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Abstract

We describe how we machine-checked the admissibility of the stan-
dard structural rules of weakening, contraction and cut for multiset-
based sequent calculi for the unimodal logics S4, S4.3 and K4De, as
well as for the bimodal logic S4C recently investigated by Mints. Our
proofs for both S4 and S4.3 appear to be new while our proof for S4C
is different from that originally presented by Mints, and appears to
avoid the complications he encountered. The paper is intended to be
an overview of how to machine-check proof theory for readers with a
good understanding of proof theory.
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1 Introduction

Sequent calculi provide a rigorous basis for meta-theoretic studies of various
logics. The central theorem is cut-elimination/admissibility, which states
that detours through lemmata can be avoided, since it can help to show
many important logical properties like consistency, interpolation, and Beth
definability. Cut-free sequent calculi are also used for automated deduction,
for nonclassical extensions of logic programming, and for studying the conn-
ection between normalising lambda calculi and functional programming. Se-
quent calculi, and their extensions, therefore play an important role in logic
and computation.

Meta-theoretic reasoning about sequent calculi is error-prone because it
involves checking many combinatorial cases, with some being very difficult,
but many being very similar. Invariably, authors resort to expressions like
“the other cases are similar”, or “we omit details”. The literature contains
many examples of meta-theoretic proofs with serious and subtle errors in the
original pencil-and-paper proofs. For example, the cut-elimination theorem
for the modal “provability logic” GL, where 2ϕ can be read as “ϕ is provable
in Peano Arithmetic”, has a long and chequered history which has only
recently been resolved [GR08].

Here, we describe how we formalised cut-elimination for traditional,
propositional, multiset-based sequent calculi without explicit structural rules
for the propositional modal logics S4, S4.3, K4De and S4C using the inter-
active proof-assistant Isabelle/HOL. As far as we know, the proofs for S4
and S4.3 are new, and avoid the complexities of previous proofs for these
logics. Our results also confirm the recent claim of cut-elimination for S4C
due to Mints, although our proof is different, and avoids the complications
he encountered in his proofs.

In Section 2.1, we briefly describe traditional sequent calculi, discuss the
need for multisets, and describe the general form of our main theorems. In
Section 2.2 we describe the modal logics we study. In Section 2.3 we give a
brief overview of how interactive proof assistants work. In Section 3 we show
how we encode formulae, sequents and rules, showing a sequent rule as an
example. In Section 4 we describe how we encoded the notion of derivability,
giving rise to what we call “implicit derivations”. In Section 4.4 we show how
we encoded “explicit derivations” as concrete tree data structures, and the
functions used to reason about them. In Section 5 we describe how we gener-
alised the forms of our sequent rules to easily capture rule skeletons extended
with arbitrary contexts which are essential to make weakening admissible.
In Section 6 we describe how we encoded the properties of weakening, in-
vertible of some rules, and contraction in Isabelle. In Section 7 we describe
how we generalised our previous work on explicit derivations to facilitate in-
ductive proof of properties (such as the admissibility of contraction or cut),
and in Section 8 we describe this further specifically for cut-admissibility.
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In Sections 9 to 12 we describe the cut-admissibility proofs for the specific
logics S4, S4.3, K4De and S4C. The remaining sections discuss related work
and conclude.

We assume the reader is familiar with basic proof-theory and higher-
order logic, but assume that the reader is a novice in interactive proof assis-
tants. Our Isabelle code can be found at http://users.rsise.anu.edu.

au/~jeremy/isabelle/2005/seqms/. Some of this work was reported in-
formally in [Gor09] and also, more formally, in [DG10].

2 Preliminaries

2.1 Sequents Built From Multisets Versus Sets

Proof-theorists typically work with sequents Γ ` ∆ where Γ and ∆ are “col-
lections” of formulae. The “collections” found in the literature increase in
complexity from simple sets for classical logic [Gen35], to multisets for linear
logic [Gir87], to ordered lists for substructural logics [DSH93], to complex
tree structures for display logics [Bel82]. A sequent rule typically has a
rule name, a (finite) number of premises, a side-condition and a conclusion.
Rules are read top-down as “if all the premises hold then the conclusion
holds”. A derivation of the judgement Γ ` ∆ is typically a finite tree of
judgements with root Γ ` ∆ where parents are obtained from children by
“applying a rule”. We use “derivation” to refer to a proof within a calculus,
reserving “proof” for a meta-theoretic proof of a theorem about the calculus.

Sequent calculi typically contain three structural rules called weaken-
ing, contraction and cut. These rules are bad for automated reasoning using
backward proof-search since they can be applied at any time. Thus for back-
ward proof-search, we are interested in sequent calculi which do not contain
explicit rules for weakening, contraction and cut. The traditional way to
design such calculi is to assume that sequents are built out of multisets,
omit these rules from the calculus itself, and prove that each of these rules
is admissible. That is, for each rule, we have to prove that the conclusion
sequent is derivable if each of its premises are derivable. For example, our
work does not regard the cut rules shown below as being part of the system:

Γ ` A,∆ Γ, A ` ∆
(cut)

Γ ` ∆

Γ1 ` A,∆1 Γ2, A ` ∆2(cut)
Γ1,Γ2 ` ∆1,∆2

Thus our results will be lemmata of the form: if Γ ` A,∆ is (cut-free)
derivable and Γ, A ` ∆ is (cut-free) derivable then Γ ` ∆ is (cut-free)
derivable.

2.2 Our Modal Logics

The sequent calculi we study are designed to reason about the meta-theory
of the basic modal logics S4, S4.3, K4De (called GTD by Mints) and S4C.
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Axiom Name Schema Rule Name Schema
K 2(ϕ→ ψ)→ (2ϕ→ 2ψ) RN2 ϕ/2ϕ
2⊥ 2⊥ ↔ ⊥ RN◦ ϕ/◦ϕ
De 22ϕ→ 2ϕ
T 2ϕ→ ϕ
4 2ϕ→ 22ϕ
.3 2(2ϕ→ ψ) ∨2(2ψ → ϕ)
C ◦2ϕ→ 2 ◦ ϕ
K◦ ◦(ϕ→ ψ)↔ (◦ϕ→ ◦ψ)
◦⊥ ◦⊥ ↔ ⊥

Figure 1: Various Axioms and Inference Rules

Semantically, the first three are mono-modal logics characterised, respec-
tively, by Kripke frames having: reflexive and transitive frames; reflexive,
transitive and linear frames; and transitive and dense frames. The logic S4C,
called dynamic topological logic, is a bimodal logic where 2 is captured by
a reflexive and transitive binary relation R2 and where ◦ is captured by a
serial and discrete linear relation R◦ with an interaction between them of
“confluency”:

∀x∀y∀z∃u.R2(x, y) & R◦(x, z)⇒ R◦(y, u) & R2(z, u) (1)

The Hilbert-calculi for these logics are obtained by extending a tradi-
tional Hilbert-calculus for classical propositional logic with the axioms and
inference rules as shown below using the naming conventions given in Fig-
ure 1:

Logic Axioms Rules
S4 K,2⊥,4,T RN2

S4.3 K,2⊥,4,T,.3 RN2

K4De (GTD) K,2⊥,4,De RN2

S4C K,2⊥,K◦,T,4,C,◦⊥ RN2, RN◦

The modal logic S4C is designed to capture the basic logic for hybrid
systems [DG00] where equation (1) captures the lower semi-continuity of
the linear discrete relation with respect to the topological interpretation of
the 2-connective.

2.3 Interactive Proof Assistants

Interactive proof-assistants are now a mature technology for “formalising
mathematics” [ams08]. They come in many different flavours as indicated
by the names of some of the most popular ones Mizar, HOL, Coq, LEGO,

NuPrl, NqThm, Isabelle, λ-Prolog, HOL-Lite, LF, ELF, Twelf, with
apologies to those whose favourite proof-assistant we have omitted.
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[β1 ; β2 ; · · · ; βn] =⇒ α β

θ = match(β, α) β1θ ; β2θ ; · · · ; βnθ

Figure 2: Backward Chaining in Logical Frameworks

Most of the modern proof-assistants are implemented using a modern
functional programming language such as ML, which was specifically de-
signed for the implementation of, and interaction with, such proof-assistants.

The lowest levels typically implement a typed λ-calculus with hooks
provided to allow the encoding of further logical notions such as equality
of terms on top of this base implementation. The base implementation is
usually very small, comprising of a few hundred lines of code, so that this
code can be scrutinised by experts to ensure its correctness.

Almost all aspects of proof-checking eventually compile down to a type-
checking problem using this small core, so that trust rests on strong typing
and a well-scrutinised small core of (ML) code.

Most proof-assistants also allow the user to create a proof-transcript
which can be cross-checked using other proof-assistants to guarantee cor-
rectness.

Figure 2 shows how these logical frameworks typically work. Thus given
some goal β and an expression which claims that α is implied by the con-
junction of β1 up to βn, the Isabelle engine pattern-matches α and β to find
a substitution θ such that αθ = β, and then reduces the original goal β to
the n subgoals β1θ, . . . , βnθ (note that n may be 0). We can then repeat this
procedure on each βiθ until all subgoals are proved (which requires that each
final step produces no new subgoals, ie, has n = 0). The pattern matching
required is usually higher order unification. The important point is that the
logical framework keeps track of sub-goals and the current proof state.

The syntax of the “basic propositions” such as α, β is defined via an
“object logic”, which is a parameter. Different “object logics” can be invoked
using the same logical-framework for the task at hand.

The logical properties of “;” such as associativity or commutativity, and
properties of the “=⇒” such as classicality or linearity are determined by the
“meta-logic”, which is usually fixed for the logical framework in question.

For example, the meta-logic of Isabelle [Pau94] is higher-order typed
intuitionistic logic with connectives =⇒ (implication), !! (∀), == (equality),
and no negation, while the object-logic is classical higher-order logic (HOL)
using −→, ALL (∀), =, EX (∃), and ∼ (not) [MJCG93]. Unlike in classical
first-order logic, which has terms and formulae, functions and predicates,
in Isabelle’s meta-logic and in HOL we just have terms (where a formula
is a term of type boolean), and functions (where a predicate is a function
whose return type is boolean). Further, functions are themselves terms, of
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a function type, and “higher order” simply means that functions can accept
other functions as arguments and can produce functions as results. This
allows a uniform treatment of all these entities.

As noted, the meta-logic allows propositions such as [β1;β2] =⇒ α, which
in fact is the pretty-printer’s rendering of β1 =⇒ (β2 =⇒ α). Think of this
as meaning “from β1 and β2 one may infer α”. Since the object-logic (HOL)
contains the connectives & and −→ with their usual classical semantics,
we find that β1&β2 −→ α means the same (but in a classical rather than
intuitionistic setting) as β1 =⇒ (β2 =⇒ α). But to direct Isabelle to actually
use an inference to reduce α to β1θ, . . . , βnθ as explained above, we need the
first (meta-logical) form. Thus we shall see two logical syntaxes: =⇒, !! (and
; as explained above) for the Isabelle intuitionistic meta-level, and −→, ALL,
&, EX and ∼ for the classical HOL object-level. Together they are referred
to as Isabelle/HOL [TN02].

3 A Deep Embedding of Formulae, Sequents and
Rules

Recall that the meta-logic provides us with a method for backward chaining
via expressions of the form (see Fig. 2):

[β1 ; · · · ; βn] =⇒ α

The usual method for obtaining the power for reasoning about sequent
derivations is to use the full power of higher-order classical logic (HOL) to
build the basic object-level propositions βi.

Isabelle’s incarnation of HOL provides the usual connectives of logic
such as conjunction, disjunction, implication, negation and the higher order
quantifiers. But it also provides many powerful facilities allowing us to
define new types, define functions which accept and return other functions
as arguments, and even define infinite sets using inductive definitions [TN02].

For example, the following HOL expressions would capture the usual
inductive definition of the set even nat of even natural numbers by encoding
the facts that “zero is even, and if n is even then so is n+2”, where : stands
for set membership ∈:

0 : even_nat

n : even_nat ==> n + 2 : even_nat

Most proof-assistants will automatically generate an induction principle
from a given inductive definition. For example, Isabelle will automatically
generate the usual induction principle which states that we can prove a
property P holds of all even naturals if we can show that P (0) holds and
we can show that P (n) implies P (n + 2). An implicit assumption which
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facilitates such induction principles is that the inductive definitions are the
only way to construct its members. Thus, if m is an even natural, then it is
either 0, or is of the form n+2 for some (“smaller”) even natural n. Together,
they form the base case and the inductive step of an inductive definition that
defines the set even nat as the smallest set of terms 0, 0+2, 0+2+2, . . .. It is
implicit in these definitions that an inference step such as n : even nat =⇒
n + 2 : even nat may be applied only finitely many times.

We previously said that we shall see two syntaxes: a meta-level intu-
itionistic logic and an object-level classical HOL syntax. Since we wish to
reason about sequent calculi for modal logics, we now need to encode a third
logical syntax: namely the syntax of modal sequents.

To encode sequent calculus into HOL we first encode terms for capturing
the grammar for recognising formulae as below where comments are enclosed
in (* and *):

datatype formula

= FC string (formula list) (* formula connective *)

| FV string (* formula variable *)

| PP string (* prim prop *)

We use three type constructors FC, FV and PP which encode, respec-
tively, formula connectives, formula variables, and atomic formulae (primi-
tive propositions) as HOL terms. Each of them takes one string argument
which is simply the string we want to use for that construction. The formula
connective constructor FC also accepts a list of formulae, which constitute its
subformulae. For example, the term FC "&&" [FV "A", PP "q"] encodes
A ∧ q where we use “&&” as the string for conjunction of classical logic.
Since we want to encode modal logics, we require only the classical connec-
tives, plus three unary modalities FC "Box" [.] for 2. and FC "Dia" [.]

for ♦. and FC "Circ" [.] for ◦.
Isabelle’s HOL allows us to form sets and multisets of objects of an ar-

bitrary type, so the HOL expressions formula set and formula multiset

capture the types of modal formula sets and modal formula multisets.
Using these types we can build a sequent type using a constructor Sequent:

datatype ’a sequent = Sequent "’a multiset" "’a multiset"

Here ’a is a type variable and the datatype ’a sequent demands that the
constructor Sequent is followed by two multisets of items of type ’a. For
example, the datatype formula sequent would require our sequents to be
constructed out of multisets of formulae (of type formula). An alternative
infix notation for the constructor Sequent is ` or |-.

We define the type for our sequent rules by the type definition:

types ’a psc = "’a list * ’a" (* single rule *)
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Such a sequent rule is a pair (ps, c) of a list of items ps (the premises) and
a single item c (the conclusion): the items are of some type ’a which is a
parameter. We shall instantiate the type variable ’a with the type formula

sequent to obtain sequents built from two multisets of modal formulae.
Note that in common parlance we may say that (ps, c) is a rule meaning

that ps and c may be instantiated in any way. Such a “rule” is a schema
which can be instantiated to give infinitely many rule instances. When
describing the Isabelle implementation we may refer to a specific pair (ps, c)
as a “rule”, although in the context of logical rules, this could be better
described as a specific instance of a rule schema; where we describe our
Isabelle theorems involving “sets of rules”, these will usually be the infinite
sets of instances of a finite set of rule schemata.

Thus, we can use the HOL type-declaration below to declare that rls is
a set of sequent rules, where each element of rls is a pair (ps, c) whose first
component ps is a list of its premise sequents, and whose second component
c is its conclusion sequent:

rls :: formula sequent psc set

Each sequent consists of two multisets of items of type formula, and induc-
tively define the set rls by giving a finite collection of rule schemata, each
denoting an infinite set of instances, which belong to this set. For example,
the traditional rule (` ∧) for introducing a conjunction into the right hand
side of a sequent, as shown below, can be given by the encoding below it
where we use the string && to encode ∧, “+” for multiset union, and {#A#}
to denote a singleton multiset:

Γ ` A,∆ Γ ` B,∆
(` ∧)

Γ ` A ∧B,∆

( [ G ` {#A#}+ D , G ` {#B#}+ D ], G ` {#A && B#}+ D ) ∈ rls

When this clause appears in the definition of rls, it means that this sequent
rule is in rls for each possible value of A,B,G,D of the appropriate type.

Having encoded the notions of formulae and sequents into HOL, we are
now in a position to encode the notion of derivability and derivations. As
we shall explain shortly, the notion of derivability and derivations are subtly
different in the following senses:

Derivability: we write inductively defined predicates in HOL to capture
the set of sequents derivable from a given, possibly empty, set of poten-
tial leaf sequents, using a given set of rules defined using the encoding
of formulae and sequents described above. The base case will capture
that every given leaf is vacuously derivable, and the inductive case
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will capture that a sequent c is derivable if the rule set contains a
rule (ps, c) where each of the premises in ps is itself derivable. We do
not construct an actual derivation, as such, but just ensure that there
exists a sequence of sequent rule applications which can take us from
the given leaf sequents to the given end-sequent. We therefore use the
word “implicit” to describe such derivations.

Derivation (trees): we create a new object type called dertree which
will allow us to encode an explicit tree as a HOL term to represent an
actual derivation of the given sequent from the given leaves using the
given set of rules. We therefore use the word “explicit” to describe
such derivations.

4 Implicit and Explicit Derivations

In Section 4.1, we give an inductively defined predicate derrec for capturing
the set of all recursively derivable sequents. In Section 4.2, we describe the
principle of induction that is automatically generated by Isabelle/HOL from
derrec and describe how it can be used to prove an arbitrary property P
of such sequents. In Section 4.3, we describe our other implicit derivability
predicates in less detail. In Section 4.4 we describe how we encoded explicit
derivation trees. In Section 4.5 we describe how we can move to and fro
between these two notions.

4.1 Defining Derivability (Implicitly) in Isabelle

We are now in a position to encode the set derrec of “recursively derivable
sequents” given a set plvs of (potential) leaf sequents and a given set rls

of sequent rules. The set derrec rls plvs is defined inductively as shown
below (the Isabelle code is precisely as it appears in the Isabelle theory file).
It defines simultaneously the predicates derrec (that a single sequent is
derivable) and dersrec (that all sequents in a list are derivable).

