Notations for Sets of Sequences

Nachum Dershowitz
School of Computer Science
Tel Aviv University
Tel Aviv, Israel
nachumd@tau.ac.il

February 9, 2010

1 Purpose

We are interested in notations for characterizing finite or infinite sequences of elements as compositions of (binary) relations.

2 Sequences

Let Σ be some finite or infinite set of elements, called points, and $\Pi=$ $\Sigma \times \Sigma$ all possible pairs of points. Think vertices of a finite or infinite graph and possible edges between them. A path (in the complete graph for Σ) corresponds to a sequence of points. We use Π^{n} for paths with n edges (sequences of $n+1$ points); \diamond for all finite paths; Ω for infinite paths; and Ξ for all paths, finite or infinite.

We list sequences $s=s_{1}, s_{2}, \ldots$ with commas as punctuation (and parentheses only when needed), indexing from 1 . The length $|s|$ of a sequence s is the number of its items, or ∞ if there are infinitely many. (We do not deal with longer transfinite sequences.) More generally, a comma acts to concatenate sequences: $r, s=r_{1}, \ldots, r_{|r|}, s_{1}, s_{2}, \ldots$, unless $|r|=\infty$, in which case $r, s=r$.

The empty sequence, with $|s|=0$, is denoted ϕ (rather than ε, to avoid confusion with properties of strings). A point $a \in \Sigma$ may be viewed also as a
single-item sequence. It will be convenient to imagine a fictitous "wildcard" element, which we will denote 1 . For infinite sequences, let $r_{|r|}=r_{\infty}=1$.

By the same token, we now have a special sequence, consisting of the wildcard element 1 , also denoted 1 , of length 1 .

The join of two sequences (in the sense of database theory, not mere concatenation) is defined as follows, for $r, s \in \Xi$:

$$
r s= \begin{cases}r_{1}, \ldots, r_{|r|}, s_{2}, s_{3}, \ldots & |r|<\infty, r_{|r|}=s_{1} \\ \phi & |r|<\infty, r_{|r|} \neq s_{1} \\ r & |r|=\infty\end{cases}
$$

When it says $r_{|r|}=s_{1}$, this entails that r and s are nonempty, so both points exist and are equal. The join of an infinite sequence r with anything is just r because we are not interested in transfinite sequences of length beyond ω. This join operation is associative.

The wildcard sequence acts like a multiplicative unit, in that $1 r=r 1=r$ for all r. The empty sequence acts almost as a zero (absorbing) element: $\phi s=\phi$, while $r \phi=\phi$ unless r is infinite, in which case $r \phi=r$. (So we have a monoid with a left zero.)

We can use exponentiation for repeated joins: $r^{0}=1, r^{1}=r, r^{2}=r r$, etc. Also, $r^{\infty}=\operatorname{rrr} \cdots$.

We collapse a nonempty sequence r into the pair of its endpoints $\left\langle r_{1}, r_{|r|}\right\rangle$, denoted $\llbracket r \rrbracket$. For the empty sequence, $\llbracket \phi \rrbracket$ is undefined. When r is infinite, we have $\llbracket r \rrbracket=\left\langle r_{1}, 1\right\rangle$, pairing the initial point with 1 , which acts like any point of the underlying set Σ.

3 Sets of Sequences

A binary relation B over points Σ is a set of pairs taken from Ξ, which can also be viewed as edges colored B. Similarly, an n-ary relation is a set of sequences of exactly n points. We refer to such sets of sequences as "relations". The pairs in a binary relation can be called "steps", and sequences in a general relation, "paths".

Suppose A and B are binary relations. (Think colorings of edges in the graph.) Rather than viewing their juxtaposition $A B$ as the binary relation $A \circ B$, obtained by composing A and B (namely, $\{\langle x, z\rangle: \exists y \cdot(x A y \wedge y B z)\}$), or the 4 -letter strings obtained by concatenation $(\{u, v: u \in A, v \in B\})$, we
view it as the ternary relation obtained by joining an A-step with a B-step, that is, $A B=\{\langle x, y, z\rangle: x A y, y B z\}$.

