
Isabelle work on Interpolation for Display Calculi

Jeremy E. Dawson

December 1, 2011

1 Introduction and Acknowledgements

This document describes proofs I did in Isabelle during a visit to Imperial Col-
lege, London, during November and December 2010.

The purpose of the visit was to explore adapting my previous work in doing
proofs in Isabelle of results in Display Logic (notably the Cut Elimination and
Strong Normalisation results) to the results of the paper

James Brotherston & Rajeev Goré, Craig Interpolation in Displayable Logics
The paper used was a draft version, with changes made (including to num-

bering of Lemmas) during my visit, so note that Lemma numbers referenced
below may have changed further.

I thank Rajeev Goré and James Brotherston for support during this period,
and Imperial College for its support and hospitality.

See §4 for an account of some more work done on this topic in 2011.

2 Definitions and Lemmas

Much of this work built upon the previous Isabelle work for Display Logic, which
is described in

Jeremy E. Dawson & Rajeev Goré, Formalised Cut Admissibility for Display
Logic, In 15th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs 2002), LNCS 2410, 131-147, see http://users.cecs.anu.

edu.au/~jeremy/pubs/cutelim/tphols/final/

We should emphasize that this is a deep embedding of rules and of the vari-
ables in them. That is, we define a language of formulae and structures, which
contains explicit structure and formula variables, for which we define explicit
substitution functions. We also define the rules as specific data structures (of
which there is a small finite number, as would be shown in a paper describing
a display calculus), and an infinite number of substitution instances of these
rules.

Thus we have a operator

rulefs :: "rule set => rule set"

1

where rulefs rules is the set of substitution instances of rules in the set rules.
Also, when we refer to derivability using a set of rules, this allows inferences
using substitution instances of these rules.

Note that this work built on the work for the Display Calculus for Relation
Algebras, so the language as defined has relational connectives as well as logical
ones. Thus it is sometimes necessary to use the predicate strIsLog, which says
that a structure contains only logical, not relational, structural connectives.
Also note that in that work the symbol ∗ (Star), not #, was used as the
structural “not” symbol, and the structural boolean binary connective was ‘,’
(Comma), not ‘;’. These usages have necessarily been continued in the work
described here.

We define the sets of rules:

• dps is the set of six display postulates in Definition 2.5 (Display-equivalence)

• aidps is dps, their inverses, and the associativity rule (ie, 13 rules)

• rlscf is the set of all rules of the logic as shown in Figures 1 and 2, plus
aidps (currently the rules for implication → are not included)

The definition explicitly excludes the inverse of the assoc rule, but we proved
(as inv rules aidps) that the inverses of rules in aidps are derivable using
aidps.

2.1 Definitions relating to interpolation poperties

interp :: "rule set => sequent => formula => bool"

edi :: "rule set => rule set => sequent => bool"

ldi :: "rule set => rule set => sequent list * sequent => bool"

interp rules (X ⊢ Y) intp says that intp is an interpolant for X ⊢ Y , ie,
that X ⊢ intp and intp ⊢ Y are derivable (using rules) and that the (formula)
variables in intp are among the formula variables of the structures X and Y .
Note that this definition does not include the condition that X ⊢ Y be derivable.

edi lrules drules (X ⊢ Y) says that for all sequents X ′ ⊢ Y ′ from which
X ⊢ Y is derivable using lrules, X ′ ⊢ Y ′ has an interpolant (defined in terms of
derivability using drules) (lrules would typically be a set of display postulates)

ldi lrules drules (ps, c) says that the rule (ps, c) preserves the property edi:
that is, if, for all p ∈ ps, edi lrules drules p holds, then edi lrules drules c

holds. That is, if lrules is the set AD of rules, and drules is the set of rules of
the logic, then the local AD-interpolation property as defined, for rule (ps, c),
is that, if all p ∈ ps are provable, then ldi lrules drules (ps, c) holds. Note
that, unlike Definition 3.3, our definition of ldi is not not conditional on the
premises ps being derivable.