Definition 4.1 (derrec, dersrec) derrec rls plvs is the set of end-
sequents which are derivable from the set plvs of potential leaves using the
set rls of sequent rules.
dersrec rls plvs is the set of lists of endsequents which are all derivable
from potential leaves plvs using sequent rules rls:
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consts (* these are type declarations *)

derrec :: "’a psc set => ’a set => ’a set"

dersrec :: "’a psc set => ’a set => ’a list set"

inductive "derrec rls plvs" "dersrec rls plvs"

intrs (* the clauses defining members of these two

mutually defined inductive sets *)

dpI "eseq : plvs ==> eseq : derrec rls plvs"

derI "[| (ps, eseq) : rls ; ps : dersrec rls plvs |]

==> eseq : derrec rls plvs"

dlNil "[] : dersrec rls plvs"

dlCons "[| seq : derrec rls plvs ;

seqs : dersrec rls plvs |]

==> seq # seqs : dersrec rls plvs"

We now explain the Isabelle code and why it achieves the meanings
for derrec and dersrec given in the definition. These are two mutually
inductively defined sets each of which depends on the other. The type
declarations mean that where plvs is a set of (potential) leaf sequents and
rls is a set of “rules”, instances of (premise list, conclusion) pairs, then
derrec rls plvs is a set of sequents. A sequent is in derrec rls plvs if
and only if finite repeated application of the clauses of the definition require
it to be, and likewise dersrec rls plvs. We now describe the four clauses,
each of which is preceded by its name:

dpI The base case of the inductive definition of derrec captures that each
initial sequent eseq from plvs is itself (vacuously) derivable from the
initial leaf set plvs using the rules rls. The : stands for set member-
ship ∈.

derI If (ps, eseq) is the list of premises and the conclusion of a rule,
and the premise list ps satisfies dersrec rls plvs, meaning that the
premises ps are all derivable (see below), then the conclusion eseq is
derivable.

dlNil An empty list of sequents satisfies dersrec rls plvs

dlCons If seq satisfies derrec rls plvs and the list seqs satisfies dersrec
rls plvs then the list seq # seqs satisfies dersrec rls plvs. The
symbol # denotes appending an item seq to the front of a list seqs to
form a longer list.

Note that the clauses dlNil and dlCons give us that a list is in dersrec

rls plvs if all its members are in derrec rls plvs; and since these clauses
give all members of dersrec rls plvs, this “if” is in fact “if and only if”.
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In fact the actual Isabelle/HOL code is more general, in that the things
being derived are of a parametric type ’a and need not be sequents, but
could be formulae or other constructs, and a “rule” merely consists of a list
of “premises” and a “conclusion”. We describe it in terms of sequents, here,
merely to place it in the context of our cut-admissibility proofs.

4.2 Inductive Proofs via Automated Inductive Principles

We use inductive definitions because correct induction principles are gener-
ated automatically by Isabelle from the inductive definition of derrec. A
heavily simplified version of the induction principle automatically generated
for proving an arbitrary property P by the definition of the inductive set
derrec is shown below using meta-level intuitionistic connectives (==>, !!,
;) and object-level classical HOL connectives (ALL, -->, :)

1 !! x.!! P.
2 [| x : derrec rls plvs ;
3 (ALL c. c : plvs −→ P(c)) ;
4 (ALL c. ALL ps. (ps, c) : rls −→ (ALL y : (set ps). P(y)) −→ P(c))
5 |] ==> P(x)

An explanation is:

1 for all sequents x and all properties P

2 if x is derivable from (potential) leaves plvs using rules rls, and

3 P holds for every sequent c in plvs, and

4 for each rule (ps, c), P of each premise in ps implies P of its conclusion
c,

5 then P holds of x

We can visualise this induction principle as below where we replace the
meta-level ==> by a horizontal line and replace the meta-level ; with juxta-
position of premises and replace : by set membership ∈:

x ∈ derrec rls plvs ∀c ∈ plvs.P c ∀(ps, c) ∈ rls.(∀p in ps.P p)⇒ P c

P x

This is an induction principle which we use often in proof-theory: prove
that some property holds of the leaves of a derivation, and prove that the
property is preserved from the premises to the conclusion of each rule. For
example, consider the standard translation from sequents of LK to formulae
given by τ(A1, · · · , An ` B1, · · · , Bm) = A1 ∧ · · · ∧An → B1 ∨ · · · ∨Bm. We
typically use this translation to argue that all derivable sequents are valid in
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the semantics of first-order logic. The proof proceeds by showing that the
translation of the leaves of a derivation are all valid, and showing that if the
translations of the premises are valid then the translations of the conclusion
are valid, for every rule. Note that no explicit derivation is created by this
induction principle since it uses derivability (implicit derivations).

Thus this induction principle is really a lemma, but our formal encoding
of it requires one more definition.

Definition 4.2 For all sets A and all unary predicates P, the property Ball

A P holds iff every member x of A satisfies P:

Ball_def: "Ball A P == ALL x. x : A --> P x"

The following is the formal inductive principle described informally above
which is generated by Isabelle/HOL, automatically, using “?” to show ar-
guments that are implicitly universally quantified.

Lemma 4.1 (derrec-induction) For every sequent x, every rule set rls,
every list of leaves plvs, and every property P, if

(a) x is derivable from potential leaves plvs using the rules in rls, and

(b) every sequent c in plvs obeys P, and

(c) for every sequent c and premise list ps if (ps, c) is a rule in rls,
and each premise in ps is derivable from potential leaves plvs using
rules in rls and every premise from ps obeys P then c obeys P

then x obeys P:

standard drs.inductr:

"[| ?x : derrec ?rls ?plvs ;

!!c. c : ?plvs ==> ?P c ;

!!c ps. [| (ps, c) : ?rls ;

ps : dersrec ?rls ?plvs ;

Ball (set ps) ?P |] ==> ?P c

|] ==> ?P ?x"

Proof: Isabelle automatically generates an induction principle (not shown)
from the definition of derrec. Since the definition also involves defining
dersrec (which expresses that a list of items are all derivable), the automat-
ically generated principle involves a property P1 of derivable sequents and
a property P2 of lists of derivable sequents. Naturally we choose property
P2 of a list to be that all members of the list satisfy P1. That instantiation
gives us the lemma. Q.E.D.
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Intuitively, Isabelle converts object-level classical implications (−→) into
meta-level intuitionistic implications (==>), allowing us to use the lemma
itself for sub-goaling.

Using these inductive principles we proved the following lemma about
derivability using Isabelle, where the question marks indicate free-variables
which are implicitly universally quantified:

Lemma 4.2 If each premise in ps is derivable from leaves plvs using rules
rls, and eseq is derivable from ps using rls, then eseq is derivable from
plvs using rls:

[|?ps ⊆ derrec ?rls ?plvs ; ?eseq ∈ derrec ?rls ?ps|]
=⇒ ?eseq ∈ derrec ?rls ?plvs

4.3 Further Implicit Derivability Predicates

We briefly describe the remaining functions we used to describe derivability.

Definition 4.3 (derivable rule) For a list of sequents lvs and a sequent
eseq, (lvs, eseq) is a derivable rule with respect to the rule set rls if
we can construct an implicit derivation using rules in rls whose leaves are
exactly the sequents lvs (in the same order), and whose endsequent is eseq.

We formalise this notion using functions derl (for the derivable rules)
and dersl (an auxiliary function).

Definition 4.4 (derl, dersl) For a list of sequents lvs and a sequent
eseq, the pair (lvs, eseq) is in derl rls if it is a derivable rule with
respect to rls.

For lists of sequents lvs and eseqs, the pair (lvs, eseqs) is in dersl

rls if there is a sequence of rule instances from rls which take us from
(exactly) the list of leaf sequents lvs to the list of endsequents eseqs. We
envisage a number of implicit derivations drawn side-by-side, whose endse-
quents are the members of the list eseqs.

types ’a psc = "’a list * ’a" (* single step inference *)

consts (* these are type definitions *)

derl :: "’a psc set => ’a psc set"

dersl :: "’a psc set => (’a list * ’a list) set"

inductive "derl rls" "dersl rls"

intrs

asmI "([eseq], eseq) : derl rls"

dtderI "[| (lvs, eseq) : rls ; (lvss, lvs) : dersl rls |]
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==> (lvss, eseq) : derl rls"

dtNil "([], []) : dersl rls"

dtCons "[| (lvs, eseq) : derl rls ; (lvss, eseqs) : dersl rls|]

==> (lvs @ lvss, eseq # eseqs) : dersl rls"

This formalises the notion of a derivable rule: derl rls is the set of
derivable rules with respect to rls.

Where an inference rule ’a psc is a list of premises ps and a conclusion
c, a “derived rule” is of the same type. We define derl rls to be the set
of rules derivable from the rule set rls. This, like derrec, was defined as
an inductive set. So (lvs, eseq) ∈ derl rls reflects the shape of an implicit
derivation tree: lvs is a list of exactly the leaves used, in the correct order,
whereas eseq ∈ derrec rls plvs holds even if the set of (potential) leaves
plvs contains extra sequents.

We note that the definition means that ([c], c) ∈ derl rls: that is,
the “trivial” derived rules are included. To define derl rls to exclude the
“trivial” derived rules would complicate results such as Theorem 4.1.

The formal Isabelle definitions of derl used also the function dersl,
which represents several implicit derivation trees side-by-side:
(lvss, eseqs) ∈ dersl rls when the list lvss is the concatenation of their
lists of leaves, and eseqs is the list of their endsequents.

Theorem 4.1 With respect to some given set of rules rls:

(a) the items derivable from a set plvs of leaves are the items derivable
from the set of sequents derivable from plvs:

derrec_trans_eq :

"derrec ?rls ?plvs = derrec ?rls (derrec ?rls ?plvs)"

(b) derivability (whether defined using derrec or derl) using the set of
derived rules is equivalent to derivability using the original set of rules:

derrec_derl_deriv_eq :

"derrec (derl ?rls) ?plvs = derrec ?rls ?plvs"

derl_deriv_eq : "derl (derl ?rls) = derl ?rls"

Finally, we can define the notion of an admissible rule.

Definition 4.5 (admissible, adm) A rule (ps, c) is admissible with re-
spect to a rule set rls if, assuming its premises (leaves) ps are derivable
from the empty set {} of leaves using rules from rls, then so is its con-
clusion (endsequent) c:

15



consts (* this is a type declaration *)

adm :: "’a psc set => ’a psc set"

inductive "adm rls"

intrs (* inductive defn of the set of admissible rules *)

I "(ps : dersrec rls {} --> c : derrec rls {})

==> (ps, c) : adm rls"

Using Definition 4.5 we obtained the following four results, which were
surprisingly tricky since adm is not monotonic in its argument rls, where
<= encodes ⊆.

Theorem 4.2 With respect to some given set of rules rls:

(a) every derivable rule is admissible;

(b) the admissible rules are closed under admissibility;

(c) the admissible rules are closed under admissibility after derivability;

(d) the admissible rules are closed under derivability.

"derl ?rls <= adm ?rls" "adm (adm ?rls) = adm ?rls"

"adm (derl ?rls) = adm ?rls" "derl (adm ?rls) = adm ?rls"

4.4 Explicit Derivation Trees: a deep embedding of deriva-
tions

The main advantage of the method outlined in the previous section was
that there was no concrete representation of a derivation. That is, we relied
on the proof-assistant to perform pattern-matching and rule instantiations
in an appropriate way, so that all we needed was to capture the idea that
derivations began with leaves and ended with a single end-sequent.

When we reason about cut-elimination, often we are required to perform
transformations on explicit derivations. We therefore need a representation
of such trees inside our encoding. In previous work [DG10], we described
such an encoding using the following datatype:

datatype seq dertree = Der seq (seq dertree list)

| Unf seq

The declaration states that a derivation tree can either be an Unfinished
(unproved) leaf sequent built using the constructor Unf, or it can be a pair
(seq, dts) consisting of a conclusion sequent seq and a list dts of (sub-
)derivation trees bound together using the constructor Der.
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Definition 4.6 Given an object dt of type dertree, conclDT dt returns
the first argument of the constructors Der and Unf as the conclusion (end-
sequent) of dt.

For a tree dt which is not an Unfinished leaf, nextUp dt returns the
list of trees whose conclusions are the premises of the last rule of dt, and
botRule dt returns the bottom rule (premise list and conclusion) of dt.

primrec

conclDT_Der: "conclDT (Der seq dts) = seq"

conclDT_Unf: "conclDT (Unf seq) = seq"

nextUp_Der: "nextUp (Der seq dts) = dts"

botRule_Der: "botRule (Der seq dts) = (map conclDT dts, seq)"

Here, map conclDT dts applies conclDT to each member of the list dts
of derivation trees and hence returns the premises of the bottom rule.

Our use of dertee can be seen as an even deeper embedding of proof-
theory into Isabelle/HOL since it utilises the proof-assistant to describe an
explicit derivation rather than the implicit existence of such a derivation as
encoded by our derivability predicates from the previous section.

4.5 To and fro between explicit and implicit derivations

Omitting details now, suppose we define valid rls dt to hold when der-
ivation tree dt correctly uses rules from rls only and has no Unfinished
leaves: that is, the leaves of dt are all instances of the conclusions of rules
which have no premises (ie, such as Γ, A ` A,∆). We linked our two ap-
proaches for specifying the derivable sequents by proving:

Lemma 4.3 If derivation tree dt is valid w.r.t. the rules rls then its end-
sequent is (implicitly) derivable from the empty set of leaves using rls:

valid_derrec:

"valid ?rls ?dt ==> conclDT ?dt : derrec ?rls {}"

Lemma 4.4 If the end-sequent eseq is (implicitly) derivable from the empty
set {} of leaves using rules rls then there exists an explicit derivation tree
dt which is valid w.r.t. rls, whose end-sequent is eseq:

derrec_valid:

"?eseq : derrec ?rls {}

==> EX dt. valid ?rls dt & conclDT dt = ?eseq"

Thus we now know that the implicit derivations captured by our deriv-
ability predicate derrec can be faithfully captured using the deeper embed-
ding using explicit dertree derivation trees. Indeed, the lemmas allow us
to move freely between the two embeddings at will to omit or include details
as required [DG10].
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5 Subformula Relation, Rule Skeletons and Ex-
tensions with Contexts

Our generalised definition of formulae allows a single definition of the im-
mediate (proper) subformula relation, ipsubfml, which will not need to be
changed when new connectives are added.

Definition 5.1 If a formula P is in the set obtained from the list of formulae
Ps then P is a proper subformula of any larger formula FC conn Ps created
using a formula-connective conn and Ps:

consts (* this is a type-declaration for function ipsubfml *)

ipsubfml :: "(formula * formula) set"

inductive "ipsubfml" (* proper immediate subformula relation *)

intrs

ipsI "P : set Ps ==> (P, FC conn Ps) : ipsubfml"

For example, (f, Box f) : ipsubfml because Box f is the abbrevia-
tion Box f == FC ‘‘Box‘‘ [f] where conn is the string ‘‘Box‘‘ and Ps

is the formula-list [f].
In §3 we showed that the traditional ∧R rule from LK could be encoded

as below using a sequent consisting of a pair (Γ,∆) of multisets of formulae,
written Γ ` ∆, where multiset braces are written as {# and #} and multiset
union is written as +:

( [ G ` {#A#}+ D , G ` {#B#}+ D ], G ` {#A && B#}+ D ) ∈ rls

The essence of the rule is more succinctly described by the rule skeleton Rs

shown below left. We now describe how we can uniformly extend Rs with
the context X ` Y to obtain the extended rule Re shown below at right:

Rs =
` A ` B
` A ∧B

Re =
X ` Y,A X ` Y,B

X ` Y,A ∧B

Definition 5.2 If the sequent seqXY is the pair (X, Y), representing the
sequent X ` Y , and the sequent seqUV is the pair (U, V), representing
the sequent U ` V , then extend seqUV seqXY is the sequent (X+U, Y+V),
representing the sequent X,U ` Y, V since seqXY + seqUV is (X+U, Y+V)

by the pointwise extension of + to pairs of multisets and the function pscmap

allows us to modify a rule (ps, c) by applying an arbitrary function f to
each of its components:

consts (* this is a type declaration *)

extend :: "’a sequent => ’a sequent => ’a sequent"

extrs :: "’a sequent psc set => ’a sequent psc set"
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defs

extend_def : "extend seqXY seqUV == seqXY + seqUV"

pscmap_def : "pscmap f (ps, c) = (map f ps, f c)"

We can now take a set rules of rule skeletons and produce their uni-
form extension with arbitrary context flr (for “formulae left and right”)
representing X ` Y .

Definition 5.3 (extrs) Given a rule set rules, the inductively defined set
extrs rules is the set of rules consisting of all uniform extensions of all
rules in rules:

inductive "extrs rules"

intrs

I "psc : rules ==> pscmap (extend flr) psc = epsc

==> epsc : extrs rules"

For example, we can now use functions extend and pscmap so that

extend (X ` Y ) (U ` V ) = (X + U) ` (Y + V )

Re = pscmap (extend (X ` Y )) Rs

Thus pscmap uniformly extends the skeleton provided by Rs with arbitrary
contexts X and Y on respective sides to encode Re using multiset addition
+. So extrs S means the set of all such extensions of all rules in the set S.

Then we define lksss, the set of rules for Gentzen’s LK; we show just
a selection. The rules below are the (skeletons of some of the) traditional
invertible logical introduction rules from LK (without any context):

` A ` B
` A ∧B

` A,B
` A ∨B

B ` ` A
A→ B `

A,B `
A ∧B `

A ` B `
A ∨B `

A ` B
` A→ B

Using && for ∧, v for ∨ and -- for ¬, we can encode the logical introduction
rules as shown below, to obtain the set lksir of LK right introduction rule
skeletons, where {#} rather than {##} is the empty-multiset:

Definition 5.4 (lksir) lksir is the set of right logical introduction rules,
in the form without any context and using the form which is invertible, as
shown above.

inductive "lksir" (* LK right introduction rule skeletons *)

intrs

andr

"([{#} |- {#A#}, {#} |- {#B#}], {#} |- {#A && B#}) : lksir"

orr "([{#} |- {#A#} + {#B#}], {#} |- {#A v B#}) : lksir"

negr "([{#A#} |- {#}], {#} |- {#--A#}) : lksir"

impr "([{#A#} |- {#B#}], {#} |- {#A -> B#}) : lksir"
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Similar rules lksil (not shown) give the skeletons of the traditional in-
vertible rules for left-introduction. By adding the initial sequent “axiom”
A ` A with an empty list [] of premises below we obtain the set of “unex-
tended” rules lksne for LK:

Definition 5.5 (lksne) lksne is the set of rules, not extended by any ar-
bitrary context, without structural rules, for LK.

inductive "lksne" (* LK rule skeletons before being extended *)

intrs

axiom "([], {#A#} |- {#A#}) : lksne"

ilI "(ps, c) : lksil ==> (ps, c) : lksne"

irI "(ps, c) : lksir ==> (ps, c) : lksne"

We can now form the full extended set lksss of rules for LK, by ex-
tending each rule skeleton psc from lksne by an arbitrary pair (X,Y ) of
contexts flr (for formulae left and right) regarded as a sequent X ` Y :

Definition 5.6 (lksss) lksss is the set of rules, extended by arbitrary
contexts, without structural rules, for LK.

inductive "lksss"

intrs

extI "psc : lksne ==> pscmap (extend flr) psc : lksss"

Now, we can encode the skeleton shown below right of the traditional
K-rule shown below left:

Γ ` A (K)
Σ,2Γ ` 2A,∆

Γ ` A (SK)
2Γ ` 2A

Definition 5.7 (SK) SK is the set of instances of the skeleton of the K rule
of modal logic

inductive "SK"

intrs

I "([X |- {#A#}], mset_map Box X |- {#Box A#}) : SK"

Note that X is a multiset, and 2X is informal notation for applying
2 to each member of X; this is implemented using mset map, used in the
encoded SK rule. Using a similar notation we write 2Bk for (2B)k, the
multiset containing n copies of 2B. Development of mset map and relevant
lemmas is in the source files Multiset no le.{thy,ML}.

