Well-Founded Unions

Jeremy Dawson Nachum Dershowitz Rajeev Goré IJCAR, July 2018

$\S 0$: Introduction

Under what "combinatorial" conditions is the union of *well-founded relations* sure to be well-founded?

Under what "combinatorial" conditions is the union of *well-founded relations* sure to be well-founded?

Well-founded: No infinite forward chains

 $\rightarrow \rightarrow \rightarrow \cdots$

Under what "combinatorial" conditions is the *union* of well-founded relations sure to be well-founded?

$$\rightarrow \rightarrow \rightarrow \cdots$$

Collaborators

- N, 2009: Dear Rajeev, please could you send me a copy of ...
- N, 2015: Dear Colleagues, as you have shown interest in ...
- **Raj to Jeremy:** Can you formalise this stuff that Nachum has sent?
- Jeremy to Raj: Sure, have done a lot of very similar stuff ...
- Raj to N: Jeremy has just worked out a positive result ...

- Constriction: Plaisted [1985]
- Quasi-Commutation: Bachmair & D [1986]
- Use Ramsey: Geser [1989]
- Jumping: Doornbos, Backhouse & van der Woude [1997]
- Formalization: Dawson & Goré [2004]

$\S1$: Termination

When is the union of well-founded relations also well-founded?

Well-founded: No infinite forward chains

$$\rightarrow \rightarrow \rightarrow \cdots$$

When is the union of well-founded relations also well-founded?

Well-founded: No infinite forward chains

Red Line

Blue Line

Two Lines

A to B

Andy Warhor From A to B & Back Again The philosophy of Andy Warhol

"Well, lemme think. ... You've stumped me, son. Most folks only wanna know how to go the other way."

- Have pass for unlimited Red travel
- Have pass for unlimited Blue travel
- Can't ride forever on just one
- Want to ride forever on the combination

Mortal Union

Immortal Union

Relations

Relations

Union

\S **2: Bipartite Case**

Inversion

• • •

Trivial Pursuit

Trivial Pursuit

Trivial Pursuit

Trivial Pursuit

Jumping

Jumping

Jumping

Counterexample

Counterexample

\S **3:** Tripartite

$2 \times Jumping$

Tripartite: Preference

More Constriction

More Constriction

More Constriction

Tripartite

Tripartite

Tripartite

Tripartite

Counterexamples

Counterexamples

Counterexamples

§4: Quadripartite

Quadripartite: Preference

Generalized Constriction

Induction

Quadripartite: Preference & Jumping

Quadripartite: Open

\S **5:** *n*-partite

$$R_{i:n} = R_i \cup \cdots \cup R_n$$

 $R_{0:n}$ is well-founded if, for some k:

$$\begin{aligned} R_{i+1:n}R_i &\subseteq R_0 R_{0:n}^* \cup R_i^+ \cup R_{i+1:n} & \text{for } i = 0 \dots k-1 \\ R_{i+1:n}R_i &\subseteq R_i R_{i:n}^* \cup R_{i+1:n} & \text{for } i = k \dots n-1 \end{aligned}$$

∞ : Morals

- N: Here is a draft of some results
- Jeremy: Have formalised; all claims are correct
- N: I'm stuck on this ...
- Jeremy: So am I ...
- Raj: Have you tried ...
- Jeremy: No, but will try It works!
- N: Thanks, here are some variations
- Jeremy: Here are the proofs for your variations and some further generalisations
- Raj: My suggestion would be to try for IJCAR 2016

Moral

IJCAR 2016: "How to" – rejected

- 1. could not install Isabelle/HOL 2005
- 2. using lsabelle/HOL 2005 is bad
- 3. instructions are incomplete

Moral

IJCAR 2016: "How to" – rejected

- 1. could not install Isabelle/HOL 2005
- 2. using Isabelle/HOL 2005 is bad
- 3. instructions are incomplete

IJCAR 2018: Traditional paper – accepted

Moral

IJCAR 2016: "How to" - rejected

- 1. could not install Isabelle/HOL 2005
- 2. using Isabelle/HOL 2005 is bad
- 3. instructions are incomplete

IJCAR 2018: Traditional paper – accepted

Moral:

Write traditionally and just say, "All proofs have been mechanically verified" (icing on the cake)

Isabelle/HOL 2005

users.cecs.anu.edu.au/~jeremy/isabelle/2005/gen/tripartite-README

Although we are not to decide whether the reasons against the union are well founded, yet, far short of that, in such a question there may be fair grounds of objection.