See Igen.thy for these definitions.
Given the definition of a rule as containing variables which may be instan-

tiated, we need lemmas such as the following. These follow easily from the

2

definition of derivability from a set of rules, which, as noted earlier, involves
instantiating those rules.

ldi_rulefs_l : "ldi (rulefs ?lrules) = ldi ?lrules"

ldi_rulefs : "ldi ?lrules (rulefs ?drules) = ldi ?lrules ?drules"

edi_rulefs_l : "edi (rulefs ?lrules) = edi ?lrules"

edi_rulefs : "edi ?lrules (rulefs ?drules) = edi ?lrules ?drules"

interp_rulefs : "interp (rulefs ?rules) = interp ?rules"

interp_sub : "interp ?rules ?seq ?intp ==>

interp ?rules (seqSubst (?fs, ?ss) ?seq) (fmlSubst ?fs ?intp)"

These lemmas show that these properties are preserved by taking substi-
tution instances of the given set of rules. The interpolation property is also
preserved by substituting the sequent and the interpolating formula.

Lemma 3.4 says that if all rules satisfy the local AD-interpolation property,
then the calculus has the interpolation property. We proved

ldi_derl :

"[| ALL psc:?pscs. ldi ?lrules ?drules psc; (?ps, ?c) : derl ?pscs |] ==>

ldi ?lrules ?drules (?ps, ?c)"

ldi_ex_interp :

"[| (ALL psc : ?pscs. ldi ?lrules ?drules psc); ?c : derrec ?pscs {} |] ==>

EX intp. interp ?drules ?c intp" : Thm.thm

2.2 Substitution of congruent occurrences; Lemma 3.7

Lemma 3.7 (Substitution Lemma) involves substituting Z for F in two differ-
ent sequents C and C′, where C →∗

AD
C′. But this means substituting only

for particular occurrence(s) of F in C, and substituting for the congruent (cor-
responding) occurrence(s) of F in C′, where congruence is determined by the
course of the derivation of C′ from C.

We could no doubt define congruent occurrences of a substructure in rela-
tion to a derivation of C′ from C. However, the work on cut-elimination for
display logic uses a related concept (the replacement of “related” occurrences of
a formula A, occurring as a substructure, by a structure Y . In the proofs of cut-
elimination we defined and used a relation seqrep, where (U, V) ∈ seqrep b X Y

means that some (or all or none) of the occurrences of X in U are replaced by Y

in V ; otherwise X and Y are the same; the occurrences of X which are replaced
by Y must all be in succedent or antecedent position according to whether b

is true or false (we write U X
;

Y V , in which the appropriate value of b is
understood)

seqrep : "bool => structr => structr => (sequent * sequent) set"

So we attempted to see whether couching lemmas and theorems in terms of
seqrep, rather than defining congruence, was adequate for the main results of
this paper.

Analogous to Lemma 3.7 we proved the following result:

3

SF_some_sub :

"[| ALL (ps, c):PC ‘ ?rules. ~ seqCtnsFml c & distinct (seqSVs c);

ALL r:?rules. C4 r; (?prems, ?concl) : derl (PC ‘ rulefs ?rules);

(?concl, ?sconcl) : seqrep ?sa (Structform ?fml) ?Z |]

==> EX sprems.

(?prems, sprems) : seqreps ?sa (Structform ?fml) ?Z &

(sprems, ?sconcl) : derl (PC ‘ rulefs ?rules)" : Thm.thm

This says that if concl is derivable from prems, and if concl fml
;

Z sconcl

then there exists sprems from which sconcl is derivable, and where correspond-
ing members of prems and sprems are also in the same fml

;
Z relation.

There are preconditions about the rules with which the derivations are done
(in Lemma 3.7 that is the AD rules): these are that the conclusions of the rules
do not contain formulae and their structure variables are distinct, and Belnap’s
C4 condition, that when the conclusion and a premise of a rule both contain
a structure variable, then they are both in antecedent or both in succedent
positions.

