
SIMPLIFIED CUT-ELIMINATION FOR MODAL PROVABILITY

LOGICS

Abstract. We give simple, uniform and modular proofs of cut-elimination

for GL, Go and Grz. The existing proofs in the literature are highly intricate

and specialised.

1. Problem?

What does the cut-elimination procedure produce for the following cut:

p,�q ⇒ �¬¬q �¬¬q ⇒ �q, p

p,�q ⇒ �q, p

It appears to produce this:

q,�q ⇒ q

p,�q ⇒ �q, p

But this is NOT a derivation since it breaks the (*) condition?
It may be that you need to keep an eye out for instances of (id) at every step

of the proof ? For example, the base case is “if U,X ⇒ Y, V is an instance of (id)
then stop”.

Another possible problem is that mh is not respected upwards by cut!

2. Introduction

Modal provability logics extend the basic normal modal logic K with axioms
which interpret the � connective as the mathematical notion of being “provable”
in Peano Arithmetic [?]. There are several variants with characteristic axioms
named after Gödel, Löb and Grzegorczyk:

Name of Logic Characteristic Axiom
GL �(�p → p) → �p
Go �(�(p → �p) → p) → �p
Grz �(�(p → �p) → p) → p

While the “provability” interpretation is now well-understood, the proof-theory
of these logics is intricate and somewhat controversial as we explain next.

Following Gentzen [?], the literature abounds with proofs of cut-elimination for
various logics using size of the cut formula and height of the premise derivations.
But these measures proved inadequate for proving cut-elimination for GL, so Valen-
tini introduced a third novel measure called width, and showed that cut-elimination
for GL now required a triple induction over size, height and width [?].

Controversy arose when it was (erroneously) claimed that Valentini’s proofs con-
tained a gap [?] and various authors provided alternative proofs of cut-elimination
in response [?, ?, ?]. The question was resolved in Valentini’s favour, with all proofs
verfied using an interactive theorem prover Isabelle/HOL [?].

His??? proofs for the logic Go are even more intricate, involving .... Rev, can you please
fill in this part as I
can’t remember the
details any more.

1
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(id)
X,A ⇒ A, Y

X ⇒ Y,A B,X ⇒ Y
(→ l)

A → B,X ⇒ Y

A,X ⇒ Y,B
(→ r)

X ⇒ Y,A → B

A,X ⇒ Y B,X ⇒ Y
(∨ l)

A ∨B,X ⇒ Y

X ⇒ Y,A,B
(∨ r)

X ⇒ Y,A ∨B

A,B,X ⇒ Y
(∧ l)

A ∧B,X ⇒ Y

X ⇒ A, Y X ⇒ B, Y
(∧ r)

X ⇒ A ∧B, Y

X ⇒ Y,A
(¬ l)

¬A,X ⇒ Y

A,X ⇒ Y
(¬r)

X ⇒ Y,¬A

�X,X,�B ⇒ B
(GLR) U non-boxed multiset

U,�X ⇒ �B, V

�X,X,�(B → �B) ⇒ B
(GoR) U non-boxed multiset

U,�X ⇒ �B, V

A,�A,X ⇒ Y
(T) need some side-conditions for mh-argument

�A,X ⇒ Y

Figure 1. Sequent Rules

Thus the proof-theory of provability logics was significantly more complicated
than the proof-theory of numerous other modal logics.

Recently, Brighton [] gave yet another method for proving cut-elimination for
GL which is significantly shorter and simpler than any of the existing proofs of
cut-elimination in the literature because it uses only a double induction on weight
and “maximum height of regress trees”.

Here, we finesse Brighton’s argument by porting it to a sequent calculus, rather
than “regress-trees”, and fix some errors in Valentini’s original proof. Moreover we
show how this argument extends to Go where the only extant proof [?] is highly
intricate.