By extending the skeletons of the LK rules and extending only the con-
clusion of the skeleton (SK) of the K rule above, we could obtain an encod-
ing of the traditional sequent calculus for the modal logic K:
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inductive "lksK"

intrs

extI "psc : lksne ==> pscmap (extend flr) psc : lksK"

K "(ps, c) : SK ==> (ps, extend flr c) : lksK"

Since we actually handle more complex logics, but not K as such, we
have not made this a formal definition.

Note that most of these definitions use the Isabelle feature for induc-
tively defined sets, even though many of them are not actually inductive
(ie, recursive). We do this because Isabelle automatically generates useful
theorems for them, including rules which help us prove or use an expression
such as rl : lksne.

6 The Weakening, Inversion and Contraction Prop-
erties

We now encode the weakening, inversion and contraction as properties.

Definition 6.1 A set rls of rules satisfies the weakening admissibility prop-
erty if, whenever a sequent X ` Y is derivable, any larger sequent (X `
Y ) + (U ` V ) = (X,U ` Y, V ) is derivable:

consts (* type for function wk_adm using type variable ’a *)

wk_adm :: "’a sequent psc set => bool"

wk_adm_def : "wk_adm rls ==

ALL XY. XY : derrec rls {} -->

(ALL UV. XY + UV : derrec rls {})"

Here, the variable rls is forced to be a set of sequent rules by the type
of wk adm, and thence the variables XY and UV will be forced to be of type
sequent by the typing restrictions on the inputs to derrec.

Definition 6.2 (inv rl) A rule (ps, c) is invertible with respect to a set
rls of rules if, whenever c is derivable using rls, so is every member of ps:

inv_rl.simps:

"inv_rl rls (ps, c) =

(c : derrec rls {} --> ps : dersrec rls {})"

Here, the definition of dersrec hides a universal quantifier over the
members of the list ps: see Definition 4.1.

To encode contraction, we utilise an axiomatic type class for sequents,
described in more detail elsewhere [DG10]. Thus we can write (A ` 0)+(A `
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0) ≤ (X ` Y ) to mean that the multiset X contains at least two copies of
A and write (X ` Y )− (A ` 0) for the sequent obtained by deleting one of
these copies from X. Similarly we can write (0 ` A) + (0 ` A) ≤ (X ` Y )
to mean that the multiset Y contains at least two copies of A and write
(X ` Y )− (0 ` A) for the sequent obtained by deleting one of these copies
from Y . More generally, we can write UV + UV ≤ XY to assert that the
sequent XY −UV can be obtained from XY by contracting the contents of
the sequent UV . Thus, if the multiset of all formulae in UV (on both sides)
is the singleton multiset {#A#} we know that the skeleton of the relevant
contraction rule is one of:

A,A `
A `

` A,A
` A

Definition 6.3 A set rls of rules satisfies the contraction admissibility
property for the formula A if, whenever a derivable sequent X ` Y satis-
fies (A ` 0) + (A ` 0) ≤ (X ` Y ), the sequent (X ` Y ) − (A ` 0) is
derivable, and likewise for 0 ` A.

ctr_adm_def : "ctr_adm rls A ==

ALL UV. ms_of_seq UV = {#A#} -->

(ALL XY. XY : derrec rls {} --> UV + UV <= XY -->

XY - UV : derrec rls {})"

The first condition ms_of_seq As = {#?A#}, asserts that the formulae
on both sides of the sequent As form the singleton multiset {#?A#}, thus
capturing that the contraction can happen on either side of the turnstile.

7 Generalising Cut-Admissibility Proofs

We now show how our previous work [DG10] on multicut admissibility for
LK can be formulated to make it as general as possible. We first give details
of induction principles and lemmata for “structural” induction over implicit
derivations obtained via our derivability predicates and then describe their
analogues for explicit derivation trees.

7.1 A General Framework for Reasoning About Implicit Deriva-
tions

The initial sequents of our sequent calculi will be allowed to apply to arbi-
trary formulae, not only atoms, and this excludes the possibility of proving
height-preserving invertibility. This, and also the form of our contraction
rule, which allows just one contraction per derivation step, prevents us from
proving a height-preserving contraction-admissibility result. For proofs of
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contraction-admissibility, without height-preservation, an induction princi-
ple which also involves the size or structure of the relevant formula is re-
quired. Furthermore, proving cut-admissibility requires induction on both
size of formula and derivation height (or a proxy for it). We therefore require
a double induction on height (or proxy) and formula size (as measured by
any well-founded subformula relation).

Our first induction principle could be seen as using a lexicographic or-
dering (n,m) where n is the sub-formula relation and m is the (inverse of
the) distance from the end-sequent in the original derivation.

We use a relation sub on formulae: it could be any relation on formulae,
but we use the (immediate) sub-formula relation. To put our general results
in context, we may refer to sub as a “sub-formula relation”. In general we
want sub to be well-founded; more generally our theorems will apply to the
“well-founded part” of sub.

In regard to the height measure, or distance from the original end-
sequent, our first induction principle, instead of assuming that a property
holds for all derivations of lesser height, merely assumes that it holds for
sub-derivations.

Definition 7.1 (wfp) For a binary relation sub, a formula A is in wfp

sub, the “well-founded part” of sub, iff there is not any infinite descending
chain . . . , A2, A1, A such that (A1, A), (A2, A1), . . . are all in sub.

Definition 7.2 (gen step) For a formula A, a property P, a subformula
relation sub, a set of sequents derivs, and a particular rule r = (ps, c),
where ps is a list of premises and c is the conclusion of r:

gen step P A sub derivs r means

If (a) forall A’ such that (A’, A) ∈ sub and all sequents s ∈ derivs the
property P A’ s holds, and

(b) for every premise p ∈ ps both p ∈ derivs and P A p holds, and

(c) c ∈ derivs

then P A c holds.

gen_step_def :

"gen_step P A sub derivs (ps, c) =

( (ALL A’. (A’, A) : sub --> Ball derivs (P A’))

--> (ALL p : set ps. p : derivs & P A p) --> c : derivs

--> P A c)"

In this text, ALL p : set ps means ∀p ∈ ps. Typically derivs will be the
set of sequents derivable using a given set rls of rules, and a given set of
leaves plvs, so derivs = derrec rls plvs.
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Intuitively, given a fixed rule r = (ps, c), a fixed formula A, a fixed
property P and a fixed relation sub, Definition 7.2(a) formalises for any
derivable sequent s that (A, c) is “less than” (A’, s) if (A’, A) ∈ sub.
Definition 7.2(b) formalises for any premise p from ps that (A, p) is “less
than” (A, c) if p is a premise of c in the rule r. Thus, it can be seen as
a particular instance of a lexicographic ordering on formula-sequent pairs
where (A1, s1) is “less than” (A2, s2) if (A1, A2) ∈ sub or, if A1 = A2 and
s2 is a premise of c via the particular rule (instance) r = (ps, c).

Alternatively, by Definition 7.2, gen step describes the situation where
if a property P is true generally for sub-formulae A′, and for the premises
of a particular rule then the property holds for the conclusion of that rule.

The main theorem, named gen step lem and given as Theorem 7.1 be-
low, states that if this step case can be proved for all possible rule instances
then P holds for all cases.

Theorem 7.1 (gen step lem) For a formula A, a property P, a subfor-
mula relation sub, a sequent S and a set of rules rls: If

(a) A is in the well-founded part of the subformula relation sub, and

(b) for all formulae A’ and all rules r in rls, the induction step condition
gen step P A’ sub (derrec rls {}) r holds, and

(c) sequent S is rls-derivable

then P A S holds.

gen_step_lem:

"[| ?A : wfp ?sub ;

ALL A’. ALL r : ?rules.

gen_step ?P A’ ?sub (derrec ?rules {}) r ;

?S : derrec ?rules {} |]

==> ?P ?A ?S"

Proof: We combine the principle of well-founded induction, applied to the
formula A and the well-founded subfomula relation sub, with the induction
principle derrec-induction for derrec shown as Lemma 4.1, which is provided
by Isabelle as a consequence of the inductive definition of derrec. Q.E.D.

7.2 Induction for Two-premise Subtrees

We now turn to the induction principle used for deriving cut-admissibility, or
indeed any property P of two-premise implicit derivations. In the diagram
below, to prove P (cl, cr), for example, to prove that a cut between cl and
cr is admissible, the induction assumption is that P (psli, cr) and P (cl, psrj)
hold for all i and j:
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psl1 . . . psln ρl
cl

psr1 . . . psrm ρrcr (cut ? )C

A proof of P (cl, cr) using this induction assumption inevitably proceeds
according to what the rules ρl and ρr are, and further, for a cut-formula
A, whether it is principal in either or both of ρl and ρr. But our proofs
also use induction on the size of the cut-formula, or, more generally, on
some well-founded relation on formulae. So we actually consider a property
P A (cl, cr) where A is the cut-formula, psl are the premises psl1 . . . psln of
rule ρl, and cl is its conclusion, and analogously for ρr and cr. In proving
P A (cl, cr), in addition to the inductive assumption above, we assume that
P A′ (da, db) holds generally for (A′, A) ∈ sub and all sequents da and db
which are “rls-derivable”, ie, derivable from the empty set of leaves using
rules from rls. These intuitions give the following definition gen step2sr

of a condition which permits one step of the inductive proof:

Definition 7.3 (gen step2sr) For a formula A, a property P, a subformula
relation sub, a set of rules rls, sequent rules (psl, cl), and (psr, cr):
gen step2sr P A sub rls ((psl, cl), (psr, cr)) means:
If

(a) P A’ (da, db) holds for all subformulae A’ of A and all rls-derivable
sequents da and db, and

(b) for each premise pa in psl, pa is rls-derivable and P A (pa, cr)

holds, and

(c) for each premise pb in psr, pb is rls-derivable and P A (cl, pb)

holds, and

(d) cl and cr are rls-derivable,

then P A (cl, cr) holds.

gen_step2sr_simp :

"gen_step2sr P A sub rls ((psl, cl), (psr, cr)) =

( (ALL A’. (A’, A) : sub -->

(ALL da:derrec rls {}.

ALL db:derrec rls {}. P A’ (da, db)))

-->

(ALL pa:set psl. pa : derrec rls {} & P A (pa, cr)) -->

(ALL pb:set psr. pb : derrec rls {} & P A (cl, pb)) -->

cl : derrec rls {} --> cr : derrec rls {}

--> P A (cl, cr) )"
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The main theorem gen step2sr lem below for proving an arbitrary prop-
erty P states that if the step of the inductive proof goes through in all
cases, ie, for all possible final rule instances ρl = (psl, cl) on the left and
ρr = (psr, cr) on the right, then P holds for all formulae A and sequents cl
and cr on the left and right respectively.

Theorem 7.2 (gen step2sr lem) If A is in the well-founded part of the
subformula relation; sequents seql and seqr are rls-derivable ; and for all
formulae A’, and all rules (psl, cl) and (psr, cr), our induction step
condition gen step2sr P A’ sub rls ((psl, cl), (psr, cr)) holds, then
P A (seql, seqr) also holds.

gen_step2sr_lem :

"[| ?A : wfp ?sub ;

?seql : derrec ?rls {} ; ?seqr : derrec ?rls {} ;

ALL A’. ALL (psl, cl):?rls. ALL (psr, cr):?rls.

gen_step2sr ?P A’ ?sub rls ((psl, cl), (psr, cr)) |]

==> ?P ?A (?seql, ?seqr)"

Proof: As with Lemma 7.1, the proof of this involves combining induction
principles available to us. It is more complex than Lemma 7.1 because we
had to deal with the well-founded induction on the sub-formula relation
and derrec-induction (Lemma 4.1) on the two implicit derivations which
provide the two premises of the cut. Q.E.D.

This enables us to split up an inductive proof, by showing, separately,
that gen step2sr holds for particular cases of the final rules (psl, cl)

and (psr, cr) on each side. In some cases these results apply generally to
different calculi.

For example, the inductive step for the case where the cut-formula A
is parametric, not principal, on the left is encapsulated in the following
theorem where prop2 car ?erls ?A (?cl, ?cr), which is equivalent to
(?cl, ?cr) : car ?erls ?A, means that the conclusion of a cut on A

with premises cl and cr is derivable using rules erls. Below, :# stands for
membership of a multiset, and ~ stands for classical negation, and wk adm

refers to weakening admissibility for a system of rules, defined formally in
Definition 6.1.

Theorem 7.3 If weakening is admissible for the rule set erls, all exten-
sions of some rule (ps, U |- V) are in the rule set erls, and the final
rule instance pscl of the left hand (implicit) subtree is an extension of (ps,
c) where the cut-formula A is not in V (meaning that A is parametric on
the left), then gen step2sr (prop2 car ?erls) ?A ?sub ?rls (?pscl,

?pscr) holds.
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lcg_gen_step:

"[| wk_adm ?erls ;

extrs {(?ps, ?U |- ?V)} <= ?erls ;

~ ?A :# ?V ;

?pscl = pscmap (extend (?W |- ?Z)) (?ps, ?U |- ?V) |]

==> gen_step2sr (prop2 car ?erls) ?A ?any ?erls (?pscl, ?pscr)"

Notice that so far we have dealt with a shallow embedding of derivations;
it does not apply to proofs which require derivation trees to be represented
explicitly. As noted in §4.4, the derivability of a sequent is equivalent to the
existence of a valid derivation tree for it, and so now we describe the similar
approach for explicit derivation trees.

7.3 Induction principles for explicit derivation trees

Sometimes we need to proceed by induction on (for example) the length of
a derivation by which a sequent can be obtained, rather than by the fact
of a sequent having been obtained earlier in the same derivation. At other
times, we not only need to do induction on height, but we may also have
to transform the immediate premises in some way, for example, by utilising
the admissibility of weakening or contraction.

We could change our (notion of implicit derivations) derivability predi-
cate derrec rls plvs with a third argument ht, say, so that derrec rls

plvs ht captured the set of sequents derivable from the leaves in plvs using
rules from rls with height ht. But then it becomes much harder to incorpo-
rate the transformations of the immediate premises of an end-sequent using
the weakening and contraction lemmata since we have no explicit access to
the derivation itself. So to compare (say) the heights of derivations, we must
be able to define them and for this we need to look at explicit derivation
trees.

We can use explicit derivation trees to perform a proof equivalent to one
using Theorem 7.1, by using the following definitions and lemmata.

Definition 7.4 (gen step tr) For all properties P, all formulae B, all “sub-
formula” relations sub and all (explicit) derivation trees dta:
gen step tr P B sub dta means:
if

(a) P C dtb holds for all subformulae C of B and all derivation trees dtb,
and

(b) P B dtsub holds for all the immediate subtrees dtsub of dta

then P B dta holds.
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gen_step_tr_def:

"gen_step_tr P B sub dta ==

(ALL C. (C, B) : sub --> (ALL dtb. P C dtb)) -->

(ALL dtsub:set (nextUp dta). P B dtsub) --> P B dta"

Lemma 7.1 (gen step tr lem) For all properties P, for all formulae A, for
all relations sub, for all derivations dt, if A is in the well-founded part of sub,
and gen_step_tr P B sub dtb holds for all formulae B and all derivations
dtb, then P A dt holds.

gen_step_tr_lem:

"[| ?A : wfp ?sub ;

ALL B dtb. (gen_step_tr ?P B ?sub dtb) |]

==> ?P ?A ?dt"

Definition 7.5 (gen step2 tr) For all properties P, for all formulae B, for
all “sub-formula” relations sub, for all pairs (dta, dtb) of derivation trees:
gen step2 tr P B sub (dta, dtb) means:
if

(a) P C (dtaa, dtbb) holds for every sub-formula C of B and all der-
ivation trees dtaa and dtbb, and

(b) P B (dtp, dtb) holds for all immediate subtrees dtp of dta, and

(c) P B (dta, dtq) holds for all immediate subtrees dtq of dtb

then P B (dta, dtb) holds:

gen_step2_tr.simps:

"gen_step2_tr P B sub (dta, dtb) =

((ALL C. (C, B):sub --> (ALL dtaa dtbb. P C (dtaa, dtbb)))

--> (ALL dtp:set (nextUp dta). P B (dtp, dtb))

--> (ALL dtq:set (nextUp dtb). P B (dta, dtq))

--> P B (dta, dtb))"

Lemma 7.2 (gen step2 tr lem) For all properties P, for all formulae A,
for all relations sub, for all derivation trees dta and dtb, if A is in the
well-founded part of sub, and gen_step2_tr P B sub (dtaa, dtbb) holds
for all formulae B and all derivations dtaa and dtbb, then P A (dta, dtb)

holds:

gen_step2_tr_lem:

"[| ?A : wfp ?sub ;

ALL B dtaa dtbb. gen_step2_tr ?P B ?sub (dtaa, dtbb) |]

==> ?P ?A (?dta, ?dtb)"
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These properties are exact analogues, for explicit derivation trees, of the
properties gen step and gen step2sr and Theorems 7.1 and 7.2, with (for
example) Lemma 8.2 linking them.

However, the purpose of using explicit derivation trees is to define dif-
ferent induction patterns. For example, we defined an induction pattern
which depends on the inductive assumption that the property P holds for
the given tree on one side, and any smaller tree on the other side.