2.3 Proposition 3.8 :

The first case ((≡D)) of Proposition 3.8 is covered by the following result

bi_lrule_ldi : "[| premsRule ?rule ~= [];

PC (invert ?rule) : derl (PC ‘ rulefs ?lrules) |] ==>

ldi ?lrules ?drules (PC ?rule)" : Thm.thm

For a rule which has premises and whose inverse is derivable using lrules

satisfies the ldi property for lrules and drules — even if drules is empty!
So the last few words of the statment of the Proposition (“. . . in any extension
of D0 + (A)”) seem unnecessary.

The cases (Id), (⊤R) and (⊥L) of Proposition 3.8 are proved similarly. They
would be trivial if it were true that nothing else is display-equivalent to their
conclusions; this is not so, but we can use this lemma:

non_bin_lem "[| (?ps, ?concl) : PC ‘ rulefs aidps;

ALL p:set ?ps. ~ seqHasComma p;

ALL p:set ?ps. Ex (interp rlscf p) |] ==>

Ex (interp rlscf ?concl)"

that is, where ps and c are the premise(s) and conclusion of a substitution
instance of a rule in AD, and the premise(s) do not contain any comma, then
if the premise(s) have interpolant(s) then so do the conclusions.

Recall that aidps is the set of all AD rules, and rlscf is the set of all rules
of the calculus.

Then we get the three results

tS_ldi : "ldi aidps rlscf ([], $I |- T)"

fA_ldi : "ldi aidps rlscf ([], F |- $I)"

idf_ldi : "ldi aidps rlscf ([], ?A |- ?A)"

4

The remaining cases of Proposition 3.8 are the logical introduction rules with
a single premise.

For these we use the four lemmas (of which one is shown)

sdA1 : "[| ALL U. ([$?Y’ |- $U], $?Y |- $U) : ?logI; strIsLog ?W;

(True, ?W, ?W’) : strrep ?Y ?Y’ |] ==>

([$?W’ |- $?Z], $?W |- $?Z) : derl (?logI Un PC ‘ rulefs aidps)"

that is, if
Y ′ ⊢ U

Y ⊢ U
is a logical introduction rule, and W Y

;
Y

′

W ′, then
W ′ ⊢ Z

W ⊢ Z
is derivable using AD and the logical introduction rules.

Then from these lemmas we get

seqrep_interpA : "[| ALL U. ([$?Y’ |- $U], $?Y |- $U) : ?logI;

seqIsLog ($?W |- $?Z); strFVPPs ?Y’ <= strFVPPs ?Y;

($?W |- $?Z, $?W’ |- $?Z’) : seqrep False ?Y ?Y’;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules;

interp ?rules ($?W’ |- $?Z’) ?intp |] ==>

interp ?rules ($?W |- $?Z) ?intp"

that is, if
Y ′ ⊢ U

Y ⊢ U
is a logical introduction rule, formula variables in Y ′ also

appear in Y , W ⊢ Z Y
;

Y
′

W ′ ⊢ Z ′ (in antecedent positions), and I is an
interpolant for W ′ ⊢ Z ′, then I is also an interpolant for W ⊢ Z.

Finally we get the following result which gives Proposition 3.8 for single
premise logical introduction rules.

logA_ldi : "[| ALL (ps, c):PC ‘ aidps. ~ seqCtnsFml c & distinct (seqSVs c);

Ball aidps C4; strFVPPs ?Y <= fmlFVPPs ?fml; seqIsLog (?fml |- $?U);

ALL U. ([$?Y |- $U], ?fml |- $U) : ?logI;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules |] ==>

ldi aidps ?rules ([$?Y |- $?U], ?fml |- $?U)"

This last result requires the use of SF some sub (above). Analogous results
for a logical introduction rule for a formula on the right are seqrep interpS

and logS ldi.
In the proof here I was able to make use of some results proved previously

for the cut-elimination work, notably extSubs.
I think it would not be much more difficult to prove similar results for log-

ical introduction rules with more than one premise provided there is a single
structure variable on the other side, ie the additive rather than multiplicative
rules. However the appropriate analogue of extSubs would need to be proved,
as well as the analogues of the results proved during this visit.