**more story and citations**

3. Syntax and Axiomatisations of Provability Logics

Modal formulae are constructed from an infinite set P of atomic formulae using
the Backus-Naur form below where p ∈ P:

A,B ::= p | ¬A | A → B | A ∨B | A ∧B | �A

The ♦ connective does not appear explicitly but is defined via ♦A := ¬�¬A.
A boxed formula has � as its main connective while a non-boxed formula does

not. A boxed/non-boxed multiset contains only boxed/non-boxed formulae.
The Hilbert-calculus for the basic normal modal logic K is obtained by extending

a Hilbert-calulus for classical propositional logic with the axiom �(p → q) →
(�p → �q) and the inference rule of neccessitation: from A infer �A. The various
provability logics are then obtained by adding further axioms as shown below:
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X,X, Y ⇒ Z
(lc)

X,Y ⇒ Z

X ⇒ Y,Z, Z
(rc)

X ⇒ Y,Z

X ⇒ Y (w)
U,X ⇒ Y, V

X ⇒ Y,A A,U ⇒ V
(cut)

X,U ⇒ Y, V

Figure 2. Structural Rules

Name of Logic Axioms
GL �(�p → p) → �p
GLlin �(�p → p) → �p �(�p → q) ∨�(�q → q)
Go �(�(p → �p) → p) → �p
Grz �(�(p → �p) → p) → �p �p → p

The axiomatisation of Grz given above is indirect since the characteristic axiom
�(�(p → �p) → p) → p is actually obtained by chaining the two axioms shown in
the table above. This axiomatisation justifies the sequent rules for Grz to follow.

4. Sequent Caluli, Semi-derivations and Maximum Height

A sequent is a tuple (X,Y ) of formula multisets, written X ⇒ Y . Let X∩Y , X∪
Y and ∅ denote, respectively, the multiset intersection, union and empty multiset.
So {A} ∪ {A} is the multiset consisting of two occurrences of A. In sequents, we
also write A,X or X,A to stand for A ∪X, and similarly write X,Y for X ∪ Y .

The various sequent calculi are shown below using rules from Figure 1:

Name Sequent Calculus Rules
PC (id) (¬L) (¬R) (→L) (→R) (∧L) (∧R) (∨L) (∨R)
GLS PC + (GLR)
GoS PC + (GoR)
GrzS PC + (GoR) + (T)

Definition 1 (semi-derivation, derivation). A semi-derivation in the sequent cal-
culus is defined inductively as a sequent, or a rule applied upwards to a leaf of a
semi-derivation, that additionally satisfies

(∗) an initial sequent occurs only as a leaf

If every leaf of the semi-derivation is an initial sequent, then it is called a derivation
and its end-sequent (root) is said to be derivable.

Note that (∗) ensures that only minimal derivations are permitted: no rule is
applied upwards to an initial sequent as captured by the (id) rule. Apart from this,
the definition of derivation above is the standard one. The following definition of
height is also standard.

Definition 2 (height). The height of a semi-derivation is the number of sequents
along its longest branch.

In both (GLR) and (GoR), the purpose of restricting U to a non-boxed multiset
is to ensure that all boxed formulae in the antecedent persist upwards in the semi-
derivation via �X. This will be exploited in the proof of Lemma 2 to show that
every sequent has a semi-derivation of maximum height.

A single premise sequent rule is admissible in a calculus if the conclusion is
derivable whenever the premise is derivable. An admissible rule is height preserving
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if the height of the derivation of the conclusion is no greater than that of the
derivation of the premise.

It is easy to see via a standard proof theoretic induction on height that the rules
(lc), (rc) of contraction and (w) of weakening from Figure 2 are admissible in both
GLS and GoS. Using these rules, it is easy to establish the following.

Theorem 1. The sequent calculi GLS+(cut) and GoS+(cut) are sound and complete
for the axiomatically formulated logics GL and Go respectively.

In the sequel we show how to replace GLS + (cut) and GoS + (cut) with GLS

and GoS, respectively, by showing how to transform a derivation with cuts into a
derivation of the same end-sequent without cuts.

While height-preserving contraction suffices for most proof theoretic arguments,
the use of “maximum height of a semi-derivation of a sequent” as an induction
parameter requires a more precise result. A rule is perfectly height preserving (php)
admissible if the derivations of the conclusion and premise have identical heights.