Definition 7.6 (measure) For all a, all b, and all functions
f :: ’a => nat, the pair (a, b) is in measure f iff f a < f b:

measure_eq: "((?a, ?b) : measure ?f) = (?f ?a < ?f ?b)"

Definition 7.7 (height step2 tr) For all properties P, for all formulae A,
for all subformula relations sub, for all pairs (dta, dtb) of derivations,
height step2 tr P A sub (dta, dtb) means:
if

(a) P B (a, b) holds for all subformulae B of A and for all derivation
trees a and b, and

(b) P A (tp, dtb) holds for all derivation trees tp of smaller height than
dta, and

(c) P A (dta, tq) holds for all derivation trees tq of smaller height than
dtb

then P A (dta, dtb) holds.

height_step2_tr_def:

"height_step2_tr P A sub (dta, dtb) =

((ALL B. (B, A) : sub --> (ALL a b. P B (a, b))) -->

(ALL dtp. heightDT dtp < heightDT dta --> P A (dtp, dtb)) -->

(ALL dtq. heightDT dtq < heightDT dtb --> P A (dta, dtq)) -->

P A (dta, dtb))"

In some cases we found that this wasn’t enough, and defined a more
general pattern, in which the inductive assumption applies where the sum
of the heights of the two trees is smaller.

Definition 7.8 (sumh step2 tr) For a property P, a formula A, a subfor-
mula relation sub, and a pair of derivations (dta, dtb),
sumh step2 tr P A sub (dta, dtb) means:
if

(a) P B (a, b) holds for all subformulae B of A and all derivation trees a

and b, and
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(b) for all derivation trees dtaa and dtbb, we have
heightDT dtaa + heightDT dtbb < heightDT dta + heightDT dtb

implies P A (dtaa, dtbb)

then P A (dta, dtb) holds

sumh_step2_tr_eq:

"sumh_step2_tr P A sub (dta, dtb) =

((ALL B. (B, A) : sub --> (ALL a b. P B (a, b))) -->

(ALL dtaa dtbb. heightDT dtaa + heightDT dtbb <

heightDT dta + heightDT dtb --> P A (dtaa, dtbb)) -->

P A (dta, dtb))"

We could of course generalise this by replacing heightDT by any natural
number function, which may be different for trees on the left and right sides.
Indeed it could be further generalised to any well-founded relation on pairs
of derivation trees.

Each of these properties is successively weaker since the corresponding
inductive assumption is stronger, hence P applies to correspondingly wider
classes of derivations: as formalised next.

Lemma 7.3 For a property P, a formula A, a relation sub, and for a pair
(dta, dtb) of derivations:

(a) gen_step2_tr implies height_step2_tr

(b) height_step2_tr implies sumh_step2_tr

gs2_tr_height:

"gen_step2_tr ?P ?A ?sub (?dta, ?dtb) ==>

height_step2_tr ?P ?A ?sub (?dta, ?dtb)"

hs2_sumh:

"height_step2_tr ?P ?A ?sub (?dta, ?dtb) ==>

sumh_step2_tr ?P ?A ?sub (?dta, ?dtb)"

Accordingly we need the lemma that proving these step results is suffi-
cient for only the weakest of them.

Lemma 7.4 (sumh step2 tr lem) For a property P and a formula A in the
well-founded part of a relation sub, if sumh_step2_tr P A sub (dta, dtb)

holds for all derivations dta and dtb then P A (dtaa, dtbb) holds for all
derivations dtaa and dtbb:

sumh_step2_tr_lem:

"[| ?A : wfp ?sub ;

ALL A dta dtb. sumh_step2_tr ?P A ?sub (dta, dtb) |]

==> ?P ?A (?dtaa, ?dtbb)"
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We are now in a position to define the statement of cut-admissibility in
Isabelle, and to apply all of these results.

8 Statement of Cut-Admissibility in Isabelle

Definition 8.1 (cas,car) For all formulae A, and all pair of sequents:

car rls A holds if the sequent obtained by applying the cut rule on formula
A to them is derivable: that is, (Xl ` Yl, Xr ` Yr) ∈ car rls A iff
(Xl, (Xr −A) ` (Yl −A), Yr) is rls-derivable;

cas rls A holds if cut-admissibility on A is available for that pair of se-
quents: that is, (Xl ` Yl, Xr ` Yr) ∈ cas rls A means that if Xl ` Yl
and Xr ` Yr are rls-derivable, then (Xl ` Yl, Xr ` Yr) ∈ car rls A.

car_eq:

"((Xl |- Yl, Xr |- Yr) : car rls A) =

((Xl + (Xr - {#A#}) |- Yl - {#A#} + Yr) : derrec rls {})"

cas_eq:

"((seql, seqr) : cas rls A) =

(seql : derrec rls {} & seqr : derrec rls {}

--> (seql, seqr) : car rls A)"

When we are talking about proving cas or car by induction on the
(implicit) derivation of the two sequents, that is, we are talking about two
sequents which are derivable, then these two concepts become equivalent.
This is because the definition of gen step2sr only involves the property of
the pair of sequents in the cases where those two sequents are derivable.
Recall that prop2 simply gives an equivalent concept with a different type.

Lemma 8.1 The induction steps for proving cas and car are equivalent:

prop2_def : "prop2 f rls A seqs == seqs : f rls A"

gs2_cas_eq_car: "gen_step2sr (prop2 cas ?rls) ?A ?sub ?rls =

gen_step2sr (prop2 car ?rls) ?A ?sub ?rls"

Definition 8.2 (casdt) For any set rls of rules and any formula A, two
valid (ie. no unproved leaves, and all steps are rules of rls) derivation trees
dtl and dtr satisfy casdt rls A iff their conclusions satisfy car:

casdt_eq:

"((?dtl, ?dtr) : casdt ?rls ?A) =

(valid ?rls ?dtl & valid ?rls ?dtr

--> (conclDT ?dtl, conclDT ?dtr) : car ?rls ?A)"
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Here is the lemma linking the induction step for cut-admissibility in
terms of implicit derivability with the corresponding induction step for ex-
plicit derivation trees.

Lemma 8.2 (gs2 tr casdt sr) Given two derivation trees dta and dtb,
a cut-formula A, a sub-formula relation sub, and a rule set rls, if the
bottom rules of those trees satisfy the step condition gen step2sr for cut-
admissibility, then the two trees satisfy the step condition gen step2 tr for
cut-admissibility:

gs2_tr_casdt_sr:

"gen_step2sr (prop2 cas ?rls) ?A ?ipsubfml ?rls

(botRule ?dta, botRule ?dtb) ==>

gen_step2_tr (prop2 casdt ?rls) ?A ?ipsubfml (?dta, ?dtb)"

In fact the two concepts are essentially equivalent:

Theorem 8.1 (gs2 casdt equiv) Given a set of derivation rules rls, a
formula A, a sub-formula relation ipsubfml and two bottom rules pscl and
pscr, then the following are equivalent:

(a) if pscl and pscr are in rls, then they satisfy the step condition
gen step2sr for cut-admissibility (for implicit derivations)

(b) all trees dta and dtb whose bottom rules are pscl and pscr respec-
tively, satisfy the step condition gen step2 tr for cut-admissibility
(for explicit derivations)

gs2_casdt_equiv:

"(?pscl : ?rls --> ?pscr : ?rls --> gen_step2sr (prop2 cas ?rls)

?A ?ipsubfml ?rls (?pscl, ?pscr)) =

(ALL dta dtb. botRule dta = ?pscl --> botRule dtb = ?pscr -->

gen_step2_tr (prop2 casdt ?rls) ?A ?ipsubfml (dta, dtb))"

We are now ready to apply our formalisation work to particular calculi.

9 Weakening, Contraction and Cut Admissibility
for S4

There exist both pen and paper [OM57, TS00] and a formalised proof [Daw14]
of mix-elimination for sequent calculi for S4 containing explicit weakening
and contraction rules. As stated previously, explicit structural rules are
detrimental for automated reasoning, giving a practical motivation for prov-
ing that such rules are admissible. This is our goal.
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Troelstra and Schwichtenberg also state cut-elimination for a sequent
calculus G3s [TS00] for S4 that contains no explicit structural rules. Un-
fortunately, their “proof” only discusses one actual transformation, and in
particular overlooks one non-trivial case – when Cut is applied on a for-
mula 2A, with both premises being an instance of the G3s R2 rule (shown
below). In this case, the deduction cannot be transformed by simply per-
muting the Cut, or introducing a new Cut of smaller rank, on the sequents
in the original deduction. Greater detail is given later in this section.

2Γ ` A,3∆
R2

Γ′,2Γ ` 2A,3∆,∆′

Goubault [GL96] acknowledges the problem posed by absorbing Weak-
ening into the R2 rule. However, his solutions are given in the context of
typed λ-calculi for a minimal version of S4, interpreted as a sequent cal-
culus through a version of the Curry-Howard correspondence. Based on a
proposal from [Bd96], Goubault-Larrecq replaces the R2 rule by a different
rule with multiple premises (for subformulae within the principal formula),
along with both re-write and garbage collection rules for the λ terms in-
volved. While this solution could possibly be extended to sequent calculi,
the creation of new premises and hence branching is detrimental to backward
proof search. Our solution presented in this section also has the advantage
of being significantly simpler.

Negri [Neg05] proves various admissibility theorems for S4, but the calcu-
lus involved is labelled. These labels include elements of the Kripke seman-
tics within the calculus, and so the resulting theorems are thus not entirely
syntactical proofs. Furthermore, there are rules in the calculus which deal
only with reachability between worlds. While perhaps not as inefficient as
the standard structural rules, these rules nevertheless do not operate on
logical connectives. In particular to S4, from the perspective of automated
reasoning, applying all possible instances of the transitivity rule (shown be-
low) or checking whether the transitivity rule has been saturated can be a
very time-consuming process.

xRz, xRy, yRz,Γ ` ∆
Transitivity

xRy, yRz,Γ ` ∆

R is the accessibility relation. x, y, z are worlds.

9.1 Calculus for S4

The sequent calculus we use for S4 is based on the calculus G3cp [TS00], with
the addition of two modal rules. Note that the initial sequents Γ, ϕ ` ϕ,∆ do
not require that ϕ be atomic, and that there are only rules for 2 formulae
since ♦ϕ is interpreted as ¬2¬ϕ. The rules of the calculus are shown in
Figures 3 and 4. Note that the clause boxI in the inductive definition
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Initial Sequents

id
Γ, ϕ ` ϕ,∆

Classical rules

Γ, ϕ, ψ ` ∆
L∧

Γ, ϕ ∧ ψ ` ∆

Γ ` ϕ,∆ Γ ` ψ,∆
R∧

Γ ` ϕ ∧ ψ,∆
Γ, ϕ ` ∆ Γ, ψ ` ∆

L∨
Γ, ϕ ∨ ψ ` ∆

Γ ` ϕ,ψ,∆
R∨

Γ ` ϕ ∨ ψ,∆
Γ ` ϕ,∆ Γ, ψ ` ∆

L→
Γ, ϕ→ ψ ` ∆

Γ, ϕ ` ψ,∆
R→

Γ ` ϕ→ ψ,∆

Γ ` ϕ,∆
L¬

Γ,¬ϕ ` ∆

Γ, ϕ ` ∆
R¬

Γ ` ¬ϕ,∆

Modal rules

Γ, ϕ,2ϕ ` ∆
Refl

Γ,2ϕ ` ∆

Γ,2Γ ` ϕ
S42

Σ,2Γ ` 2ϕ,∆

Figure 3: Sequent calculus GS4 for S4.

inductive "lksne" intrs (* skeletons of LK rules *)

axiom "([], {#A#} |- {#A#}) : lksne"

ilI "psc : lksil ==> psc : lksne"

irI "psc : lksir ==> psc : lksne"

inductive "lksss" intrs (* extended skeletons for LK *)

extI "psc : lksne ==> pscmap (extend flr) psc : lksss"

inductive "lkrefl" intrs (* refl rule skeleton *)

I "([{#A#} + {#Box A#} |- {#}], {#Box A#} |- {#}) : lkrefl"

inductive "lkbox" intrs (* S4 Box rule skeleton *)

I "([gamma + mset_map Box gamma |- {#A#}],

mset_map Box gamma |- {#Box A#}) : lkbox"

inductive "gs4_rls" intrs

lksI "psc : lksss ==> psc : gs4_rls"

reflI "psc : lkrefl ==> pscmap (extend flr) psc : gs4_rls"

(* Box rule allows extra formulae in conclusion only *)

boxI "(prem, conc) : lkbox ==>

(prem, extend flr conc) : gs4_rls"

Figure 4: Isabelle rules for GS4.
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for gs4_rls applies extend only to the conclusion, corresponding to the
appearance of the two sets Σ and ∆ in the conclusion of the rule S42.

The Isabelle encoding of the calculus is modular, with the overall calcu-
lus, gs4 rls, built up from separate declarations of the id rule, the classical
rules acting on antecedents and succedents, and the two modal rules.

9.2 Weakening for S4

Intuitively, weakening is admissible for a system of rules if, whenever the
conclusion c of a rule (ps, c) is weakened to c′, there is a rule with conclusion
c′ and premises ps′ which are (optionally) weakened counterparts of ps.

The following definition seeks to formalise this condition.

Definition 9.1 A set of rules rls satisfies ext_concl iff: for every list of
premises ps and conclusion c that form a rule (ρ1 say) in rls, and for all
possible sequents UV, there exists a list of premises ps’ such that the premises
ps’ and the extended conclusion c + UV also form an instance of some rule
(ρ′1 say) in rls and for every premise p from ps there is a corresponding
premise p’ in ps’ such that p’ is either p itself or is an extension of p:

p1 . . . pk (ρ1)c
p’1 . . . p’k (ρ′1)c + UV

pi ≤ p’i

In the Isabelle text (ps, ps’) : allrel r means that ps and ps’ are
lists of the same length where each corresponding pair of their members is
in r. The relation ≤ for sequents is defined in terms of ≤ for multisets, that
is, X ` Y ≤ X ′ ` Y ′ means X ≤ X ′ and Y ≤ Y ′.

ext_concl_def:

"ext_concl rls ==

ALL (ps, c) : rls. ALL UV. EX ps’.

(ps’, c + UV) : rls & (ps, ps’) : allrel {(p, p’). p <= p’}"

inductive "allrel r" intrs

allrel_Nil "([], []) : allrel r"

allrel_Cons "[| (ha, hb) : r ; (ta, tb) : allrel r |]

==> (ha # ta, hb # tb) : allrel r"

Lemma 9.1 If rule set rls obeys ext_concl then rls admits weakening:

wk_adm_ext_concl: "ext_concl ?rls ==> wk_adm ?rls"

The lemma wk_adm_ext_concl is so simple it can be proved directly by
the induction principle for derrec Lemma 4.1 (without using gen_step_lem).
Use of lemmas like gen_step_lem is really only for the purpose of breaking
up the proofs, so that various different cases of gen_step (ie various final
rules of the derivation) can be put into separate lemmata, some of which
may be able to be reused for different calculi.
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Lemma 9.2 The set of rule gs4_rls satisfies ext_concl.

gs4_ext_concl: "ext_concl gs4_rls"

Corollary 9.1 The rules of S4 satisfy weakening admissibility.

gs4_wk_adm: "wk_adm gs4_rls"

9.3 Invertibility and Contraction for S4

We now describe how we captured the traditional proof of invertibility.
Suppose that we are given a calculus consisting of the rule set drls and

suppose that we want to reason about the derivability predicate derrec

defined earlier. Let derivs be the set derrec drls {} of all sequents that
are derivable from the empty set of leaves using the rules of drls. Suppose
that we wish to prove that every rule in irls is invertible w.r.t. drls (where
irls is usually a subset of drls).

Omitting details, the function invs_of irls c returns the set of se-
quents obtainable by applying each rule of irls to the sequent c backwards
once. That is, a sequent seq is in invs_of irls c if applying some rule ρ
of irls to c backwards, once, will give seq as one of the premises of ρ.

To prove that a rule (ps, concl) is invertible w.r.t. drls requires us
to prove that each sequent seq from the list ps of premises is in derivs if
concl is in derivs. To prove that each rule in a set of rules irls is invertible
w.r.t. drls requires us to prove that the above property holds for each rule
(ps, concl) from irls: that is, invs_of irls concl <= derivs where
<= encodes the subset relation.

Traditional proofs of invertibility proceed by an induction on the struc-
ture of a given derivation of a sequent concl ∈ derivs. Assuming that the
final rule in this derivation is (ps, concl), the induction hypothesis is to
assume that the invertibility lemma holds for each premise in ps. That is,
we assume that every sequent seq obtained by applying any rule from irls

backwards, once, to any premise p in ps is itself in derivs:

ALL p:set ps. invs_of irls p <= derivs

Use of the induction hypothesis stated above can then be encoded in
inv step as follows. Let an “irls-inverse” of a sequent s be a sequent s′

obtained from s by applying any rule from irls backwards once.

Definition 9.2 (inv step) For a given set derivs of derivable sequents,
for a rule set irls, and for every rule instance (ps, concl), the property:
inv_step derivs irls (ps, concl) means:

If every premise in ps being in derivs implies that every “irls-invert” of
premises in ps is in derivs,
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then every “irls-invert” of the conclusion concl is in derivs.

inv_step.simps:

"inv_step derivs irls (ps, concl) =

(set ps <= derivs

--> (ALL p:set ps. invs_of irls p <= derivs)

--> invs_of irls concl <= derivs)"

This is the key result for doing invertibility by stating various cases of
the induction step as separate lemmata.

The expression UNION (set ?ps) (invs_of ?irls) represents the set
X of all sequents obtained by applying some rule from irls backwards once
to every sequent p from a list of sequents ps viewed as a set:

X :=
⋃

p ∈ set ps

(invs_of ?irls p)

Then, (set ?ps Un UNION (set ?ps) (invs_of ?irls)) represents the
union of X and the list of sequents ps treated as a set, ie (set ps) ∪X.

The property inv_stepm is weaker than inv_step but is monotonic in
its first argument, which makes reusing lemmata such as lks_inv_stepm

possible as follows.