Although noting that there are good reasons for using the rules as given in
Figure 1, I spent a small amount of time exploring the possibility of adapting
these results to the case of two-premise rules: the result strrep mderA and
strrep mderS were part of this work. 1

1Subsequently I have spent more time on this, see §4

5

2.4 Lemma 4.2 (Deletion Lemma)

Lemma 4.2 (Deletion Lemma): this result says that for F a formula sub-
structure occurrence in C, or ∅, and C →∗

AD
C′, then (in the usual case)

C \ F →∗

AD
C′ \ F . But this means deleting only particular occurrence(s)

of F in C, and deleting the congruent (corresponding) occurrence(s) of F in C′,
where congruence is determined by the course of the derivation of C′ from C.

We did not define congruent occurrences in this sense: see the general dis-
cussion of this issue in §2.2.

We thought it would be easier to define and use a relation seqdel, where
(C, C′) ∈ seqdel Fs means that C′ is obtained from C by deleting some (this
maybe none or all) occurrences in C of structures in the set Fs.

Then we proved the following result:

deletion :

"[| ?atom = Structform ?fml; (?C, ?Cd) : seqdel ?pn (stars ?atom);

?C’ : derivableR aidps {?C} |]

==> (EX Cd’.

(?C’, Cd’) : seqdel ?pn (stars ?atom) &

Cd’ : derivableR aidps {?Cd}) |

(EX n m Z1 Z2.

?C’ = ($(funpow Star n ?atom) |- $(funpow Star m (Comma Z1 Z2))) &

(if odd m then $Z1 |- * $Z2 else * $Z1 |- $Z2)

: derivableR aidps {?Cd} |

?C’ = ($(funpow Star m (Comma Z1 Z2)) |- $(funpow Star n ?atom)) &

(if even m then $Z1 |- * $Z2 else * $Z1 |- $Z2)

: derivableR aidps {?Cd})" : Thm.thm

The set stars S is the set of all structures which consist of the structure S

preceded by any number of stars (ie, # symbols).
Thus the premise is that Cd is got from C by deleting instance(s) of the

substructure formula F (fml in the code), possibly with some # symbols.
The main clause of the result says that there exists Cd′ (this corresponds to

C′ \ F in the paper) which is got from Cd by deleting instance(s) of #nF (for
some n), but there is also an exceptional case where #nF is the whole of one
side of the sequent.

The proof of this result required considerable ML programming of proof
tactics. The file Del.ML is devoted to these tactics and the intermediate results
proved for the proof of Lemma 4.2.

When we get cases as to the last rule used in the derivation C →∗

AD
C′, this

gives 13 possibilities (“main cases”).
For each rule there are two main cases, the second being the case where, after

the preceding rule applications, the relevant occurrence of #nF is the whole of
one side of the sequent.

Then where, for example, the sequent which is (X ; Y); Z ⊢ W instantiated
has F delible, #nF may be equal to X, Y or Z, or may be delible from X, Y, Z

or W . (Certain further cases, such as that #nF is (X ; Y), get eliminated

6

automatically using results such as stars Sf not Comma, below). The tactics
dvitacs have been written to provide one set of tactics which handle all these
cases. The key component is the recursive tactic sdvitac which searches for
a way of showing that F is delible from a given sequent (say X ; (Y ; Z) ⊢ W ,
in the above example). Without the possibility of programming a tactic of this
sort in Standard ML, each of these seven cases, and a similar (less numerous)
set of cases for each of the other 12 main cases, would require its own separate
proof.

For the second case, where #nF is equal to one side of the sequent (W in the
above example), a variety of tactics is required: for those display rules which
move the comma from one side to the other the tactics mdiatacs works for all,
but the other cases have to be done individually.

