the proof steps are again identical to the partial correctness
proof. After pulling back the postcondition the additional conjunct in the goal
is nat (s ′ ′x ′ ′ − 1) < n which follows automatically from the assumptions
0 < s ′ ′x ′ ′ and n = nat (s ′ ′x ′ ′).

Lemma 12.13 (Soundness of `t w.r.t. |=t).
`t {P } c {Q} =⇒ |=t {P } c {Q}

Proof. By rule induction. All cases are automatic except rule While, which
we look at in detail. Let w = WHILE b DO c. By a (nested) induction on n
we show for arbitrary n and s

[[P s ; T s n]] =⇒ ∃ t . (w , s) ⇒ t ∧ P t ∧ ¬ bval b t (∗)

from which |=t {λs . P s ∧ (∃n . T s n)} w {λs . P s ∧ ¬ bval b s}, the goal
in the While case, follows immediately. The inductive proof assumes that (∗)
holds for all smaller n. For n itself we argue by cases. If ¬ bval b s then
(w , s) ⇒ t is equivalent with t = s and (∗) follows. If bval b s then we
assume P s and T s n. The outer IH |=t {λs . P s ∧ bval b s ∧ T s n} c
{λs ′. P s ′ ∧ (∃n ′. T s ′ n ′ ∧ n ′ < n)} yields s ′ and n ′ such that (c, s)
⇒ s ′, P s ′, T s ′ n ′ and n ′ < n. Because n ′ < n the inner IH yields the
required t such that (w , s ′) ⇒ t, P t and ¬ bval b t. With rule WhileTrue
the conclusion of (∗) follows. ut

The completeness proof proceeds like the one for partial correctness. The
weakest precondition is now defined in correspondence to |=t:

wpt c Q = (λs . ∃ t . (c, s) ⇒ t ∧ Q t)

The same recursion equations as for wp can also be proved for wpt. The
crucial lemma is again this one:

Lemma 12.14. `t {wpt c Q} c {Q}

214 12 Hoare Logic

Proof. By induction on c. We focus on the WHILE case because the others
are automatic, thanks to the wpt equations. Let w = WHILE b DO c. The
termination relation T counts the number of iterations of w and is defined
inductively by the two rules

¬ bval b s

T s 0

bval b s (c, s) ⇒ s ′ T s ′ n

T s (n + 1)

Because IMP is deterministic, T is a functional relation:

[[T s n ; T s n ′]] =⇒ n = n ′

This is easily proved by induction on the first premise.
Moreover, T is ‘defined’ for any state from which w terminates:

(w , s) ⇒ t =⇒ ∃n . T s n (∗)

The proof is an easy rule induction on the premise.
Now we come to the actual proof. The IH is `t {wpt c R} c {R}

for any R, and we need to prove `t {wpt w Q} w {Q}. In order to ap-
ply the WHILE rule we use the consequence rule to turn the precondi-
tion into P = (λs . wpt w Q s ∧ (∃n . T s n)) and the postcondition into
λs . P s ∧ ¬ bval b s . Thus we have to prove the following three goals:

∀ s . wpt w Q s −→ P s
`t {P } w {λs . P s ∧ ¬ bval b s}
∀ s . P s ∧ ¬ bval b s −→ Q s

The third goal follows because ¬ bval b s implies wpt w Q s = Q s and
therefore P s implies Q s. The first goal follows directly from (∗) by definition
of wpt. Applying theWHILE rule backwards to the second goal leaves us with
`t {P ′} c {R} where P ′ = (λs . P s ∧ bval b s ∧ T s n) and R = (λs ′. P s ′

∧ (∃n ′<n . T s ′ n ′)). By IH we have `t {wpt c R} c {R} and we can obtain
`t {P } c {R} by precondition strengthening because ∀ s . P ′ s −→ wpt c R s.
To prove the latter we assume P ′ s and show wpt c R s. From P s we obtain
by definition of wpt some t such that (w , s) ⇒ t and Q t. Because bval b s,
rule inversion yields a state s ′ such that (c, s) ⇒ s ′ and (w , s ′) ⇒ t. From
(w , s ′) ⇒ t we obtain a number n ′ such that T s ′ n ′. By definition of T, T
s (n ′ + 1) follows. Because T is functional we have n = n ′ + 1. Together
with (c, s) ⇒ s ′, (w , s ′) ⇒ t, Q t and T s ′ n ′ this implies wpt c R s by
definition of wpt. ut

The completeness theorem is an easy consequence:

Theorem 12.15 (Completeness of `t w.r.t. |=t).
|=t {P } c {Q} =⇒ `t {P } c {Q}

The proof is the same as for Theorem 12.5.

12.6 Summary and Further Reading 215

Exercises

Exercise 12.20. Prove total correctness of the commands in Exercises 12.4
to 12.7.

Exercise 12.21. Modify the VCG from Section 12.4 to take termination into
account. First modify type acom by annotating WHILE with a measure
function f :: state ⇒ nat in addition to an invariant:

{I , f } WHILE b DO C

Functions strip and pre remain almost unchanged. The only significant
change is in the WHILE case for vc. Finally update the old soundness proof
to obtain vc C Q =⇒ `t {pre C Q} strip C {Q}. You may need the combined
soundness and completeness of `t: (`t {P } c {Q}) = (|=t {P } c {Q}).

12.6 Summary and Further Reading

This chapter was dedicated to Hoare logic and the verification of IMP pro-
grams. We covered three main topics:

� A Hoare logic for partial correctness and its soundness and completeness
w.r.t. the big-step semantics.

� A verification condition generator that reduces the task of verifying a
program by means of Hoare logic to the task of annotating all loops in that
program with invariants and proving that these annotations are indeed
invariants and imply the necessary postconditions.

� A Hoare logic for total correctness and its soundness and completeness.

Hoare logic is a huge subject area and we have only scratched the surface.
Therefore we provide further references for the theory and applications of
Hoare logic.

12.6.1 Theory

A precursor of Hoare logic is Floyd’s method of annotated flowcharts [30].
Hoare [41] transferred Floyd’s idea to inference rules for structured programs
and Hoare logic (as we now know it) was born. Hence it is sometimes called
Floyd-Hoare logic. Soundness and completeness was first proved by Cook [20].
An early overview of the foundations of various Hoare logics is due to Apt [6,
7]. An excellent modern introduction to the many variants of Hoare logic is the
book by Apt, de Boer and Olderog [8], which covers procedures, objects and
concurrency. Weakest preconditions are due to Dijkstra [28]. He reformulated

216 12 Hoare Logic

Hoare logic as a weakest precondition calculus to facilitate the verification of
concrete programs.

All of the above references follow the syntactic approach to assertions. The
book by Nielson and Nielson [63] is an exception in that its chapters on pro-
gram verification follow the functional approach. Formalizations of Hoare logic
in theorem provers have all followed the functional approach. The first such
formalization is due to Gordon [37], who showed the way and proved sound-
ness. Nipkow [65] also proved completeness. Schreiber [80] covered procedures,
which was extended with nondeterminism by Nipkow [67, 66]. Nipkow and
Prensa [69] formalized a Hoare logic for concurrency.

Formalizing Hoare logics is not a frivolous pastime. Apt observes "various
proofs given in the literature are awkward, incomplete or even incorrect" [6].
In fact, Apt himself presents a proof system for total correctness of procedures
that was later found to be unsound by America and de Boer [5], who presented
a correct version. The formalized system by Schreiber [80] is arguably slicker.

Finally we mention work on verifying programs that manipulate data
structures on the heap. An early approach by Burstall [16] was formalized
by Bornat [13] and Mehta and Nipkow [55]. A recent and very influential ap-
proach is separation logic [74]. Its formulas provide special connectives for
talking about the layout of data on the heap.

12.6.2 Applications

Our emphasis on foundational issues and toy examples is bound to give the
reader the impression that Hoare logic is not practically useful. Luckily, that
is not the case.

Among the early practical program verification tools are the KeY [10]
and KIV [73] systems. The KeY system can be used to reason about Java
programs. One of the recent larger applications of the KIV system is for
instance the verification of file-system code in operating systems [29].

Hoare logic-based tools also exist for concurrent programs. VCC [19], for
instance, is integrated with Microsoft Visual Studio and can be used to verify
concurrent C. Cohen et al. have used VCC to demonstrate the verification of a
small operating system hypervisor [4]. Instead of interactive proof, VCC aims
for automation and uses the SMT solver Z3 [25] as back-end. The interaction
with the tool consists of annotating invariants and function pre- and postcon-
ditions in such a way that they are simple enough for the prover to succeed
automatically. The automation is stronger than in interactive proof assistants
like Isabelle, but it forces specifications to be phrased in first-order logic. The
Dafny tool [52] uses the same infrastructure. It does not support concurrency,
but is well suited for learning this paradigm of program verification.

12.6 Summary and Further Reading 217

Of course, Isabelle also supports practical program verification. As men-
tioned in Chapter 7, the Simpl [78] verification framework for Isabelle develops
Hoare logic from its foundations to a degree that can directly be used for the
verification of C programs [88]. While it provides less automation than tools
like VCC, the user is rewarded with the full power and flexibility of higher-
order logic. Two of the largest formal software verifications to date used Isa-
belle, both in the area of operating system verification. The Verisoft project [3]
looked at constructing a verified software stack from verified hardware up to
verified applications, an aspiration of the field that goes back to the 1980s [12].
The seL4 project verified a commercially viable operating system microkernel
consisting of roughly 10,000 lines of code [47] in Isabelle. The project made full
use of the flexibility of higher-order logic and later extended the verification
to include higher-level security properties such as integrity and information
flow noninterference [60], as well as verification down to the compiled binary
of the kernel [84].

13

Abstract Interpretation

In Chapter 10 we saw a number of automatic program analyses, and each one
was hand crafted. Abstract Interpretation is a generic approach to automatic
program analysis. In principle, it covers all of our earlier analyses. In this
chapter we ignore the optimizing program transformations that accompany
certain analyses.

The specific form of abstract interpretation we consider aims to compute
the possible values of all variables at each program point. In order to infer
this information the program is interpreted with abstract values that represent
sets of concrete values, for example, with intervals instead of integers.

Program analyses are necessarily imprecise because they are automatic.
We already discussed this at the beginning of Chapter 10. For analyses that
compute if some program point is reachable, which the analyses in this chapter
do, this is particularly obvious: the end of the program is reachable iff the
program terminates for some input, but termination is undecidable.

Therefore a program analysis should overapproximate to be on the safe
side: it should compute a superset of the possible values that the variables
can take on at each program point.

� If the analysis says that some value cannot arise, this is definitely the case.
� But if the analysis says that some value can arise, this is only potentially

the case.

That is, if the analysis says that the variables have no possible value, which
means that the program point is unreachable, then it really is unreachable,
and the code at that point can safely be removed. But the analysis may claim
some points are reachable which in fact are not, thus missing opportunities
for code removal. Similarly for constant folding: if the analysis says that x
always has value 2 at some point, we can safely replace x by 2 at that point.
On the other hand, if the analysis says that x could also have 3 at that point,
constant folding is out, although x may in fact only have one possible value.

220 13 Abstract Interpretation

If we switch from an optimization to a debugging or verification point of
view, we think of certain states as erroneous (e.g., where x = 0) because they
lead to a runtime error (e.g., division by x) or violate some given specification
(e.g., x > 0). The analysis is meant to find if there is any program point where
the reachable states include erroneous states. The following figure shows three
ways in which the analysis can behave. The upper circle is the set of erroneous
states, the white circle the set of reachable states, and its dotted halo is the
superset of the reachable states computed by the analysis, all for one fixed
program point.

No Alarm False Alarm True Alarm

The term “alarm” describes the situation where the analysis finds an erroneous
state, in which case it raises an alarm, typically by flagging the program
point in question. In the No Alarm situation, the analysis does not find any
erroneous states and everybody is happy. In the True Alarm situation, the
analysis finds erroneous states and some reachable states are indeed erroneous.
But due to overapproximation, there are also so-called false alarms: the
analysis finds an erroneous state that cannot arise at this program point. False
alarms are the bane of all program analyses. They force the programmer to
convince himself that the potential error found is not a real error but merely
a weakness of the analysis.

13.1 Informal Introduction

At the centre of our approach to abstract interpretation are annotated com-
mands. These are commands interspersed with annotations containing se-
mantic information. This is reminiscent of Hoare logic and we also borrow
the {. . .} syntax for annotations. However, annotations may now be placed at
all intermediate program points, not just in front of loops as invariants. Loops
will be annotated like this:

13.1 Informal Introduction 221

{I }
WHILE b DO {P } c
{Q}

where I (as in “invariant”) annotates the loop head, P annotates the point
before the loop body c, and Q annotates the exit of the whole loop. The
annotation points are best visualized by means of the control-flow graph in
Figure 13.1. We introduced control-flow graphs in Section 10.3. In fact, Fig-

I

Q P

¬ b b
c

Fig. 13.1. Control-flow graph for {I } WHILE b DO {P } c {Q}

ure 13.1 is the same as Figure 10.6, except that we now label nodes not with
sets of live variables but with the annotations at the corresponding program
points. Edges labelled by compound commands stand for whole subgraphs.

13.1.1 Collecting Semantics

Before we come to the actual program analysis we need a semantics to justify
it against. This semantics needs to express for each program point the set
of states that can arise at this point during an execution. It is known as
a collecting semantics because it collects together all the states that can
arise at each point. Neither the big nor the small-step semantics express this
information directly. Here is an example of a program annotated with its
collecting semantics:

x := 0 {{<x := 0>}} ;
{{<x := 0>, <x := 2>, <x := 4>}}

WHILE x < 3
DO {{<x := 0>, <x := 2>}}

x := x+2 {{<x := 2>, <x := 4>}}

{{<x := 4>}}

Annotations are of the form {{. . .}} because the object inside the outer anno-
tation braces is a set. Computing the annotations is an iterative process that
we explain later.

222 13 Abstract Interpretation

Annotations can also be infinite sets of states:

{{. . ., <x := −1>, <x := 0>, <x := 1>, . . .}}

WHILE x < 3
DO {{. . ., <x := 1>, <x := 2>}}

x := x+2 {{. . ., <x := 3>, <x := 4>}}

{{<x := 3>, <x := 4>, . . .}}

And programs can have multiple variables:

x := 0; y := 0 {{<x := 0, y := 0>}} ;
{{<x := 0, y := 0>, <x := 2, y := 1>, <x := 4, y := 2>}}

WHILE x < 3
DO {{<x := 0, y := 0>, <x := 2, y := 1>}}

x := x+2; y := y+1 {{<x := 2, y := 1>, <x := 4, y := 2>}}

{{<x := 4, y := 2>}}

13.1.2 Abstract Interpretation

Now we move from the semantics to abstract interpretation in two steps. First
we replace sets of states with single states that map variables to sets of values:

(vname ⇒ val) set becomes vname ⇒ val set.

Our first example above now looks much simpler:

x := 0 {<x := {0}>} ;
{x := {0, 2, 4}>}

WHILE x < 3
DO {<x := {0, 2}>}

x := x+2 {<x := {2, 4}>}

{<x := {4}>}

However, this simplification comes at a price: it is an overapproximation that
loses relationships between variables. For example, {<x := 0, y := 0>, <x :=

1, y := 1>} is overapproximated by <x := {0, 1}, y := {0, 1}>. The latter
also subsumes <x := 0, y := 1> and <x := 1, y := 0>.

In the second step we replace sets of values by “abstract values”. This
step is domain specific. For example, we can approximate sets of integers by
intervals. For the above example we obtain the following consistent annotation
with integer intervals (written [low , high]):

x := 0 {<x := [0, 0]>} ;
{<x := [0, 4]>}

WHILE x < 3
DO {<x := [0, 2]>}

13.1 Informal Introduction 223

x := x+2 {<x := [2, 4]>}

{<x := [3, 4]>}

Clearly, we have lost some precision in this step, but the annotations have be-
come finitely representable: we have replaced arbitrary and potentially infinite
sets by intervals, which are simply pairs of numbers.

How are the annotations actually computed? We start from an unanno-
tated program and iterate abstract execution of the program (on intervals)
until the annotations stabilize. Each execution step is a simultaneous exe-
cution of all edges of the control-flow graph. You can also think of it as a
synchronous circuit where in each step simultaneously all units of the circuit
process their input and make it their new output.

To demonstrate this iteration process we take the example above and give
the annotations names:

x := 0 {A0} ;
{A1}

WHILE x < 3
DO {A2} x := x+2 {A3}

{A4}

In a separate table we can see how the annotations change with each step.

0 1 2 3 4 5 6 7 8 9
A0 ⊥ [0, 0] [0, 0]

A1 ⊥ [0, 0] [0, 2] [0, 4] [0, 4]

A2 ⊥ [0, 0] [0, 2] [0, 2]

A3 ⊥ [2, 2] [2, 4] [2, 4]

A4 ⊥ [3, 4]

Instead of the full annotation <x := ivl>, the table merely shows ivl. Col-
umn 0 shows the initial annotations where ⊥ represents the empty interval.
Unchanged entries are left blank. In steps 1–3, [0, 0] is merely propagated
around. In step 4, 2 is added to it, making it [2, 2]. The crucial step is from 4
to 5: [0, 0], the invariant A1 in the making, is combined with the annotation
[2, 2] at the end of the loop body, telling us that the value of x at A1 can in
fact be any value from the union [0, 0] and [2, 2]. This is overapproximated
by the interval [0, 2]. The same thing happens again in step 8, where the
invariant becomes [0, 4]. In step 9, the final annotation A4 is reached at last:
the invariant is now [0, 4] and intersecting it with the negation of x < 3 lets
[3, 4] reach the end of the loop. The annotations reached in step 9 (which are
displayed in full) are stable: performing another step leaves them unchanged.

224 13 Abstract Interpretation

This is the end of our informal introduction and we become formal again.
First we define the type of annotated commands, then the collecting seman-
tics, and finally abstract interpretation. Most of the chapter is dedicated to
the stepwise development of a generic abstract interpreter whose precision is
gradually increased.

The rest of this chapter builds on Section 10.4.1.

13.2 Annotated Commands thy

The type of commands annotated with values of type ′a is called ′a acom.
Like com, ′a acom is defined as a datatype together with concrete syntax.
The concrete syntax is described by the following grammar:

′a acom ::= SKIP { ′a }

| string ::= aexp { ′a }

| ′a acom ;; ′a acom
| IF bexp THEN { ′a } ′a acom ELSE { ′a } ′a acom

{ ′a }

| { ′a }

WHILE bexp DO { ′a } ′a acom
{ ′a }

We exclusively use the concrete syntax and do not show the actual datatype.

Variables C, C 1, C ′, etc. will henceforth stand for annotated commands.

The layout of IF and WHILE is suggestive of the intended meaning of the
annotations but has no logical significance. We have already discussed the
annotations of WHILE but not yet of IF :

IF b THEN {P1} C 1 ELSE {P2} C 2

{Q}

Annotation P i refers to the state before the execution of C i. Annotation {Q}

is placed on a separate line to emphasize that it refers to the state after the
execution of the whole conditional, not just the ELSE branch. The corre-
sponding annotated control-flow graph is shown in Figure 13.2.

Our annotated commands are polymorphic because, as we have already
seen, we will want to annotate programs with different objects: with sets
of states for the collecting semantics and with abstract states, for example,
involving intervals, for abstract interpretation.

We now introduce a number of simple and repeatedly used auxiliary func-
tions. Their functionality is straightforward and explained in words. In case
of doubt, you can consult their full definitions in Appendix A.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/ACom.html

13.3 Collecting Semantics 225

P1 P2

Q

b ¬ b

C1 C2

Fig. 13.2. Control-flow graph for IF b THEN {P1} C1 ELSE {P2} C2 {Q}

strip :: ′a acom ⇒ com
strips all annotations from an annotated command.

annos :: ′a acom ⇒ ′a list
extracts the list of all annotations from an annotated command, in left-
to-right order.

anno :: ′a acom ⇒ nat ⇒ ′a
yields the nth annotation of an annotated command, starting at 0:

anno C p = annos C ! p

The standard infix operator ! indexes into a list with a natural number.

post :: ′a acom ⇒ ′a
returns the rightmost/last/post annotation of an annotated command:

post C = last (annos C)

annotate :: (nat ⇒ ′a) ⇒ com ⇒ ′a acom
annotates a command: annotation number p (as counted by anno) is set
to f p. The characteristic lemma is

p < asize c =⇒ anno (annotate f c) p = f p

where asize counts the number of annotation positions in a command.

map_acom :: (′a ⇒ ′b) ⇒ ′a acom ⇒ ′b acom
applies its first argument to every annotation of its second argument.