More generally, let $R, S \in \Xi$ be sets of (finite and/or infinite) sequences over Σ. Define their join as follows:

$$
R S=\{r s: r \in R, s \in S\}
$$

that is, an R-path followed by an S-path. Joining of relations is associative. The empty set (relation) \varnothing acts as a zero element: $\varnothing S=S \varnothing=\varnothing$, for all S. (So, we have a monoid with a zero.) The almost empty relation $\{\phi\}$ behaves almost the same, except that $S\{\phi\}$ will contain all infinite sequences in S.

Let $\mathbf{1}=\{1\}$. This relation acts as a unit: $\mathbf{1} S=S \mathbf{1}=S$, for all S. One can identify 1 with the full set of singleton sequences, Σ, since it too acts as an identity element. Sets of singleton sequences are monadic predicates, and act as filters. In particular, $P \Sigma=\Sigma P=P P=P$ for all $P \subseteq \Sigma$. The binary relation $P \Pi$ is the set of edges whose source is in P, while ΠP are edges incident on P. For predicate P and relation $R, P R$ and $R P$ are those sequences in R that begin or end, respectively, with a point in P.

In analogy with regular expressions for strings, we avoid set formers for singletons. So $a R$ for point a and relation R, is those sequences in R that begin with a.

Exponentiating works as expected: $R^{0}=1, R^{1}=R, R^{2}=R R$, etc., for any relation $R \subseteq \Xi$. So, R^{i}, for $i \in \mathbb{N}$, is the set of i-fold joins of paths in R. Define also the following:

1. R^{-}contains all finite sequences in R in reverse order.
2. $R^{*}=\bigcup_{i \geq 0} R^{i}$ is the set of all joins of finitely many sequences of R.
3. $R^{+}=\bigcup_{i>0} R^{i}$, so $R^{*}=R^{+}+1$, where + is being used for set union.
4. R^{∞} is the set of joins of infinitely many sequences of R.
5. R^{\sim} is the set $R^{*}+R^{\infty}$ of finite and infinite sequences.

Referring back to the definitions at the outset, $\diamond=\Pi^{*}, \Omega=\Pi^{\infty}$, and $\Xi=\Pi^{\sim}$. In the degenerate cases, $\varnothing^{+}=\varnothing^{\infty}=\varnothing$. For any predicate, $P^{+}=P^{\infty}=P$.

To avoid confusion, we indicate by $\llbracket R \rrbracket$ the binary relation that relates endpoints of sequences in R, recalling that the initial points of infinite sequences relate to the wildcard element. This collapsed relation is

$$
\llbracket R \rrbracket=\{\llbracket r \rrbracket: r \in R, r \neq \phi\}
$$

Unfortunately, $\llbracket R S \rrbracket$ need not be equal to $\llbracket R \rrbracket \circ \llbracket S \rrbracket$, on account of the infinite case. For example, let α be an infinite sequence of a 's, that is, $\alpha=\llbracket a \rrbracket^{\infty}$. Then, $\llbracket \alpha b \rrbracket=\llbracket \alpha \rrbracket=\langle a, 1\rangle$, whereas $\llbracket \alpha \rrbracket \circ \llbracket b \rrbracket=\langle a, b\rangle$.

Now, let $\langle\langle R\rangle\rangle$ contain all finite sequences whose beginning and end points are also endpoints of a sequence in R, the intermediate points not mattering (symbolized \diamond). So

$$
\langle\langle R\rangle\rangle=\left\{r_{1} \diamond r_{|r|}: r \in R\right\}
$$

Any infinite path r in R contributes all finite paths with the same head, that is, $r_{1} \diamond 1$. It follows that

$$
s \in\langle\langle R\rangle\rangle \text { iff } \llbracket s \rrbracket \in \llbracket R \rrbracket
$$

as long as the fictitious 1 does not appear in the sequences.
Viewed as tuples, $\llbracket R \rrbracket$ and R are the same for purely binary R. One may think of composition $A \circ B$ of binary relations as their collapsed join, $\llbracket A B \rrbracket$.

