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1 Purpose

We are interested in notations for characterizing finite or infinite sequences
of elements as compositions of (binary) relations.

2 Sequences

Let Σ be some finite or infinite set of elements, called points, and Π =
Σ×Σ all possible pairs of points. Think vertices of a finite or infinite graph
and possible edges between them. A path (in the complete graph for Σ)
corresponds to a sequence of points. We use Πn for paths with n edges
(sequences of n + 1 points); 3 for all finite paths; Ω for infinite paths; and Ξ
for all paths, finite or infinite.

We list sequences s = s1, s2, . . . with commas as punctuation (and paren-
theses only when needed), indexing from 1. The length |s| of a sequence s

is the number of its items, or ∞ if there are infinitely many. (We do not
deal with longer transfinite sequences.) More generally, a comma acts to
concatenate sequences: r, s = r1, . . . , r|r|, s1, s2, . . . , unless |r| = ∞, in which
case r, s = r.

The empty sequence, with |s| = 0, is denoted φ (rather than ε, to avoid
confusion with properties of strings). A point a ∈ Σ may be viewed also as a
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single-item sequence. It will be convenient to imagine a fictitous “wildcard”
element, which we will denote 1. For infinite sequences, let r|r| = r∞ = 1.

By the same token, we now have a special sequence, consisting of the
wildcard element 1, also denoted 1, of length 1.

The join of two sequences (in the sense of database theory, not mere
concatenation) is defined as follows, for r, s ∈ Ξ:

rs =







r1, . . . , r|r|, s2, s3, . . . |r| < ∞, r|r| = s1

φ |r| < ∞, r|r| 6= s1

r |r| = ∞

When it says r|r| = s1, this entails that r and s are nonempty, so both points
exist and are equal. The join of an infinite sequence r with anything is just
r because we are not interested in transfinite sequences of length beyond ω.
This join operation is associative.

The wildcard sequence acts like a multiplicative unit, in that 1r = r1 = r

for all r. The empty sequence acts almost as a zero (absorbing) element:
φs = φ, while rφ = φ unless r is infinite, in which case rφ = r. (So we have
a monoid with a left zero.)

We can use exponentiation for repeated joins: r0 = 1, r1 = r, r2 = rr,
etc. Also, r∞ = rrr · · · .

We collapse a nonempty sequence r into the pair of its endpoints 〈r1, r|r|〉,
denoted JrK. For the empty sequence, JφK is undefined. When r is infinite,
we have JrK = 〈r1, 1〉, pairing the initial point with 1, which acts like any
point of the underlying set Σ.

3 Sets of Sequences

A binary relation B over points Σ is a set of pairs taken from Ξ, which can also
be viewed as edges colored B. Similarly, an n-ary relation is a set of sequences
of exactly n points. We refer to such sets of sequences as “relations”. The
pairs in a binary relation can be called “steps”, and sequences in a general
relation, “paths”.

Suppose A and B are binary relations. (Think colorings of edges in the
graph.) Rather than viewing their juxtaposition AB as the binary relation
A ◦B, obtained by composing A and B (namely, {〈x, z〉 : ∃y.(xAy ∧ yBz)}),
or the 4-letter strings obtained by concatenation ({u, v : u ∈ A, v ∈ B}), we
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view it as the ternary relation obtained by joining an A-step with a B-step,
that is, AB = {〈x, y, z〉 : xAy, yBz}.

More generally, let R, S ∈ Ξ be sets of (finite and/or infinite) sequences
over Σ. Define their join as follows:

RS = {rs : r ∈ R, s ∈ S}

that is, an R-path followed by an S-path. Joining of relations is associative.
The empty set (relation) ∅ acts as a zero element: ∅S = S∅ = ∅, for all S.
(So, we have a monoid with a zero.) The almost empty relation {φ} behaves
almost the same, except that S{φ} will contain all infinite sequences in S.

Let 1 = {1}. This relation acts as a unit: 1S = S1 = S, for all S. One
can identify 1 with the full set of singleton sequences, Σ, since it too acts
as an identity element. Sets of singleton sequences are monadic predicates,
and act as filters. In particular, PΣ = ΣP = PP = P for all P ⊆ Σ. The
binary relation PΠ is the set of edges whose source is in P , while ΠP are
edges incident on P . For predicate P and relation R, PR and RP are those
sequences in R that begin or end, respectively, with a point in P .

In analogy with regular expressions for strings, we avoid set formers for
singletons. So aR for point a and relation R, is those sequences in R that
begin with a.

Exponentiating works as expected: R0 = 1, R1 = R, R2 = RR, etc., for
any relation R ⊆ Ξ. So, Ri, for i ∈ N, is the set of i-fold joins of paths in R.
Define also the following:

1. R− contains all finite sequences in R in reverse order.

2. R∗ =
⋃

i≥0
Ri is the set of all joins of finitely many sequences of R.

3. R+ =
⋃

i>0
Ri, so R∗ = R+ + 1, where + is being used for set union.