13.3 Collecting Semantics thy

The aim is to annotate commands with the set of states that can occur at
each annotation point. The annotations are generated iteratively by a func-

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Collecting.html

226 13 Abstract Interpretation

tion step that maps annotated commands to annotated commands, updating
the annotations. Each step executes all atomic commands (SKIPs and assign-
ments) simultaneously and propagates the effects on the annotations forward.
You can think of an annotated command as a synchronous circuit where with
each clock tick (step) the information stored in each node (annotation point)
is transformed by the outgoing edges and propagated to the successor nodes.
Because we have placed (almost) no annotation points in front of commands,
function step takes an additional argument, the set of states that are fed into
the command. The full type of step and its recursive definition is shown in
Figure 13.3. We will discuss the different cases one by one.

fun step :: state set ⇒ state set acom ⇒ state set acom where

step S (SKIP {Q}) = SKIP {S }
step S (x ::= e {Q}) = x ::= e {{s(x := aval e s) |s . s ∈ S }}
step S (C1;; C2) = step S C1;; step (post C1) C2

step S (IF b THEN {P1} C1 ELSE {P2} C2 {Q})

= IF b THEN {{s ∈ S . bval b s}} step P1 C1

ELSE {{s ∈ S . ¬ bval b s}} step P2 C2

{post C1 ∪ post C2}

step S ({I } WHILE b DO {P } C {Q})

= {S ∪ post C }

WHILE b
DO {{s ∈ I . bval b s}}

step P C
{{s ∈ I . ¬ bval b s}}

Fig. 13.3. Definition of step

In the SKIP and the assignment case, the input set S is transformed
and replaces the old post-annotation Q : for SKIP the transformation is the
identity, x ::= e transforms S by updating all of its elements (remember the
set comprehension syntax explained in Section 4.2).

In the following let S27 be the (somewhat arbitrary) state set {<x := 2>,

<x := 7>}. It is merely used to illustrate the behaviour of step on the various
constructs. Here is an example for assignment:

step S27 (x ::= Plus (V x) (N 1) {Q}) =

x ::= Plus (V x) (N 1) {{<x := 3>, <x := 8>}}

When applied to C 1;; C 2, step executes C 1 and C 2 simultaneously: the
input to the execution of C 2 is the post-annotation of C 1, not of step S C 1.
For example:

13.3 Collecting Semantics 227

step S27
(x ::= Plus (V x) (N 1) {{<x := 0>}};;
x ::= Plus (V x) (N 2) {Q}) =

x ::= Plus (V x) (N 1) {{<x := 3>, <x := 8>}};;
x ::= Plus (V x) (N 2) {{<x := 2>}}

On IF b THEN {P1} C 1 ELSE {P2} C 2 {_}, step S does the following:
it pushes filtered versions of S into P1 and P2 (this corresponds to the upper
two edges in Figure 13.2), it executes C 1 and C 2 simultaneously (starting
with the old annotations in front of them) and it updates the post-annotation
with post C 1 ∪ post C 2 (this corresponds to the lower two edges in Fig-
ure 13.2). Here is an example:

step S27
(IF Less (V x) (N 5)

THEN {{<x := 0>}} x ::= Plus (V x) (N 1) {{<x := 3>}}

ELSE {{<x := 5>}} x ::= Plus (V x) (N 2) {{<x := 9>}}

{Q}) =

IF Less (V x) (N 5)

THEN {{<x := 2>}} x ::= Plus (V x) (N 1) {{<x := 1>}}

ELSE {{<x := 7>}} x ::= Plus (V x) (N 1) {{<x := 7>}}

{{<x := 3>, <x := 9>}}

Finally we look at the WHILE case. It is similar to the conditional but
feeds the post-annotation of the body of the loop back into the head of the
loop. Here is an example:

step {<x := 7>}

({{<x := 2>, <x := 5>}}

WHILE Less (V x) (N 5)

DO {{<x := 1>}}

x ::= Plus (V x) (N 2) {{<x := 4>}}

{Q}) =

{{<x := 4>, <x := 7>}}

WHILE Less (V x) (N 5)

DO {{<x := 2>}}

x ::= Plus (V x) (N 2) {{<x := 3>}}

{{<x := 5>}}

The collecting semantics is now defined by iterating step S where S is some
fixed set of initial states, typically all possible states, i.e., UNIV. The iteration
starts with a command that is annotated everywhere with the empty set of
states because no state has reached an annotation point yet. We illustrate the
process with the example program from Section 13.1:

228 13 Abstract Interpretation

x := 0 {A0} ;
{A1}

WHILE x < 3
DO {A2} x := x+2 {A3}

{A4}

In a separate table we can see how the annotations change with each iteration
of step S (where S is irrelevant as long as it is not empty).

0 1 2 3 4 5 6 7 8 9
A0 {} {0} {0}

A1 {} {0} {0,2} {0,2,4} {0,2,4}

A2 {} {0} {0,2} {0,2}

A3 {} {2} {2,4} {2,4}

A4 {} {4}

Instead of the full annotation {<x := i1>,<x :=i2>,. . .}, the table merely
shows {i1,i2,. . .}. Unchanged entries are left blank. In steps 1–3, {0} is merely
propagated around. In step 4, 2 is added to it, making it {2}. The crucial
step is from 4 to 5: {0}, the invariant A1 in the making, is combined with the
annotation {2} at the end of the loop body, yielding {0,2}. The same thing
happens again in step 8, where the invariant becomes {0,2,4}. In step 9, the
final annotation A4 is reached at last: intersecting the invariant {0,2,4} with
the negation of x < 3 lets {4} reach the exit of the loop. The annotations
reached in step 9 (which are displayed in full) are stable: performing another
step leaves them unchanged.

In contrast to the interval analysis in Section 13.1, the semantics is and has
to be exact. As a result, it is not computable in general. The above example
is particularly simple in a number of respects that are all interrelated: the
initial set S plays no role because x is initialized, all annotations are finite,
and we reach a fixpoint after a finite number of steps. Most of the time we
will not be so lucky.

13.3.1 Executing step in Isabelle

If we only deal with finite sets of states, we can let Isabelle execute step for us.
Of course we again have to print states explicitly because they are functions.
This is encapsulated in the function

show_acom :: state set acom ⇒ (vname × val)set set acom

that turns a state into a set of variable-value pairs. We reconsider the example
program above, but now in full Isabelle syntax:

13.3 Collecting Semantics 229

definition cex :: com where cex =
′ ′x ′ ′ ::= N 0;;
WHILE Less (V ′ ′x ′ ′) (N 3)

DO ′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 2)

definition Cex :: state set acom where Cex = annotate (λp. {}) cex

value show_acom (step {<>} Cex)

yields
′ ′x ′ ′ ::= N 0 {{{(′ ′x ′ ′, 0)}}};;
{{}}

WHILE Less (V ′ ′x ′ ′) (N 3)

DO {{}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 2) {{}}

{{}}

The triply nested braces are the combination of the outer annotation braces
with annotations that are sets of sets of variable-value pairs, the result of
converting sets of states into printable form.

You can iterate step by means of the function iteration operator f ^^ n
(pretty-printed as f n). For example, executing four steps

value show_acom ((step {<>} ^^ 4) Cex)

yields
′ ′x ′ ′ ::= N 0 {{{(′ ′x ′ ′, 0)}}};;
{{{(′ ′x ′ ′, 0)}}}
WHILE Less (V ′ ′x ′ ′) (N 3)

DO {{{(′ ′x ′ ′, 0)}}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 2) {{{(′ ′x ′ ′, 2)}}}

{{}}

Iterating step {<>} nine times yields the fixpoint shown in the table above:
′ ′x ′ ′ ::= N 0 {{{(′ ′x ′ ′, 0)}}};;
{{{(′ ′x ′ ′, 0)}, {(′ ′x ′ ′, 2)}, {(′ ′x ′ ′, 4)}}}
WHILE Less (V ′ ′x ′ ′) (N 3)

DO {{{(′ ′x ′ ′, 0)}, {(′ ′x ′ ′, 2)}}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 2) {{{(′ ′x ′ ′, 2)}, {(′ ′x ′ ′, 4)}}}

{{{(′ ′x ′ ′, 4)}}}

230 13 Abstract Interpretation

13.3.2 Collecting Semantics as Least Fixpoint

The collecting semantics is a fixpoint of step because a fixpoint describes an
annotated command where the annotations are consistent with the execution
via step. This is a fixpoint

x ::= N 0 {{<x := 0>}};;
{{<x := 0>, <x := 2>, <x := 4>}}

WHILE Less (V x) (N 3)

DO {{<x := 0>, <x := 2>}}

x ::= Plus (V x) (N 2) {{<x := 2>, <x := 4>}}

{{<x := 4>}}

because (in control-flow graph terminology) each node is annotated with the
transformed annotation of the predecessor node. For example, the assignment
x ::= Plus (V x) (N 2) transforms {<x := 0>, <x := 2>} into {<x := 2>,

<x := 4>}. In case there are multiple predecessors, the annotation is the
union of the transformed annotations of all predecessor nodes: {<x := 0>,

<x := 2>, <x := 4>} = {<x := 0>} ∪ {<x := 2>, <x := 4>} (there is no
transformation).

We can also view a fixpoint as a solution of not just the single equation
step S C = C but of a system of equations, one for each annotation. If C =

{I } WHILE b DO {P } C 0 {Q} then the equation system is

I = S ∪ post C 0

P = {s ∈ I . bval b s}
Q = {s ∈ I . ¬ bval b s}

together with the equations arising from C 0 = step P C 0. Iterating step is
one way of solving this equation system. It corresponds to Jacobi iteration in
linear algebra, where the new values for the unknowns are computed simulta-
neously from the old values. In principle, any method for solving an equation
system can be used.

In general, step can have multiple fixpoints. For example

{I }
WHILE Bc True
DO {I }

SKIP {I }
{{}}

is a fixpoint of step {} for every I. But only I = {} makes computational sense:
step {} means that the empty set of states is fed into the execution, and hence
no state can ever reach any point in the program. This happens to be the least
fixpoint (w.r.t. ⊆). We will now show that step always has a least fixpoint.

13.3 Collecting Semantics 231

At the end of this section we prove that the least fixpoint is consistent with
the big-step semantics.

13.3.3 Complete Lattices and Least Fixpoints thy

The Knaster-Tarski fixpoint theorem (Theorem 10.29) told us that monotone
functions on sets have least pre-fixpoints, which are least fixpoints. Unfortu-
nately step acts on annotated commands, not sets. Fortunately the theorem
easily generalizes from sets to complete lattices, and annotated commands
form complete lattices.

Definition 13.1. A type ′a with a partial order 6 is a complete lattice
if every set S :: ′a set has a greatest lower bound

d
S :: ′a:

� ∀ s ∈ S .
d
S 6 s

� If ∀ s∈S . l ′ 6 s then l ′ 6
d
S

The greatest lower bound of S is often called the infimum.

Note that in a complete lattice, the ordering determines the infimum uniquely:
if l1 and l2 are infima of S then l1 6 l2 and l2 6 l1 and thus l1 = l2.

The archetypal complete lattice is the powerset lattice: for any type ′a, its
powerset, type ′a set, is a complete lattice where 6 is ⊆ and

d
is

⋂
. This

works because
⋂
M is the greatest set below (w.r.t. ⊆) all sets in M.

Lemma 13.2. In a complete lattice, every set S of elements also has a
least upper bound (supremum)

⊔
S:

� ∀ s ∈ S . s 6
⊔
S

� If ∀ s∈S . s 6 u then
⊔
S 6 u

The least upper bound is the greatest lower bound of all upper bounds:⊔
S =

d
{u . ∀ s ∈ S . s 6 u}.

The proof is left as an exercise. Thus complete lattices can be defined via the
existence of all infima or all suprema or both.

It follows that a complete lattice does not only have a least elementd
UNIV, the infimum of all elements, but also a greatest element

⊔
UNIV.

They are denoted by ⊥ and > (pronounced “bottom” and “top”). Figure 13.4
shows a typical complete lattice and motivates the name “lattice”.

The generalization of the Knaster-Tarski fixpoint theorem (Theorem 10.29)
from sets to complete lattices is straightforward:

Theorem 13.3 (Knaster-Tarski1). Every monotone function f on a
complete lattice has the least (pre-)fixpoint

d
{p. f p 6 p}.

1 Tarski [85] actually proved that the set of fixpoints of a monotone function on a
complete lattice is itself a complete lattice.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Complete_Lattice.html

232 13 Abstract Interpretation

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

>

⊥

Fig. 13.4. Typical complete lattice

The proof is the same as for the set version but with 6 and
d

instead of ⊆
and

⋂
. This works because

⋂
M is the greatest lower bound of M w.r.t. ⊆.

13.3.4 Annotated Commands as a Complete Lattice

In order to apply Knaster-Tarski to step we need to turn annotated commands
into a complete lattice. Given an ordering 6 on ′a, it can be lifted to ′a acom
in a pointwise manner:

(C 1 6 C 2) =

(strip C 1 = strip C 2 ∧

(∀ p<length (annos C 1). anno C 1 p 6 anno C 2 p))

Two annotated commands C 1 and C 2 are only comparable if they are
structurally equal, i.e., if strip C 1 = strip C 2. For example, x ::= e {{a}}
6 x ::= e {{a , b}} is True and both x ::= e {{a}} 6 x ::= e {{}} and
x ::= N 0 {S } 6 x ::= N 1 {S } are False.

Lemma 13.4. If ′a is a partial order, so is ′a acom.

Proof. The required properties carry over pointwise from ′a to ′a acom. ut

Because (in Isabelle) ⊆ is just special syntax for 6 on sets, the above defi-
nition lifts ⊆ to a partial order 6 on state set acom. Unfortunately this order
does not turn state set acom into a complete lattice: although SKIP {S } and
SKIP {T } have the infimum SKIP {S ∩ T }, the two commands SKIP {S }
and x ::= e {T } have no lower bound, let alone an infimum. The fact is:

Only structurally equal annotated commands have an infimum.

Below we show that for each c :: com the set {C :: ′a acom . strip C =

c} of all annotated commands structurally equal to c is a complete lattice,

13.3 Collecting Semantics 233

assuming that ′a is one. Thus we need to generalize complete lattices from
types to sets.

Definition 13.5. Let ′a be a partially ordered type. A set L :: ′a set is a
complete lattice if every M ⊆ L has a greatest lower bound

d
M ∈ L.

The type-based definition corresponds to the special case L = UNIV.
In the following we write f ∈ A → B as a shorthand for ∀ a∈A. f a ∈ B.

This notation is a set-based analogue of f :: τ1 ⇒ τ2.

Theorem 13.6 (Knaster-Tarski). Let L :: ′a set be a complete lattice
and f ∈ L→ L a monotone function. On L, f has the least (pre-)fixpoint

lfp f =
d

{p ∈ L. f p 6 p}

The proof is the same as before, but we have to keep track of the fact that
we always stay within L, which is ensured by f ∈ L → L and M ⊆ L =⇒d
M ∈ L.
To apply Knaster-Tarski to state set acom we need to show that acom

transforms complete lattices into complete lattices as follows:

Theorem 13.7. Let ′a be a complete lattice and c :: com. Then the set
L = {C :: ′a acom . strip C = c} is a complete lattice.

Proof. The infimum of a set of annotated commands is computed pointwise
for each annotation:

Inf_acom c M = annotate (λp.
d

{anno C p |C . C ∈ M }) c

We have made explicit the dependence on the command c from the statement
of the theorem. The infimum properties of Inf_acom follow easily from the
corresponding properties of

d
. The proofs are automatic. ut

13.3.5 Collecting Semantics

Because type state set is a complete lattice, Theorem 13.7 implies that L =

{C :: state set acom . strip C = c} is a complete lattice too, for any c. It
is easy to prove (Lemma 13.26) that step S ∈ L → L is monotone: C 1 6
C 2 =⇒ step S C 1 6 step S C 2. Therefore Knaster-Tarski tells us that lfp
returns the least fixpoint and we can define the collecting semantics at last:

CS :: com ⇒ state set acom
CS c = lfp c (step UNIV)

234 13 Abstract Interpretation

The extra argument c of lfp comes from the fact that lfp is defined in The-
orem 13.6 in the context of a set L and our concrete L depends on c. The
UNIV argument of step expresses that execution may start with any initial
state; other choices are possible too.

Function CS is not executable because the resulting annotations are usu-
ally infinite state sets. But just as for true liveness in Section 10.4.2, we can
approximate (and sometimes reach) the lfp by iterating step. We already
showed how that works in Section 13.3.1.

In contrast to previous operational semantics that were “obviously right”,
the collecting semantics is more complicated and less intuitive. In case you
still have some nagging doubts that it is defined correctly, the following lemma
should help. Remember that post extracts the final annotation (Appendix A).

Lemma 13.8. (c, s) ⇒ t =⇒ t ∈ post (CS c)

Proof. By definition of CS the claim follows directly from [[(c, s)⇒ t ; s ∈ S]]
=⇒ t ∈ post(lfp c (step S)), which in turn follows easily from two auxiliary
propositions:

post(lfp c f) =
⋂
{post C |C . strip C = c ∧ f C 6 C }

[[(c, s) ⇒ t ; strip C = c; s ∈ S ; step S C 6 C]] =⇒ t ∈ post C

The first proposition is a direct consequence of ∀C ∈ M . strip C = c =⇒
post (Inf_acom c M) =

⋂
(post ‘ M), which follows easily from the definition

of post and Inf_acom. The second proposition is the key. It is proved by rule
induction. Most cases are automatic, but WhileTrue needs some work. ut

Thus we know that the collecting semantics overapproximates the big-step
semantics. Later we show that the abstract interpreter overapproximates the
collecting semantics. Therefore we can view the collecting semantics merely
as a stepping stone for proving that the abstract interpreter overapproximates
the big-step semantics, our standard point of reference.

One can in fact show that both semantics are equivalent. One can also
refine the lemma: it only talks about the post annotation but one would like
to know that all annotations are correct w.r.t. the big-step semantics. We do
not pursue this further but move on to the main topic of this chapter, abstract
interpretation.

Exercises

The exercises below are conceptual and should be done on paper, also because
many of them require Isabelle material that will only be introduced later.

Exercise 13.1. Show the iterative computation of the collecting semantics of
the following program in a table like the one on page 228.

13.3 Collecting Semantics 235

x := 0; y := 2 {A0} ;
{A1}

WHILE 0 < y
DO {A2} (x := x+y; y := y - 1 {A3})
{A4}

Note that two annotations have been suppressed to make the task less tedious.
You do not need to show steps where only the suppressed annotations change.

Exercise 13.2. Extend type acom and function step with a construct OR
for the nondeterministic choice between two commands (see Exercise 7.9).
Hint: think of OR as a nondeterministic conditional without a test.

Exercise 13.3. Prove that in a complete lattice
⊔
S =

d
{u . ∀ s∈S . s 6 u}

is the least upper bound of S.

Exercise 13.4. Where is the mistake in the following argument? The natural
numbers form a complete lattice because any set of natural numbers has an
infimum, its least element.

Exercise 13.5. Show that the integers extended with ∞ and −∞ form a
complete lattice.

Exercise 13.6. Prove the following slightly generalized form of the Knaster-
Tarski pre-fixpoint theorem: If P is a set of pre-fixpoints of a monotone func-
tion on a complete lattice, then

d
P is a pre-fixpoint too. In other words, the

set of pre-fixpoints of a monotone function on a complete lattice is a complete
lattice.

Exercise 13.7. According to Lemma 10.28, least pre-fixpoints of monotone
functions are also least fixpoints.

1. Show that leastness matters: find a (small!) partial order with a monotone
function that has a pre-fixpoint that is not a fixpoint.

2. Show that the reverse implication does not hold: find a partial order with a
monotone function that has a least fixpoint that is not a least pre-fixpoint.

Exercise 13.8. The term collecting semantics suggests that the reachable
states are collected in the following sense: step should not transform {S } into
{S ′} but into {S ∪ S ′}. Show that this makes no difference. That is, prove
that if f is a monotone function on sets, then f has the same least fixpoint as
λS . S ∪ f S.