Lemma 1. The contraction rule is php-admissible in both GLS and GoS.

Proof. Induction on the height of a derivation. ⊣Will you not need an
inversion lemma for
this ?

The complexity of a sequent s is the number |s| of logical connectives in s.

Lemma 2. [semi-derivation maximum height mh] In C (C ∈ {GLS,GoS}), every
sequent s has a semi-derivation of maximum height, denoted by mh(s). Moreover,
for every rule instance with a premise s1 and conclusion s0: mh(s1) < mh(s0).

Proof. The proofs for GLS and GoS are almost identical so we only consider GL.
Certainly for every sequent s, there is a semi-derivation ending with s: consider

the semi-derivation comprising of the single sequent s. To prove the first claim, we
will show that every semi-derivation of s has height bounded by a function in |s|.

First note that any boxed formula in the antecedent of a sequent persists in all
sequents above it since no rule removes a formula �B upwards from the antecedent.
This means that the number of (GLR) rules along every branch is bounded by the
number of boxed formulae in s, for otherwise, some branch would contain two
(GLR) rules with the same diagonal formula �B and hence the conclusion of the
upper rule would have the form U,�B ⇒ �B, V violating (∗).

Observe that the complexity of the premise of a (GLR) rule is at most twice the
complexity of the conclusion: the doubling is because the premise contains�X,X,�B,B
whenever the conclusion has the form �X ⇒ �B. N.B. In the case of GoS, “at
most twice” should be replaced by “at most four times” to account for the larger
formula �(B → �B) in the premise.

Next, note that the number of propositional rules that can be applied upwards
from a given sequent is finite since each such rule results in a sequent with strictly
less complexity. We can bound the number of propositional rules that can occur
above a sequent s′ by its complexity |s′|.

Putting this all together, and bounding the number of boxed formulae in s by |s|,
the height of a semi-derivation of a sequent s in GLS (GoS) is bounded by below
left (resp. below right).

|s| · 2|s| · 4|s| · 8|s| · · · 2|s| · |s| |s| · 4|s| · 16|s| · 64|s| · · · 4|s| · |s|

For the second claim, suppose s1/s0 is an instance of some rule (r) and let dmax

be a semi-derivation witnessing the maximum height of the premise s1. Then the
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semi-derivation obtained from dmax by applying (r) to its end-sequent is a semi-
derivation of s0 with greater height. ⊣

5. Cut-elimination for GLS

Theorem 2 (Cut-elimination for GLS). The cut rule is eliminable from GLS.

Proof. Without loss of generality, it suffices to eliminate cut from a derivation
concluding with the cut-rule with cut-free left premise X ⇒ Y,A and cut-free right
premise A,U ⇒ V . We proceed via primary induction (PI) on the size of the
cut-formula and secondary induction (SI) on the maximum height of the combined
context mh(X,U ⇒ Y, V ). Now, consider the last rule in each premise.

If X ⇒ Y,A is an instance of (id) because X∩Y 6= ∅, or A,U ⇒ V is an instance
of (id) because U ∩ V 6= ∅, then so is X,U ⇒ Y, V .

If X ⇒ Y,A is an instance of (id) because A ∈ X and A,U ⇒ V is an instance
of (id) because A ∈ V , then so is X,U ⇒ Y, V .

If the cut-formula A is not principal in either premises of the the last rule, then
the cut is shifted upwards following the usual Gentzen reductions. Of course, we
need to verify that this does not increase the maximum height. To see that it does
not, we illustrate with a generic binary rule (r). Suppose that the left premise of
cut ends as below left, so A is not principal in this instance of (r):

X ′ ⇒ Y ′, A X ′′ ⇒ Y ′′, A
(r)

X ⇒ Y,A

X ′, U ⇒ Y ′, V X ′′, U ⇒ Y ′′, V
(r)