4. R∞ is the set of joins of infinitely many sequences of R.

5. R∼ is the set R∗ + R∞ of finite and infinite sequences.

Referring back to the definitions at the outset, 3 = Π∗, Ω = Π∞, and
Ξ = Π∼. In the degenerate cases, ∅

+ = ∅
∞ = ∅. For any predicate,

P+ = P∞ = P .
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To avoid confusion, we indicate by JRK the binary relation that relates
endpoints of sequences in R, recalling that the initial points of infinite se-
quences relate to the wildcard element. This collapsed relation is

JRK = {JrK : r ∈ R, r 6= φ}

Unfortunately, JRSK need not be equal to JRK◦JSK, on account of the infinite
case. For example, let α be an infinite sequence of a’s, that is, α = JaK∞.
Then, JαbK = JαK = 〈a, 1〉, whereas JαK ◦ JbK = 〈a, b〉.

Now, let 〈〈R〉〉 contain all finite sequences whose beginning and end points
are also endpoints of a sequence in R, the intermediate points not mattering
(symbolized 3). So

〈〈R〉〉 =
{
r1 3 r|r| : r ∈ R

}

Any infinite path r in R contributes all finite paths with the same head, that
is, r1 3 1. It follows that

s ∈ 〈〈R〉〉 iff JsK ∈ JRK

as long as the fictitious 1 does not appear in the sequences.
Viewed as tuples, JRK and R are the same for purely binary R. One may

think of composition A ◦B of binary relations as their collapsed join, JABK.

4 Properties of Sets of Sequences

Let R, S ⊆ Ξ be sets of sequences. The notation

S |= R

means that each individual sequence in S is also a sequence in R. (I am
using this notation, instead of containment of sets, to stress that this is a
comparison of arbitrary, not necessarily binary, relations.) We also allow
singletons in place of S, as in aaa · · · |= a Ω

For example, suppose A and B are binary relations. The following is
what I call “escaping”:

B∞ |= 3JA(A + B)∞KB∞

This means that there is a point in every infinite B-chain such that an A-
step out of that point leads to a potentially “immortal” element (a point that
heads at least one infinite path in their union).
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5 An Example

Suppose Q is a quasi-order over Σ. Call an infinite sequence s ∈ Ω good if

s |= 3〈〈Q〉〉Ω

that is, if it contains two (not necessarily adjacent) points that are (quasi-)
ordered, the earlier one less than or equivalent to the later one. Call a
sequence bad if it is not good, and very good if all its infinite subsequences
are good. Clearly, all subsequences of a bad sequence are bad. (A bad
sequence is by its very nature very bad!) By (an easy instance of) Ramsey’s
Theorem, if a sequence s is very good, then it has a subsequence that is a
Q-chain:

s |= 3〈〈Q〉〉∞

A quasi-order Q is a well-quasi-order (wqo) if

Ω |= 3 〈〈Q〉〉Ω (1)

meaning that every infinite sequence is good. It goes without saying that
this implies

Ω |= (3 〈〈Q〉〉)∞

But, as we just saw, it is actually equivalent to the stronger

Ω |= 3〈〈Q〉〉∞ (1′)

meaning that infinite sequences are all very good and hence possess infinite
chains.

Let A1, A2, . . . ., An be a fixed finite number (n ≥ 0) of binary relations
over Σ. (For terms, say, Ai might give the ith immediate subterm.) Let
A =

⋃

i
Ai denote their union, and A− its inverse. Let Ā ⊆ Σ × Σn denote

the set of pairs (a, 〈a1, . . . , an〉), such that aAiai for all i, and let Ā− be its
inverse. Call a point that has an A-successor (that is, a neighbor at the head
of an outgoing “arrow”) a parent and its successor, a child. So, the relation
A gives any child ai of a parent a ∈ Σ, while Ā gives the tuple 〈a1, . . . , an〉
of all its children. Finally, let

Q̄ = Q × · · · × Q
︸ ︷︷ ︸

n times
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denote the n-fold direct (Cartesian) product of Q, which is the component-
wise comparison of n elements in Q.

Suppose A is well-founded:

A∞ = ∅ (2)

Suppose further all the following:

Q ◦ A− ⊆ Q (3)

Ā ◦ Q̄ ◦ Ā− ⊆ Q (4)

Ω |= 3JAΠKΩ + 3〈〈Q〉〉Ω (5)

Supposition (3) means that what is smaller than a child is smaller than its
parent. It is satisfied, as a special case, whenever A− ⊆ Q as sets of pairs,
since Q is transitive. Supposition (4) means that two parents are ordered
if all their children are. The last supposition (5) means that every infinite
sequence includes a parent or else is good. By Ramsey’s Theorem, again,
this is equivalent to

Ω |= 3〈〈AΠ〉〉∞ + 3〈〈Q〉〉∞ (5′)

That is, every infinite sequence includes infinitely many parents, or else is
very good.

It turns out that Q must be a well-quasi-ordering of Σ if all four suppo-
sitions (2–5) hold. But that is another story.
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