236 13 Abstract Interpretation

13.4 Abstract Values thy

The topic of this section is the abstraction from the state sets in the collecting
semantics to some type of abstract values. In Section 13.1.2 we had already
discussed a first abstraction of state sets

(vname ⇒ val) set vname ⇒ val set

and that it constitutes a first overapproximation. There are so-called relational
analyses that avoid this abstraction, but they are more complicated. In a
second step, sets of values are abstracted to abstract values:

val set abstract domain

where the abstract domain is some type of abstract values that we can
compute on. What exactly that type is depends on the analysis. Interval
analysis is one example, parity analysis is another. Parity analysis determines
if the value of a variable at some point is always even, is always odd, or can
be either. It is based on the following abstract domain

datatype parity = Even | Odd | Either

that will serve as our running example.
Abstract values represent sets of concrete values val and need to come with

an ordering that is an abstraction of the subset ordering. Figure 13.5 shows

Either Z

Even Odd 2Z 2Z+ 1

6

> ⊆ ⊇

γ_parity

Fig. 13.5. Parity domain and its concretisation

the abstract values on the left and the concrete ones on the right, where 2Z
and 2Z + 1 are the even and the odd integers. The solid lines represent the
orderings on the two types. The dashed arrows represent the concretisation
function:

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_Int1_parity.html

13.4 Abstract Values 237

A concretisation function maps an abstract value to a set of concrete
values.

Concretisation functions will always be named γ, possibly with a suffix. This
is the Isabelle definition of the one for parity :

fun γ_parity :: parity ⇒ val set where
γ_parity Even = {i . i mod 2 = 0}

γ_parity Odd = {i . i mod 2 = 1}

γ_parity Either = UNIV

The definition of 6 on parity is even simpler:

(x 6 y) = (y = Either ∨ x = y)

Of course there should be a relationship between the two:

Bigger abstract values represent bigger sets of concrete values.

That is, concretisation functions should be monotone. This is obviously the
case in Figure 13.5. Moreover, 6 should be a partial order. It is easily proved
that 6 on parity is a partial order.

We want 6 to be a partial order because it abstracts the partial order
⊆. But we will need more. The collecting semantics uses ∪ to join the state
sets where two computation paths meet, e.g., after an IF−THEN−ELSE.
Therefore we require that the abstract domain also provides an operation t
that behaves like ∪. That makes it a semilattice:

Definition 13.9. A type ′a is a semilattice if it is a partial order and
there is a supremum operation t of type ′a ⇒ ′a ⇒ ′a that returns the
least upper bound of its arguments:

� Upper bound: x 6 x t y and y 6 x t y
� Least: [[x 6 z ; y 6 z]] =⇒ x t y 6 z

The supremum is also called the join operation.
A very useful consequence of the semilattice axioms is the following:

Lemma 13.10. x t y 6 z ←→ x 6 z ∧ y 6 z

The proof is left as an exercise.
In addition, we will need an abstract value that corresponds to UNIV.

Definition 13.11. A partial order has a top element > if x 6 > for all
x.

Thus we will require our abstract domain to be a semilattice with top element,
or semilattice with > for short.

Of course, type parity is a semilattice with >:

238 13 Abstract Interpretation

x t y = (if x = y then x else Either)
> = Either

The proof that the semilattice and top axioms are satisfied is routine.

13.4.1 Type Classes

We will now sketch how abstract concepts like semilattices are modelled with
the help of Isabelle’s type classes. A type class has a name and is defined by

� a set of required functions, the interface, and
� a set of axioms about those functions.

For example, a partial order requires that there is a function 6 with certain
properties. The type classes introduced above are called order, semilattice_sup,
top, and semilattice_sup_top.

To show that a type τ belongs to some class C we have to

� define all functions in the interface of C on type τ
� and prove that they satisfy the axioms of C.

This process is called instantiating C with τ. For example, above we have
instantiated semilattice_sup_top with parity. Informally we say that parity
is a semilattice with >.

Note that the function definitions made when instantiating a class are
unlike normal function definitions because we define an already existing but
overloaded function (e.g., 6) for a new type (e.g., parity).

The instantiation of semilattice_sup_top with parity was unconditional.
There is also a conditional version exemplified by the following proposition:

Lemma 13.12. If ′a and ′b are partial orders, so is ′a × ′b.

Proof. The ordering on ′a × ′b is defined in terms of the orderings on ′a
and ′b in the componentwise manner:

(x1,x2) 6 (y1,y2) ←→ x1 6 y1 ∧ x2 6 y2

The proof that this yields a partial order is straightforward. ut

It may be necessary to restrict a type variable ′a to be in a particular
class C. The notation is ′a :: C. Here are two examples:

definition is_true :: ′a ::order ⇒ bool where is_true x = (x 6 x)
lemma is_true (x :: ′a ::order)

If we drop the class constraints in the above definition and lemma statements,
they fail because ′a comes without a class constraint but the given formulas

13.4 Abstract Values 239

require one. If we drop the type annotations altogether, both the definition
and the lemma statement work fine but in the definition the implicitly gener-
ated type variable ′a will be of class ord, where ord is a predefined superclass
of order that merely requires an operation 6 without any axioms. This means
that the lemma will not be provable.

Note that it suffices to constrain one occurrence of a type variable in a given
type. The class constraint automatically propagates to the other occurrences
of that type variable.

We do not describe the precise syntax for defining and instantiating classes.
The semi-formal language used so far is perfectly adequate for our pur-
pose. The interested reader is referred to the Isabelle theories (in particular
Abs_Int1_parity to see how classes are instantiated) and to the tutorial on
type classes [40]. If you are familiar with the programming language Haskell
you will recognize that Isabelle provides Haskell-style type classes extended
with axioms.

13.4.2 From Abstract Values to Abstract States thy

Let ′a be some abstract domain type. So far we had planned to abstract
(vname ⇒ val) set by the abstract state type

type_synonym ′a st = vname ⇒ ′a

but there is a complication: the empty set of states has no meaningful ab-
straction. The empty state set is important because it arises at unreachable
program points, and identifying the latter is of great interest for program
optimization. Hence we abstract state set by

′a st option

where None is the abstraction of {}. That is, the abstract interpretation will
compute with and annotate programs with values of type ′a st option instead
of state set. We will now lift the semilattice structure from ′a to ′a st option.
All the proofs in this subsection are routine and we leave most of them as
exercises whose solutions can be found in the Isabelle theories.

Because states are functions we show as a first step that function spaces
preserve semilattices:

Lemma 13.13. If ′a is a semilattice with >, so is ′b ⇒ ′a, for every
type ′b.

Proof. This class instantiation is already part of theory Main. It lifts 6, t
and > from ′a to ′b ⇒ ′a in the canonical pointwise manner:

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_Int0.html

240 13 Abstract Interpretation

f 6 g = ∀ x . f x 6 g x
f t g = λx . f x t g x
> = λx . >

It is easily shown that the result is a semilattice with > if ′a is one. For
example, f 6 f t g holds because f x 6 f x t g x = (f t g) x for all x. ut

Similarly, but for ′a option instead of ′b ⇒ ′a :

Lemma 13.14. If ′a is a semilattice with >, so is ′a option.

Proof. Here is how 6, t and > are defined on ′a option :

Some x 6 Some y ←→ x 6 y
None 6 _ ←→ True
Some _6 None ←→ False

Some x t Some y = Some (x t y)
None t y = y
x t None = x

> = Some >

Figure 13.6 shows an example of how the ordering is transformed by going
from from ′a to ′a option. The elements of ′a are wrapped up in Some

>

a b

c

>

Some a Some b

Some c

None

Fig. 13.6. From ′a to ′a option

without modifying the ordering between them and None is adjoined as the
least element.

The semilattice properties of ′a option are proved by exhaustive case
analyses. As an example consider the proof of x 6 x t y. In each of the cases
x = None, y = None and x = Some a ∧ y = Some b it holds by definition
and because a 6 a t b on type ′a. ut

Together with Lemma 13.13 we have:

13.5 Generic Abstract Interpreter 241

Corollary 13.15. If ′a is a semilattice with >, so is ′a st option.

Now we lift the concretisation function γ from ′a to ′a st option,
again separately for ⇒ and option. We can turn any concretisation function
γ :: ′a ⇒ ′c set into one from ′b ⇒ ′a to (′b ⇒ ′c) set :

definition γ_fun :: (′a ⇒ ′c set) ⇒ (′b ⇒ ′a) ⇒ (′b ⇒ ′c) set where
γ_fun γ F = {f . ∀ x . f x ∈ γ (F x)}

For example, γ_fun γ_parity concretises λx :: ′b. Even to the set of all
functions of type ′b ⇒ int whose ranges are even integers.

Lemma 13.16. If γ is monotone, so is γ_fun γ.

Lifting of γ to option achieves what we initially set out to do, namely to
be able to abstract the empty set:

fun γ_option :: (′a ⇒ ′c set) ⇒ ′a option ⇒ ′c set where
γ_option γ None = {}

γ_option γ (Some a) = γ a

Lemma 13.17. If γ is monotone, so is γ_option γ.

Applying monotone functions to all annotations of a command is also
monotone:

Lemma 13.18. If γ is monotone, so is map_acom γ.

A useful property of monotone functions is the following:

Lemma 13.19. If ϕ :: ′a ⇒ ′b is a monotone function between two semi-
lattices then ϕ a1 t ϕ a2 6 ϕ (a1 t a2).

The proof is trivial: ϕ a1 t ϕ a2 6 ϕ (a1 t a2) iff ϕ a i 6 ϕ (a1 t a2) for
i = 1,2 (by Lemma 13.10), and the latter two follow by monotonicity from
a i 6 a1 t a2.

Exercises

Exercise 13.9. Prove Lemma 13.10 on paper.

13.5 Generic Abstract Interpreter thy

In this section we define a first abstract interpreter which we refine in later
sections. It is generic because it is parameterized with the abstract domain.
It works like the collecting semantics but operates on the abstract domain
instead of state sets. To bring out this similarity we first abstract the collecting
semantics’ step function.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_Int0.html

242 13 Abstract Interpretation

13.5.1 Abstract Step Function thy

The step function of the collecting semantics (see Figure 13.3) can be gener-
alized as follows.

� Replace state set by an arbitrary type ′a which must have a t operation
(no semilattice required yet).

� Parameterize step with two functions
asem :: vname ⇒ aexp ⇒ ′a ⇒ ′a
bsem :: bexp ⇒ ′a ⇒ ′a

that factor out the actions of assignment and boolean expression on ′a.

The result is the function Step displayed in Figure 13.7. Note that we have

fun Step :: ′a ⇒ ′a acom ⇒ ′a acom where

Step a (SKIP {_}) = SKIP {a}
Step a (x ::= e {_}) = x ::= e {asem x e a}
Step a (C1;; C2) = Step a C1;; Step (post C1) C2

Step a (IF b THEN {P1} C1 ELSE {P2} C2 {Q})

= IF b THEN {bsem b a} Step P1 C1 ELSE {bsem (Not b) a} Step P2 C2

{post C1 t post C2}

Step a ({I } WHILE b DO {P } C {Q})

= {a t post C }

WHILE b
DO {bsem b I }

Step P C
{bsem (Not b) I }

Fig. 13.7. Definition of Step

suppressed the parameters asem and bsem of Step in the figure for better
readability. In reality, they are there and step is defined like this:

step =

Step (λx e S . {s(x := aval e s) |s . s ∈ S }) (λb S . {s ∈ S . bval b s})

(This works because in Isabelle ∪ is just nice syntax for t on sets.) The
equations in Figure 13.7 are merely derived from this definition. This way we
avoided having to explain the more abstract Step early on.

13.5.2 Abstract Interpreter Interface

The abstract interpreter is defined as a parameterized module (a locale in
Isabelle; see [9] for details). Its parameters are the abstract domain together

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Collecting.html

13.5 Generic Abstract Interpreter 243

with abstractions of all operations on the concrete type val = int. The result
of the module is an abstract interpreter that operates on the given abstract
domain.

In detail, the parameters and their required properties are the following:

Abstract domain A type ′av of abstract values.
Must be a semilattice with >.

Concretisation function γ :: ′av ⇒ val set
Must be monotone: a1 6 a2 =⇒ γ a1 ⊆ γ a2

Must preserve >: γ > = UNIV
Abstract arithmetic num ′ :: val ⇒ ′av

plus ′ :: ′av ⇒ ′av ⇒ ′av
Must establish and preserve the i ∈ γ a relationship:
i ∈ γ (num ′ i) (num ′)
[[i1 ∈ γ a1; i2 ∈ γ a2]] =⇒ i1 + i2 ∈ γ (plus ′ a1 a2) (plus ′)

Remarks:

� Every constructor of aexp (except V) must have a counterpart on ′av.
� num ′ and plus ′ abstract N and Plus.
� The requirement i ∈ γ (num ′ i) could be replaced by γ (num ′ i) = {i }.

We have chosen the weaker formulation to emphasize that all operations
must establish or preserve i ∈ γ a.

� Functions whose names end with a prime usually operate on ′av.
� Abstract values are usually called a whereas arithmetic expressions are

usually called e now.

From γ we define three lifted concretisation functions:

γs :: ′av st ⇒ state set
γs = γ_fun γ

γo :: ′av st option ⇒ state set
γo = γ_option γs

γc :: ′a st option acom ⇒ state set acom
γc = map_acom γo

All of them are monotone (see the lemmas in Section 13.4.2).
Now we are ready for the actual abstract interpreter, first for arithmetic

expressions, then for commands. Boolean expressions come in a later section.

13.5.3 Abstract Interpretation of Expressions

Abstract interpretation of aexp is unsurprising:

244 13 Abstract Interpretation

fun aval ′ :: aexp ⇒ ′av st ⇒ ′av where
aval ′ (N i) S = num ′ i
aval ′ (V x) S = S x
aval ′ (Plus e1 e2) S = plus ′ (aval ′ e1 S) (aval ′ e2 S)

The correctness lemma expresses that aval ′ overapproximates aval :

Lemma 13.20 (Correctness of aval ′).
s ∈ γs S =⇒ aval e s ∈ γ (aval ′ e S)

Proof. By induction on e with the help of (num ′) and (plus ′). ut

Example 13.21. We instantiate the interface to our abstract interpreter mod-
ule with the parity domain described earlier:

γ = γ_parity
num ′ = num_parity
plus ′ = plus_parity

where

num_parity i = (if i mod 2 = 0 then Even else Odd)

plus_parity Even Even = Even
plus_parity Odd Odd = Even
plus_parity Even Odd = Odd
plus_parity Odd Even = Odd
plus_parity x Either = Either
plus_parity Either y = Either

We had already discussed that parity is a semilattice with > and γ_parity is
monotone. Both γ_parity > = UNIV and (num ′) are trivial, as is (plus ′)
after an exhaustive case analysis on a1 and a2.

Let us call the result aval ′ of this module instantiation aval_parity. Then
the following term evaluates to Even :

aval_parity (Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′)) (λ_. Odd)

13.5.4 Abstract Interpretation of Commands

The abstract interpreter for commands is defined in two steps. First we in-
stantiate Step to perform one interpretation step, later we iterate this step ′

until a pre-fixpoint is found.

step ′ :: ′av st option ⇒ ′av st option acom ⇒ ′av st option acom
step ′ = Step asem (λb S . S)

where

13.5 Generic Abstract Interpreter 245

asem x e S =

(case S of None ⇒ None | Some S ⇒ Some (S(x := aval ′ e S)))

Remarks:

� From now on the identifier S will (almost) always be of type ′av st or
′av st option .

� Function asem updates the abstract state with the abstract value of the
expression. The rest is boiler-plate to handle the option type.

� Boolean expressions are not analysed at all. That is, they have no effect
on the state. Compare λb S . S with λb S . {s ∈ S . bval b s} in the
collecting semantics. The former constitutes a gross overapproximation to
be refined later.

Example 13.22. We continue the previous example where we instantiated the
abstract interpretation module with the parity domain. Let us call the result
step ′ of this instantiation step_parity and consider the program on the left:

x := 3 {None} ; Odd
{None} Odd
WHILE ...
DO {None} Odd

x := x+2 {None} Odd
{None} Odd

In the table on the right we iterate step_parity, i.e., we see how the annota-
tions in (step_parity >)k C 0 change with increasing k (where C 0 is the
initial program with Nones, and by definition > = (λ_. Either)). Each row
of the table refers to the program annotation in the same row. For compact-
ness, a parity value p represents the state Some (>(x := p)). We only show
an entry if it differs from the previous step. After four steps, there are no
more changes; we have reached the least fixpoint.

Exercise: What happens if the 2 in the program is replaced by a 1?

Correctness of step ′ means that it overapproximates step:

Corollary 13.23 (Correctness of step ′).
step (γo S) (γc C) 6 γc (step ′ S C)

Because step and step ′ are defined as instances of Step, this is a corollary of
a general property of Step:

Lemma 13.24. Step f g (γo S) (γc C) 6 γc (Step f ′ g ′ S C) if
f x e (γo S) ⊆ γo (f ′ x e S) and g b (γo S) ⊆ γo (g ′ b S) for all x,e,b.

246 13 Abstract Interpretation

Proof. By induction on C. Assignments and boolean expressions are dealt
with by the two assumptions. In the IF and WHILE cases one has to show
properties of the form γo S1 ∪ γo S2 ⊆ γo (S1 t S2); they follow from
monotonicity of γo by Lemma 13.19. ut

The corollary follows directly from the lemma by unfolding the definitions
of step and step ′. The requirement {s(x := aval e s) |s . s ∈ γo S } ⊆
γo (asem x e S) is a trivial consequence of the overapproximation of aval
by aval ′.

13.5.5 Abstract Interpreter

The abstract interpreter iterates step ′ with the help of a library function:

while_option :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a option
while_option b f x = (if b x then while_option b f (f x) else Some x)

The equation is an executable consequence of the (omitted) definition.
This is a generalization of the while combinator used in Section 10.4.2

for the same purpose as now: iterating a function. The difference is that
while_option returns an optional value to distinguish termination (Some)
from nontermination (None). Of course the execution of while_option will
simply not terminate if the mathematical result is None.

The abstract interpreter AI is a search for a pre-fixpoint of step ′ >:

AI :: com ⇒ ′av st option acom option
AI c = pfp (step ′ >) (bot c)

pfp :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a option
pfp f s = while_option (λx . ¬ f x 6 x) f s

bot :: com ⇒ ′a option acom
bot c = annotate (λp. None) c

Function pfp searches for a pre-fixpoint of f starting from s. In general, this
search need not terminate, but if it does, it has obviously found a pre-fixpoint.
This follows from the following property of while_option :

while_option b c s = Some t =⇒ ¬ b t

Function AI starts the search from bot c where all annotations have been
initialized with None. Because None is the least annotation, bot c is the least
annotated program (among those structurally equal to c); hence the name.

Now we show partial correctness of AI : if abstract interpretation of c
terminates and returns an annotated program C, then the concretisation of
the annotations of C overapproximate the collecting semantics of c.

13.5 Generic Abstract Interpreter 247

Lemma 13.25 (Partial correctness of AI w.r.t. CS).
AI c = Some C =⇒ CS c 6 γc C

Proof. By definition we may assume pfp (step ′ >) (bot c) = Some C. By
the above property of while_option, C is a pre-fixpoint: step ′ > C 6 C. By
monotonicity we have γc (step ′ > C) 6 γc C and because step ′ overapproxi-
mates step (Corollary 13.23) we obtain step (γo >) (γc C) 6 γc (step ′ > C)

and thus γc C is a pre-fixpoint of step (γo >). Because CS is defined as the
least pre-fixpoint of step UNIV and because γo > = UNIV (this is trivial)
we obtain CS c 6 γc C as required. ut

13.5.6 Monotonicity

Although we know that if pfp terminates, by construction it yields a pre-
fixpoint, we don’t yet know under what conditions it terminates and which
pre-fixpoint is found. This is where monotonicity of Step comes in:

Lemma 13.26 (Monotonicity of Step). Let ′a be a semilattice and let
f :: vname ⇒ aexp ⇒ ′a ⇒ ′a and g :: bexp ⇒ ′a ⇒ ′a be two mono-
tone functions: S1 6 S2 =⇒ f x e S1 6 f x e S2 and S1 6 S2 =⇒
g b S1 6 g b S2. Then Step f g is also monotone, in both arguments:
[[C 1 6 C 2; S1 6 S2]] =⇒ Step f g S1 C 1 6 Step f g S2 C 2.

Proof. The proof is a straightforward computation induction on Step. Addi-
tionally it needs the easy lemma C 1 6 C 2 =⇒ post C 1 6 post C 2. ut

As a corollary we obtain the monotonicity of step (already used in the
collecting semantics to guarantee that step has a least fixed point) because
step is defined as Step f g for some monotone f and g in Section 13.5.1. Sim-
ilarly we have step ′ = Step asem (λb S . S). Although λb S . S is obviously
monotone, asem is not necessarily monotone. The monotone framework is
the extension of the interface to our abstract interpreter with a monotonicity
assumption for abstract arithmetic:

Abstract arithmetic must be monotone:
[[a1 6 b1; a2 6 b2]] =⇒ plus ′ a1 a2 6 plus ′ b1 b2

Monotonicity of aval ′ follows by an easy induction on e :

S1 6 S2 =⇒ aval ′ e S1 6 aval ′ e S2

In the monotone framework, step ′ is therefore monotone too, in both argu-
ments. Therefore step ′ > is also monotone.