The proof threw up a number of (logically) trivially easy cases which nonethe-
less needed particular results to be included as lemmas to be used automatically
in simplification, such as:

stars_Sf_not_Comma : "Comma ?X ?Y ~: stars (Structform ?fml)"

Stars_Sf_ne_Comma : "Comma ?X ?Y ~= funpow Star ?n (Structform ?fml)"

Stars_eq_Comma_iff : "(Comma ?X ?Y = funpow Star ?n (Comma ?U ?V)) =

(?n = 0 & ?X = ?U & ?Y = ?V)"

Note that we did not prove this result for F being ∅; this should be no more
difficult than for F a formula, except that some of our previous lemmas are for
the case where F is a formula. 2

3 Conclusion

In this work we attempted to reuse, wherever possible, the work we had pre-
viously done in Isabelle for proving cut-elimination for display logic, since that
previous work was a significant part of a three-year project. As it turned out,
a considerable amount of that work was relevant and used in this work on in-
terpolation.

In some aspects the previous work influenced this present work, which would
have been done differently were it being done from scratch. This includes the
choice of names for the various structural / logical operators (for example, the
structural boolean connectives being Star and Comma, for ‘#’ and ‘;’. More sig-
nificantly we were influenced by the previous work (and its successful conclusion)
to avoid formally defining congruent occurrences of a substructure.

We proposed avoiding a definition of congruent occurrences of some sub-
structure in the context of a derivation, as this could be quite complicated;
hopefully it would not be necessary for completing the proofs, as was the case
in the work on cut-elimination for display logics, where the relation seqrep

was adequate to express the idea of substituting “appropriate” instances of a
formula substructure.

2This proof was subsequently adapted to the case F = ∅, in the theorem deletion I

7

We proved a result which is analogous to Lemma 3.7 (Substitution Lemma),
using a statement involving seqrep rather than congruent occurrences. This
was adequate for proving Lemma 3.8, that the single premise rules satisfy the
local AD-interpolation property. The proof of Lemma 3.8 made use of a difficult
lemma which had been proved previously as part of the work on cut-elimination
in display logics.

Then we proved a version of Lemma 4.2 (Deletion Lemma), again avoiding a
definition of congruence: instead of C′ \F we proved the existence of a sequent
which is obtained from C′ by deleting some instances of F . This proof depended
on some detailed ML programming so as to avoid having to prove a large number
of cases individually.

4 Subsequent Work

4.1 Additive Logical Introduction Rules with more than
one Premise

During 2011 I have worked on extending the results of §2.3 to additive logical
introduction rules with more than one premise.

This involved, first, defining an analogue of seqrep, which we called lseqrep.
Thus (U, Us) ∈ lseqrep b Y Y s means that occurrences of Y in U are replaced
by the nth member of Y s in the nth member of Us. However we simplified it
by requiring that this applies to exactly one occurrence of Y (and it is the same

occurrence of Y for each member of Us).

lseqrep : "bool => structr => structr list => (sequent * sequent list) set"

I think that this simplification, that the replacement applies to exactly one
occurrence of Y in U , simplified the proofs considerably compared with the pre-
vious proof of the theorem extSubs, however the complication, that we have lists
Y s and Us, rather than single structures, complicated the proofs considerably.
Thus we have a result textttmextSubs which is analogous to textttextSubs.

From there we proved SF some1sub, analogous to SF some sub.

SF_some1sub : "[| ALL (ps, c):PC ‘ ?rules.

~ seqCtnsFml c & distinct (seqSVs c) & seqIsLog c &

Ball (set ps) seqIsLog &

(ALL p:set ps. distinct (seqSVs p) &

(ALL b. set (seqSVs’ b p) = set (seqSVs’ b c)));

Ball ?rules C4; (?prems, ?concl) : derl (PC ‘ rulefs ?rules);

(?concl, ?sconcls) : lseqrep ?sa (Structform ?fml) ?Zs |] ==>

EX spremss. (?prems, spremss) : lseqreps ?sa (Structform ?fml) ?Zs &

(ALL n<length ?Zs. (map (%l. l ! n) spremss, ?sconcls ! n) :

derl (PC ‘ rulefs ?rules))"