Definition 9.3 (inv stepm) For all rule sets drls, for all rule sets irls,
for all rules (ps, concl), the expression inv_stepm drls irls (ps, concl)

means: the irls-inverses of concl are derivable using derrec drls from
(set ps) and the irls-inverses of every p ∈ set ps:

inv_stepm.simps:

"inv_stepm drls irls (ps, concl) =

(invs_of irls concl <=

derrec drls (set ps Un UNION (set ps) (invs_of irls)))"

Lemma 9.3 (inv step mono) inv_stepm is monotonic in its first argu-
ment:

inv_step_mono:

"[| inv_stepm ?drlsa ?irls ?psc ; ?drlsa <= ?drlsb |]

==> inv_stepm ?drlsb ?irls ?psc"

Lemma 9.4 (inv step m) For every set drls of rules and every set plvs of
sequents, the function derrec drls plvs returns the set of sequents deriv-
able from plvs using the rules of drls. Let us call this set of sequents
derivs. For every set drls of rules used for derivations, for every rule set
irls, for every rule psc, if inv_stepm drls irls psc holds then so does
inv_step derivs irls psc for any set of leaf sequents plvs:
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inv_step_m:

"inv_stepm ?drls ?irls ?psc

==> inv_step (derrec ?drls ?plvs) ?irls ?psc"

Lemma 9.5 (gen inv by step) For every rule set rls which is used to
construct a set derrec rls {} of derivations from the empty set of leaves,
for every rule set irls, every rule psc from irls is invertible w.r.t. rls if
every rule instance (ps, concl) from rls obeys
inv_step (derrec rls {}) irls (ps, concl):

gen_inv_by_step:

"[| Ball ?rls (inv_step (derrec ?rls {}) ?irls) ;

?psc : ?irls |]

==> inv_rl ?rls ?psc"

Lemma 9.6 Every instance of the rule Refl, extended with arbitrary con-
texts, is invertible in the rule set gs4_rls:

Ball (extrs lkrefl) (inv_rl gs4_rls)

Proof: Suppose that Γ,2ϕ ` ∆ is derivable. We can show that the premise
Γ, ϕ,2ϕ ` ∆ is derivable by applying weakening, which has already been
shown to be admissible in gs4_rls. Q.E.D.

Lemma 9.7 Every instance of the rule set lksss (of classical propositional
logic) is invertible in the rule set gs4_rls:

Ball lksss (inv_rl gs4_rls)

Proof: By Lemma 9.5, it suffices to prove (inv step (derrec gs4 rls

{}) lksss) psc for every rule psc from gs4_rls. By Lemma 9.4, it suffices
to prove inv stepm gs4 rls lksss psc for every rule psc from gs4_rls.
Here, lksss == extrs lksne, the rule set lksne extended with arbitrary
contexts. We proceed by cases on each rule psc in gs4_rls:

psc = Refl. Immediate, the inverse of rule Refl is an instance of weakening.

"?psc : extrs lkrefl

==> inv_stepm gs4_rls (extrs lksne) ?psc"

psc is from LK. Where the rule psc is a classical rule, we first prove that
the set of classical rules is invertible w.r.t. itself:

"?psc : extrs lksne ==>

inv_stepm (extrs lksne) (extrs lksne) ?psc"
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Since the rules lksss are a subset of the rules gs4_rls, we can use
(the monotonicity) Lemma 9.3 to obtain:

"?psc : extrs lksne

==> inv_stepm gs4_rls (extrs lksne) ?psc"

psc = S42. When the last rule is S42 (with arbitrary contexts in con-
clusion only to make weakening admissible) we prove a general result.

If the rule set rls contains exactly one rule extcs {(ps, c)} which
is the rule (skeleton) (ps, c) with only the conclusion extended by
an arbitrary context, and rl is any member (instance) of rls, then
inv_stepm rls (extrs {(ips, ic)}) rl holds for any rule (ips, ic)

extended with arbitrary contexts if the (skeleton of the) conclusion ic

and the the (skeleton of the) conclusion c are disjoint:

inv_stepm_disj_cs:

"[| seq_meet ?c ?ic = 0 ;

extcs {(?ps, ?c)} = ?rls ;

?rl : ?rls |]

==> inv_stepm ?rls (extrs {(?ips, ?ic)}) ?rl"

In particular, we can put extcs {(?ps, ?c)} to be the rule S42
and put (extrs {(?ips, ?ic)}) to be any rule from lksss since the
skeletons of the conclusions of the lksss rules contain only the prin-
cipal formula of the respective rule and none of these is a 2-formula.

Q.E.D.

Theorem 9.1 (inv rl gs4 refl and inv rl gs4 lks) The Refl (lkrefl)
rule and all Classical (lksss) rules are invertible within gs4 rls.

Proof: The theorem is simply the conjunction of Lemmas 9.6 and 9.7. We
explain some of the cases in English to highlight the new aspects.

Consider invertibility for the R∨ rule. We proceed by an induction on
height, and use the induction principle gen inv by step from Lemma 9.5.

Case 1 Axiom. If Γ ` ϕ ∨ ψ,∆ is an axiom, and ϕ ∨ ψ is principal, then
Γ = Γ′, ϕ ∨ ψ. The derivation for Γ ` ϕ,ψ,∆ is then:

id
Γ′, ϕ ` ϕ,ψ,∆ id

Γ′, ψ ` ϕ,ψ,∆
L∨

Γ′, ϕ ∨ ψ ` ϕ,ψ,∆

If ϕ∨ψ is parametric in (id), then Γ ` ∆ is (id), and so is Γ ` ϕ,ψ,∆.
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Case 2 Principal. If Γ ` ϕ ∨ ψ,∆ is not an axiom, but ϕ ∨ ψ is principal,
then R∨ must have been the last rule applied. Invertibility follows
immediately from the premises of the R∨ rule.

Case 3 Parametric. If Γ ` ϕ∨ψ,∆ is not an axiom, and ϕ∨ψ is parametric,
then an application of a new instance of that last rule (perhaps us-
ing the induction hypothesis) obtains the necessary endsequent. This
is because all rules allow arbitrary contexts in their conclusion (and
premises when the premises contain context). To illustrate, consider
the two cases when the last rule used to originally derive Γ ` ϕ∨ψ,∆
is either the Refl or the S42 rule:

• If the last rule was Refl then Γ = Γ′,2A and the original der-
ivation is:

Π
Γ′, A,2A ` ∆, ϕ ∨ ψ

Refl
Γ′,2A ` ∆, ϕ ∨ ψ

Applying the inductive hypothesis on the premises gives a der-
ivation of Γ′, A,2A ` ∆, ϕ, ψ. Applying Refl to this gives the
required Γ′,2A ` ϕ,ψ,∆.

• If the last rule was S42 then Γ = Σ,2Γ′ and ∆ = 2A,∆′ and
the original derivation looks like:

Π
Γ′,2Γ′ ` A

S42
Σ,2Γ′ ` 2A,∆′, ϕ ∨ ψ

To derive Γ ` ϕ,ψ,∆, simply apply a new instance of S42 to
the original premise, this time with ϕ,ψ as the context instead
of ϕ ∨ ψ:

Π
Γ′,2Γ′ ` A

S42
Σ,2Γ′ ` 2A,∆′, ϕ, ψ

Q.E.D.

Theorem 9.2 (gs4 ctr adm) Contraction is admissible for gs4 rls.

gs4_ctr_adm: "ctr_adm gs4_rls ?A"

Proof: The cases for the G3cp and Refl rules are handled in the standard
manner as in the literature (see [TS00] and [NvP01]) using the invertibility
results above. The formalisation performs the necessary transformations
using a simple instantiation gen ctr adm step (not shown) of the induction
principle gen step lem of Theorem 7.1.
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When the rule above the contraction is an instance of the S42 rule, there
are two possible cases. Either one or both copies of the contraction-formula
exist within the context of the S42 rule, or both copies are principal.

In the first case, deleting one copy still leaves an instance of the rule.
That is, if the contraction-formula is A, with A in the succedent, then the
original rule instance is as shown below where either 2ϕ = A or A ∈ ∆:

Γ,2Γ ` ϕ
S42

Σ,2Γ ` 2ϕ,A,∆

Applying the S42 rule without introducing the shown second copy of A
in the conclusion above gives a proof of Σ,2Γ ` 2ϕ,∆ as required since an
occurrence of A is still in the succedent as 2ϕ = A or A ∈ ∆. Similarly, if
A is in the context Σ the new S42 rule instance is then:

Γ,2Γ ` ϕ
S42

Σ−A,2Γ ` 2ϕ,A,∆

The harder case occurs when both instances of the contraction-formula
A are principal. Due to the nature of the S42 rule this requires A to occur
in the antecedent only, as there cannot be two principal formulae in the
succedent. As only boxed formulae are principal, A has form 2B. The
original rule instance is thus represented by:

B,B,2B,2B,Γ,2Γ ` ϕ
S42

Σ,2B,2B,2Γ ` 2ϕ,∆

The copies of 2B and B can be contracted upon, first using the induction
hypothesis that the result applies to preceding sequents in the derivation,
and then on the rank of the contraction-formula. The S42 rule can then be
applied to give the required conclusion.

B,2B,Γ,2Γ ` ϕ
S42

Σ,2B,2Γ ` 2ϕ,∆

In the Isabelle proof, this step is unfortunately rather more tedious.
A significant number of proof steps in the formalisation are dedicated to
manipulating the ordering of formulae to convince the proof assistant that
the S42 rule can be applied after applying the induction hypotheses, and
that the resulting sequent is indeed what is required. Q.E.D.

9.4 Cut-admissibility for S4

We first state a lemma used several times in the proof of cut-admissibility.

Lemma 9.8 Given two (explicit) derivation trees dta and dtb, a cut-formula
A, a sub-formula relation sub, and a rule set rls, if the bottom rules of those
trees satisfy the step condition gen step2sr for cut-admissibility, then the
two trees satisfy the step condition sumh step2 tr for cut-admissibility:
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gs2_car_sumhs_tr:

"gen_step2sr (prop2 car ?rls) ?A ?sub ?rls

(botRule ?dta, botRule ?dtb)

==> sumh_step2_tr (prop2 casdt ?rls) ?A ?sub (?dta, ?dtb)"

Proof: By combining Lemmas 7.3, 8.2 and 8.1. Q.E.D.

Theorem 9.3 (gs4 cas) Cut is admissible in the calculus gs4 rls.

gs4_cas:

"(?Xl |- mins ?A ?Yl, mins ?A ?Xr |- ?Yr) : cas gs4_rls ?A"

Proof: Our proof essentially uses a double induction on level and rank,
where level measures the sum of the heights of the derivation trees for the
left and right premises of the cut, and rank measures the complexity of
the cut-formula. It uses Lemma 7.4, in which ?sub is instantiated to the
immediate subformula relation.

The two most difficult cases to consider correspond to when the cut-
formula is principal below an application of the S42 rule on the left, and
also principal in either the Refl or the S42 rule on the right. As these are
all modal rules, the Cut in question must be on a boxed formula, 2A.

In the former case, the original Cut has form:

Πl

ΓL,2ΓL ` A
S42

Σ,2ΓL ` ∆L,2A

Πr

A,2A,ΓR ` ∆R
Refl

2A,ΓR ` ∆R
Cut on 2A

Σ,2ΓL,ΓR ` ∆L,∆R

This is transformed as follows:

Πl

ΓL,2ΓL ` A

Πl

ΓL,2ΓL ` A
S42

Σ,2ΓL ` ∆L,2A
Πr

A,2A,ΓR ` ∆R
Cut on 2A

A,Σ,2ΓL,ΓR ` ∆L,∆R
Cut on A

Σ,ΓL,2ΓL,2ΓL,ΓR ` ∆L,∆R Contraction-admissibility
Σ,ΓL,2ΓL,ΓR ` ∆L,∆R

Refl∗
Σ,2ΓL,ΓR ` ∆L,∆R

Here Refl∗ means multiple uses of Refl, once for each member of ΓL. Impor-
tantly, the new Cut on 2A has lower level, and the Cut on A is of smaller
rank. Thus both can be eliminated by the induction hypotheses.

For the latter case, when S42 is principal on both sides, the original Cut
has form:

Πl

ΓL,2ΓL ` A
S42

ΣL,2ΓL ` ∆L,2A

Πr

A,2A,ΓR,2ΓR ` B
S42

2A,ΣR,2ΓR ` 2B,∆R
Cut on 2A

ΣL,ΣR,2ΓL,2ΓR ` 2B,∆L,∆R
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The normal process of reducing Cut level would apply Cut on the left
cut-sequent and the premise of the right cut-sequent, as follows:

Πl

ΓL,2ΓL ` A
S42

ΣL,2ΓL ` ∆L,2A
Πr

A,2A,ΓR,2ΓR ` B
Cut on 2A

A,ΣL,2ΓL,ΓR,2ΓR ` B,∆L

Unfortunately, this results in a deduction where we can no longer recover the
2B present in the conclusion of the original Cut. The nature of the calculus
and the S42 rule means that new box formulae cannot be introduced in any
succedent which contains some context ∆ (or where there are additional
formula Σ in the antecedent). As stated earlier, this case is omitted in the
cut-elimination theorem of Troesltra and Schwichtenberg [TS00].

To overcome this issue without introducing the complications and new
branching rule in the solution of Goubault [GL96], we modify the original
derivation of the left premise to produce one of equal height upon which we
can still apply the induction hypothesis on level. The new application of the
S42 rule differs from the original by simply not adding any context in the
conclusion. Formally, the Σ and ∆ of the generic S42 rule in Figure 3 are ∅
in the new S42 instance below:

Πl

ΓL,2ΓL ` A

Πl

ΓL,2ΓL ` AS42 (new)
2ΓL ` 2A

Πr

A,2A,ΓR,2ΓR ` B
Cut on 2A

A,2ΓL,ΓR,2ΓR ` B
Cut on A

ΓL,2ΓL,2ΓL,ΓR,2ΓR ` B Contraction-admissibility
ΓL,2ΓL,ΓR,2ΓR ` B

S42
ΣL,ΣR,2ΓL,2ΓR ` 2B,∆L,∆R

In the formalised proof, this instance is the only case where the inductive
principle of Lemma 7.4 is actually required. As the combined height of
the derivations leading to 2ΓL ` 2A and A,2A,ΓR,2ΓR ` B is lower
than the level of the original Cut, the induction hypothesis on level can be
applied. In all the other cases Theorem 7.2 would have sufficed. So in fact
in all the other cases the property we prove is gen step2sr ... and we use
Lemma 9.8 to link it to the required property sumh step2 tr ... where
the ellipses indicate arguments to each function as appropriate. Q.E.D.

10 Weakening, Contraction and Cut Admissibility
for S4.3

There exists a syntactic pen and paper proof of cut-admissibility for S4.3
in the literature [Shi91], however the calculus involved contains Weakening
and Contraction as explicit rules, and mix-elimination is proved rather than

43



cut. There also exist published semantic proofs of closure under Cut for both
sequent and hypersequent calculi for S4.3 [Gor94, Ind12]. To our knowledge,
there are no published papers for S4.3 providing a sequent calculus devoid
of structural rules and proving cut-elimination per se.

Labelled calculi [Neg05, Cas06] are perhaps the closest representatives in
the literature. As noted previously, while these calculi do not use Weakening
or Contraction, they explicitly include the semantics of the logic in the
calculi, along with corresponding operations on world accessibility rather
than logical operators, thus they are not purely syntactic.

10.1 Calculus for S4.3

The rules of the sequent calculus for S4.3 are listed in Figure 5. The calculus
is based on the version of Goré [Gor94], but with Weakening absorbed into
the modal rules. Note, in the S4.32 rule of Figure 5, that ~Φ = {ϕ1, . . . , ϕn}
and ~Φ−i = {ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn} for 1 ≤ i ≤ n.

Zero Premise Rule (Axiom)

id
Γ, ϕ ` ϕ,∆

Classical rules

Γ, ϕ, ψ ` ∆
L∧

Γ, ϕ ∧ ψ ` ∆

Γ ` ϕ,∆ Γ ` ψ,∆
R∧

Γ ` ϕ ∧ ψ,∆
Γ, ϕ ` ∆ Γ, ψ ` ∆

L∨
Γ, ϕ ∨ ψ ` ∆

Γ ` ϕ,ψ,∆
R∨

Γ ` ϕ ∨ ψ,∆
Γ ` ϕ,∆ Γ, ψ ` ∆

L→
Γ, ϕ→ ψ ` ∆

Γ, ϕ ` ψ,∆
R→

Γ ` ϕ→ ψ,∆

Γ ` ϕ,∆
L¬

Γ,¬ϕ ` ∆

Γ, ϕ ` ∆
R¬

Γ ` ¬ϕ,∆

Modal rules

Γ, ϕ,2ϕ ` ∆
Refl

Γ,2ϕ ` ∆

Γ,2Γ ` ϕ1,2~Φ−1 · · · Γ,2Γ ` ϕi,2~Φ−i · · · Γ,2Γ ` ϕn,2~Φ−n
S4.32 †

Σ,2Γ ` 2~Φ,∆

Figure 5: Sequent calculus for S4.3 where † is ∀ψ.2ψ 6∈ Σ ∪∆

For backward proof search, the S4.32 rule can be thought of as producing
a new premise for all boxed formula in its conclusion, each of these formula
being un-boxed separately in its own premise. Thus the general statement
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of the rule contains an indeterminate number of premises, one is necessary
for each ϕi ∈ ~Φ. For the sake of simplicity and clarity, at times only one of
these premises will be shown as a representative for all n premises. That is,
the rule will be represented in the following form shown below at left:

Γ,2Γ ` ϕi,2~Φ−i
S4.32

Σ,2Γ ` 2~Φ,∆

Γ,2Γ ` ϕi,2~Φ−i
S4.32 ∀ψ.2ψ 6∈ Σ ∪∆

Σ,2Γ ` 2~Φ,∆

There are two different versions of the S4.32 rule: either the context
(Σ∪∆) can contain any formulae, as shown above left, or they cannot include
top-level boxed-formulae, as shown above right. In the latter case, the 2Γ
and 2~Φ in the conclusion of the S4.32 rule must correspond to exactly
all the top-level boxed formulae within that sequent. The two versions of
the calculus are in fact equivalent, following a proof of the admissibility of
Weakening for the latter, however, for efficient backward proof search, the
version above right is preferred as it is invertible and hence does not require
backtracking during proof search.

Henceforth, Σ and ∆ within the S4.32 rule will be restricted from con-
taining the 2 operator at the top-level. In Isabelle, this is implemented by
creating a new type of formula, based on the default formula type. HOL’s
typedef allows a concise method of declaring new types as a subset of an
existing type, where ~= stands for inequality:

typedef nboxfml =

"{f::formula. ALL (a::formula). f ~= FC ’’Box’’ [a]}"

The Isabelle formalisation of the overall calculus is based on the calculus
for S4 given in Figure 3. The only change is in the S4.32 rule, which requires
the mapping function nboxseq to create a new premise for each individual
boxed formula in the succedent. The code for this is given in Figure 6.