X,U ⇒ Y, V

Consider the rule instance of (r) above right, which is what every one of Gentzen’s
transformations will produce, with the proviso that the derivations of the two
premises may now contain an instance of cut on A. Since the cut-formulae is still A,
the size of the cut-formula has not changed. Moreover, from part two of Lemma 2,
it follows that mh(X ′, U ⇒ Y ′, V ) < mh(X,U ⇒ Y, V ) and mh(X ′′, U ⇒ Y ′′, V ) <
mh(X,U ⇒ Y, V ), which means that we can apply the SIH to the premises to ob-
tain cut-free derivations of X ′, U ⇒ Y ′, V and X ′′, U ⇒ Y ′′, V . Apply (r) to these
to obtain a cut-free derivation of X,U ⇒ Y, V , as shown above right.

If the cut-formula A is principal in both premises by propositional rules then the
usual Gentzen reductions suffice, since the new cuts are on smaller formulae and
hence the primary induction hypothesis applies. For example the derivation below
containing a cut on A = B ∧ C

X ⇒ Y,B X ⇒ Y,C

X ⇒ Y,B ∧ C

B,C,U ⇒ V

B ∧ C,U ⇒ V

X,U ⇒ Y, V

can be transformed to the following containing a cut on the smaller formula B:

X ⇒ Y,B

X ⇒ Y,C B,C,U ⇒ V
(cut)

B,X,U ⇒ Y, V
(cut)

X,X,U ⇒ Y, Y, V
Contraction Lemma 1

X,U ⇒ Y, V

which falls under the PIH, giving a cut-free derivation of X,U ⇒ Y, V .
Finally consider when the cut-formula A = �B is principal in both premises:
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�X,X,�B ⇒ B
(GLR)

L,�X ⇒ �B,M

�B,B,�U,U,�C ⇒ C
(GLR)

R,�B,�U ⇒ �C, S
(cut)

L,R,�X,�U ⇒ �C,M,S

The two (GLR) rule premises give an instance of cut with a smaller cut-formula B.
The PIH gives a cut-free derivation of �X,X,�B,�B,�U,U,�C ⇒ C, and hence
by contraction admissibility, a cut-free derivation of �X,X,�B,�U,U,�C ⇒ C.

But observe that the left premise can also be derived without weakening in L and
M as shown below left, and that php-contraction on �X,X,�X,�U,U,�C ⇒ C
gives L,R,�X,�U ⇒ �C,M,S via (GLR) as shown below right:

�X,X,�B ⇒ B
(GLR)

�X ⇒ �B

�X,X,�X,�U,U,�C ⇒ C
php-ctr (Lem 1)

�X,X,�U,U,�C ⇒ C
(GLR)

L,R,�X,�U ⇒ �C,M,S

So mh(�X,X,�X,�U,U,�C ⇒ C) < mh(L,R,�X,�U ⇒ �C,M,S). Applying
SIH to �X,X,�B,�U,U,�C ⇒ C and �X ⇒ �B we get a cut-free derivation
of �X,X,�X,�U,U,�C ⇒ C. By contraction admissibility there is a cut-free
derivation of �X,X,�U,U,�C ⇒ C. Applying (GLR) we get a cut-free derivation
of L,R,�X,�U ⇒ �C,M,S. ⊣

6. Cut elimination for GoS

If we try to apply directly to GoS the cut-elimination argument for GLS, we
encounter the following obstacle in the case when � is principal in both premises
and we apply the PIH using the premises of each (GoS) rule:

�X,X,�(B → �B) ⇒ B �B,B,�U,U,�(C → �C) ⇒ C
PIH

�X,X,�(B → �B),�B,�U,U,�(C → �C) ⇒ C

The issue is the occurrence of �(B → �B) in the antecedent that we did not
encounter before. To resolve this, we will need a standard invertibility lemma.I don’t see the issue?

Lemma 3. If X,A → B ⇒ Y is derivable in GoS, then so is X,B ⇒ Y .

Proof. Induction on the height of the derivation of X,A → B ⇒ Y . ⊣

The following lemma shows that the occurrence of �(B → �B) can be removed.
This effectively says
that GoR reduces to
GLR! That is, every
GoS derivation can
be transformed into
a GLS derivation.
Now apply the previ-
ous cut-elimination
result and then undo
the GLS rules into
GoR rules!