This says that

8

• assuming certain conditions on a set of rules (which are satisfied by the
display postulates)

• if concl is derivable from prems

• if concl fml
;

Z s sconcls

then there exists spremss (this is a list of lists of sequents) where

• for each prem in prems, let sprems be the corresponding member of
spremss, then prem fml

;
Z s sprems

• each member of sconcls is derivable from the corresponding member of
each list in spremss

Then, corresponding to sdA1 in §2.3, we have a lemma msdA1 (and its three
more counterparts). This is like sdA1 except that, in its statement (see §2.3),
Y ′ and W ′ can be lists. (It was proved from strrep mderA, mentioned in §2.3).

Then, corresponding to seqrep interpA, we have lseqrep interpA: again,
the difference is that in the statement of seqrep interpA in §2.3, we replace
Y ′ be a list of structures and W ′ ⊢ Z ′ by a list of sequents.

lseqrep_interpA : "[| rlscf <= ?rules;

ALL U. (map (%Y’. $Y’ |- $U) ?Ys, ?fml |- $U) : ?logI;

seqIsLog ($?W |- $?Z); ALL Y:set ?Ys. strFVPPs Y <= fmlFVPPs ?fml;

($?W |- $?Z, ?Ss’) : lseqrep False (Structform ?fml) ?Ys;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules;

ALL S:set ?Ss’. Ex (interp ?rules S) |] ==>

Ex (interp ?rules ($?W |- $?Z))"

There are two major cases in the proof: all the sequents W ′ are the same,
or all the sequents Z ′ are the same. This is because the relation S Z

;
Z s

Ss means that there is exactly one location in S where the Ss differ from S.
In those cases the proof uses the conjunction or disjunction, respectively, of a
list of interpolants. Of course this idea is taken from the proof of Theorem 4.7
(Binary Rules) in the paper.

From there we get the result mlogA ldi, analogous to logA ldi, which ba-
sically says that additive logical rules satisfy the local display interpolation
property. Analogous results for a logical introduction rule for a formula on the
right are lseqrep interpS and mlogS ldi.

mlogA_ldi : "[| ALL (ps, c):PC ‘ aidps. ~ seqCtnsFml c &

distinct (seqSVs c) & seqIsLog c & Ball (set ps) seqIsLog &

(ALL p:set ps. distinct (seqSVs p) &

(ALL b. set (seqSVs’ b p) = set (seqSVs’ b c)));

Ball aidps C4; seqIsLog (?fml |- $?U);

ALL U. (map (%Y’. $Y’ |- $U) ?Ys, ?fml |- $U) : ?logI;

ALL Y:set ?Ys. strFVPPs Y <= fmlFVPPs ?fml;

?logI <= PC ‘ rulefs ?rules; aidps <= ?rules; rlscf <= ?rules |] ==>

ldi aidps ?rules (map (%Y’. $Y’ |- $?U) ?Ys, ?fml |- $?U)"

9

4.2 Local Display Interpolation for Structural Rules

We proved the local display interpolation property for the unit contraction rules
and for the contraction rule.

The first lemma, deletion I uc, says that if sequent Cd is obtained from C

by (possibly) deleting occurrences of #n∅, and if Cd′ →∗

AD
Cd, then there exists

C′, such that C′ →∗

AD
C, and Cd′ is obtained from C′ by (possibly) deleting

occurrences of #n∅.
We accidentally made the error of first proving deletion I uc’ (which swaps

C(Cd) with C′(Cd′)) but subsequently discovered this was easier to prove any-
way. But to fix the error we also needed inv der aidps.

inv_der_aidps :

"?C : derivableR aidps {?C’} ==> ?C’ : derivableR aidps {?C}"

deletion_I_uc’ : "[| ?atom = I; (?C, ?Cd) : seqdel (stars ?atom);

?Cd’ : derivableR aidps {?Cd} |] ==>

EX C’. (C’, ?Cd’) : seqdel (stars ?atom) &

C’ : derivableR aidps {?C}"

The proof of this required a good deal of repetitive use of tactics and pro-
gramming of complex tactics similar to those described in §2.4.