10.2 Weakening for S4.3

As the S4.32 rule does not allow arbitrary contexts, weakening-admissibility
must be proved by induction, in this case on both height and rank (of the
implicit derivation tree, ie, using Lemma 7.1). To simplify the case for the
S4.32 rule and its multiple premises, we prove weakening-admissibility for
the antecedent and succedent separately, and only considering a single for-
mula at a time. The Isabelle encodings for these properties are given below.
The induction itself proceeds on the height of the derivation, with a sub-
induction on the rank of the formula A being inserted into the conclusion.

Definition 10.1

wk adm single antec rls means:
For any rls-derivable sequent S, and any single formulae A,
if S ∈ derrec rls {} then S+({#A#} |- {#}) ∈ derrec rls {}.
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wk adm single succ rls means:
For any rls-derivable sequent S, and any single formulae A,

(* Functions to unbox one formula for each premise *)

consts

ithprem :: "formula multiset => formula list => formula

=> formula sequent"

nprems :: "formula multiset => formula list

=> formula sequent list"

(* The boxes in the succedent are treated as a list As.

"ms_of_list (remove1 Ai As)" is the multiset consisting of

all elements in "As", with one copy of "Ai" removed. *)

defs

ithprem_def :

"ithprem Gamma As Ai ==

mset_map Box Gamma + Gamma |-

{#Ai#} + mset_map Box (ms_of_list (remove1 Ai As))"

nprems_def :

"nprems Gamma As == map (ithprem Gamma As) As"

consts (* type definitions for functions *)

gs43_rls :: "formula sequent psc set"

s43box :: "formula sequent psc set"

(* The S4.3 box rule *)

inductive "s43box"

intrs

I "(nprems gamma As, mset_map Box gamma |-

mset_map Box (ms_of_list As)) : s43box"

(* The S4.3 calculus as an extension of the LK calculus *)

inductive "gs43_rls"

intrs

lksI "psc : lksss ==> psc : gs43_rls"

reflI "psc : lkrefl ==>

pscmap (extend flr) psc : gs43_rls"

(* boxI allows extra formulae in conclusion only,

and enforces the ‘dagger’ condition of Figure 5 *)

boxI : "(p, c) : lkbox ==>

(p, extend (nboxseq flr) c) : gs43_rls"

Figure 6: S4.3 calculus as encoded in Isabelle
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if S ∈ derrec rls {} then S+({#} |- {#A#}) ∈ derrec rls {}.

Lemma 10.1 (wk adm sides) For a set of rules rls, if wk adm single antec

and wk adm single succ both hold then so does wk adm.

Proof: By multiset induction, repeatedly applying the results for single
formulae. Q.E.D.

Theorem 10.1 (gs43 wk adm) Weakening is admissible for the calculus con-
sisting of the set of rule gs43 rls.

Proof: In the case of the S4.32 rule, if A is not boxed, then it is allowed to
be contained in the context of the rule’s conclusion. The derivability of the
original premises, followed by an application of a new S4.32 rule including
A as part of its context, then gives the required sequent. The difficulty
arises when A is a boxed formula, say A = 2B. For the sake of clarity,
the representation of the original sequent can be split into its boxed and
non-boxed components, so the original derivation is:

Π

Γ,2Γ ` ϕi,2~Φ−i
S4.32

Σ,2Γ ` 2~Φ,∆

When A is to be added to the antecedent, the induction on height can
be used to add A = 2B to each of the original premises. Following this by
an application of the sub-induction on formula rank, allows the addition of
B, giving the derivability of B,2B,Γ,2Γ ` ϕi,2~Φ−i. An application of the
S4.32 rule then completes the case:

B,2B,Γ,2Γ ` ϕi,2~Φ−i
S4.32

2B,Σ,2Γ ` 2~Φ,∆

The final case to consider is that of adding A = 2B to the succedent.
The goal once again is to use the S4.32 rule to give the desired conclusion.
From the original premises Γ,2Γ ` ϕi,2~Φ−i, the induction hypothesis on
height (inserting 2B) gives the derivability of Γ,2Γ ` ϕi,2~Φ−i,2B. A
different application of the S4.32 rule, bringing in empty contexts, on the
original premises also gives the derivability of 2Γ ` 2~Φ. Applying the
induction on formula rank then shows that 2Γ ` B,2~Φ is derivable.

At this point, the derivability of all necessary premises for a new S4.32
rule instance has been proven. These are sequents of the form Γ,2Γ `
ϕ′i,2

~Φ′−i where ~Φ′ = ~Φ, B and ϕ′ is from the multiset ~Φ∪{B} as appropriate.
The final rule application is then:

Γ,2Γ ` ϕ′i,2~Φ′−i
S4.32

Σ,2Γ ` 2~Φ,2B,∆

Q.E.D.
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10.3 Invertibility and Contraction for S4.3

As for S4, we prove inversion lemmata for the G3cp and Refl rules within
the overall calculus.

Theorem 10.2 (inv rl gs43 refl and inv rl gs43 lks) Refl (lkrefl)
and all Classical rules (lksss) are invertible within the calculus gs43 rls.

Proof: Since the inverse of the Refl rule is an instance of weakening, which
we have shown is admissible, the only notable case occurs for the G3cp rules,
where the last rule applied in the original derivation is S4.32. The proof
uses the induction principle of Lemma 9.5.

If the original derivation is as shown below left then proving invertibility
for G3cp requires showing the derivability of all premises after applying a
G3cp rule backwards from the endsequent of the S4.32 rule. The classical
rules do not operate on boxed formulae, so this rule can only modify Σ or
∆ upwards into Σ′ and ∆′ respectively as shown below right:

Π

Γ,2Γ ` ϕi,2~Φ−i
S4.32

Σ,2Γ ` 2~Φ,∆

Σ′,2Γ ` 2~Φ,∆′
G3cp rule

Σ,2Γ ` 2~Φ,∆

Clarifying again, invertibility of the G3cp rule requires deriving Σ′,2Γ `
2~Φ,∆′. The usual tactic would apply another instance of the S4.32 rule
to the original premises, but bringing in a different context. However, this
does not admit a proof if there are boxed formula in Σ′ or ∆′. For example,
if the G3cp rule is L∧ and the principal formula is A∧2B then Σ′ contains
a boxed formula, 2B, which cannot be introduced within the (box-free)
context of a new S4.32 rule application.

To accommodate this case, the premises of the modal rule are used to
derive the conclusion without any context. Then weakening-admissibility is
used to bring the remaining formulae in the premise of the G3cp rule:

Π

Γ,2Γ ` ϕi,2~Φ−i
S4.32

2Γ ` 2~ΦWeakening-admissibility
Σ′,2Γ ` 2~Φ,∆′

Q.E.D.

For S4, proving invertibility is sufficient to lead to a contraction admis-
sibility proof. However, using invertibility alone does not allow an obvi-
ous transformation when dealing with the S4.32 rule. In order to prove
contraction-admissibility, we first require the following lemma:

Lemma 10.2 (gs43 refl) The rule R-refl is admissible in gs43 rls.
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Γ ` ∆,2A
R-refl

Γ ` ∆, A

The corresponding statement of the lemma in Isabelle (not shown) states
that if a sequent seq is derivable in gs43 rls and the sequent is equivalent
to X ` Y,2A for any X and Y , then X ` Y,A is also derivable.

Proof: By an induction on the structure of the (implicit) derivation tree,
using the derrec-induction principle, Lemma 4.1. The analysis is on the
last rule applied in deriving Γ ` ∆,2A.

Case 1 The last rule applied was id. If 2A is parametric then Γ ` ∆ is an
axiom, and the conclusion will be also. If 2A is principal, then Γ =
{2A} ∪ Γ′ and the following transformation is applied:

id
A,2A,Γ′ ` ∆, A

Refl
2A,Γ′ ` ∆, A

Case 2 The last rule applied was from G3cp. No rules in G3cp operate on a
boxed formula, so 2A must be parametric. The induction hypothesis
on height is thus applicable to the premise of the G3cp rule. Applying
the original G3cp on the resulting sequent gives the desired conclusion.

Case 3. The last rule applied was Refl. As in Case 2, 2A must be paramet-
ric, as Refl only operates on boxed formula in the antecedent.

Case 4. The last rule applied was S4.32. Then one premise of the original
deduction un-boxes 2A. Using Refl for each member of Γ′ (denoted by
Refl∗) followed by weakening admissibility on this premise is enough
to produce the conclusion. For clarity, here we express Γ = Σ ∪ 2Γ′

and ∆ = 2~Φ ∪∆′. The original derivation is:

Π1

Γ′,2Γ′ ` 2~Φ, A

Π2

Γ′,2Γ′ ` ϕi,2~Φ−i,2A

Σ,2Γ′ ` 2~Φ,∆′,2A

This is transformed into:

Π1

Γ′,2Γ′ ` 2~Φ, A
Refl∗

2Γ′ ` 2~Φ, A
Weakening-admissibility

Σ,2Γ′ ` 2~Φ,∆′, A

Q.E.D.

Theorem 10.3 (gs43 ctr adm) Contraction is admissible in gs43 rls.
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Proof: We use the induction principle Lemma 7.1, for implicit derivation
trees. If the last rule used in the derivation was the S4.32 rule, there are
two cases to consider. The case where the contraction-formula is parametric
is handled by simply re-applying another instance of the S4.32 rule as in
the S4 case. Similarly, when the contraction-formula is principal in the
antecedent, then the proof proceeds as for S4. Specifically, one copy of 2A
from Σ,2A,2A,2Γ ` 2~Φ,∆ must be removed. The original derivation is:

Π

A,A,2A,2A,Γ,2Γ ` ϕi,2~Φ−i
S4.32

Σ,2A,2A,2Γ ` 2~Φ,∆

By contracting twice using first the induction hypothesis on height, then
the induction hypothesis on rank, on all premises followed by an application
of the S4.32 rule, the desired endsequent is obtained:

Π

A,A,2A,2A,Γ,2Γ ` ϕi,2~Φ−i
IH on height

A,A,2A,Γ,2Γ ` ϕi,2~Φ−i
IH on rank

A,2A,Γ,2Γ ` ϕi,2~Φ−i
S4.32

Σ,2A,2Γ ` 2~Φ,∆

When the contraction-formula is principal in the succedent, there are
two possible premises to consider. Either a premise “un-boxes” one of the
contraction-formulae1, or it leaves both boxed. The original deduction is:

Π1

Γ,2Γ ` 2~Φ, A,2A

Π2

Γ,2Γ ` ϕi,2~Φ−i,2A,2A

Σ,2Γ ` 2~Φ,2A,2A,∆

In the latter case, the induction hypothesis can be directly applied, re-
moving one copy of the boxed formulae:

Π2

Γ,2Γ ` ϕi,2~Φ−i,2A,2A
IH on height

Γ,2Γ ` ϕi,2~Φ−i,2A

In the former case, we use Lemma 10.2 to produce the following:

Π1

Γ,2Γ ` 2~Φ, A,2A
R-refl

Γ,2Γ ` 2~Φ, A,A
IH on rank

Γ,2Γ ` 2~Φ, A

Π2

Γ,2Γ ` ϕi,2~Φ−i,2A,2A
IH on height

Γ,2Γ ` ϕi,2~Φ−i,2A
S4.32

Σ,2Γ ` 2~Φ,2A,∆

Q.E.D.

1Technically, there are two syntactically identical premises which individually un-box
one of the two copies of 2A.
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10.4 Cut-admissibility for S4.3

Theorem 10.4 (gs43 cas) Cut is admissible in the calculus gs43 rls.

Proof: As with Theorem 9.3, we use the induction principle of Lemma 7.4,
involving induction on the sums of heights of two explicit trees, although
for the majority of cases the simpler principle Theorem 7.2 would suffice.
So again, in those cases, we prove gen step2sr ... and we use Lemma 9.8
to link it to the required property sumh step2 tr ..., where the ellipses
indicate arguments to each function as appropriate.

When S4.32 leads to the left cut-sequent, and the Refl rule is used on the
right, the transformation mimics the corresponding case for S4. However,
for the case where S4.32 is principal on both sides we require a new transfor-
mation. For clarity, the premises above the S4.32 rule on the left are given
as two cases, depending on whether the cut-formula is un-boxed or not. The
boxed formula in the succedents of the premises are also distinguished by the
superscripts L and R for left and right cut premises respectively. Explicitly,
these are ~ΦL = {ϕL

1 , . . . , ϕ
L
i , . . . , ϕ

L
n} and ~ΦR = {ψR

1 , . . . , ψ
R
k , . . . , ψ

R
m}. The

original cut thus has the form:

Πa
L

ΓL,2ΓL ` ϕL
i ,2

~ΦL
−i,2A

Πb
L

ΓL,2ΓL ` A,2~ΦL

S4.32
ΣL,2ΓL ` 2~ΦL,∆L,2A

...

...

ΠR

A,2A,ΓR,2ΓR ` ψR
k ,2

~ΦR
−k

S4.32
2A,ΣR,2ΓR ` 2~ΦR,∆R

Cut on 2A
ΣL,ΣR,2ΓL,2ΓR ` 2~ΦL,2~ΦR,∆L,∆R

To remove this cut, the derivation is transformed into one where the prin-
cipal rule (S4.32) is applied last to produce the desired endsequent. The
problem is then proving that the premises of the following S4.32 rule appli-
cation are derivable. This in itself requires two different transformations of
the original derivation, depending on the two forms that the premises can
take; either the un-boxed formula in the succedent originated from the left
cut premise, that is from 2~ΦL, or from the right, within 2~ΦR. These cases
are named PL and PR respectively. The final S4.32 rule used in our new
transformation is then:

PL
ΓL,2ΓL,ΓR,2ΓR ` ϕL

i ,2
~ΦL
−i,2

~ΦR

...

PR
ΓL,2ΓL,ΓR,2ΓR ` 2~ΦL, ψR

k ,2
~ΦR
−k

S4.32
ΣL,ΣR,2ΓL,2ΓR ` 2~ΦL,2~ΦR,∆L,∆R

For both transformations, the same idea behind the principal S42 rule
case is used. We first derive the original cut-sequents but without their
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original contexts. These new sequents will be called DL and DR respectively,
that is, DL = 2ΓL ` 2~ΦL,2A and DR = 2A,2ΓR ` 2~ΦR. These are
derived using the derivations in the original cut, but applying new instances
of the S4.32 rule. Importantly, the derivations of the new sequents DL and
DR have the same height as the original cut-sequents. This is the case where
the induction principle of Lemma 7.4 is required.

Πa
L

ΓL,2ΓL ` ϕL
i ,2

~ΦL
−i,2A

Πb
L

ΓL,2ΓL ` A,2~ΦL

S4.32
DL = 2ΓL ` 2~ΦL,2A

ΠR

A,2A,ΓR,2ΓR ` ψR
k ,2

~ΦR
−k

S4.32
DR = 2A,2ΓR ` 2~ΦR

Having introduced all the necessary notation and pre-requisites, the first
actual case to consider is deriving PL. The induction on level allows DR to
be cut, on cut-formula 2A, with all of the sequents given by the derivation
Πa

L above the original left S4.32 rule. The transformation performs n cuts,

for all premises corresponding to the formulae in ~ΦL. The results of this cut
then match exactly with PL after using the admissibility of Weakening to
introduce the formulae of ΓR in the antecedent.

Πa
L

ΓL,2ΓL ` ϕL
i ,2

~ΦL
−i,2A

DR

2A,2ΓR ` 2~ΦR

Cut on 2A
ΓL,2ΓL,2ΓR ` ϕL

i ,2
~ΦL
−i,2

~ΦR

Weakening-admissibility
PL = ΓL,2ΓL,ΓR,2ΓR ` ϕL

i ,2
~ΦL
−i,2

~ΦR

To derive the sequents in PR, the induction hypothesis on level is used
to cut DL with all of the premises above the right S4.32 in the original cut,
with cut-formula 2A. The induction on formula rank on A is then used
to cut the sequent resulting from Πb

L with all these new sequents. Finally,
contraction-admissibility allows the removal of the extra copies of 2Γ and
2~ΦL, and concludes the case.

Πb
L

ΓL,2ΓL ` A,2~ΦL

...

...

...

DL

2ΓL ` 2~ΦL,2A

ΠR

A,2A,ΓR,2ΓR ` ψR
k ,2

~ΦR
−k

Cut on 2A
2ΓL, A,ΓR,2ΓR ` 2~ΦL, ψR

k ,2
~ΦR
−k

Cut on A
ΓL,2ΓL,2ΓL,ΓR,2ΓR ` 2~ΦL,2~ΦL, ψR

k ,2
~ΦR
−k Contraction-

admissibilityPR = ΓL,2ΓL,ΓR,2ΓR ` 2~ΦL, ψR
k ,2

~ΦR
−k

52



To conclude, the transformations above derive PL and PR while reducing
cut-level or cut-rank. These are the premises of an instance of the S4.32
rule which results in the conclusion of the original cut. This completes the
cut-admissibility proof. Q.E.D.

11 Weakening, Contraction and Cut Admissibility
for GTD

We now describe Isabelle proofs of cut admissibility for a sequent calculus
for the logic GTD described in [Min13]. Axiomatically, GTD is K with
the additional axiom 2A ⇔ 22A. The sequent inference rules involving
2, allowing arbitrary context in the conclusion so as to make weakening
admissible, are shown below:

2Γ,Γ ` A
Σ,2Γ ` 2A,∆

(` 2)
2Γ,Γ ` 2A

Σ,2Γ ` 2A,∆
(2 `)

The skeletons of the above two rules are encoded as GTD shown below by
factoring out the form of A as either B or as 2B:

inductive "GTD"

intrs

I "A = B | A = Box B ==>

([mset_map Box X + X |- {#A#}],

mset_map Box X |- {#Box B#}) : GTD"

11.1 Calculus for GTD

We now look at proving cut admissibility for a version of GTD without
structural rules, where the box rules have their conclusions (only) extended
with an arbitrary context, which permits weakening to be admissible.

We define the rules of the sequent calculus as follows. The rules used for
classical logic (before extending them with a context) form the set lksne

where the rule sets idrls, lksil and lksir are the axioms and the left and
right logical introduction rules: see Figure 3.