Monotonicity is not surprising and is only a means to obtain more interest-
ing results, in particular precision and termination of our abstract interpreter.
For the rest of this section we assume that we are in the context of the mono-
tone framework.

248 13 Abstract Interpretation

13.5.7 Precision

So far we have shown correctness (AI overapproximates CS) but nothing
about precision. In the worst case AI could annotate every given program
with > everywhere, which would be correct but useless.

We show that AI computes not just any pre-fixpoint but the least one.
Why is this relevant? Because of the general principle:

Smaller is better because it is more precise.

The key observation is that iteration starting below a pre-fixpoint always stays
below that pre-fixpoint:

Lemma 13.27. Let ′a be a partial order and let f be a monotone function.
If x0 6 q for some pre-fixpoint q of f, then f i x0 6 q for all i.

The proof is a straightforward induction on i and is left as an exercise.
As a consequence, if x0 is a least element, then f i x0 6 q for all pre-

fixpoints q. In this case pfp f x0 = Some p tells us that p is not just a
pre-fixpoint of f, as observed further above, but by this lemma the least pre-
fixpoint and hence, by Lemma 10.28, the least fixpoint.

In the end this merely means that the fixpoint computation is as precise
as possible, but f itself may still overapproximate too much. In the abstract
interpreter f is step ′ >. Its precision depends on its constituents, which are
the parameters of the module: Type ′av is required to be a semilattice, and
hence t is not just any upper bound (which would be enough for correct-
ness) but the least one, which ensures optimal precision. But the assumptions
(num ′) and (plus ′) for the abstract arithmetic only require correctness and
would, for example, allow plus ′ to always return >. We do not dwell on the
issue of precision any further but note that the canonical approach to abstract
interpretation (see Section 13.10.1) covers it.

13.5.8 Termination

We prove termination of AI under certain conditions. More precisely, we
show that pfp can only iterate step ′ finitely many times. The key insight is
the following:

Lemma 13.28. Let ′a be a partial order, let f :: ′a ⇒ ′a be a monotone
function, and let x0 :: ′a be such that x0 6 f x0. Then the f i x0 form an
ascending chain: x0 6 f x0 6 f 2 x0 6

The proof that f i x0 6 f i + 1 x0 is by induction on i and is left as an exercise.
Note that x0 6 f x0 holds in particular if x0 is the least element.

13.5 Generic Abstract Interpreter 249

Assume the conditions of the lemma hold for f and x0. Because pfp f
x0 computes the f i x0 until a pre-fixpoint is found, we know that the f i x0

form a strictly increasing chain. Therefore we can prove termination of this
loop by exhibiting a measure function m into the natural numbers such that
x < y =⇒ m x > m y . The latter property is called anti-monotonicity.

The following lemma summarizes this reasoning. Note that the relativisa-
tion to a set L is necessary because in our application the measure function
will not be be anti-monotone on the whole type.

Lemma 13.29. Let ′a be a partial order, let L :: ′a set, let f ∈ L →
L be a monotone function, let x0 ∈ L such that x0 6 f x0, and let
m :: ′a ⇒ nat be anti-monotone on L. Then ∃ p. pfp f x0 = Some p,
i.e., pfp f x0 terminates.

In our concrete situation f is step ′ >, x0 is bot c, and we now construct a
measure function mc such that C 1 < C 2 =⇒ mc C 1 > mc C 2 (for certain
C i). The construction starts from a measure function on ′av that is lifted to
′av st option acom in several steps.

We extend the interface to the abstract interpretation module by two more
parameters that guarantee termination of the analysis:

Measure function and height: m :: ′av ⇒ nat
h :: nat

Must be anti-monotone and bounded:
a1 < a2 =⇒ m a1 > m a2

m a 6 h

Under these assumptions the ordering 6 on ′av is of height at most h : every
chain a0 < a1 < . . . < an has height at most h, i.e., n 6 h. That is, 6 on
′av is of finite height.

Let us first sketch the intuition behind the termination proof. The anno-
tations in an annotated command can be viewed as a big tuple of the abstract
values of all variables at all annotation points. For example, if the program has
two annotationsA1 andA2 and three variables x, y, z, then Figure 13.8 depicts
some assignment of abstract values a i to the three variables at the two anno-
tation points. The termination measure is the sum of all m a i. Lemma 13.28

A1 A2

x y z x y z
a1 a2 a3 a4 a5 a6

Fig. 13.8. Annotations as tuples

showed that in each step of a pre-fixpoint iteration of a monotone function

250 13 Abstract Interpretation

the ordering strictly increases, i.e., (a1,a2,. . .) < (b1,b2,. . .), which for tuples
means a i 6 bi for all i and ak < bk for some k. Anti-monotonicity implies
both m a i > m bi and m ak > m bk. Therefore the termination measure
strictly decreases. Now for the technical details.

We lift m in three stages to ′av st option acom :

definition m s ::
′av st ⇒ vname set ⇒ nat where

m s S X = (
∑

x∈X . m (S x))

fun mo :: ′av st option ⇒ vname set ⇒ nat where
mo (Some S) X = m s S X
mo None X = h ∗ card X + 1

definition mc :: ′av st option acom ⇒ nat where
mc C = (

∑
a←annos C . mo a (vars C))

Measure m s S X is defined as the sum of all m (S x) for x ∈ X. The set X
is always finite in our context, namely the set of variables in some command.

By definition, mo (Some S) X < mo None X because all our measures
should be anti-monotone and None is the least value w.r.t. the ordering on
′av st option.

In words, mc C sums up the measures of all the annotations in C. The
definition of mc uses the notation

∑
x←xs . f x for the summation over the

elements of a list, in analogy to
∑

x∈X . f x for sets. Function vars on anno-
tated commands is defined by vars C = vars (strip C) where vars(c::com)

is the set of variables in c (see Appendix A).
It is easy to show that all three measure functions are bounded:

finite X =⇒ m s S X 6 h ∗ card X
finite X =⇒ mo opt X 6 h ∗ card X + 1

mc C 6 length (annos C) ∗ (h ∗ card (vars C) + 1)

The last lemma gives us an upper bound for the number of iterations (= calls
of step ′) that pfp and therefore AI require: at most p ∗ (h ∗ n + 1) where
p and n are the number of annotations and the number of variables in the
given command. There are p ∗ h ∗ n many such assignments (see Figure 13.8
for an illustration), and taking into account that an annotation can also be
None yields p ∗ (h ∗ n + 1) many assignments.

The proof that all three measures are anti-monotone is more complicated.
For example, anti-monotonicity of m s cannot simply be expressed as finite X
=⇒ S1 < S2 =⇒ m s S2 X < m s S1 X because this does not hold: S1 <

S2 could be due solely to an increase in some variable not in X, with all other
variables unchanged, in which case m s X S1 = m s X S2. We need to take

13.5 Generic Abstract Interpreter 251

into account that X are the variables in the command and that therefore the
variables not in X do not change. This “does not change” property (relating
two states) can more simply be expressed as “is top” (a property of one state):
variables not in the program can only ever have the abstract value > because
we iterate step ′ >. Therefore we define three “is top” predicates relative to
some set of variables X :

definition top_on s ::
′av st ⇒ vname set ⇒ bool where

top_on s S X = (∀ x∈X . S x = >)

fun top_ono :: ′av st option ⇒ vname set ⇒ bool where
top_ono (Some S) X = top_on s S X
top_ono None X = True

definition top_onc :: ′av st option acom ⇒ bool where
top_onc C X = (∀ a∈set (annos C). top_ono a X)

With the help of these predicates we can now formulate that all three measure
functions are anti-monotone:

[[finite X ; S1 = S2 on − X ; S1 < S2]] =⇒ m s S2 X < m s S1 X

[[finite X ; top_ono o1 (− X); top_ono o2 (− X); o1 < o2]] =⇒ mo o2

X < mo o1 X

[[top_onc C 1 (− vars C 1); top_onc C 2 (− vars C 2); C 1 < C 2]] =⇒
mc C 2 < mc C 1

The proofs involve simple reasoning about sums.
Now we can apply Lemma 13.29 to AI c = pfp (step ′ >) (bot c) to

conclude that AI always delivers:

Theorem 13.30. ∃C . AI c = Some C

Proof. In Lemma 13.29, let L be {C . top_onc C (− vars C)} and let m be
mc. Above we have stated that mc is anti-monotone on L. Now we examine
that the remaining conditions of the lemma are satisfied. We had shown al-
ready that step ′ > is monotone. Showing that it maps L to L requires a little
lemma

top_onc C (− vars C) =⇒ top_onc (step ′ > C) (− vars C)

together with the even simpler lemma strip (step ′ S C) = strip C (∗).
Both follow directly from analogous lemmas about Step which are proved by
computation induction on Step. Condition bot c 6 step ′ > (bot c) follows
from the obvious strip C = c =⇒ bot c 6 C with the help of (∗) above. And
bot c ∈ L holds because top_onc (bot c) X is true for all X by definition. ut

252 13 Abstract Interpretation

Example 13.31. Parity analysis can be shown to terminate because the parity
semilattice has height 1. Defining the measure function

m_parity a = (if a = Either then 0 else 1)

Either is given measure 0 because it is the largest and therefore least infor-
mative abstract value. Both anti-monotonicity of m_parity and m_parity a
6 1 are proved automatically.

Note that finite height of 6 is actually a bit stronger than necessary to
guarantee termination. It is sufficient that there is no infinitely ascending
chain a0 < a1 < But then there can be ascending chains of any finite
height and we cannot bound the number of iterations of the abstract inter-
preter, which is problematic in practice.

13.5.9 Executability

Above we have shown that for semilattices of finite height, fixpoint itera-
tion of the abstract interpreter terminates. Yet there is a problem: AI is
not executable! This is why: pfp compares programs with annotations of
type ′av st option ; but S1 6 S2 (where S1, S2 :: ′av st) is defined as
∀ x . S1 x 6 S2 x where x comes from the infinite type vname. Therefore 6
on ′av st is not directly executable.

We learn two things: we need to refine type st such that 6 becomes ex-
ecutable (this is the subject to the following section), and we need to be
careful about claiming termination. We had merely proved that some term
while_option b f s is equal to Some. This implies termination only if b, f
and s are executable, which the given b is not. In general, there is no logical
notion of executability and termination in HOL and such claims are informal.
They could be formalized in principle but this would require a formalization
of the code generation process and the target language.

Exercises

Exercise 13.10. Redo Example 13.22 but replace the 2 in the program by 1.

Exercise 13.11. Take the Isabelle theories that define commands, big-step
semantics, annotated commands and the collecting semantics and extend
them with a nondeterministic choice construct as in Exercise 13.2.

The following exercises require class constraints like ′a :: order as intro-
duced in Section 13.4.1.

Exercise 13.12. Prove Lemma 13.27 and Lemma 13.28 in a detailed and
readable style. Remember that f i x is input as (f ^^ i) x.

13.6 Executable Abstract States 253

Exercise 13.13. Let ′a be a complete lattice and let f :: ′a ⇒ ′a be a
monotone function. Prove that if P is a set of pre-fixpoints of f then

d
P is

also a pre-fixpoint of f.

13.6 Executable Abstract States thy

This section is all about a clever representation of abstract states. We define
a new type ′a st that is a semilattice where 6, t and > are executable
(provided ′a is a semilattice with executable operations). Moreover it supports
two operations that behave like function application and function update:

fun :: ′a st ⇒ vname ⇒ ′a
update :: ′a st ⇒ vname ⇒ ′a ⇒ ′a st

This exercise in data refinement is independent of abstract interpretation
and a bit technical in places. Hence it can be skipped on first reading. The
key point is that our generic abstract interpreter from the previous section
only requires two modifications: S x is replaced by fun S x and S(x :=

a) is replaced by update S x a. The proofs carry over either verbatim or
they require only local modifications. We merely need one additional lemma
which reduces fun and update to function application and function update:
fun (update S x y) = (fun S)(x := y).

Before we present the new definition of ′a st, we look at two applications,
parity analysis and constant propagation.

13.6.1 Parity Analysis thy

We had already instantiated our abstract interpreter with a parity analysis in
the previous section. In Example 13.22 we had even shown how the analysis
behaves for a simple program. Now that the analyser is executable we apply
it to a slightly more interesting example:

′ ′x ′ ′ ::= N 1;;
WHILE Less (V ′ ′x ′ ′) (N 100) DO ′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 3)

As in Section 13.3.1 we employ a hidden function show_acom which displays
a function {x 7→ a , y 7→ b, . . .} as {(x ,a), (y ,b), . . .}.

Four iterations of the step function result in this annotated command:
′ ′x ′ ′ ::= N 1 {Some {(′ ′x ′ ′, Odd)}};;
{Some {(′ ′x ′ ′, Odd)}}
WHILE Less (V ′ ′x ′ ′) (N 100)

DO {Some {(′ ′x ′ ′, Odd)}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 3) {Some {(′ ′x ′ ′, Even)}}

{Some {(′ ′x ′ ′, Odd)}}

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_Int1.html
http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_Int1_parity.html

254 13 Abstract Interpretation

Now the Even feeds back into the invariant and waters it down to Either :
′ ′x ′ ′ ::= N 1 {Some {(′ ′x ′ ′, Odd)}};;
{Some {(′ ′x ′ ′, Either)}}
WHILE Less (V ′ ′x ′ ′) (N 100)

DO {Some {(′ ′x ′ ′, Odd)}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 3) {Some {(′ ′x ′ ′, Even)}}

{Some {(′ ′x ′ ′, Odd)}}

A few more steps to propagate Either and we reach the least fixpoint:
′ ′x ′ ′ ::= N 1 {Some {(′ ′x ′ ′, Odd)}};;
{Some {(′ ′x ′ ′, Either)}}
WHILE Less (V ′ ′x ′ ′) (N 100)

DO {Some {(′ ′x ′ ′, Either)}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 3) {Some {(′ ′x ′ ′, Either)}}

{Some {(′ ′x ′ ′, Either)}}

Variable x can be Either everywhere, except after ′ ′x ′ ′ ::= N 1.

13.6.2 Constant Propagation thy

We have already seen a constant propagation analysis in Section 10.2. That
was an ad hoc design. Now we obtain constant propagation (although not the
folding optimization) as an instance of our abstract interpreter. The advantage
of instantiating a generic design and correctness proof is not code reuse but
the many hours or even days one saves by obtaining the correctness proof for
free.

The abstract domain for constant propagation permits us to analyse that
the value of a variable at some point is either some integer i (Const i) or
could be anything (Any):

datatype const = Const int | Any

fun γ_const :: const ⇒ val set where
γ_const (Const i) = {i }
γ_const Any = UNIV

To reflect γ_const, the ordering must look like this:

Any

. . . Const(−1) Const 0 Const 1 . . .

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_Int1_const.html

13.6 Executable Abstract States 255

In symbols:

(x 6 y) = (y = Any ∨ x = y)

x t y = (if x = y then x else Any)

> = Any

The best we can do w.r.t. addition on const is this:

fun plus_const :: const ⇒ const ⇒ const where
plus_const (Const i) (Const j) = Const (i + j)
plus_const __= Any

Termination of the analysis is guaranteed because the ordering is again of
height 1 as witnessed by this measure function:

m_const x = (if x = Any then 0 else 1)

Having instantiated the abstract interpreter with the above domain we
run some examples. We have now seen enough iterations and merely show the
final results.

Some basic arithmetic:
′ ′x ′ ′ ::= N 1 {Some {(′ ′x ′ ′, Const 1), (′ ′y ′ ′, Any)}};;
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (V ′ ′x ′ ′) {Some {(′ ′x ′ ′, Const 2), (′ ′y ′ ′, Any)}};;
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′) {Some {(′ ′x ′ ′, Any), (′ ′y ′ ′, Any)}}

A conditional where both branches set x to the same value:

IF Less (N 41) (V ′ ′x ′ ′)
THEN {Some {(′ ′x ′ ′, Any)}} ′ ′x ′ ′ ::= N 5 {Some {(′ ′x ′ ′, Const 5)}}
ELSE {Some {(′ ′x ′ ′, Any)}} ′ ′x ′ ′ ::= N 5 {Some {(′ ′x ′ ′, Const 5)}}
{Some {(′ ′x ′ ′, Const 5)}}

A conditional where both branches set x to different values:

IF Less (N 41) (V ′ ′x ′ ′)
THEN {Some {(′ ′x ′ ′, Any)}} ′ ′x ′ ′ ::= N 5 {Some {(′ ′x ′ ′, Const 5)}}
ELSE {Some {(′ ′x ′ ′, Any)}} ′ ′x ′ ′ ::= N 6 {Some {(′ ′x ′ ′, Const 6)}}
{Some {(′ ′x ′ ′, Any)}}

Conditions are ignored, which leads to imprecision:
′ ′x ′ ′ ::= N 42 {Some {(′ ′x ′ ′, Const 42)}};;
IF Less (N 41) (V ′ ′x ′ ′)
THEN {Some {(′ ′x ′ ′, Const 42)}} ′ ′x ′ ′ ::= N 5 {Some {(′ ′x ′ ′, Const 5)}}
ELSE {Some {(′ ′x ′ ′, Const 42)}} ′ ′x ′ ′ ::= N 6 {Some {(′ ′x ′ ′, Const 6)}}
{Some {(′ ′x ′ ′, Any)}}

256 13 Abstract Interpretation

This is where the analyser from Section 10.2 beats our abstract interpreter.
Section 13.8 will rectify this deficiency.

As an exercise, compute the following result step by step:
′ ′x ′ ′ ::= N 0 {Some {(′ ′x ′ ′, Const 0), (′ ′y ′ ′, Any), (′ ′z ′ ′, Any)}};;
′ ′y ′ ′ ::= N 0 {Some {(′ ′x ′ ′, Const 0), (′ ′y ′ ′, Const 0), (′ ′z ′ ′, Any)}};;
′ ′z ′ ′ ::= N 2

{Some {(′ ′x ′ ′, Const 0), (′ ′y ′ ′, Const 0), (′ ′z ′ ′, Const 2)}};;
{Some {(′ ′x ′ ′, Any), (′ ′y ′ ′, Any), (′ ′z ′ ′, Const 2)}}
WHILE Less (V ′ ′x ′ ′) (N 1)

DO {Some {(′ ′x ′ ′, Any), (′ ′y ′ ′, Any), (′ ′z ′ ′, Const 2)}}
(′ ′x ′ ′ ::= V ′ ′y ′ ′

{Some {(′ ′x ′ ′, Any), (′ ′y ′ ′, Any), (′ ′z ′ ′, Const 2)}};;
′ ′y ′ ′ ::= V ′ ′z ′ ′

{Some {(′ ′x ′ ′, Any), (′ ′y ′ ′, Const 2), (′ ′z ′ ′, Const 2)}})
{Some {(′ ′x ′ ′, Any), (′ ′y ′ ′, Any), (′ ′z ′ ′, Const 2)}}

13.6.3 Representation Type ′a st_rep thy

After these two applications we come back to the challenge of making 6 on
st executable. We exploit that states always have a finite domain, namely the
variables in the program. Outside that domain, states do not change. Thus
an abstract state can be represented by an association list:

type_synonym ′a st_rep = (vname × ′a) list

Variables of type ′a st_rep will be called ps.
Function fun_rep turns an association list into a function. Arguments not

present in the association list are mapped to the default value >:

fun fun_rep :: (′a ::top) st_rep ⇒ vname ⇒ ′a where
fun_rep [] = (λx . >)
fun_rep ((x , a) # ps) = (fun_rep ps)(x := a)

Class top is predefined. It is the class of all types with a top element >. Here
are two examples of the behaviour of fun_rep:

fun_rep [(′ ′x ′ ′,a),(′ ′y ′ ′,b)] = ((λx . >)(′ ′y ′ ′ := b))(′ ′x ′ ′ := a)

fun_rep [(′ ′x ′ ′,a),(′ ′x ′ ′,b)] = ((λx . >)(′ ′x ′ ′ := b))(′ ′x ′ ′ := a)
= (λx . >)(′ ′x ′ ′ := a).

Comparing two association lists is easy now: you only need to compare
them on their finite “domains”, i.e., on map fst :

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_State.html

13.6 Executable Abstract States 257

less_eq_st_rep ps1 ps2 =

(∀ x∈set (map fst ps1) ∪ set (map fst ps2).
fun_rep ps1 x 6 fun_rep ps2 x)

Unfortunately this is not a partial order (which is why we gave it the name
less_eq_st_rep instead of 6). For example, both [(′ ′x ′ ′, a), (′ ′y ′ ′, b)] and
[(′ ′y ′ ′, b), (′ ′x ′ ′, a)] represent the same function and the less_eq_st_rep
relationship between them holds in both directions, but they are distinct
association lists.