The two parts of the theorem delI der shows that with Cd and C as above,
Cd is derivable from C. Then ldi ila and ldi ils assert that the unit contrac-
tion rules satisfy the local display interpolation property. The rules for replacing
(∅, X) by X on the left and the right are ila and ils.

delI_der : "[| (?Y, ?Y’) : strdel (stars I); aidps <= ?rules;

{ila, ils} <= ?rules |] ==>

{([$?X |- $?Y], $?X |- $?Y’), ([$?Y |- $?X], $?Y’ |- $?X)} <=

derl (PC ‘ rulefs ?rules)"

ldi_ila : "[| aidps <= ?rules; {ila, ils} <= ?rules |] ==>

ldi aidps ?rules (PC ila)"

Then we defined a relation mseqctr, where (C, C′) ∈ mseqctr means that
C′ is obtained from C, where they differ, by contraction of a subsructure (X, X)
to X . The contraction may occur (of different substructures) and several places
or none.

Then we obtained theorems deletion ctr, ctr der and ldi cA, which cor-
respond to the theorems mentioned above, but for contraction instead of unit
contraction. (Note that the system does not give a rule for contraction on the
right, it is derived from cA, the rule for contraction on the left).

ldi_cA : "[| aidps <= ?rules; {cA} <= ?rules |] ==> ldi aidps ?rules (PC cA)"

At the time of writing we had looked at treating the weakening rule in a
similar way, but it has extra difficulties.

10

4.3 Local Display Interpolation for Weakening

To handle weakening in a similar way, we considered two separate rules, one to
weaken with instances of #n∅ (#nI in Isabelle) and one to change any instance
of I to any formula.

We consider first replacing any instance of I with a formula. We got the
theorem

deletion_repI : "[| (?C, ?Cd) : seqrepI (range Structform);

?C : derivableR aidps {?C’} |] ==>

EX Cd’. (?C’, Cd’) : seqrepI (range Structform) &

?Cd : derivableR aidps {Cd’}"

Note that (C, Cd) ∈ seqrepI Fs means that some occurrences in C of
structures in Fs are replaced by I in Cd.

Since our formulation also contains structure variables (we don’t distinguish
the logical meta-language from the object language), we must get a similar
theorem for them, which was no difficulty — like formulae, they are atomic so
far as the structure langauge is concerned.

We proved that there are derived rules permitting replacing instances of I by
anything, and this gave us that such rules, where the replacement structure is a
formula or structure variable, have the the local display interpolation property.

seqrepI_der : "[| (?S’, ?S) : seqrepI ?Fs; aidps <= ?rules;

{ila, ils, mra} <= ?rules |] ==>

([?S], ?S’) : derl (PC ‘ rulefs ?rules)"

ldi_repI : "[| aidps <= ?rules; {ila, ils, mra} <= ?rules;

(?c, ?p) : seqrepI (range Structform) |] ==>

ldi aidps ?rules ([?p], ?c)"

Next we consider the structural rules allowing insertion of #nI.
We use the variant of the theorem deletion (see §2.4) which applies to

deletion of I rather than of a formula.
Then we have a theorem mwk der, which says that the result of inserting

occurrences of anything preserves derivability.

seqmwk_der : "[| (?S’, ?S) : mseqdel ?Fs;

aidps <= ?rules; {mra} <= ?rules |] ==>

([?S], ?S’) : derl (PC ‘ rulefs ?rules)"

Then we have the result that such rules satisfy the local display interpolation
property. In this case, though, where a sequent containing I is rearranged by the
display postulates such that the I is alone on one side, (such as where X ⊢ Y, I

is rearranged to X, ∗Y ⊢ I, then the the local display interpolation requires
using the derivability of X ⊢ Y rather than the fact that X ⊢ Y satisfies the
local display interpolation property.