Definition 11.1 (lkssx) Given, a rule set xrls, every rule of xrls is in
the rule set lkssx xrls, and every rule psc in rule set lknse gives a rule
in lkssx xrls obtained by uniformly extending both the premise and con-
clusion of psc with an arbitrary context (sequent) flr:

inductive "lkssx xrls"

intrs

x "psc : xrls ==> psc : lkssx xrls"

extI "psc : lksne ==> pscmap (extend flr) psc : lkssx xrls"
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Definition 11.2 (extcs) Given a rule set rules, the rule set extcs rules

is obtained by extending only the conclusion c of each rule (ps, c) in
rules by an arbitrary context (sequent) flr (while leaving the premises un-
changed):

inductive "extcs rules"

intrs

I "(ps, c) : rules ==> (ps, extend flr c) : extcs rules"

The rule set lkssx (extcs GTD) for GTD is obtained by extending only
the conclusion of the rule GTD and by extending every rule of lknse.

11.2 Weakening-admissibility for GTD

First we prove weakening admissibility, using a lemma which allows us to
apply Lemma 9.1.

Lemma 11.1 For any rule sets rls and rlsa

(a) extrs rlsa ∪ extcs rls satisfies ext concl

(b) extrs rlsa ∪ extcs rls satisfies weakening admissibility

extrs_cs_ext_concl: "ext_concl (extrs ?rlsa Un extcs ?rls)"

wk_adm_extrs_cs: "wk_adm (extrs ?rlsa Un extcs ?rls)"

Proof: The first is easy. The second follows using Lemma 9.1. Q.E.D.

Corollary 11.1 GTD satisfies weakening admissibility.

wk_adm_lkssx_cs: "wk_adm (lkssx (extcs ?xrls))"

Proof: Since the rule set lkssx (extcs GTD) for GTD is also equal to
extrs lksne ∪ extcs GTD, the result follows from Lemma 11.1. Q.E.D.

11.3 Inversion and Contraction-admissibility for GTD

For contraction admissibility, first we need to prove invertibility of the clas-
sical logical rules. The general method for doing so was described in §9.3.

Recall the predicate inv stepm, which is used in an inductive proof of
invertibility. Its three arguments are:

drls first, the set of derivation rules with respect to which the invertibility
(a case of admissibility) is defined,

irls second, the set of rules whose invertibility is being considered (the
inversion rules)
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(ps, c) third, the final rule of a derivation — since we are talking about
proving the invertibility result by induction on the derivation, the in-
ductive hypothesis is that the invertibility result applies to the premises
ps of this final rule.

By Lemma 9.3, inv stepm (although not inv step) is monotonic in the
derivation rules argument. For its second argument the following holds.

Lemma 11.2 For a given set drls of derivation rules and a given final rule
psc, if inv stepm applies for inversion rule sets irlsa and irlsb, then it
applies for irlsa ∪ irlsb.

inv_stepm_Un:

"[| inv_stepm ?drls ?irlsa ?psc ;

inv_stepm ?drls ?irlsb ?psc |]

==> inv_stepm ?drls (?irlsa Un ?irlsb) ?psc"

So far as the third argument is concerned, the requirement to prove a
rule is invertible is simply that inv stepm ... applies for all cases of the
third argument (see Lemmas 9.5 and 9.4): thus the lemmata we use are
expressed to apply to single cases of the third argument.

We now describe the lemmata used as building-blocks for the required
invertibility result.

Lemma 11.3

(a) inv stepm ... applies where the derivation rules and the set of rules
to be inverted are the classical logical rules extrs lksne, and the final
rule is any one of those rules

lks_inv_stepm:

"?psc : extrs lksne ==>

inv_stepm (extrs lksne) (extrs lksne) ?psc"

(b) where the set of inversion rules is the set of extensions of a single
skeleton whose conclusion is ic, and the set of derivation rules is the
set of extensions of a single skeleton rule whose conclusion is c, and
these skeleton conclusions ic and c are disjoint (ie, have no formula
in common on the same side of the turnstile), and the final rule is one
of those derivation rules, then inv stepm ... applies

inv_stepm_disj:

"[| seq_meet ?c ?ic = 0 ;

extrs {(?ps, ?c)} = ?rls ; ?rl : ?rls |]

==> inv_stepm ?rls (extrs {(?ips, ?ic)}) ?rl"
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(c) as for (b), except that the set of derivation rules is the set of extensions
in the conclusion only (using extcs) of the single skeleton

inv_stepm_disj_cs:

"[| seq_meet ?c ?ic = 0 ;

extcs {(?ps, ?c)} = ?rls ; ?rl : ?rls |]

==> inv_stepm ?rls (extrs {(?ips, ?ic)}) ?rl"

(d) where the set of inversion rules and the set of derivation rules are each
the set of extensions of a single skeleton rule whose conclusion has a
single formula, and if those two skeletons’ conclusions are equal then
the two skeletons are equal, then inv stepm ... applies

inv_stepm_scrls:

"[| extrs {?srl} = ?rls ; ?rl : ?rls ;

?srl : scrls ; ?irl : scrls ;

snd ?srl = snd ?irl --> ?srl = ?irl |]

==> inv_stepm ?rls (extrs {?irl}) ?rl"

Parts (b) and (c) (inv stepm disj and inv stepm disj cs) are for the
case where the principal formula of the rule to be inverted is in the context
of the conclusion of the last rule of the derivation: the first premise gives
us that the formula to be inverted is not the principal formula of the rule,
though it is expressed in a way which is relevant to a case where the rules
in question have more than just one principal formula.

Part (d) (inv stepm scrls), whose proof uses part (b), uses the fact
that for each formula involved there are unique introduction rules for the
left and right sides of `, so an inversion step is either parametric or gives us
the premise(s) of the last rule applied.

Lemma 11.4 Every rule of lksss is invertible in the calculus for GTD.

gtdns_inv_rl: "Ball (extrs lksne) (inv_rl (lkssx (extcs GTD)))"

Proof: This uses Lemmas 9.5, 9.4 and 11.3. Q.E.D.

Then, to prove contraction admissibility, we follow an approach very
similar to §9.3. For the rules (2 `) and (` 2), the proof for the cases where
either of these is the final rule is just the same as for the S42 rule in §9.3.

Lemma 11.5 Contraction is admissible in GTD.

gtdns_ctr_adm: "ctr_adm (lkssx (extcs GTD)) ?A"
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11.4 Cut-admissibility for GTD

Now, for cut admissibility, the difficult cases are where the last rule on both
sides is one of the two box rules (` 2) and (2 `):

2Γ,Γ ` B
Σ,2Γ ` 2B,∆

(` 2)
2Γ,Γ ` 2B

Σ,2Γ ` 2B,∆
(2 `)

Since the proof is effectively the same whichever of these two rules is on
the right, we define a unary function s4g . such that

• s4g (λB. {B,2B}) is all instances of either (` 2) or (2 `),

• s4g (λB. {B}) is all instances of (` 2), and

• s4g (λB. {2B}) is all instances of (2 `)

where the function prs B encapsulates the choices of B and/or 2B, as
required and where s4g prs below encodes only the skeletons of the rules
above: see the definition of GTD at the start of 11. Formally,

Definition 11.3 (s4g) s4g prs is the set of instances of the following rule
where A ∈ prsB:

2Γ,Γ ` A
2Γ ` 2B

inductive "s4g prs"

intrs I "A : prs B ==>

([mset_map Box X + X |- {#A#}],

mset_map Box X |- {#Box B#}) : s4g prs"

The case of the (` 2) rule on the left is dealt with in §9.4: depending
on whether we have the rule (` 2) or (2 `) on the right, we may need to
change B to 2B in the diagrams there.

For the case where we have the (2 `) rule on the left, the original
derivation is as in the following diagram, where B′ is B or 2B.

Πl

ΓL,2ΓL ` 2A
2 `

ΣL,2ΓL ` ∆L,2A

Πr

A,2A,ΓR,2ΓR ` B′
2 ` or ` 2

2A,ΣR,2ΓR ` 2B,∆R
Cut on 2A

ΣL,ΣR,2ΓL,2ΓR ` 2B,∆L,∆R

As in §9.4, we modify the original derivation of a premise, in this case
the right premise, by simply not adding any context in the conclusion. This
produces a derivation of equal height upon which we can still apply the
induction hypothesis on level. Formally, the Σ and ∆ of the generic box
rule (` 2) or (2 `) are ∅ in the new instance below:
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Πl

ΓL,2ΓL ` 2A

Πr

A,2A,ΓR,2ΓR ` B′
2 ` or ` 2 (new)

2A,2ΓR ` 2B
Cut on 2A

ΓL,2ΓL,2ΓR ` 2B
Weakening-admissibility

ΓL,2ΓL,ΓR,2ΓR ` 2B
2 `

ΣL,ΣR,2ΓL,2ΓR ` 2B,∆L,∆R

For the cut-elimination proof we also use results for the parametric cases,
that is, where the cut-formula appears in the context of the last rule on either
side above the cut. This includes cases where that rule is in extrs . . . (where
the rule has a context which appears in premises and conclusion) and where
that rule is in extcs . . . (where the rule has a context which appears only
in the conclusion).

The following lemma is used for the common situation of a cut which is
parametric with respect to the last rule of the left-hand derivation.

Lemma 11.6 (lcg gen step) Consider a set erls of derivation rules, for
which weakening is admissible, and which contains all extensions of a skele-
ton rule ρ with premises ps and conclusion U ` V . Consider two derivations
of which the final rule of the left side is an extension of ρ. Then for a cut-
formula A which is not contained in V , and any subformula relation sub,
the inductive step condition gen step2 sr ... holds for the admissibility
of a cut on A.

lcg_gen_step:

"[| wk_adm ?erls ;

extrs {(?ps, ?U |- ?V)} <= ?erls ;

~ ?A :# ?V ;

?pscl = pscmap (extend (?W |- ?Z)) (?ps, ?U |- ?V) |]

==>

gen_step2sr (prop2 car ?erls) ?A ?sub ?erls (?pscl, ?pscr)"

A similar lemma lcg gen steps extcs holds for the case where only
extensions in the conclusion of ρ are contained in erls.

lcg_gen_steps_extcs:

"[| wk_adm ?rls ;

extcs {(?ps, ?c)} <= ?rls ; ~ ?A :# succ ?c |]

==> gen_step2sr (prop2 car ?rls) ?A ?sub ?rls

((?ps, extend ?flr ?c), ?psr, ?cr)"

Finally we need to deal with the cases of matching instances of the usual
logical introduction rules. Here we use a general result giving requirements
for certain cases of the final rules on either side of a putative cut to satisfy
the step condition for cut-admissibility.
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It uses a property c8 ercas prop, which encodes the property that a cut
which is principal (ie, the cut formula is introduced by a logical introduction
rule in the final step) on both sides is reducible to cuts on sub-formulae. It
is loosely defined as follows:

Definition 11.4 (c8 ercas prop) Given a set of derivation rules prls, a
cut-formula A, a subformula relation psubfml, and a set of skeleton rules
(typically logical introduction rules) rls,
c8 ercas prop psubfml prls A rls means:
assuming that we have cut-admissibility for cut-formulae which are smaller
than A according to psubfml, where two derivations have as their final se-
quents Xl ` A, Yl and Xr, A ` Yr, and on both sides the final rule introduces
A using logical introduction rules in rls, then Xl, Xr ` Yl, Yr is derivable,
that is, the cut on A is admissible.

Of course, whether c8 ercas prop holds depends on the specific set of
logical rules. Beyond that, however, the following lemma is quite general.

Lemma 11.7 Given a set of derivation rules drls, a cut-formula A, and a
subformula relation psubfml, if

• drls satisfy weakening admissibility

• there is a set rls of skeleton rules all of whose extensions are contained
in drls

• all rules in rls, other than axiom rules B ` B, have a single formula
in their conclusion

• the axiom rules are also in drls

• drls and rls satisfy c8 ercas prop

• the final rules of two derivations are extensions of rules in rls

then the step condition gen step2sr for cut-admissibility for the two deriva-
tions is satisfied.

gs2sr_alle:

"[| wk_adm ?drls ;

c8_ercas_prop ?psubfml ?drls ?A ?rls ;

?rls <= iscrls ;

idrls <= ?drls ;

extrs ?rls <= ?drls ;

(?psa, ?ca) : extrs ?rls ;

(?psb, ?cb) : extrs ?rls |]

==> gen_step2sr (prop2 car ?drls) ?A ?psubfml ?drls

((?psa, ?ca), ?psb, ?cb)"
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We apply this result to the logic GTD using first another general result

Lemma 11.8 (gen lksne c8) If a set of derivation rules drls satisfies
weakening admissibility and contraction admissibility, and contains the ex-
tensions of the logical introduction rule skeletons lksne then the condition
c8 ercas prop is satisfied (for the usual immediate proper subformula rela-
tion and for any cut-formula).

gen_lksne_c8:

"[| ALL A’. ctr_adm ?drls A’ ;

wk_adm ?drls ; extrs lksne <= ?drls |]

==> c8_ercas_prop ipsubfml ?drls ?A lksne"

Corollary 11.2 (gtdns lksne c8) GTD satisfies c8 ercas prop in rela-
tion to the logical introduction rule skeletons lksne.

gtdns_lksne_c8:

"c8_ercas_prop ipsubfml (lkssx (extcs GTD)) ?A lksne"

Finally we get the cut admissibility result. Here, mins A M means
multiset M with one additional copy of A inserted.

Theorem 11.1 (gtdns casdt, gtdns cas) GTD satisfies cut-admissibility.

gtdns_casdt: "(?dt, ?dta) : casdt (lkssx (extcs GTD)) ?A"

gtdns_cas: "(?Xl |- mins ?A ?Yl, mins ?A ?Xr |- ?Yr) :

cas (lkssx (extcs GTD)) ?A"

12 Weakening, Contraction and Cut Admissibility
for Dynamic Topological Logic S4C

We now describe Isabelle proofs of the cut admissibility of the logic S4C
described by Mints [Min13]. This system has two “modal” operators, 2 and
◦. The S4-axioms hold for 2, ◦ commutes with the boolean operators, and
the following are given:

◦(A→ B)↔ (◦A→ ◦B)

◦⊥ ↔ ⊥
◦2A→ 2 ◦A

The following sequent rules are given for S4C by Mints [Min13]

◦kA,Γ ` ∆, ◦kB
Γ ` ∆, ◦k(A→ B)

(`→)
Γ ` ∆, ◦kA ◦k B,Γ ` ∆

◦k(A→ B),Γ ` ∆
(→`)
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◦kA,Γ ` ∆

◦k2A,Γ ` ∆
(2 `)

Γ ` ∆

◦Γ ` ◦∆
(◦) B ` A

B ` 2A
(` 2)

In the (` 2) rule, B must consist of “2-formulae”, that is, formulae of
the form ◦k2A.

As Mints omits the other logical operators, we include, for them, the
usual logical introduction rules with the principal and side formulae preceded
by ◦k just as with the (`→) and (→`) rules shown above.

Our version of the calculus contains no explicit structural rules, so we
prove invertibility of the logical rules and contraction admissibility. The
presence of the (◦) rule makes the proof more complicated and is handled
similarly to our handling of contraction in proving cut admissibility for GTD.

As we have no structural rules, we use a presentation of the system which

• allows an arbitrary context to be added to the conclusion (only) of the
(` 2) and (◦) rules

• uses a version of the (2 `) rule which includes the principal formula
in the premise

Γ ` ∆

Σ, ◦Γ ` ◦∆,Π
(◦) B ` A

Γ,B ` 2A,∆
(` 2)

◦k2A, ◦kA,Γ ` ∆

◦k2A,Γ ` ∆
(2 `)

12.1 Calculus for S4C

We now describe how we encoded the sequent calculus. First we define the
rules which can be extended by an arbitrary context in their premises and
conclusion. Without the context, these rules form the set s4cnsne.

Applying nkmap k to a rule applies ◦k to each formula appearing in that
rule, and funpow f x means applying f to x, n times, i.e., fn(x).

inductive "s4cnsne"

intrs

id "psc : idrls ==> psc : s4cnsne"

circ_il "rl : lksil ==> nkmap k rl : s4cnsne"

circ_ir "rl : lksir ==> nkmap k rl : s4cnsne"

circ_T "rl : lkrefl ==> nkmap k rl : s4cnsne"

inductive "lkrefl"

intrs

I "([{#A#} + {#Box A#} |- {#}], {#Box A#} |- {#}) : lkrefl"

defs

nkmap_def : "nkmap k == pscmap (seqmap (funpow Circ k))"
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inductive "s4cns"

intrs

extI "rl : s4cnsne ==> pscmap (extend (U |- V)) rl : s4cns"

extcsI "(ps, c) : circ Un s4cbox ==>

(ps, extend (U |- V) c) : s4cns"

inductive "circ"

intrs

I "([seq], seqmap Circ seq) : circ"

inductive "s4cbox"

intrs

boxI "M : msboxfmls ==> ([M |- {#A#}],

M |- {#Box A#}) : s4cbox"

inductive "msboxfmls"

intrs

I "ALL f. f :# M --> f : boxfmls ==> M : msboxfmls"

inductive "boxfmls"

intrs

I "funpow Circ k (Box B) : boxfmls"

We first prove the admissibility of weakening and contraction.

12.2 Weakening for S4C

Weakening admissibility was straightforward using Lemma 9.1.

12.3 Inversion and Contraction-admissibility for S4C

Invertibility of the logical introduction rules was dealt with using multiple
lemmata showing various cases of inv stepm, as described in §9.3: as noted
there, a proof of invertibility can be split up into

• the invertibility of various different rules

• cases of what the last rule in the derivation, from whose conclusion we
wish to apply one of the inverted rules

As in §9.3, we make significant use of Lemma 9.3.
We then prove contraction admissibility. This uses predicates and re-

sults which are essentially Definition 7.2 and Lemma 7.1, but instantiated
to apply to the property of contraction admissibility, giving the property
ctr adm step and a lemma gen ctr adm step.
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We now look at proving ctr adm step for each possible case for the last
rule of a derivation.

Lemma 12.1 If

• rule set lrls consists of rules which are the identity (axiom) rules A `
A, or are rules with a single formula in their conclusion,

• all rules in lrls have the “subformula” property (which here means that
for every premise other than a premise which contains the conclusion,
every formula in that premise is a subformula of a formula in the
conclusion

• the rule set drls (derivation rules) contains the extensions of lrls

• in regard to the derivation rules drls, the inverses of extensions of lrls
are admissible

• rule (ps, c) is an extension of a rule of lrls

then the contraction admissibility step ctr adm step holds for the final rule
(ps, c) and the derivation rule set drls.