13.6.4 Quotient Type ′a st

Therefore we define the actual new abstract state type as a quotient type.
In mathematics, the quotient of a set M by some equivalence relation ∼ (see
Definition 7.7) is written M/∼ and is the set of all equivalence classes [m]∼
⊆ M, m ∈ M, defined by [m]∼ = {m ′ . m ∼ m ′}. In our case the equivalence
relation is eq_st and it identifies two association lists iff they represent the
same function:

eq_st ps1 ps2 = (fun_rep ps1 = fun_rep ps2)

This is precisely the point of the quotient construction: identify data elements
that are distinct but abstractly the same.

In Isabelle the quotient type ′a st is introduced as follows

quotient_type ′a st = (′a ::top) st_rep / eq_st

thereby overwriting the old definition of ′a st. The class constraint is required
because eq_st is defined in terms of fun_rep, which requires top. Instead of
the mathematical equivalence class notation [ps]eq_st we write St ps. We do
not go into further details of quotient_type: they are not relevant here and can
be found elsewhere [92].

Now we can define all the required operations on ′a st, starting with fun
and update :

fun (St ps) = fun_rep ps

update (St ps) x a = St ((x , a) # ps)

The concretisation function γ_fun is replaced by γ_st :

γ_st γ S = {f . ∀ x . f x ∈ γ (fun S x)}

This is how ′a st is turned into a semilattice with top element:

258 13 Abstract Interpretation

> = St []

(St ps1 6 St ps2) = less_eq_st_rep ps1 ps2

St ps1 t St ps2 = St(map2_st_rep (op t) ps1 ps2)

fun map2_st_rep ::

(′a ::top ⇒ ′a ⇒ ′a) ⇒ ′a st_rep ⇒ ′a st_rep ⇒ ′a st_rep
where
map2_st_rep f [] ps2 = map (λ(x , y). (x , f > y)) ps2
map2_st_rep f ((x , y) # ps1) ps2 =

(let y2 = fun_rep ps2 x in (x , f y y2) # map2_st_rep f ps1 ps2)

The auxiliary function map2_st_rep is best understood via this lemma:

f > > = > =⇒
fun_rep (map2_st_rep f ps1 ps2) =

(λx . f (fun_rep ps1 x) (fun_rep ps2 x))

Here and in later uses of map2_st_rep the premise f > > = > is always
satisfied.

Most of the above functions are defined with the help of some representa-
tive ps of an equivalence class St ps. That is, they are of the form f (St ps)
= . . . ps This is not a definition until one has shown that the right-hand
side is independent of the choice of ps. Take fun (St ps) = fun_rep ps. It
must be shown that if eq_st ps1 ps2 then fun_rep ps1 = fun_rep ps2, which
is trivial in this case. Isabelle insists on these proofs but they are routine and
we do not go into them here.

Although the previous paragraph is mathematically accurate, the Isabelle
details are a bit different because St is not a constructor. Hence equations
like fun (St ps) = fun_rep ps cannot be definitions but are derived lemmas.
The actual definition needs to be made on the st_rep level first and is then
lifted automatically to the st level. For example, fun_rep is defined first and
fun is derived from it almost automatically, except that we have to prove that
fun_rep is invariant under eq_st as explained above.

Exercises

Exercise 13.14. Instantiate the abstract interpreter with an analysis of the
sign of variables based on these abstract values: datatype sign = Neg |

Zero | Pos | Any. Their concretisations are {i . i < 0}, {0}, {i . 0 < i }
and UNIV. Formalize your analysis by modifying the parity analysis theory
Abs_Int1_parity.

13.7 Analysis of Boolean Expressions 259

Exercise 13.15. The previous sign analysis can be refined as follows. The
basic signs are “+”, “−” and “0”, but all combinations are also possible: e.g.,
{0,+} abstracts the set of non-negative integers. This leads to the following
semilattice (we do not need {}):

{−} {0} {+}

{−, 0} {−,+} {0,+}

{−, 0,+}

A possible representation is a datatype with seven constructors, but there is
a more elegant solution (including {}). Formalize your analysis by modifying
theory Abs_Int1_parity or your solution to the previous exercise.

13.7 Analysis of Boolean Expressions thy

So far we have ignored boolean expressions. A first, quite simple analysis
could be the following one: Define abstract evaluation of boolean expressions
w.r.t. an abstract state such that the result can be Yes, No, or Maybe. In the
latter case, the analysis proceeds as before, but if the result is a definite Yes
or No, then we can ignore one of the two branches after the test. For example,
during constant propagation we may have found out that x has value 5, in
which case the value of x < 5 is definitely No.

We want to be more ambitious. Consider the test x < 5 and assume that
we perform an interval analysis where we have merely determined that x must
be in the interval [0. . .10]. Hence x < 5 evaluates to Maybe, which is no help.
However, we would like to infer for IF x < 5 that in the THEN-branch, x is in
the interval [1. . .4] and in the ELSE-branch, x is in the interval [5. . .10], thus
improving the analysis of the two branches.

For an arbitrary boolean expression such an analysis can be hard, es-
pecially if multiplication is involved. Nevertheless we will present a generic
analysis of boolean expressions. It works well for simple examples although it
is far from optimal in the general case.

The basic idea of any non-trivial analysis of boolean expressions is to
simulate the collecting semantics step. Recall from Section 13.5.1 that step is
a specialized version of Step where bsem b S = {s ∈ S . bval b s} whereas
for step ′ we used bsem b S = S (see Section 13.5.4). We would like bsem b
S, for S :: ′av st, to be some S ′ 6 S such that

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_Int2.html

260 13 Abstract Interpretation

No state satisfying b is lost: {s ∈ γs S . bval b s} ⊆ γs S ′

Of course S ′ = S satisfies this specification, but we can do better.
Computing S ′ 6 S from S requires a new operation because t only in-

creases but we need to decrease.

Definition 13.32. A type ′a is a lattice if it is a semilattice and there is
an infimum operation u :: ′a ⇒ ′a ⇒ ′a that returns the greatest lower
bound of its arguments:

� Lower bound: x u y 6 x and x u y 6 y
� Greatest: [[x 6 y ; x 6 z]] =⇒ x 6 y u z

A partial order has a bottom element ⊥ if ⊥ 6 x for all x.
A bounded lattice is a lattice with both > and ⊥.

Isabelle provides the corresponding classes lattice and bounded_lattice. The
infimum is sometimes called the meet operation.

Fact 13.33. Every complete lattice is a lattice.

This follows because a complete lattice with infimum
d

also has a supremum⊔
(see Exercise 13.3) and thus we obtain their binary versions as special

cases: x t y = (
⊔

{x ,y}) and x u y = (
d

{x ,y}).
We strengthen the abstract interpretation framework as follows:

� The abstract domain ′av must be a lattice
� Infimum must be precise: γ (a1 u a2) = γ a1 ∩ γ a2

� γ ⊥ = {}

It is left as an easy exercise to show that γ (a1 u a2) ⊆ γ a1 ∩ γ a2 holds
in any lattice because γ is monotone (see Lemma 13.19). Therefore the actual
requirement is the other inclusion: γ a1 ∩ γ a2 ⊆ γ (a1 u a2).

In this context, arithmetic and boolean expressions are analysed. It is a
kind of backward analysis. Given an arithmetic expression e, its expected
value a :: ′av, and some S :: ′av st, compute some S ′ 6 S such that

{s ∈ γs S . aval e s ∈ γ a} ⊆ γs S ′

Roughly speaking, S ′ overapproximates the subset of S that makes e evaluate
to a.

What if e cannot evaluate to a, i.e., {s ∈ γs S . aval e s ∈ γ a} = {}? We
need to lift the whole process to S , S ′ :: ′av st option ; then S ′ = None covers
this situation. However, there is a subtlety: None is not the only abstraction
of the empty set of states. For every S ′ :: ′av st where fun S ′ x = ⊥ for some
x, γs S ′ = {} by definition of γs because γ ⊥ = {}. Why is this is an issue?
Let S ′ :: ′av st such that γs S ′ = {}. Both None and Some S ′ abstract {}

13.7 Analysis of Boolean Expressions 261

but they behave differently in a supremum: None t S ′ ′ = S ′ ′ but we may
have Some S ′ t S ′ ′ > S ′ ′. Thus Some S ′ can lead to reduced precision,
for example when joining the result of the analyses of the THEN and ELSE
branches where one of the two branches is unreachable (leading to γs S ′ =
{}). Hence, for the sake of precision, we adopt the following policy:

Avoid Some S ′ where fun S ′ x = ⊥ for some x ; use None instead.

The backward analysis functions will typically be called inv_f because
they invert some function f on the abstract domain in roughly the following
sense. Given some expected result r of f and some arguments args of f,
inv_f r args should return reduced arguments args ′ 6 args such that the
reduction from args to args ′ may eliminate anything that does not lead to
the desired result r. For correctness we only need to show that nothing that
leads to r is lost by going from args to args ′. The relation args ′ 6 args is
just for intuition and precision but in the worst case args ′ = > would be
correct too.

13.7.1 Backward Analysis of Arithmetic Expressions

The analysis is performed recursively over the expression. Therefore we need
an inverse function for every constructor of aexp (except V). The abstract
arithmetic in the abstract interpreter interface needs to provide two additional
executable functions:

� test_num ′ :: val ⇒ ′av ⇒ bool such that

test_num ′ i a = (i ∈ γ a)

� inv_plus ′ :: ′av ⇒ ′av ⇒ ′av ⇒ ′av × ′av such that

[[inv_plus ′ a a1 a2 = (a ′1, a
′
2); i1 ∈ γ a1; i2 ∈ γ a2; i1 + i2 ∈ γ a]]

=⇒ i1 ∈ γ a ′1 ∧ i2 ∈ γ a ′2

A call inv_plus ′ a a1 a2 should reduce (a1, a2) to some (a ′1, a
′
2) such that

every pair of integers represented by (a1, a2) that adds up to some integer
represented by a is still represented by (a ′1, a

′
2). For example, for intervals,

if a = [8. . .10], a1 = [4. . .11] and a2 = [1. . .9], then the smallest possible
result is (a ′1, a

′
2) = ([4. . .9], [1. . .6]); reducing either interval further loses

some result in [8. . .10]

If there were further arithmetic functions, their backward analysis would
follow the inv_plus ′ pattern. Function test_num ′ is an exception that has
been optimized. In standard form it would be called inv_num ′ and would
return ′av instead of bool.

With the help of these functions we can formulate the backward analysis
of arithmetic expressions:

262 13 Abstract Interpretation

fun inv_aval ′ :: aexp ⇒ ′av ⇒ ′av st option ⇒ ′av st option where
inv_aval ′ (N n) a S = (if test_num ′ n a then S else None)
inv_aval ′ (V x) a S =

(case S of None ⇒ None
| Some S ⇒

let a ′ = fun S x u a
in if a ′ = ⊥ then None else Some (update S x a ′))

inv_aval ′ (Plus e1 e2) a S =

(let (a1, a2) = inv_plus ′ a (aval ′ ′ e1 S) (aval ′ ′ e2 S)
in inv_aval ′ e1 a1 (inv_aval ′ e2 a2 S))

fun aval ′ ′ :: aexp ⇒ ′av st option ⇒ ′av where
aval ′ ′ e None = ⊥
aval ′ ′ e (Some S) = aval ′ e S

The let -expression in the inv_aval ′ (V x) equation could be collapsed to
Some (update S x (fun S x u a)) except that we would lose precision for
the reason discussed above.

Function aval ′ ′ is just a lifted version of aval ′ and its correctness follows
easily by induction:

s ∈ γo S =⇒ aval a s ∈ γ (aval ′ ′ a S)

This permits us to show correctness of inv_aval ′:

Lemma 13.34 (Correctness of inv_aval ′).
If s ∈ γo S and aval e s ∈ γ a then s ∈ γo (inv_aval ′ e a S).

Proof. By induction on e. Case N is trivial. Consider case V x. From
s ∈ γo S we obtain an S ′ such that S = Some S ′ and s ∈ γs S ′, and
hence s x ∈ γ (fun S ′ x). We need to show s ∈ γo (if a ′ = ⊥ then None
else Some (update S ′ x a ′)) where a ′ = fun S ′ x u a. Note that γ a ′ =
γ (fun S ′ x u a) = γ (fun S ′ x) ∩ γ a because u must be precise. Assump-
tion aval (V x) s ∈ γ a implies s x ∈ γ a , and thus s x ∈ γ a ′ (because
s x ∈ γ (fun S ′ x)). Therefore the case a ′ = ⊥ cannot arise in this proof
because by assumption γ ⊥ = {}. Now we show the else branch is always cor-
rect: s ∈ γo (Some (update S ′ x a ′)) = γs (update S ′ x a ′). This reduces
to s x ∈ γ a ′ (because s ∈ γs S ′), which we have proved above.

The case Plus e1 e2 is automatic by means of the assumption about
inv_plus ′ together with the correctness of aval ′ ′. ut

If the definition of inv_aval ′ (Plus e1 e2) still mystifies you: instead
of inv_aval ′ e1 a1 (inv_aval ′ e2 a2 S) we could have written the more
intuitive inv_aval ′ e1 a1 S u inv_aval ′ e2 a2 S, except that this would
have required us to lift u to ′av st option, which we avoided by nesting the
two inv_aval ′ calls.

13.7 Analysis of Boolean Expressions 263

13.7.2 Backward Analysis of Boolean Expressions

The analysis needs an inverse function for the arithmetic operator “<”, i.e.,
abstract arithmetic in the abstract interpreter interface needs to provide an-
other executable function:

inv_less ′ :: bool ⇒ ′av ⇒ ′av ⇒ ′av × ′av such that

[[inv_less ′ (i1 < i2) a1 a2 = (a ′1, a
′
2); i1 ∈ γ a1; i2 ∈ γ a2]]

=⇒ i1 ∈ γ a ′1 ∧ i2 ∈ γ a ′2

The specification follows the inv_plus ′ pattern.
Now we can define the backward analysis of boolean expresions:

fun inv_bval ′ :: bexp ⇒ bool ⇒ ′av st option ⇒ ′av st option where
inv_bval ′ (Bc v) res S = (if v = res then S else None)
inv_bval ′ (Not b) res S = inv_bval ′ b (¬ res) S
inv_bval ′ (And b1 b2) res S =

(if res then inv_bval ′ b1 True (inv_bval ′ b2 True S)
else inv_bval ′ b1 False S t inv_bval ′ b2 False S)
inv_bval ′ (Less e1 e2) res S =

(let (a1, a2) = inv_less ′ res (aval ′ ′ e1 S) (aval ′ ′ e2 S)
in inv_aval ′ e1 a1 (inv_aval ′ e2 a2 S))

The Bc and Not cases should be clear. The And case becomes symmetric
when you realise that inv_bval ′ b1 True (inv_bval ′ b2 True S) is another
way of saying inv_bval ′ b1 True S u inv_bval ′ b2 True S without needing
u. Case Less is analogous to case Plus of inv_aval ′.

Lemma 13.35 (Correctness of inv_bval ′).
s ∈ γo S =⇒ s ∈ γo (inv_bval ′ b (bval b s) S)

Proof. By induction on b with the help of correctness of inv_aval ′ and aval ′ ′.
ut

13.7.3 Abstract Interpretation

As explained in the introduction to this section, we want to replace bsem b S
= S used in the previous sections with something better. Now we can: step ′

is defined from Step with

bsem b S = inv_bval ′ b True S

Correctness is straightforward:

Lemma 13.36. AI c = Some C =⇒ CS c 6 γc C

264 13 Abstract Interpretation

Proof. Just as for Lemma 13.25, with the help of Corollary 13.23, which needs
correctness of inv_bval ′. ut

This section was free of examples because backward analysis of boolean
expressions is most effectively demonstrated on intervals, which require a
separate section, the following one.

Exercises

Exercise 13.16. Prove that if γ :: ′a ::lattice ⇒ ′b::lattice is a monotone
function, then γ (a1 u a2) ⊆ γ a1 ∩ γ a2. Give an example of two lattices
and a monotone γ where γ a1 ∩ γ a2 ⊆ γ (a1 u a2) does not hold.

Exercise 13.17. Consider a simple sign analysis based on the abstract do-
main datatype sign = None | Neg | Pos0 | Any where γ :: sign ⇒ val set
is defined by γ None = {}, γ Neg = {i . i < 0}, γ Pos0 = {i . 0 6 i } and
γ Any = UNIV . Define inverse analyses for “+” and “<”

inv_plus ′ :: sign ⇒ sign ⇒ sign ⇒ sign × sign
inv_less ′ :: bool ⇒ sign ⇒ sign ⇒ sign × sign

and prove the required correctness properties inv_plus ′ a a1 a2 = (a ′1, a
′
2)

=⇒ ... and inv_less ′ bv a1 a2 = (a ′1, a
′
2) =⇒ ... stated in Section 13.7.1

and 13.7.2.

Exercise 13.18. Extend the abstract interpreter from the previous section
with the simple forward analysis of boolean expressions sketched in the first
paragraph of this section. You need to add a function less ′ :: ′av ⇒ ′av
⇒ bool option (where None, Some True and Some False mean Maybe,
Yes and No) to locale Val_semilattice in theory Abs_Int0 (together with a
suitable assumption), define a function bval ′ :: bexp ⇒ ′av st ⇒ bool op-
tion in Abs_Int1, modify the definition of step ′ to make use of bval ′, and
update the proof of correctness of AI. The remainder of theory Abs_Int1
can be discarded. Finally adapt constant propagation analysis in theory
Abs_Int1_const.

13.8 Interval Analysis thy

We had already seen examples of interval analysis in the informal introduction
to abstract interpretation in Section 13.1, but only now are we in a position
to make formal sense of it.

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_Int2_ivl.html

13.8 Interval Analysis 265

13.8.1 Intervals

Let us start with the type of intervals itself. Our intervals need to include in-
finite endpoints, otherwise we could not represent any infinite sets. Therefore
we base intervals on extended integers, i.e., integers extended with ∞ and
−∞. The corresponding polymorphic data type is

datatype ′a extended = Fin ′a | ∞ | −∞
and eint are the extended integers:

type_synonym eint = int extended

Type eint comes with the usual arithmetic operations.

Constructor Fin can be dropped in front of numerals: 5 is as good as Fin 5

(except for the type constraint implied by the latter). This applies to input and
output of terms. We do not discuss the necessary Isabelle magic.

The naive model of an interval is a pair of extended integers that represent
the set of integers between them:

type_synonym eint2 = eint × eint

definition γ_rep :: eint2 ⇒ int set where
γ_rep p = (let (l , h) = p in {i . l 6 Fin i ∧ Fin i 6 h})

For example, γ_rep (0, 3) = {0, 1, 2, 3} and γ_rep(0,∞) = {0, 1, 2, . . .}.
Unfortunately this results in infinitely many empty intervals, namely all

pairs (l , h) where h < l. Hence we need to perform a quotient construction,
just like for st in Section 13.6.4. We consider two intervals equivalent if they
represent the same set of integers:

definition eq_ivl :: eint2 ⇒ eint2 ⇒ bool where
eq_ivl p1 p2 = (γ_rep p1 = γ_rep p2)

quotient_type ivl = eint2 / eq_ivl

Most of the time we blur the distinction between ivl and eint2 by introducing
the abbreviation [l ,h] :: ivl , where l ,h :: eint, for the equivalence class of
all pairs equivalent to (l , h) w.r.t. eq_ivl. Unless γ_rep (l , h) = {}, this
equivalence class only contains (l , h). Moreover, let ⊥ be the empty interval,
i.e., [l , h] for any h < l. Note that there are two corner cases where [l , h] =
⊥ does not imply h < l : [∞, ∞] and [−∞, −∞].

We will now “define” most functions on intervals by pattern matching on
[l , h]. Here is a first example:

266 13 Abstract Interpretation

γ_ivl :: ivl ⇒ int set
γ_ivl [l , h] = {i . l 6 Fin i ∧ Fin i 6 h}

Recall from the closing paragraph of Section 13.6.4 that the actual definitions
must be made on the eint2 level and that the pattern matching equations are
derived lemmas.