11

Thus we define a conditional local display interpolation property. Recall
that, unlike Definition 3.3, our definition of ldi is not not conditional on the
premises ps being derivable.

cldi_def : "cldi ?lrules ?drules (?ps, ?c) =

(?c : derivableR ?drules {} --> ldi ?lrules ?drules (?ps, ?c))"

ldi_wkI : "[| aidps <= ?rules; {mra, ila, ils, tS, fA} <= ?rules;

(?c, ?p) : seqdel (stars I) |] ==>

cldi aidps ?rules ([?p], ?c)"

Thus we have proved that, provided the conclusion is derivable, a #nI-
weakening rule satisfies the local display interpolation property.

4.4 The Interpolation Theorem

Now since we can obtain an arbitrary weakening by repeated #nI-weakenings
and changing occurrences if I to formulae, we have a set of rules equivalent
to the original set, of which all satisfy a sufficient local display interpolation
property.

The details of this were rather tedious however.
First, that any weakening can be got by successive weakening of atoms (here,

weakening means changing X to (X, Y) anywhere within the sequent, and atoms
means not only formulae but also structure variables, since these are part of our
language of structures).

rep_wk_atoms :

"[| ?atoms = UNION (insert I (range SV) Un range Structform) stars;

(?X, ?Y) : strdel UNIV; strIsLog ?X |] ==>

(?X, ?Y) : (strdel ?atoms)^*"

We then defined a set of rules, called ldi rules, to contain

• aidps (the display postulates and associativity)

• the structural rules which remove I, and contraction

• the identity rule

• substitutions of the above

• #nI-weakening

• replacing I by a structural atom (formula or structure variable)

We then proved that the set of rules ldi rules is equivalent to the rules
rlscf and all their substitutions.

This seems like enough to complete the proof of the interpolation theorem,
however there were a number of complications which made it more difficult:

12

• the form of ldi wkI: it requires that certain rules are in the set of rules in
question: these rules are in rlscf but not in ldi rules (they are derivable
from ldi rules) thus although we can get a counterpart of ldi ex interp

for cldi, we couldn’t use it directly

• the set of rules ldi rules is not closed under substitution: some of our
other development assumes that we are dealing with a set of rules which
is closed under substitution

Finally, however, we got the following theorem:

ldi_rules_interp : "?x : derivableR rlscf {} ==> edi aidps rlscf ?x"

that is, Theorem 5.8 for the system containing all the rules (except the implica-
tion introduction rules) of Figures 1 and 2, and the display postulates and their
inverses.

There was one fly in the ointment in all this: several of the lemmas were
proved only for sequents satisfying the seqIsLog property of a sequent, which
says that the only structural connectives are the boolean ones (ie the ones in
the paper) — ie, the relational connectives (which were part of my earlier work
on Display Logic, which I reused here) do not appear.

However this created difficulties and so I simply asserted an axiom saying
that all structures have this property. The proofs depended on this axiom.
Since, however this axiom is false (as the way I have defined structures means
that non-logical structures exist), the proof depended on a false assumption.

Having looked at this situation, it seems that the easiest solution is to copy
the work using a redefinition of structures which includes only the boolean
structural connectives.

I have now done this, in new versions of GDC.thy and GDC.ML in the directory
interp, distinct from the files of the same name used for the relation algebra
work, which were formerly in directory fdeep and are now in fdeep-only.
Similar new versions of files GSub.thy and GRep.thy were required.

5 Conclusion and Discussion

I have proved in Isabelle the interpolation theorem for the particular rule sets
mentioned. It remains to examine how significant are the differences in the
proofs from the paper, and whether I’ve achieved any significant simplification.

I have done additive binary logical rules in a way which is modelled on the
treatment of unary rules, but using conjunction or disjunction of interpolants
in a way motivated by reading the proof of Theorem 4.7. The proof was con-
siderably more difficult than the proof for unary rules only because it happened
that I already had some required lemmas for the unary case from my previous
work.

Regarding Definition 4.4 (�) and Lemmas 4.5 and 4.6, I have not formalised
or used these, though it is likely that some similar ideas appear in my proofs.

13