4 Properties of Sets of Sequences

Let $R, S \subseteq \Xi$ be sets of sequences. The notation

$$
S \models R
$$

means that each individual sequence in S is also a sequence in R. (I am using this notation, instead of containment of sets, to stress that this is a comparison of arbitrary, not necessarily binary, relations.) We also allow singletons in place of S, as in $a a a \cdots \models a \Omega$

For example, suppose A and B are binary relations. The following is what I call "escaping":

$$
B^{\infty} \models \diamond \llbracket A(A+B)^{\infty} \rrbracket B^{\infty}
$$

This means that there is a point in every infinite B-chain such that an A step out of that point leads to a potentially "immortal" element (a point that heads at least one infinite path in their union).

5 An Example

Suppose Q is a quasi-order over Σ. Call an infinite sequence $s \in \Omega \operatorname{good}$ if

$$
s \models \diamond\langle\langle Q\rangle\rangle \Omega
$$

that is, if it contains two (not necessarily adjacent) points that are (quasi-) ordered, the earlier one less than or equivalent to the later one. Call a sequence bad if it is not good, and very good if all its infinite subsequences are good. Clearly, all subsequences of a bad sequence are bad. (A bad sequence is by its very nature very bad!) By (an easy instance of) Ramsey's Theorem, if a sequence s is very good, then it has a subsequence that is a Q-chain:

$$
s \models \diamond\langle\langle Q\rangle\rangle^{\infty}
$$

A quasi-order Q is a well-quasi-order (wqo) if

$$
\begin{equation*}
\Omega \models \diamond\langle\langle Q\rangle\rangle \Omega \tag{1}
\end{equation*}
$$

meaning that every infinite sequence is good. It goes without saying that this implies

$$
\Omega \models(\diamond\langle\langle Q\rangle\rangle)^{\infty}
$$

But, as we just saw, it is actually equivalent to the stronger

$$
\Omega \models \diamond\langle\langle Q\rangle\rangle^{\infty}
$$

meaning that infinite sequences are all very good and hence possess infinite chains.

Let $A_{1}, A_{2}, \ldots, A_{n}$ be a fixed finite number ($n \geq 0$) of binary relations over Σ. (For terms, say, A_{i} might give the i th immediate subterm.) Let $A=\bigcup_{i} A_{i}$ denote their union, and A^{-}its inverse. Let $\bar{A} \subseteq \Sigma \times \Sigma^{n}$ denote the set of pairs $\left(a,\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)$, such that $a A_{i} a_{i}$ for all i, and let \bar{A}^{-}be its inverse. Call a point that has an A-successor (that is, a neighbor at the head of an outgoing "arrow") a parent and its successor, a child. So, the relation A gives any child a_{i} of a parent $a \in \Sigma$, while \bar{A} gives the tuple $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ of all its children. Finally, let

$$
\bar{Q}=\underbrace{Q \times \cdots \times Q}_{n \text { times }}
$$

denote the n-fold direct (Cartesian) product of Q, which is the componentwise comparison of n elements in Q.

Suppose A is well-founded:

$$
\begin{equation*}
A^{\infty}=\varnothing \tag{2}
\end{equation*}
$$

Suppose further all the following:

$$
\begin{align*}
Q \circ A^{-} & \subseteq Q \tag{3}\\
\bar{A} \circ \bar{Q} \circ \bar{A}^{-} & \subseteq Q \tag{4}\\
\Omega & \models \diamond \llbracket A \Pi \rrbracket \Omega+\diamond\langle\langle Q\rangle\rangle \Omega \tag{5}
\end{align*}
$$

Supposition (3) means that what is smaller than a child is smaller than its parent. It is satisfied, as a special case, whenever $A^{-} \subseteq Q$ as sets of pairs, since Q is transitive. Supposition (4) means that two parents are ordered if all their children are. The last supposition (5) means that every infinite sequence includes a parent or else is good. By Ramsey's Theorem, again, this is equivalent to

$$
\Omega \models \diamond\langle\langle A \Pi\rangle\rangle^{\infty}+\diamond\langle\langle Q\rangle\rangle^{\infty}
$$

That is, every infinite sequence includes infinitely many parents, or else is very good.

It turns out that Q must be a well-quasi-ordering of Σ if all four suppositions (2) hold. But that is another story.

Acknowledgements

Thank you Ori Brost and Bernhard Gramlich for your suggestions.