13.8.2 Intervals as a Bounded Lattice

The following definition turns ivl into a partial order:

([l1, h1] 6 [l2, h2]) =

(if [l1, h1] = ⊥ then True
else if [l2, h2] = ⊥ then False else l2 6 l1 ∧ h1 6 h2)

The ordering can be visualized like this:

l1 h1

l2 h2

Making ivl a bounded lattice is not hard either:

[l1, h1] t [l2, h2] =

(if [l1, h1] = ⊥ then [l2, h2]

else if [l2, h2] = ⊥ then [l1, h1] else [min l1 l2, max h1 h2])

[l1, h1] u [l2, h2] = [max l1 l2, min h1 h2]

> = [−∞, ∞]

The supremum and infimum of two overlapping intervals is shown graphically
in Figure 13.9. The loss of precision resulting from the supremum of two non-

[l1, h1] t [l2, h2]

l1 h1

l2 h2

[l1, h1] u [l2, h2]

Fig. 13.9. Supremum and infimum of overlapping intervals

13.8 Interval Analysis 267

[l1, h1] t [l2, h2]

l1 h1 l2 h2

Fig. 13.10. Supremum of non-overlapping intervals

overlapping intervals is shown in Figure 13.10; their empty infimum is not
shown.

Intervals do in fact form a complete lattice, but we do not need this fact.
It is easy to see that u is precise:

γ_ivl (iv1 u iv2) = γ_ivl iv1 ∩ γ_ivl iv2

no matter if the two intervals overlap or not.
We will at best sketch proofs to do with intervals. These proofs are con-

ceptually simple: you just need to make a case distinction over all extended
integers in the proposition. More importantly, intervals are not germane to
abstract interpretation. The interested reader should consult the Isabelle the-
ories for the proof details.

13.8.3 Arithmetic on Intervals

Addition, negation and subtraction are straightforward:

[l1, h1] + [l2, h2] =

(if [l1, h1] = ⊥ ∨ [l2, h2] = ⊥ then ⊥ else [l1 + l2, h1 + h2])

− [l , h] = [− h , − l]

iv1 − iv2 = iv1 + − iv2

So is the inverse function for addition:

inv_plus_ivl iv iv1 iv2 = (iv1 u (iv − iv2), iv2 u (iv − iv1))

We sketch why this definition meets the requirement that if i1 ∈ γ_ivl iv1,
i2 ∈ γ_ivl iv2 and i1 + i2 ∈ γ_ivl iv then i1 ∈ γ_ivl (iv1 u (iv − iv2))

= γ_ivl iv1 ∩ γ_ivl (iv − iv2) (and similarly for i2). By assumption i1 ∈
γ_ivl iv1. Moreover i1 ∈ γ_ivl (iv − iv2) = {i1. ∃ i∈γ_ivl iv . ∃ i2∈γ_ivl
iv2. i1 = i − i2} also holds, by assumptions i2 ∈ γ_ivl iv2 and i1 + i2 ∈
γ_ivl iv.

Backward analysis for “<” is more complicated because the empty intervals
need to be treated specially and because there are two cases depending on
the expected result res :: bool :

268 13 Abstract Interpretation

inv_less_ivl res iv1 iv2 =

(if res
then (iv1 u (below iv2 − [1, 1]),

iv2 u (Abs_Int2_ivl .above iv1 + [1, 1]))

else (iv1 u Abs_Int2_ivl .above iv2, iv2 u below iv1))

Abs_Int2_ivl .above [l , h] = (if [l , h] = ⊥ then ⊥ else [l , ∞])

below [l , h] = (if [l , h] = ⊥ then ⊥ else [−∞, h])
The correctness proof follows the pattern of the one for inv_plus_ivl.

For a visualization of inv_less_ivl we focus on the “>” case, i.e., ¬ res,
and consider the following situation, where iv1 = [l1, h1], iv2 = [l2, h2] and
the thick lines indicate the result:

l1 h1

l2 h2

All those points that can definitely not lead to the first interval being > the
second have been eliminated. Of course this is just one of finitely many ways
in which the two intervals can be positioned relative to each other.

The “<” case in the definition of inv_less_ivl is dual to the “>” case but
adjusted by 1 because the ordering is strict.

13.8.4 Abstract Interpretation

Now we instantiate the abstract interpreter interface with the interval domain:
num ′ = λi . [Fin i , Fin i], plus ′ = op +, test_num ′ = in_ivl where in_ivl
i [l , h] = (l 6 Fin i ∧ Fin i 6 h), inv_plus ′ = inv_plus_ivl, inv_less ′ =
inv_less_ivl. In the preceding subsections we have already discussed that all
requirements hold.

Let us now analyse some concrete programs. We mostly show the final
results of the analyses only. For a start, we can do better than the naive
constant propagation in Section 13.6.2:

′ ′x ′ ′ ::= N 42 {Some {(′ ′x ′ ′, [42, 42])}};;
IF Less (N 41) (V ′ ′x ′ ′)
THEN {Some {(′ ′x ′ ′, [42, 42])}} ′ ′x ′ ′ ::= N 5 {Some {(′ ′x ′ ′, [5, 5])}}
ELSE {None} ′ ′x ′ ′ ::= N 6 {None}
{Some {(′ ′x ′ ′, [5, 5])}}

13.8 Interval Analysis 269

This time the analysis detects that the ELSE branch is unreachable. Of course
the constant propagation in Section 10.2 can deal with this example equally
well. Now we look at examples beyond constant propagation. Here is one that
demonstrates the analysis of boolean expressions very well:

′ ′y ′ ′ ::= N 7 {Some {(′ ′x ′ ′, [−∞, ∞]), (′ ′y ′ ′, [7, 7])}};;
IF Less (V ′ ′x ′ ′) (V ′ ′y ′ ′)
THEN {Some {(′ ′x ′ ′, [−∞, 6]), (′ ′y ′ ′, [7, 7])}}

′ ′y ′ ′ ::= Plus (V ′ ′y ′ ′) (V ′ ′x ′ ′)
{Some {(′ ′x ′ ′, [−∞, 6]), (′ ′y ′ ′, [−∞, 13])}}

ELSE {Some {(′ ′x ′ ′, [7, ∞]), (′ ′y ′ ′, [7, 7])}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′)
{Some {(′ ′x ′ ′, [14, ∞]), (′ ′y ′ ′, [7, 7])}}

{Some {(′ ′x ′ ′, [−∞, ∞]), (′ ′y ′ ′, [−∞, 13])}}
Let us now analyse some WHILE loops.

{Some {(′ ′x ′ ′, [−∞, ∞])}}

WHILE Less (V ′ ′x ′ ′) (N 100)

DO {Some {(′ ′x ′ ′, [−∞, 99])}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 1) {Some {(′ ′x ′ ′, [−∞, 100])}}

{Some {(′ ′x ′ ′, [100, ∞])}}

This is very nice; all the intervals are precise and the analysis only takes three
steps to stabilize. Unfortunately this is a coincidence. The analysis of almost
the same program, but with x initialized, is less well behaved. After five steps
we have

′ ′x ′ ′ ::= N 0 {Some {(′ ′x ′ ′, [0, 0])}};;
{Some {(′ ′x ′ ′, [0, 1])}}
WHILE Less (V ′ ′x ′ ′) (N 100)

DO {Some {(′ ′x ′ ′, [0, 0])}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 1) {Some {(′ ′x ′ ′, [1, 1])}}

{None}

The interval [0, 1] will increase slowly until it reaches the invariant [0, 100]:
′ ′x ′ ′ ::= N 0 {Some {(′ ′x ′ ′, [0, 0])}};;
{Some {(′ ′x ′ ′, [0, 100])}}
WHILE Less (V ′ ′x ′ ′) (N 100)

DO {Some {(′ ′x ′ ′, [0, 99])}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 1) {Some {(′ ′x ′ ′, [1, 100])}}

{Some {(′ ′x ′ ′, [100, 100])}}

(13.1)

The result is as precise as possible, i.e., a least fixpoint, but it takes a while
to get there.

270 13 Abstract Interpretation

In general, the analysis of this loop, for an upper bound of n instead of
100, takes Θ(n) steps (if n > 0). This is not nice. We might as well run the
program directly (which this analysis more or less does). Therefore it is not
surprising that the analysis of a nonterminating program may not terminate
either. The following annotated command is the result of 50 steps:

′ ′x ′ ′ ::= N 0 {Some {(′ ′x ′ ′, [0, 0])}};;
{Some {(′ ′x ′ ′, [0, 16])}}
WHILE Less (N (− 1)) (V ′ ′x ′ ′)
DO {Some {(′ ′x ′ ′, [0, 15])}}

′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 1) {Some {(′ ′x ′ ′, [1, 16])}}
{None}

(13.2)

The interval for x keeps increasing indefinitely. The problem is that ivl is not
of finite height: [0, 0] < [0, 1] < [0, 2] < The Alexandrian solution to this is
quite brutal: if the analysis sees the beginning of a possibly infinite ascending
chain, it overapproximates wildly and jumps to a much larger point, namely
[0, ∞] in this case. An even cruder solution would be to jump directly to >
to avoid nontermination.

Exercises

Exercise 13.19. Construct a terminating program where interval analysis
does not terminate. Hint: use a loop with two initialized variables; remember
that our analyses cannot keep track of relationships between variables.

13.9 Widening and Narrowing thy

13.9.1 Widening

Widening abstracts the idea sketched at the end of the previous section: if an
iteration appears to diverge, jump upwards in the ordering to avoid nonter-
mination or at least accelerate termination, possibly at the cost of precision.
This is the purpose of the overloaded widening operator:

op 5 :: ′a ⇒ ′a ⇒ ′a such that
x 6 x 5 y and y 6 x 5 y

which is equivalent to x t y 6 x 5 y. This property is only needed for the
termination proof later on. We assume that the abstract domain provides a
widening operator.

Iteration with widening means replacing x i+1 = f x i by x i+1 = x i 5 f x i.
That is, we apply widening in each step. Pre-fixpoint iteration with widening
is defined for any type ′a that provides 6 and 5:

http://isabelle.in.tum.de/library/HOL/HOL-IMP/Abs_Int3.html

13.9 Widening and Narrowing 271

definition iter_widen :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a option where
iter_widen f = while_option (λx . ¬ f x 6 x) (λx . x 5 f x)

Comparing iter_widen with pfp, we don’t iterate f but λx . x 5 f x. The
condition ¬ f x 6 x still guarantees that if we terminate we have obtained
a pre-fixpoint, but it no longer needs to be the least one because widening
may have jumped over it. That is, we trade precision for termination. As a
consequence, Lemma 10.28 no longer applies and for the first time we may
actually obtain a pre-fixpoint that is not a fixpoint.

This behaviour of widening is visualized in Figure 13.11. The normal it-
eration of f takes a number of steps to get close to the least fixpoint of f
(where f intersects with the diagonal) and it is not clear if it will reach it in
a finite number of steps. Iteration with widening, however, boldly jumps over
the least fixpoint to some pre-fixpoint. Note that any x where f x is below
the diagonal is a pre-fixpoint.

x

f x

iteration of f
iteration with widening
narrowing iteration of f

Fig. 13.11. Widening and narrowing

Example 13.37. A simple instance of widening for intervals compares two
intervals and jumps to ∞ if the upper bound increases and to −∞ if the
lower bound decreases:

272 13 Abstract Interpretation

[l1, h1] 5 [l2, h2] = [l , h]
where l = (if l1 > l2 then −∞ else l1)

h = (if h1 < h2 then ∞ else h1)

For example: [0, 1] 5 [0, 2] = [0, ∞]

[0, 2] 5 [0, 1] = [0, 2]

[1, 2] 5 [0, 5] = [−∞, ∞]

The first two examples show that although the symbol 5 looks symmetric,
the operator need not be commutative: its two arguments are the previous
and the next value in an iteration and it is important which one is which.

The termination argument for iter_widen on intervals goes roughly like
this: if we have not reached a pre-fixpoint yet, i.e., ¬ [l2, h2] 6 [l1, h1], then
either l1 > l2 or h1 < h2 and hence at least one of the two bounds jumps to
infinity, which can happen at most twice.

Widening operators can be lifted from ′a to other types:

�
′a st : If st is the function space (Section 13.5), then

S1
5 S2 = (λx . S1 x 5 S2 x)

For the executable version of st in Section 13.6 it is

St ps1 5 St ps2 = St(map2_st_rep (op 5) ps1 ps2)

�
′a option :

None 5 x = x
x 5 None = x

Some x 5 Some y = Some (x 5 y)

�
′a acom :

C 1
5 C 2 = map2_acom (op 5) C 1 C 2

where map2_acom f combines two (structurally equal) commands into
one by combining annotations at the same program point with f :

map2_acom f C 1 C 2 =

annotate (λp. f (anno C 1 p) (anno C 2 p)) (strip C 1)

Hence we can now perform widening and thus iter_widen on our annotated
commands of type ′av st option acom. We demonstrate the effect on two
example programs. That is, we iterate λC . C 5 step_ivl > C where step_ivl
is the specialization of step ′ for intervals that came out of Section 13.8.4 (the
name step_ivl was not mentioned there). The only difference to Section 13.8.4
is the widening after each step.

Our first example is the nonterminating loop (13.2) from the previous
section. After four steps it now looks like this:

13.9 Widening and Narrowing 273

′ ′x ′ ′ ::= N 0 {Some {(′ ′x ′ ′, [0, 0])}};;
{Some {(′ ′x ′ ′, [0, 0])}}
WHILE Less (N (− 1)) (V ′ ′x ′ ′)
DO {Some {(′ ′x ′ ′, [0, 0])}}

′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 1) {Some {(′ ′x ′ ′, [1, 1])}}
{None}

Previously, in the next step the annotation at the head of the loop would
change from [0, 0] to [0, 1]; now this is followed by widening. Because
[0, 0] 5 [0, 1] = [0, ∞] we obtain

′ ′x ′ ′ ::= N 0 {Some {(′ ′x ′ ′, [0, 0])}};;
{Some {(′ ′x ′ ′, [0, ∞])}}

WHILE Less (N (− 1)) (V ′ ′x ′ ′)
DO {Some {(′ ′x ′ ′, [0, 0])}}

′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 1) {Some {(′ ′x ′ ′, [1, 1])}}
{None}

Two more steps and we have reached a pre-fixpoint:
′ ′x ′ ′ ::= N 0 {Some {(′ ′x ′ ′, [0, 0])}};;
{Some {(′ ′x ′ ′, [0, ∞])}}

WHILE Less (N (− 1)) (V ′ ′x ′ ′)
DO {Some {(′ ′x ′ ′, [0, ∞])}}

′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 1) {Some {(′ ′x ′ ′, [1, ∞])}}

{None}

This is very nice because we have actually reached the least fixpoint.
The details of what happened are shown in Table 13.1, where A0 to A4

are the five annotations from top to bottom. We start with the situation after
four steps. Each iteration step is displayed as a block of two columns: first the

f 5 f 5 f 5
A0 [0, 0] [0, 0]

A1 [0, 0] [0, 1] [0, ∞] [0, 1] [0, ∞] [0, ∞] [0, ∞]

A2 [0, 0] [0, ∞] [0, ∞] [0, ∞] [0, ∞]

A3 [1, 1] [1, ∞] [1, ∞]

A4 None None

Table 13.1. Widening example

result of applying the step function to the previous column, then the result of
widening that result with the previous column. The last column is the least
pre-fixpoint. Empty entries mean that nothing has changed.

274 13 Abstract Interpretation

Now we look at the program where previously we needed Θ(n) steps to
reach the least fixpoint. Now we reach a pre-fixpoint very quickly:

′ ′x ′ ′ ::= N 0 {Some {(′ ′x ′ ′, [0, 0])}};;
{Some {(′ ′x ′ ′, [0, ∞])}}

WHILE Less (V ′ ′x ′ ′) (N 100)

DO {Some {(′ ′x ′ ′, [0, ∞])}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 1) {Some {(′ ′x ′ ′, [1, ∞])}}

{Some {(′ ′x ′ ′, [100, ∞])}}

(13.3)

This takes only a constant number of steps, independent of the upper bound of
the loop, but the result is worse than previously (13.1): precise upper bounds
have been replaced by ∞.

13.9.2 Narrowing

Narrowing is the attempt to improve the potentially imprecise pre-fixpoint p
obtained by widening. It assumes f is monotone. Then we can just iterate f :

p > f (p) > f 2(p) > . . .

Each f i(p) is still a pre-fixpoint, and we can stop improving any time, es-
pecially if we reach a fixpoint. In Figure 13.11 you can see the effect of two
such iterations of f back from an imprecise pre-fixpoint towards the least fix-
point. As an example, start from the imprecise widening analysis (13.3): four
applications of step_ivl > take us to the least fixpoint (13.1) that we had
computed without widening and narrowing in many more steps.

We may have to stop iterating f before we reach a fixpoint if we want to
terminate (quickly) because there may be infinitely descending chains:

[0,∞] > [1,∞] > [2,∞] > . . .

This is where the overloaded narrowing operator comes in:

op 4 :: ′a ⇒ ′a ⇒ ′a such that

y 6 x =⇒ y 6 x 4 y 6 x

We assume that the abstract domain provides a narrowing operator.
Iteration with narrowing means replacing x i+1 = f x i by x i+1 = x i 4 f x i.

Now assume that x i is a pre-fixpoint of f. Then x i 4 f x i is again a pre-
fixpoint of f : because f x i 6 x i and 4 is a narrowing operator we have f x i 6
x i 4 f x i 6 x i and hence f (x i 4 f x i) 6 f x i 6 x i 4 f x i by monotonicity.
That is, iteration of a monotone function with a narrowing operator preserves
the pre-fixpoint property.

definition iter_narrow :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a option where
iter_narrow f = while_option (λx . x 4 f x < x) (λx . x 4 f x)

13.9 Widening and Narrowing 275

In contrast to widening, we are not looking for a pre-fixpoint (if we start from
a pre-fixpoint, it remains a pre-fixpoint), but we terminate as soon as we no
longer make progress, i.e., no longer strictly decrease. The narrowing operator
can enforce termination by making x 4 f x return x.

Example 13.38. The narrowing operator for intervals only changes one of the
interval bounds if it can be improved from infinity to some finite value:

[l1, h1] 4 [l2, h2] = [l , h]
where l = (if l1 = −∞ then l2 else l1)

h = (if h1 = ∞ then h2 else h1)

For example: [0, ∞] 4 [0, 100] = [0, 100]

[0, 100] 4 [0, 0] = [0, 100]

[0, 0] 4 [0, 100] = [0, 0]
Narrowing operators need not be commutative either.

The termination argument for iter_narrow on intervals is very intuitive:
finite interval bounds remain unchanged; therefore it takes at most two steps
until both bounds have become finite and iter_narrow terminates.

Narrowing operators are lifted to ′a st and ′a acom verbatim like widening
operators, with5 replaced by4. On ′a option narrowing is dual to widening:

None 4 x = None
x 4 None = None

Some x 4 Some y = Some (x 4 y)

Hence we can now perform narrowing with iter_narrow on our annotated
commands of type ′av st option acom. Starting from the imprecise result
(13.3) of widening, iter_narrow (step_ivl >) also reaches the least fixpoint
(13.1) that iterating step_ivl > had reached without the narrowing operator
(see above). In general the narrowing operator is required to ensure termina-
tion but it may also lose precision by terminating early.

13.9.3 Abstract Interpretation

The abstract interpreter with widening and narrowing is defined like AI

AI_wn c = pfp_wn (step ′ >) (bot c)

but instead of the simple iterator pfp the composition of widening and nar-
rowing is used:

pfp_wn f x =

(case iter_widen f x of None ⇒ None | Some p ⇒ iter_narrow f p)

In the monotone framework we can show partial correctness of AI_wn :

276 13 Abstract Interpretation

Lemma 13.39. AI_wn c = Some C =⇒ CS c 6 γc C

Proof. The proof is the same as for Lemma 13.25, but now we need that if
pfp_wn (step ′ >) C = Some C ′, then C ′ is a pre-fixpoint. For iter_widen
this is guaranteed by the exit condition f x 6 x. Above we have shown that if f
is monotone, then the pre-fixpoint property is an invariant of iter_narrow f .
Because f = step ′ > is monotone in the monotone framework, the narrowing
phase returns a pre-fixpoint. Thus pfp_wn returns a pre-fixpoint if it termi-
nates (returns Some). ut

13.9.4 Termination of Widening

The termination proof for iter_widen is similar to the termination proof in
Section 13.5.8. We again require a measure function m :: ′av ⇒ nat and a
height h :: nat that bounds m : m a 6 h. The key requirement is that if
we have not reached a pre-fixpoint yet, widening strictly decreases m :

¬ a2 6 a1 =⇒ m (a1
5 a2) < m a1 (13.4)

Clearly there can only be h many widening steps.
In addition we require anti-monotonicity w.r.t. 6, not <:

a1 6 a2 =⇒ m a1 > m a2

Note that this does not mean that the ordering is of finite height. Otherwise
we could not apply it to intervals further down.