Lemma 4. If X,�(C → �C) ⇒ Y is derivable in GoS, then so is X,�C ⇒ Y .

Induction on the height of the given derivation.
Base case: If X ∩ Y 6= ∅ then X,�C ⇒ Y is the required derivation. Otherwise,

Y = Y ′ ∪ �(C → �C), so use the following derivation of X,�C ⇒ Y , where
X = �X1 ∪ U with U non-boxed:

�C ⇒ �C (w)
C,�X1,�C,C,�((C → �C) → �(C → �C)) ⇒ �C

(→R)
�X1, X1,�C,C,�((C → �C) → �(C → �C)) ⇒ C → �C

(GoR)
�X1, U,�C ⇒ �(C → �C), Y ′

Suppose that the last rule is (GoR) with X = U ∪�X1 and Y = {�B} ∪ V :

�X1, X1,�(C → �C), C → �C,�(B → �B) ⇒ B
(GoR)

U,�(C → �C),�X1 ⇒ �B, V
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By IH on the premise, we obtain �X1, X1,�C,C → �C,�(B → �B) ⇒ B.
Furthermore, by invertibility of (→l) we get �X1, X1,�C,�C,�(B → �B) ⇒ B.
By contraction and weakening admissibility we get �X1, X1,�C,C,�(B → �B) ⇒
B. Now apply (GoR) to get U,�X1,�C ⇒ �B, V , which is X,�C ⇒ Y .

Suppose the last rule is some other generic (binary) rule below.

X ′,�(C → �C) ⇒ Y ′ X ′′,�(C → �C) ⇒ Y ′′

(r)
X,�(C → �C) ⇒ Y

Then proceed as follows

X ′,�(C → �C) ⇒ Y ′

IH
X ′,�C ⇒ Y ′

X ′′,�(C → �C) ⇒ Y ′′

IH
X ′′,�C ⇒ Y ′′

(r)
X,�C ⇒ Y

Theorem 3 (Cut-elimination for GoS). The cut rule is eliminable from GoS.

Proof. Once again, without loss of generality, it suffices to eliminate cut from a
derivation concluding with the cut-rule with cut-free left premiseX ⇒ Y,A and cut-
free right premise A,U ⇒ V . Primary induction on the size of the cut-formula and
secondary induction on the maximum height of the combined contexts mh(X,U ⇒
Y, V ). The proof is identical to that of Theorem 2 except the following case.

Consider the case when the cut formula �B is principal in both premises.

�X,X,�(B → �B) ⇒ B
(GoR)

L,�X ⇒ �B,M

�B,B,�U,U,�(C → �C) ⇒ C
(GoR)

R,�B,�U ⇒ �C, S

L,R,�X,�U ⇒ �C,M,S

By PIH using the premises of each (GoR) rule, we obtain a cut-free derivation of
�X,X,�(B → �B),�B,�U,U,�(C → �C) ⇒ C. By Lemma 4 we have a cut-
free derivation of �X,X,�B,�B,�U,U,�(C → �C) ⇒ C. Hence by contraction
admissibility, a cut-free derivation of �X,X,�B,�U,U,�(C → �C) ⇒ C.

Observe that

�X,X,�X,�U,U,�(C → �C) ⇒ C
php contraction (Lem. 1)

�X,X,�U,U,�(C → �C) ⇒ C
(GoR)

L,R�X,�U ⇒ �C,M,S

So mh(�X,X,�X,�U,U,�(C → �C) ⇒ C) < mh(L,R,�X,�U ⇒ �C,M,S).
Applying SIH to �X,X,�B,�U,U,�(C → �C) ⇒ C and �X ⇒ �B we get
a cut-free derivation of �X,X,�X,�U,U,�(C → �C) ⇒ C. By contraction
admissibility there is a cut-free derivation of �X,X,�U,U,�(C → �C) ⇒ C.
Applying (GoR) we get a cut-free derivation of �X,�U ⇒ �C. ⊣
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