So the conclusion of this lemma means: assuming that

• contraction on formulae A′ smaller than A is admissible, and

• contraction on A is admissible in the sequents ps

then contraction on A in sequent c is admissible.

gen_ctr_adm_step_inv:

"[| ?epsc : extrs ?lrls ;

?lrls <= iscrls ;

extrs ?lrls <= ?drls ;

Ball ?lrls (subfml_cp_prop ?sub) ;

Ball (extrs ?lrls) (inv_rl ?drls) |]

==> ctr_adm_step ?sub (derrec ?drls {}) ?epsc ?A"

subfml_cp_prop.simps:

"subfml_cp_prop sub (ps, c) =

(ALL p:set ps. c <= p

| (ALL fp. ms_mem fp p -->

(EX fc. ms_mem fc c & (fp, fc) : ub)))"

Then the other cases of ctr adm step were proved separately:
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Lemma 12.2 In S4C, for derivations with final rules (` 2) and (◦) (ex-
tended in their conclusions), the inductive contraction admissibility step
ctr adm step holds.

ctr_adm_step_s4cbox_r:

"[| (?ps, ?c) : extcs s4cbox ; extcs s4cbox <= ?drls |]

==> ctr_adm_step ?sub (derrec ?drls {}) (?ps, ?c) ?A"

ctr_adm_step_circ_r:

"[| (?ps, ?c) : extcs circ ; extcs circ <= ?drls |]

==> ctr_adm_step ipsubfml (derrec ?drls {}) (?ps, ?c) ?A"

Consequently, we get contraction admissibilty. The only case not covered
above is for the reflexivity rule (2 `), in its form where the principal formula
is copied to the premise. This is required for contraction admissibility, which
becomes simple with the rule in this form.

Lemma 12.3 (s4cns ctr adm) Contraction is admissible in GTD.

s4cns_ctr_adm: "ctr_adm s4cns ?A"

12.4 Cut-admissibility for S4C

To prove cut admissibility for a sequent calculus containing an explicit con-
traction rule, two methods are

• to prove mix-elimination directly, where the property proved by induc-
tion on the derivation is that any instance of the mix rule is admissible;
in effect this was done in [DG10] for the more complex logic GLS,

• in respect of the derivations on either side of the cut, to look up the
derivation skipping over consecutive instances of contraction on the
cut-formula, and consider the various cases of the next rule on either
side above those contractions.

We do something similar to the second approach here, but we look up the
derivations on either side to find the last rule before a consecutive sequence
of (◦) rules. For this we use the theorem top circ ns. In some cases we
also need the fact that if the bottom rule is not (◦), then the tree asserted
to exist is actually the original one. The function forget exists simply to
prevent automatic case splitting of its argument: logically it does nothing.

Lemma 12.4 (top circ ns) Given a valid (explicit) derivation tree dt,
then there is a valid (explicit) tree dtn and an integer k such that

• the bottom rule of dtn is not (◦),

64



• the conclusions c and c′ of dt and dtn are related by c = ◦kc′

• height of dt = height of dtn +k

• dt and dtn iff k = 0 iff the bottom rule of dt is not (◦)

top_circ_ns:

"valid ?rls ?dt

==> EX dtn k.

botRule dtn ~: extcs circ & valid ?rls dtn

& seqmap (funpow Circ k) (conclDT dtn) <= conclDT ?dt

& heightDT ?dt = heightDT dtn + k

& forget ((k = 0) = (botRule ?dt ~: extcs circ)

& (k = 0) = (dtn = ?dt))"

forget_def: "forget f == f"

But one easy case is where the last rule on both sides is the (◦) rule: then
we can apply cut (on a smaller formula) to the premises of the (◦) rules,
and then apply the (◦) rule. So when we look at the (◦) rules on both sides
immediately preceding the cut, we need only bother about the case where
the number of those (◦) rules is zero on one side.

First, the case where both rules are the (` 2) rule. The fact that the
conclusions of both the (◦) rule and the (` 2) rule may be extended by an
arbitrary context complicates matters. Consider the following diagram of a
number of (◦) rules followed by the (` 2) rule.

M ` A (` 2)
Γ,M ` 2A,∆

(◦∗)
Γ′, ◦kΓ, ◦kM ` ◦k2A, ◦k∆,∆′

In this case we can instead construct the following derivation tree, which
is of the same height.

M ` A (` 2)M ` 2A (◦∗)
◦kM ` ◦k2A

Thus we can use, in proving an inductive step, the fact that ◦kM ` ◦k2A is
derivable, and with a derivation of the same height as that of Γ′, ◦kΓ, ◦kM `
◦k2A, ◦k∆,∆′. This will be used in our proofs without further comment.

Now, where the cut-formula is within ◦k∆,∆′ (where this is the der-
ivation tree on the left of a desired cut), or within Γ′, ◦kΓ (where this tree is
on the right), the cut is admissible because we can start from the derivable
sequent M ` A and apply (` 2) and ◦ rule without any extra formulae
in the conclusions, as discussed above. In this case we just use weakening
admissibility to obtain the result of the cut.
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These situations are covered by Lemma 12.5 (s4cns cs param l’’) be-
low and the symmetric result s4cns cs param r’’.

Lemma 12.5 Let the left premise subtree of a desired cut be dt, with dtn

and k as in Lemma 12.4, let the bottom rule of dtn be an extension (of the
conclusion) of a rule in s4cns whose conclusion is cl ` cr, and let C not be
in ◦kcr. Then the inductive step sumh step2 tr for proving cut-admissibility
with cut-formula C holds (where list and lista are names automatically
generated by Isabelle for the lists of premises of final rules).

s4cns_cs_param_l’’:

"[| (?ps, ?cl |- ?cr) : s4cns ; valid s4cns ?dtn ;

botRule ?dtn : extcs {(?ps, ?cl |- ?cr)} ;

count (mset_map (funpow Circ ?k) ?cr) ?C = 0 |]

==> sumh_step2_tr (prop2 casdt s4cns) ?C ?sub

(Der (seqmap (funpow Circ ?k)

(conclDT ?dtn) + ?flr) ?list,

Der ?dtr ?lista)"

A similar pair of results, discussed later (see Lemma 12.6), covers the
case where the rule above the (◦) rules is a skeleton rule which is extended
by an arbitrary context in its conclusion and its premises.

Now we can assume that the cut-formula is within the principal part of
the rule before the (◦) rules (noting that for the (` 2) rule the “principal
part” means the entireM ` 2A). Then there must be zero (◦) rules on the
right side: because if there are zero ◦ rules on the left, then the cut-formula
must be 2A, whence there would also be zero (◦) rules on the right.

In the diagrams, (cut ?) represents the instance of the cut rule which
we are aiming to show is admissible.

M ` A (` 2)
Γ,M ` 2A,∆

(◦∗)
Γ′, ◦kΓ, ◦kM ` ◦k2A, ◦k∆,∆′

◦k2A,M′ ` B
(` 2)

Γ′′, ◦k2A,M′ ` 2B,∆′′
(cut ? )

Γ′, ◦kΓ,Γ′′, ◦kM,M′ ` 2B, ◦k∆,∆′,∆′′

Here we do the cut, by induction, before the (` 2) rule on the right,
using a derivation similar to that on the left, but without any context, then
we apply the (` 2) rule, introducing the required context.

M ` A (` 2)M ` 2A (◦∗)
◦kM ` ◦k2A ◦k2A,M′ ` B

(inductive cut)
◦kM,M′ ` B

(` 2)
Γ′, ◦kΓ,Γ′′, ◦kM,M′ ` 2B, ◦k∆,∆′,∆′′
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For the other cases, we first consider the “parametric” cases, where the
last rule above the (◦) rules is an extension ρ′ of a rule ρ in s4cnsne, and
the principal formula of ρ is not the “de-circled” cut-formula A. Recall that
s4cnsne consists of the axiom, logical introduction rules and the (2 `) rule,
as skeletons (ie, not extended with context), but with ◦k applied to their
formulae.

X ′ ` Y ′, A
(ρ′)

X ` Y,A
(◦∗)

W, ◦kX ` ◦kY, ◦kA,Z ◦kAm, U ` V
(cut ? )

W, ◦kX,U ` ◦kY,Z, V

Here we must apply the ◦ rule the requisite number of times to the
premise(s) of ρ′, then apply (using the inductive hypothesis) cut on ◦kA to
each of them, and finally apply ρ′′ which we get by applying ◦k to ρ, and
then extending it appropriately.

This uses the result that if a rule is in s4cnsne then so is the result of
applying ◦k to all formulae in its premises and conclusion.

s4cnsne_nkmap: "?r : s4cnsne ==> nkmap ?k ?r : s4cnsne"

X ′ ` Y ′, A
(◦∗)

W, ◦kX ′ ` ◦kY ′, ◦kA,Z ◦kAm, U ` V
(inductive cut)

W, ◦kX ′, U ` ◦kY ′, Z, V
(ρ′′)

W, ◦kX,U ` ◦kY,Z, V

Lemma 12.6 (s4cns param l’) and the symmetric result s4cns param r’

cover this case.

Lemma 12.6 Let the left premise subtree of a desired cut be dt, with dtn

and k as in Lemma 12.4, let the bottom rule of dtn be an extension of a rule
in s4cnsne whose conclusion is cl ` cr, and let C not be in ◦kcr. Then the
inductive step sumh step2 tr for proving cut-admissibility with cut-formula
C holds.

s4cns_param_l’:

"[| (?ps, ?cl |- ?cr) : s4cnsne ;

botRule ?dtn : extrs {(?ps, ?cl |- ?cr)} ;

valid s4cns ?dtn ;

count (mset_map (funpow Circ ?k) ?cr) ?C = 0 ;

Suc (heightDTs ?list) = heightDT ?dtn + ?k |]

==> sumh_step2_tr (prop2 casdt s4cns) ?C ?sub

(Der (seqmap (funpow Circ ?k)

(conclDT ?dtn) + ?flr) ?list,

Der ?dtr ?lista)"
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It is similar for the parametric case on the right. The axiom rule is trivial
in all cases.

For the (` 2) rule on the left, where the rule on the right is an extension
of rule ρ whose principal formula is the “de-circled” cut-formula, the only
case remaining is where ρ is (2 `).

M ` A (` 2)
X,M ` 2A, Y

(◦∗)
X ′, ◦kX, ◦kM ` ◦k2A, ◦kY, Y ′

◦k′′A,U ` V
(2 `)

◦k′′2A,U ` V
(◦∗)

◦k′+k′′2A, ◦k′U,U ′ ` ◦k′V, V ′
(cut? )

X ′, ◦kX, ◦kM, ◦k′U,U ′ ` ◦kY, Y ′, ◦k′V, V ′

Here k′+k′′ = k, but since we also have that k = 0 or k′ = 0, this means
that k′ = 0 and k′′ = k. The following diagram omits a final use of the
admissibility of weakening.

M ` A (◦∗)
◦kM ` ◦kA

M ` A (` 2)M ` 2A (◦∗)
◦kM ` ◦k2A ◦k2A, ◦kA,U ` V

(inductive cut)
◦kM, ◦kA,U ` V

(inductive cut)
◦kM, ◦kM, U ` V

(ctr)
◦kM, U ` V

Next we look at the case of the (` 2) rule on the right, but for this,
since the cut-formula must be a 2-formula, all cases have already been dealt
with.

Finally, there is the case where the last rules (above the final sequence
of ◦-rules) on both sides are extensions of rules in s4cnsne. Most of these
cases have been covered, ie, the axiom rules, and the “parametric” cases,
where the “de-circled” cut-formula is not the principal formula of the rule.

So there remain the cases where the rules on either side are the logical
introduction rules. For these, the proofs are essentially the same as for
other logics generally, except that we need to allow for a number of circles.
Conceptually it is easiest to imagine that in each case the final ◦ rules are
moved upwards to precede the final logical introduction rules, although we
didn’t actually prove it this way.

We proved that the usual logical introduction rules, with ◦k applied to
principal and side formulae (as used in S4C), satisfy c8 ercas prop (Defini-
tion 11.4). Recall that this means that assuming cut admissibility on smaller
formulae, us have cut admissibility of a more complex formula where the last
rule on either side is a logical introduction rule.

Lemma 12.7 (s4cns c8 ercas) S4C satisfies c8 ercas prop in relation
to the logical introduction rule skeletons lksil cup lksir, with ◦k applied
to all formulae.
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s4cns_c8_ercas: "c8_ercas_prop (circrel ipsubfml) s4cns ?A

(nkmap ?k ‘ (lksil Un lksir))"

The following diagrams show an example. We let t = k + k′ = l + l′. In
this case we do not make use of the fact that either k or l must be zero.

X ` ◦k′A, Y X ` ◦k′B, Y
(` ∧)

X ` ◦k′(A ∧B), Y
(◦∗)

◦kX ` ◦t(A ∧B), ◦kY

U, ◦l′A, ◦l′B ` V
(∧ `)

U, ◦l′(A ∧B) ` V
(◦∗)

◦lU, ◦t(A ∧B) ` ◦lV
(cut ? )

◦kX, ◦lU ` ◦kY, ◦lV
The diagram above is simplified by not including the extra context which

may be introduced in the conclusion of the (◦) rules. This is replaced by

X ` ◦k′A, Y
(◦∗)

◦kX ` ◦tA, ◦kY
...
...
...

X ` ◦k′B, Y
(◦∗)

◦kX ` ◦tB, ◦kY
U, ◦l′A, ◦l′B ` V

(◦∗)
◦lU, ◦tA, ◦tB ` ◦lV

(inductive cut)
◦kX, ◦lU, ◦tA ` ◦kY, ◦lV

(inductive cut)
◦kX, ◦kX, ◦lU ` ◦kY, ◦kY, ◦lV

(contraction)
◦kX, ◦lU ` ◦kY, ◦lV

Again, we can use weakening admissibility to get the extra context which
was introduced by the (◦) rules, but omitted from the first diagram.

Finally we combine these results to get the cut admissibility result, in
terms of explicit derivation trees, and then in terms of derivability.

Theorem 12.1 (s4cns casdt, s4cns cas) S4C satisfies cut-admissibility.

s4cns_casdt: "(?dta, ?dtb) : casdt s4cns ?A"

s4cns_cas: "(?cl, ?cr) : cas s4cns ?A"

12.5 Comparing our proofs and the proofs of Mints

The slides for the presentation of Mints [Min13] contains a very abbreviated
treatment of cut-admissibility for S4C. We attempted to follow the proof
shown there, but were unable to. The slides state a lemma (“Substitution
Lemma”), that the following rule is admissible

B ` 2C 2C,Γ ` ∆

B,Γ ` ∆

As a lemma it is undoubtedly correct (it is a particular case of cut admis-
sibility). However, as part of the proof of cut-admissibility we were unable
to prove it as it stands — it appears to need (at least) an assumption that
cuts on C are admissible.
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13 Related Work

We may compare this approach with that of Pfenning [Pfe95]. Pfenning
uses the propositions-as-types paradigm, where a type represents (partially)
a sequent. More precisely, for intuitionistic logic, a type hyp A -> hyp B

-> conc C represents a sequent containing A and B in its antecedent, and C

in its succedent. For classical logic, neg A -> neg B -> pos C -> pos D

-> # represents a sequent containing A and B in its antecedent, and C and
D in its succedent. A term of a given type represents a derivation of the
corresponding sequent.

Pfenning’s proof of cut-admissibility proceeds by a triple induction, using
structural induction on the formula and the two terms representing the
derivations. It therefore most closely resembles our proofs involving explicit
derivations, as described in §7.3.

However in §7.3 we go on to measure properties (such as the height)
of an explicit derivation. It seems as though Pfenning’s approach does not
allow the possibility of doing that.

Tews [Tew13] describes the use of Coq to prove cut-elimination for propo-
sitional multi-modal logics. In Coq, types are identified with terms, and each
term has a type: a type has the type Type. A proposition is a type whose
inhabitants are its proofs, so A → B means both the type of proofs of the
proposition A → B and the type of functions which take proofs of A to
proofs of B. Since types can depend on terms, this gives a dependently
typed system, which can provide a way of capturing side-conditions in the
type system. For example, the type counted list A n is the type of lists of
items of type A and whose length is n.

Tews uses a (single) list of formulae as a sequent, where formulae which
would appear on the other side of a two-sided sequent are negated. He
proves that for the rule sets he uses, for any reordering s′ of the conclusion s
of a rule, there is a corresponding rule whose conclusion is s′, and, assuming
sets of rules and hypotheses closed under reordering, that provability is also
closed under reordering. He defines an (object-logic) proof as the type proof,
similar to our definition of the type dertree, but the type definition also
incorporates the requirement that each “node” of the tree must be in the
given set of rules. This is an example of a dependent type, where the type
proof depends on the term rules.

He proves cut-elimination both semantically (by proving soundness and
cut-free completeness) and syntactically (where the proof implements a cut-
elimination procedure). Thus his work includes extensive formalisation of
the semantics of the logics. His proofs use the modal ranks of formulae,
and involve formalising substitution, which we did not find necessary, and
in some cases require proving depth-preserving admissibility of rules.
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14 Further Work and Conclusion

We have proved cut-admissibility for several different sequent calculi, rang-
ing from the well-known logics S4 and S4.3 to GTD and S4C described
recently in [Min13]. In other work not described here we also proved cut-
admissibility for GTD, for a calculus containing explicit contraction and
weakening rules, in both the ways described at the start of §12.4.

We have shown how the proofs can be split up into components some
of which were expressed in lemmata which can be reused in similar proofs
for other calculi. This was of significant value, as was the use of the type
classes described in [DG10]. It remains to generalise our framework so that
these results follow simply by instantiating these general concepts.

References

[ams08] Special issue on formal proof. Notices of the American Mathe-
matical Society, volume 55, December 2008.

[Bd96] Gavin Bierman and Valeria de Paiva. Intuitionistic necessity
revisited. In Proceedings of the Logic at Work conference, 1996.

[Bel82] Nuel D Belnap. Display logic. Journal of philosophical logic,
11(4):375–417, 1982.

[Cas06] Claudio Castellini. Automated reasoning in quantified modal
and temporal logics. AI Communications, 19(2):183–185, 2006.

[Daw14] Jeremy Dawson. Mix-elimination for S4. http://users.cecs.

anu.edu.au/~jeremy/isabelle/2005/seqms/S4ca.ML, 2014.
Included in Isabelle code base.

[DG00] Jennifer M. Davoren and Rajeev Goré. Bimodal logics for reason-
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