Let us first sketch the intuition behind the termination proof. In Sec-
tion 13.5.8 we relied on monotonicity to argue that pre-fixpoint iteration
gives rise to a strictly increasing chain. Unfortunately, λx . x 5 f x need not be
monotone, even if f is. For example, on intervals let f be constantly [0,1]. Then
[0,0] 6 [0,1] but [0,0] 5 f [0,0] = [0,∞] 66 [0,1] = [0,1] 5 f [0,1]. Nevertheless
iter_widen gives rise to a strictly decreasing m-chain: if ¬ f x 6 x then m (x
5 f x) < m x by (13.4). This is on ′av. Therefore we need to lift (13.4) to an-
notated commands. Think in terms of tuples (a1,a2,. . .) of abstract values and
let the termination measure m ′ be the sum of all m a i, just as in Figure 13.8
and the surrounding explanation. Then ¬ (b1,b2,. . .) 6 (a1,a2,. . .) means
that there is a k such that ¬ bk 6 ak. We have a i 6 a i 5 bi for all i because
5 is a widening operator. Therefore m(a i 5 bi) 6 m a i for all i (by anti-
monotonicity) and m(ak 5 bk) < m ak (by (13.4)). Thus m ′((a1,a2,. . .) 5
(b1,b2,. . .)) = m ′(a1

5b1,a2
5b2,. . .) < m ′(a1,a2,. . .). That is, (13.4) holds

on tuples too. Now for the technical details.
Recall from Section 13.5.8 that we lifted m to m s, mo and mc. Following

the sketch above, (13.4) can be proved for these derived functions too, with
a few side conditions:

13.9 Widening and Narrowing 277

[[finite X ; fun S1 = fun S2 on − X ; ¬ S2 6 S1]]

=⇒ m s (S1
5 S2) X < m s S1 X

[[finite X ; top_ono S1 (− X); top_ono S2 (− X); ¬ S2 6 S1]]

=⇒ mo (S1
5 S2) X < mo S1 X

[[strip C 1 = strip C 2; top_onc C 1 (− vars C 1);
top_onc C 2 (− vars C 2); ¬ C 2 6 C 1]]

=⇒ mc (C 1
5 C 2) < mc C 1

The last of the above three lemmas implies termination of iter_widen f C for
C :: ′av st option acom as follows. If you set C 2 = f C 1 and assume that f
preserves the strip and top_onc properties then each step of iter_widen f C
strictly decreases mc, which must terminate because mc returns a nat.

To apply this result to widening on intervals we merely need to provide
the right m and h :

m_ivl [l , h] =
(if [l , h] = ⊥ then 3
else (if l = −∞ then 0 else 1) + (if h = ∞ then 0 else 1))

Strictly speaking m does not need to consider the ⊥ case because we have
made sure it cannot arise in an abstract state, but it is simpler not to rely on
this and cover ⊥.

Function m_ivl satisfies the required properties: m_ivl iv 6 3 and
y 6 x =⇒ m_ivl x 6 m_ivl y .

Because bot suitably initializes and step_ivl preserves the strip and
top_onc properties, this implies termination of iter_widen (step_ivl >):

∃C . iter_widen (step_ivl >) (bot c) = Some C

13.9.5 Termination of Narrowing

The proof is similar to that for widening. We require another measure function

n :: ′av ⇒ nat such that
[[a2 6 a1; a1 4 a2 < a1]] =⇒ n (a1 4 a2) < n a1 (13.5)

This property guarantees that the measure goes down with every iteration of
iter_narrow f a0, provided f is monotone and f a0 6 a0: let a2 = f a1; then
a2 6 a1 is the pre-fixpoint property that iteration with narrowing preserves
(see Section 13.9.2) and a1 4 a2 < a1 is the loop condition.

Now we need to lift this from ′av to other types. First we sketch how
it works for tuples. Define the termination measure n ′(a1,a2,. . .) = n a1

+ n a2 + To show that (13.5) holds for n ′ too, assume (b1,b2,. . .) 6
(a1,a2,. . .) and (a1,a2,. . .) 4 (b1,b2,. . .) < (a1,a2,. . .), i.e., bi 6 a i for all i,

278 13 Abstract Interpretation

a i 4 bi 6 a i for all i and ak 4 bk 6 ak for some k. Thus for all i either a i

4 bi = a i (and hence n(a i 4 bi) = n a i) or a i 4 bi < a i, which together
with bi 6 a i yields n(a i 4 bi) < n a i by (13.5). Thus n(a i 4 bi) 6 n a i

for all i. But n(ak 4 bk) < n ak, also by (13.5), and hence n ′((a1,a2,. . .) 4
(b1,b2,. . .)) = n ′(a14b1,a24b2,. . .) < n ′(a1,a2,. . .). Thus (13.5) holds for
n ′ too. Now for the technical details.

We lift n in three stages to ′av st option acom :

definition n s :: ′av st ⇒ vname set ⇒ nat where
n s S X = (

∑
x∈X . n (fun S x))

fun no :: ′av st option ⇒ vname set ⇒ nat where
no None X = 0

no (Some S) X = n s S X + 1

definition nc :: ′av st option acom ⇒ nat where
nc C = (

∑
a←annos C . no a (vars C))

Property (13.5) carries over to ′av st option acom with suitable side condi-
tions just as (13.4) carried over in the previous subsection:

[[strip C 1 = strip C 2; top_onc C 1 (− vars C 1);
top_onc C 2 (− vars C 2); C 2 6 C 1; C 1 4 C 2 < C 1]]

=⇒ nc (C 1 4 C 2) < nc C 1

This implies termination of iter_narrow f C for C :: ′av st option acom
provided f is monotone and C is a pre-fixpoint of f (which is preserved by
narrowing because f is monotone and 4 a narrowing operator) because it
guarantees that each step of iter_narrow f C strictly decreases nc.

To apply this result to narrowing on intervals we merely need to provide
the right n :

n_ivl iv = 3 − m_ivl iv

It does what it is supposed to do, namely satisfy (a strengthened version of)
(13.5): x 4 y < x =⇒ n_ivl (x 4 y) < n_ivl x. Therefore narrowing termi-
nates provided we start with a pre-fixpoint which is > outside its variables:

[[top_onc C (− vars C); step_ivl > C 6 C]]

=⇒ ∃C ′. iter_narrow (step_ivl >) C = Some C ′

Because both preconditions are guaranteed by the output of widening we ob-
tain the final termination theorem where AI_wn_ivl is AI_wn for intervals:

Theorem 13.40. ∃C . AI_wn_ivl c = Some C

13.10 Summary and Further Reading 279

Exercises

Exercise 13.20. Starting from
′ ′x ′ ′ ::= N 0 {Some {(′ ′x ′ ′, [0, 0])}};;
{Some {(′ ′x ′ ′, [0, 0])}}
WHILE Less (V ′ ′x ′ ′) (N 100)

DO {Some {(′ ′x ′ ′, [0, 0])}}
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N 1) {Some {(′ ′x ′ ′, [1, 1])}}

{None}

tabulate the three steps that step_ivl with widening takes to reach (13.3).
Follow the format of Table 13.1.

Exercise 13.21. Starting from (13.3), tabulate both the repeated application
of step_ivl > alone and of iter_narrow (step_ivl >), the latter following the
format of Table 13.1 (with 5 replaced by 4).

13.10 Summary and Further Reading

This concludes the chapter on abstract interpretation. The main points were:

� The reference point is a collecting semantics that describes for each pro-
gram point which sets of states can arise at that point.

� The abstract interpreter mimics the collecting semantics but operates on
abstract values representing (infinite) sets of concrete values. Abstract
values should form a lattice: t abstracts ∪ and models the effect of joining
two computation paths, u can reduce abstract values to model backward
analysis of boolean expressions.

� The collecting semantics is defined as a least fixpoint of a step function.
The abstract interpreter approximates this by iterating its step function.
For monotone step functions this iteration terminates if the ordering is of
finite height (or at least there is no infinitely ascending chain).

� Widening accelerates the iteration process to guarantee termination even
if there are infinitely ascending chains in the ordering, for example on
intervals. It trades precision for termination. Narrowing tries to improve
the precision lost by widening by further iterations.

Of the analyses in Chapter 10 we have only rephrased constant propaga-
tion as abstract interpretation. Definite initialization can be covered if the
collecting semantics is extended to distinguish initialized from uninitialized
variables. Our simple framework cannot accommodate live variable analysis
for two reasons. Firstly, it is a backward analysis, whereas our abstract in-
terpreter is a forward analyser. Secondly, it requires a different semantics:

280 13 Abstract Interpretation

liveness of a variable at some point is not a property of the possible values of
that variable at that point but of the operations executed after that point.

13.10.1 Further Reading

Abstract Interpretation was invented by Patrick and Radhia Cousot [22]. In
its standard form, the concrete and abstract level are related by a concretisa-
tion function γ together with an adjoint abstraction function α. This allows
the verification not just of correctness but also of optimality of an abstract
interpreter. In fact, one can even “calculate” the abstract interpreter [21].
The book by Nielson, Nielson and Hankin [61] also has a chapter on abstract
interpretation.

There are many variations, generalizations and applications of abstract
interpretation. Particularly important are relational analyses which can deal
with relations between program variables: they do not abstract (vname ⇒
val) set to vname ⇒ val set as we have done. The canonical example is poly-
hedral analysis that generalizes interval analysis to linear inequalities between
variables [23].

Our intentionally simple approach to abstract interpretation can be im-
proved in a number of respects:

� We combine the program and the annotations into one data structure and
perform all computations on it. Normally the program points are labelled
and the abstract interpreter operates on a separate mapping from labels
to annotations.

� We iterate globally over the whole program. Precision is improved by a
compositional iteration strategy: the global fixpoint iteration is replaced
by a fixpoint iteration for each loop.

� We perform widening and narrowing for all program points. Precision can
be improved if we restrict ourselves to one program point per loop.

Cachera and Pichardie [17] have formalized an abstract interpreter in Coq
that follows all three improvements. Iteration strategies and widening points
have been investigated by Bourdoncle [14] for arbitrary control-flow graphs.

Our abstract interpreter operates on a single data structure, an annotated
command. A more modular design transforms the pre-fixpoint requirement
step ′ > C 6 C into a set of inequalities over the abstract domain and solves
those inequalities by some arbitrary method. This separates the program-
ming language aspect from the mathematics of solving particular types of
constraints. For example, Gawlitza and Seidl [33] showed how to compute
least solutions of interval constraints precisely, without any widening and
narrowing.

A

Auxiliary Definitions

This appendix contains auxiliary definitions omitted from the main text.

Variables

fun lvars :: com ⇒ vname set where
lvars SKIP = {}

lvars (x ::= e) = {x }
lvars (c1;; c2) = lvars c1 ∪ lvars c2
lvars (IF b THEN c1 ELSE c2) = lvars c1 ∪ lvars c2
lvars (WHILE b DO c) = lvars c

fun rvars :: com ⇒ vname set where
rvars SKIP = {}

rvars (x ::= e) = vars e
rvars (c1;; c2) = rvars c1 ∪ rvars c2
rvars (IF b THEN c1 ELSE c2) = vars b ∪ rvars c1 ∪ rvars c2
rvars (WHILE b DO c) = vars b ∪ rvars c

definition vars :: com ⇒ vname set where
vars c = lvars c ∪ rvars c

Abstract Interpretation

fun strip :: ′a acom ⇒ com where
strip (SKIP {P }) = SKIP
strip (x ::= e {P }) = x ::= e

282 A Auxiliary Definitions

strip (C 1;;C 2) = strip C 1;; strip C 2

strip (IF b THEN {P1} C 1 ELSE {P2} C 2 {P }) =

IF b THEN strip C 1 ELSE strip C 2

strip ({I } WHILE b DO {P } C {Q}) = WHILE b DO strip C

fun annos :: ′a acom ⇒ ′a list where
annos (SKIP {P }) = [P]

annos (x ::= e {P }) = [P]

annos (C 1;;C 2) = annos C 1 @ annos C 2

annos (IF b THEN {P1} C 1 ELSE {P2} C 2 {Q}) =

P1 # annos C 1 @ P2 # annos C 2 @ [Q]

annos ({I } WHILE b DO {P } C {Q}) = I # P # annos C @ [Q]

fun asize :: com ⇒ nat where
asize SKIP = 1

asize (x ::= e) = 1

asize (C 1;;C 2) = asize C 1 + asize C 2

asize (IF b THEN C 1 ELSE C 2) = asize C 1 + asize C 2 + 3

asize (WHILE b DO C) = asize C + 3

definition shift :: (nat ⇒ ′a) ⇒ nat ⇒ nat ⇒ ′a where
shift f n = (λp. f (p+n))

fun annotate :: (nat ⇒ ′a) ⇒ com ⇒ ′a acom where
annotate f SKIP = SKIP {f 0}
annotate f (x ::= e) = x ::= e {f 0}
annotate f (c1;;c2) = annotate f c1;; annotate (shift f (asize c1)) c2
annotate f (IF b THEN c1 ELSE c2) =

IF b THEN {f 0} annotate (shift f 1) c1
ELSE {f (asize c1 + 1)} annotate (shift f (asize c1 + 2)) c2
{f (asize c1 + asize c2 + 2)}

annotate f (WHILE b DO c) =

{f 0} WHILE b DO {f 1} annotate (shift f 2) c {f (asize c + 2)}

fun map_acom :: (′a ⇒ ′b) ⇒ ′a acom ⇒ ′b acom where
map_acom f (SKIP {P }) = SKIP {f P }

map_acom f (x ::= e {P }) = x ::= e {f P }

map_acom f (C 1;;C 2) = map_acom f C 1;; map_acom f C 2

map_acom f (IF b THEN {P1} C 1 ELSE {P2} C 2 {Q}) =

IF b THEN {f P1} map_acom f C 1 ELSE {f P2} map_acom f C 2

{f Q}

map_acom f ({I } WHILE b DO {P } C {Q}) =

{f I } WHILE b DO {f P } map_acom f C {f Q}

B

Symbols

[[[| \<lbrakk>
]] |] \<rbrakk>

=⇒ ==> \<Longrightarrow>∧
!! \<And>

≡ == \<equiv>
λ % \<lambda>
⇒ => \<Rightarrow>
∧ & \<and>
∨ | \<or>
−→ --> \<longrightarrow>
→ -> \<rightarrow>
¬ ~ \<not>
6= ~= \<noteq>
∀ ALL \<forall>
∃ EX \<exists>
6 <= \<le>
× * \<times>
∈ : \<in>
/∈ ~: \<notin>
⊆ <= \<subseteq>
⊂ < \<subset>
∪ Un \<union>
∩ Int \<inter>⋃

UN, Union \<Union>⋂
INT, Inter \<Inter>

t sup \<squnion>
u inf \<sqinter>⊔

SUP, Sup \<Squnion>d
INF, Inf \<Sqinter>

> \<top>
⊥ \<bottom>

Table B.1. Mathematical symbols, their ascii equivalents and internal names

C

Theories

The following table shows which sections are based on which theories in the
directory src/HOL/IMP of the Isabelle distribution.

3.1 AExp
3.2 BExp
3.3 ASM
7.1 Com
7.2 Big_Step
7.3 Small_Step
8.1 Compiler
8.2 Compiler
8.3 Compiler
8.4 Compiler2
9.1 Types
9.2.1 Sec_Type_Expr
9.2.2 Sec_Typing
9.2.6 Sec_TypingT
10.1.1 Def_Init
10.1.2 Def_Init_Exp
10.1.3 Def_Init_Small
10.1.4 Def_Init_Big
10.2 Fold
10.3 Live
10.4 Live_True
11.0 Denotational

12.1 Hoare_Examples
12.2.2 Hoare
12.2.3 Hoare_Examples
12.3 Hoare_Sound_Complete
12.4 VCG
12.5 Hoare_Total
13.2 ACom
13.3 Collecting
13.3.3 Complete_Lattice
13.4 Abs_Int1_parity
13.4.2 Abs_Int0
13.5 Abs_Int0
13.5.1 Collecting
13.6 Abs_Int1
13.6.1 Abs_Int1_parity
13.6.2 Abs_Int1_const
13.6.3 Abs_State
13.7 Abs_Int2
13.8 Abs_Int2_ivl
13.9 Abs_Int3

References

1. Samson Abramsky and Achim Jung. Domain theory. In S. Abramsky, D. Gab-
bay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 3, pages 1–168. Oxford University Press, 1994.

2. Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey Ullman. Compilers: Princi-
ples, Techniques, & Tools. Addison-Wesley, 2nd edition, 2007.

3. Eyad Alkassar, Mark Hillebrand, Dirk Leinenbach, Norbert Schirmer, Artem
Starostin, and Alexandra Tsyban. Balancing the load — leveraging a semantics
stack for systems verification. Journal of Automated Reasoning: Special Issue
on Operating System Verification, 42, Numbers 2–4:389–454, 2009.

4. Eyad Alkassar, Mark Hillebrand, Wolfgang Paul, and Elena Petrova. Auto-
mated verification of a small hypervisor. In Gary Leavens, Peter O’Hearn, and
Sriram Rajamani, editors, Proceedings of Verified Software: Theories, Tools
and Experiments 2010, volume 6217 of LNCS, pages 40–54. Springer, 2010.

5. Pierre America and Frank de Boer. Proving total correctness of recursive pro-
cedures. Information and Computation, 84:129–162, 1990.

6. Krzysztof Apt. Ten Years of Hoare’s Logic: A Survey — Part I. ACM Trans.
Program. Lang. Syst., 3(4):431–483, 1981.

7. Krzysztof Apt. Ten Years of Hoare’s Logic: A Survey — Part II: Nondetermin-
ism. Theoretical Computer Science, 28:83–109, 1984.

8. Krzysztof Apt, Frank de Boer, and Ernst-Rüdiger Olderog. Verification of
Sequential and Concurrent Programs. Springer, 3rd edition, 2009.

9. Clemens Ballarin. Tutorial on Locales and Locale Interpretation. http://
isabelle.in.tum.de/doc/locales.pdf.

10. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verifica-
tion of Object-Oriented Software: The KeY Approach, volume 4334 of LNCS.
Springer, 2007.

11. Nick Benton, Andrew Kennedy, and Carsten Varming. Some domain theory
and denotational semantics in Coq. In S. Berghofer, T. Nipkow, C. Urban,
and M. Wenzel, editors, Theorem Proving in Higher Order Logics (TPHOLs
2009), volume 5674 of LNCS, pages 115–130. Springer, 2009.

12. William R. Bevier, Warren A. Hunt Jr., J. Strother Moore, and William D.
Young. An approach to systems verification. J. Autom. Reasoning, 5(4):411–
428, 1989.

http://isabelle.in.tum.de/doc/locales.pdf
http://isabelle.in.tum.de/doc/locales.pdf

288 References

13. Richard Bornat. Proving pointer programs in Hoare Logic. In R. Backhouse
and J. Oliveira, editors, Mathematics of Program Construction (MPC 2000),
volume 1837 of LNCS, pages 102–126. Springer, 2000.

14. François Bourdoncle. Efficient chaotic iteration strategies with widenings. In
D. Bjørner, Manfred M. Broy, and I. Pottosin, editors, Formal Methods in
Programming and Their Applications, volume 735 of LNCS, pages 128–141.
Springer, 1993.

15. David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

16. Rod Burstall. Some techniques for proving correctness of programs which alter
data structures. In B. Meltzer and D. Michie, editors, Machine Intelligence 7,
pages 23–50. Edinburgh University Press, 1972.

17. David Cachera and David Pichardie. A certified denotational abstract inter-
preter. In M. Kaufmann and L. Paulson, editors, Interactive Theorem Proving
(ITP 2010), volume 6172 of LNCS, pages 9–24. Springer, 2010.

18. Ellis Cohen. Information transmission in computational systems. In Proceedings
of the sixth ACM symposium on Operating systems principles (SOSP’77),
pages 133–139, West Lafayette, Indiana, USA, 1977. ACM.

19. Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A prac-
tical system for verifying concurrent C. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Markus Wenzel, editors, Theorem Proving in Higher
Order Logics (TPHOLs 2009), volume 5674 of LNCS, pages 23–42, Munich,
Germany, 2009. Springer.

20. Stephen Cook. Soundness and completeness of an axiom system for program
verification. SIAM J. on Computing, 7:70–90, 1978.

21. Patrick Cousot. The calculational design of a generic abstract interpreter. In
Broy and Steinbrüggen, editors, Calculational System Design. IOS Press, 1999.

22. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Proc. 4th ACM Symp. Principles of Programming Languages, pages
238–252, 1977.

23. Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Proc. 5th ACM Symp. Principles of Pro-
gramming Languages, pages 84–97, 1978.

24. Marc Daumas, Laurence Rideau, and Laurent Théry. A generic library for
floating-point numbers and its application to exact computing. In R. Boulton
and P. Jackson, editors, Theorem Proving in Higher Order Logics (TPHOLs
2001), volume 2152 of LNCS, pages 169–184. Springer, 2001.

25. Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In TACAS, volume 4963 of LNCS, pages 337–340, Budapest, Hungary, March
2008. Springer.

26. Dorothy E. Denning. A lattice model of secure information flow. Communica-
tions of the ACM, 19(5):236–243, May 1976.

27. Edsger W. Dijkstra. Go to statement considered harmful. Communications of
the ACM, 11(3):147–148, March 1968.

28. Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

References 289

29. Gidon Ernst, Gerhard Schellhorn, Dominik Haneberg, Jörg Pfähler, and Wolf-
gang Reif. A formal model of a virtual filesystem switch. In Proc. 7th SSV,
pages 33–45, 2012.

30. Robert Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,Math-
ematical Aspects of Computer Science, volume 19 of Proceedings of Symposia
in Applied Mathematics, pages 19–32. American Mathematical Society, 1967.

31. Anthony Fox. Formal specification and verification of ARM6. In David Basin
and Burkhart Wolff, editors, Proceedings of the 16th Int. Conference on Theo-
rem Proving in Higher Order Logics (TPHOLs), volume 2758 of LNCS, pages
25–40, Rome, Italy, September 2003. Springer.

32. Anthony Fox and Magnus Myreen. A trustworthy monadic formalization of
the ARMv7 instruction set architecture. In Matt Kaufmann and Lawrence C.
Paulson, editors, 1st Int. Conference on Interactive Theorem Proving (ITP),
volume 6172 of LNCS, pages 243–258, Edinburgh, UK, July 2010. Springer.

33. Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through
strategy iteration. In Rocco De Nicola, editor, Programming Languages and
Systems, ESOP 2007, volume 4421 of LNCS, pages 300–315. Springer, 2007.

34. Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1):173–
198, 1931.

35. Joseph A. Goguen and José Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

36. Michael J.C. Gordon. HOL: A machine oriented formulation of higher-order
logic. Technical Report 68, University of Cambridge, Computer Laboratory,
1985.

37. Michael J.C. Gordon. Mechanizing programming logics in higher order logic. In
G. Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware
Verification and Automated Theorem Proving. Springer, 1989.

38. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, 3rd edition. Addison-Wesley, 2005.

39. Carl Gunter. Semantics of programming languages: structures and techniques.
MIT Press, 1992.

40. Florian Haftmann. Haskell-style type classes with Isabelle/Isar. http:
//isabelle.in.tum.de/doc/classes.pdf.

41. C.A.R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12:567–580,583, 1969.

42. John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 3rd edition, 2006.

43. Brian Huffman. A purely definitional universal domain. In S. Berghofer, T. Nip-
kow, C. Urban, and M. Wenzel, editors, Theorem Proving in Higher Order
Logics (TPHOLs 2009), volume 5674 of LNCS, pages 260–275. Springer, 2009.

44. Michael Huth and Mark Ryan. Logic in Computer Science. Cambridge Uni-
versity Press, 2004.

45. Atshushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java:
a minimal core calculus for Java and GJ. In Proceedings of the 14th ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applications, OOPSLA ’99, pages 132–146. ACM, 1999.

http://isabelle.in.tum.de/doc/classes.pdf
http://isabelle.in.tum.de/doc/classes.pdf

290 References

46. Gilles Kahn. Natural semantics. In STACS 87: Symp. Theoretical Aspects of
Computer Science, volume 247 of LNCS, pages 22–39. Springer, 1987.

47. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal Ver-
ification of an OS Kernel. In Jeanna Neefe Matthews and Thomas E. Anderson,
editors, Proc. 22nd ACM Symposium on Operating Systems Principles 2009,
pages 207–220. ACM, 2009.

48. Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like
language, virtual machine and compiler. ACM Trans. Program. Lang. Syst.,
28(4):619–695, 2006.

49. Alexander Krauss. Defining Recursive Functions in Isabelle/HOL. http:
//isabelle.in.tum.de/doc/functions.pdf.

50. Alexander Krauss. Recursive definitions of monadic functions. In A. Bove,
E. Komendantskaya, and M. Niqui, editors, Proc. Workshop on Partiality and
Recursion in Interactive Theorem Provers, volume 43 of EPTCS, pages 1–13,
2010.

51. Butler W. Lampson. A note on the confinement problem. Communications of
the ACM, 16(10):613–615, October 1973.

52. K. Rustan M. Leino. Dafny: An automatic program verifier for functional cor-
rectness. In LPAR-16, volume 6355 of LNCS, pages 348–370. Springer, 2010.

53. Xavier Leroy. Formal certification of a compiler back-end or: programming a
compiler with a proof assistant. In Proc. 33rd ACM Symposium on Principles
of Programming Languages, pages 42–54. ACM, 2006.

54. Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification, Java SE 7 Edition. Addison-Wesley, February 2013.

55. Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order
logic. Information and Computation, 199:200–227, 2005.

56. Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences (JCCS), 17(3):348–375, 1978.

57. Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Ed-
ward Gan. Rocksalt: better, faster, stronger SFI for the x86. In Proceedings of
the 33rd ACM SIGPLAN conference on Programming Language Design and
Implementation, PLDI ’12, pages 395–404, New York, NY, USA, 2012. ACM.

58. Steven Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

59. Olaf Müller, Tobias Nipkow, David von Oheimb, and Oskar Slotosch. HOLCF
= HOL + LCF. J. Functional Programming, 9:191–223, 1999.

60. Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4: from
general purpose to a proof of information flow enforcement. In IEEE Sympo-
sium on Security and Privacy, pages 415–429, 2013.

61. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Pro-
gram Analysis. Springer, 1999.

62. Hanne Riis Nielson and Flemming Nielson. Semantics With Applications: A
Formal Introduction. Wiley, 1992.

63. Hanne Riis Nielson and Flemming Nielson. Semantics with Applications. An
Appetizer. Springer, 2007.

http://isabelle.in.tum.de/doc/functions.pdf
http://isabelle.in.tum.de/doc/functions.pdf

References 291

64. Tobias Nipkow. What’s in Main. http://isabelle.in.tum.de/doc/main.pdf.
65. Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics text-

book. In V. Chandru and V. Vinay, editors, Foundations of Software Technol-
ogy and Theoretical Computer Science, volume 1180 of LNCS, pages 180–192.
Springer, 1996.

66. Tobias Nipkow. Hoare logics for recursive procedures and unbounded nondeter-
minism. In J. Bradfield, editor, Computer Science Logic (CSL 2002), volume
2471 of LNCS, pages 103–119. Springer, 2002.

67. Tobias Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and
R. Steinbrüggen, editors, Proof and System-Reliability, pages 341–367. Kluwer,
2002.

68. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of Lect. Notes in Comp.
Sci. Springer-Verlag, 2002.

69. Tobias Nipkow and Leonor Prensa Nieto. Owicki/Gries in Isabelle/HOL.
In J.-P. Finance, editor, Fundamental Approaches to Software Engineering
(FASE’99), volume 1577 of LNCS, pages 188–203. Springer, 1999.

70. G. D. Plotkin. A structural approach to operational semantics. Technical report,
University of Aarhus, 1981.

71. Gordon D. Plotkin. The origins of structural operational semantics. J. Log.
Algebr. Program., 60-61:3–15, 2004.

72. Gordon D. Plotkin. A structural approach to operational semantics. J. Log.
Algebr. Program., 60-61:17–139, 2004.

73. Wolfgang Reif. The KIV system: Systematic construction of verified software.
In Deepak Kapur, editor, 11th International Conference on Automated De-
duction (CADE), volume 607 of LNCS, pages 753–757. Springer, June 1992.

74. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. 17th IEEE Symposium on Logic in Computer Science (LICS 2002),
pages 55–74, 2002.

75. Alejandro Russo and Andrei Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. In Proceedings of the 23rd IEEE Computer Security Foundations
Symposium (CSF), pages 186–199. IEEE Computer Society, 2010.

76. Andrei Sabelfeld and Andrew Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

77. Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back:
Riding the roller coaster of information-flow control research. In A. Pnueli,
I. Virbitskaite, and A. Voronkov, editors, Perspectives of Systems Informatics,
7th International Andrei Ershov Memorial Conference (PSI), volume 5947 of
LNCS, pages 352–365. Springer, 2009.

78. Norbert Schirmer. Verification of Sequential Imperative Programs in Isa-
belle/HOL. PhD thesis, Technische Universität München, 2006.

79. David Schmidt. Denotational semantics: A methodology for language devel-
opment. Allyn and Bacon, 1986.

80. Thomas Schreiber. Auxiliary variables and recursive procedures. In TAP-
SOFT’97: Theory and Practice of Software Development, volume 1214 of
LNCS, pages 697–711. Springer, 1997.

http://isabelle.in.tum.de/doc/main.pdf

292 References

81. Edward Schwartz, Thanassis Avgerinos, and David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In Proc. IEEE Symposium on Security
and Privacy, pages 317–331. IEEE Computer Society, 2010.

82. Dana Scott. Outline of a mathematical theory of computation. In Information
Sciences and Systems: Proc. 4th Annual Princeton Conference, pages 169–
176. Princeton University Press, 1970.

83. Dana Scott and Christopher Strachey. Toward a mathematical semantics for
computer languages. Programming Research Group Technical Monograph PRG-
6, Oxford University Computing Lab., 1971.

84. Thomas Sewell, Magnus Myreen, and Gerwin Klein. Translation validation for
a verified OS kernel. In PLDI, pages 471–481, Seattle, Washington, USA, June
2013. ACM.

85. Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
J. Math., 5:285–309, 1955.

86. Robert Tennent. Denotational semantics. In S. Abramsky, D. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
pages 169–322. Oxford University Press, 1994.

87. Harvey Tuch. Formal Memory Models for Verifying C Systems Code. PhD
thesis, School of Computer Science and Engineering, University of NSW, Syd-
ney, Australia, August 2008.

88. Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation
logic. In Martin Hofmann and Matthias Felleisen, editors, Proceedings of the
34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 97–108, Nice, France, January 2007. ACM.

89. D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of computer security, 4(2/3):167–188, 1996.

90. Dennis Volpano and Geoffrey Smith. Eliminating covert flows with minimum
typings. In Proceedings of the 10th IEEE workshop on Computer Security
Foundations, CSFW ’97, pages 156–169. IEEE Computer Society, 1997.

91. Dennis M. Volpano and Geoffrey Smith. A type-based approach to program
security. In Proc. 7th Int. Joint Conference CAAP/FASE on Theory and
Practice of Software Development (TAPSOFT ’97), volume 1214 of LNCS,
pages 607–621. Springer, 1997.

92. Makarius Wenzel. The Isabelle/Isar Reference Manual. http://isabelle.in.
tum.de/doc/isar-ref.pdf.

93. Glynn Winskel. The Formal Semantics of Programming Languages. MIT
Press, 1993.

http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

Index

[[]] 283
=⇒ 6, 283∧

6, 283
≡ 283
λ 283
⇒ 283
∧ 37, 283
∨ 37, 283
−→ 37, 283
→ 283
¬ 37, 283
6= 283
∀ 37, 283
∃ 37, 283
6 173, 283
× 283
∈ 38, 283
/∈ 283
⊆ 38, 283
⊂ 283
∪ 38, 283
∩ 38, 283⋃

38, 283⋂
38, 283

t 237, 283
u 260, 283⊔

231, 283d
231, 283

> 231, 237, 283
⊥ 231, 260, 283
f (a := b) 29
<> 29

<x := i> 29
{} 38
f ‘ A 39
{t |x . P } 38
{x . P } 38
‘ ...‘ 60
{ ... } (proof block) 60
c1;; c2 76
x ::= a 76
(c, s) ⇒ t 78
c ∼ c ′ 82
(c, s) → (c ′, s ′) 86
(c, s) →∗ (c ′, s ′) 87
P ` c → c ′ 97
P ` c →∗ c ′ 98
xs !! i 96
P ` c →^n c ′ 106
Γ ` a : τ 121
Γ ` b 121
Γ ` c 122
Γ ` s 124
l ` c 131, 137
l ` ′ c 134, 139
s = s ′ (< l) 130
s = s ′ (6 l) 130
` c : l 135
f = g on X 168
r © s 180
{P } c {Q} 191
P [a/x] 194
s [a/x] 200
|= {P } c {Q} 199

294 Index

` {P } c {Q} 200
|=t {P } c {Q} 212
`t {P } c {Q} 212
γ_fun 241
γ_option 241
γ 237
γc 243
γo 243
γs 243
[l ,h] 265
5 270
4 274

abbreviation 17
abstract domain 236
abstract state 239
abstract syntax 28
abstract syntax tree 28
abstract value 236
acomp 99
ADD 96
aexp 28
AI 246
And 32
anno 225
annos 225, 282
annotate 225, 282
annotated command 208, 220
anti-monotonicity 132, 249
antisymmetric 173
arbitrary : 21, 68
arith 41
asem 242
assertion 193
Assign 76, 78, 200
Assign ′ 201
assms 56
assn 199
assume 53
assumes 55
assumption 50
auto 39
available definitions 172
aval 29
aval ′ ′ 262
aval ′ 244
axiomatic semantics 191

backchaining 43
backward analysis 178
Bc 32
bcomp 100
bexp 32
big-step semantics 77
blast 40
bool 7
bot 246
bottom element 260
bsem 242
bury 169
bval 33
by 53

card 39
case 62–69
case analysis 56, 61–62
case expression 16
case ... of 16
?case 63–69
cases 57, 62–69
ccomp 102
chain 184
chain-complete partial order 189
collecting semantics 221
com 76
com_den 180
command 75

equivalence 82
comment 11
complete induction 107
computation induction 18
concrete syntax 27
concretisation function 237
config 97
configuration 85
confinement 133
conform 123
congruence 83
Cons 14
conseq 200
consequence rule 196
constant folding 29, 146
continuity 184
continuous 184, 189
covert channel 128, 136

Index 295

cpo 189
CS 233

D 147, 180
datatype 15
dead variable 165
definite initialization 145
definition 17
denotational semantics 179
derivation tree 79
dest : 45
deterministic 84

equality 6
equivalence relation 83
exec1 97
exits 106
extended integers 265
extensionality 205

fact 54
False 7
false alarm 220
fastforce 40
final 89
finite 39
fix 53, 57
fixes 55
fixpoint 173
formula 6
forward analysis 178
from 53
fun 253
fun 17

generate and kill analysis 167
greatest lower bound 231

have 53
hd 14
head 14
height of ordering 249
hence 55
Hoare logic 191
completeness 206
completeness (total) 214
incompleteness 206
proof system 194

soundness 204
soundness (total) 213

Hoare triple 191
derivable 194
valid 199
valid (total) 212

.hyps 66

Ic 117
Id 180
iexec 97
IF 76
If 76, 200
IfFalse 78
IfTrue 78
IH 9
.IH 64, 66
IMP 75
imports 6
induction 16, 62–69
induction heuristics 19
.induct 18
induction ... rule : 19, 48, 66, 68
inductive definition 45–51
infimum 231, 260
information flow control 128
inner syntax 7
instr 96
int 5
interval analysis 264
intro 44
introduction rule 43
.intros 48
inv_aval ′ 262
inv_bval ′ 263
inv_less ′ 263
inv_plus ′ 261
invariant 195
is 58
Isar 53
isuccs 105
Ity 121
Iv 117
ivl 265

jedit 4
JMP 96

296 Index

JMPGE 96
JMPLESS 96
join 237
judgement 78

Kleene fixpoint theorem 185
Knaster-Tarski fixpoint theorem 174,

231, 233

L 165, 174
language-based security 128
lattice 260
bounded 260
complete 231, 233

least element 173
least upper bound 231
lemma 9
lemma 55
length 14
Less 32
let 59
level 129
lfp 174
linear arithmetic 41
list 10
live variable 165
LOAD 96
LOADI 96
locale 242
lvars 281

Main 7
map 14
map_acom 225, 282
may analysis 178
meet 260
metis 41
mono 174
monotone 173
monotone framework 247
moreover 60
must analysis 178

N 28
narrowing operator 274
nat 8
natural deduction 44

Nil 14
non-deterministic 84
None 16
noninterference 129
Not 32
note 61
num ′ 243

obtain 58
OF 44
of 42
operational semantics 77
option 16
outer syntax 7

parent theory 7
partial correctness 193
partial order 173
pfp 246
Plus 28
plus ′ 243
point free 188
polymorphic 10
post 225
postcondition 192
strongest 207

pre 208
pre-fixpoint 173
precondition 192
weakest 204
weakest liberal 204

.prems 64, 66
preservation 123
program counter 96
exits 106
successors 105

progress 123
proof 53

qed 53
quantifier 6
quotient type 257

raw proof block 60
Rc 117
reflexive 83, 173
rewrite rule 22

Index 297

rewriting 22
Rty 121
rule 9
rule 43, 44
rule application 43
rule induction 46–50, 64–69
rule inversion 67–69
Rv 117
rvars 281

sec 129, 130
semilattice 237
separation logic 216
Seq 76, 78, 200
set 38, 39
set comprehension 38
show 53
shows 55
side condition 51
simp 23
simplification 21
simplification rule 21
simplifier 22
simulation 103
single-valued 187
size 96
SKIP 76
Skip 78, 200
Sledgehammer 41
small-step semantics 85
Some 16
split : 25
.split 25
st 239, 257
st_rep 256
stack 97
stack underflow 36, 52
state 28
state 28
Step 242
step 226, 242
step ′ 244
STORE 96
string 15
strip 208, 225, 281
structural induction 11, 16, 62–64
structurally equal 232

substitution lemma 32, 200
subsumption rule 132
Suc 8
succs 105
supremum 231, 237
symmetric 83
syntax-directed 122

tail 14
taint analysis 141
taval 118
tbval 119
term 5
test_num ′ 261
then 55
theorem 9
theory 6
theory 6
theory file 7
?thesis 59
this 55
thus 55
tl 14
top element 237
total correctness 193
transitive 83, 173
True 7
ty 121
tyenv 121
type annotation 6
type class 238

instantiation 238
type constraint 6
type derivation 122
type inference 6
type safe 116
type soundness 116

ultimately 60
unification 43
unknown 9, 42
update 253
using 55

V 28
val 28
valid Hoare triple 192

298 Index

value 10
values 80
vars 147, 281
vc 209
VCG 208
verification condition 208
verification condition generator 208
vname 28

where 43
WHILE 76

While 76, 200
while 176
While ′ 201
while_option 246
WhileFalse 78
WhileTrue 78
widening operator 270
with 55
wp 204
wpt 213

	Part I Isabelle
	Introduction
	Programming and Proving
	Basics
	Types bool, nat and list
	Type and Function Definitions
	Induction Heuristics
	Simplification

	Case Study: IMP Expressions
	Arithmetic Expressions
	Boolean Expressions
	Stack Machine and Compilation

	Logic and Proof Beyond Equality
	Formulas
	Sets
	Proof Automation
	Single Step Proofs
	Inductive Definitions

	Isar: A Language for Structured Proofs
	Isar by Example
	Proof Patterns
	Streamlining Proofs
	Case Analysis and Induction

	Part II Semantics
	Introduction
	IMP: A Simple Imperative Language
	IMP Commands
	Big-Step Semantics
	Small-Step Semantics
	Summary and Further Reading

	Compiler
	Instructions and Stack Machine
	Reasoning About Machine Executions
	Compilation
	Preservation of Semantics
	Summary and Further Reading

	Types
	Typed IMP
	Security Type Systems
	Summary and Further Reading

	Program Analysis
	Definite Initialization Analysis
	Constant Folding and Propagation
	Live Variable Analysis
	True Liveness
	Summary and Further Reading

	Denotational Semantics
	A Relational Denotational Semantics
	Summary and Further Reading

	Hoare Logic
	Proof via Operational Semantics
	Hoare Logic for Partial Correctness
	Soundness and Completeness
	Verification Condition Generation
	Hoare Logic for Total Correctness
	Summary and Further Reading

	Abstract Interpretation
	Informal Introduction
	Annotated Commands
	Collecting Semantics
	Abstract Values
	Generic Abstract Interpreter
	Executable Abstract States
	Analysis of Boolean Expressions
	Interval Analysis
	Widening and Narrowing
	Summary and Further Reading

	Auxiliary Definitions
	Symbols
	Theories
	References
	Index

