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Abstract. Given two or more well-founded (terminating) binary rela-
tions, when can one be sure that their union is likewise well-founded? We
suggest new conditions for an arbitrary number of relations, generalising
known conditions for two relations. We also provide counterexamples to
several potential weakenings. All proofs have been machine checked.

1 Introduction

A binary relation R (which need not be an ordering) over some underlying set is
well-founded (or terminating) if there is no infinite descending chain x0 R x1 R
· · · R xn−1 R xn R · · · .3 Given well-founded binary relations R0, R1, . . . , Rn

over some common underlying set X (which will remain fixed throughout), we
are interested in conditions under which their union R0 ∪ R1 ∪ · · · ∪ Rn is also
well-founded.

For two well-founded relations A and B, the following relatively powerful
condition for the well-foundedness of their union A∪B, due to Doornbos, Back-
house, and van der Wouder [9] (see also [10]) and called Jumping in [6], is known
to suffice (Corollary 7 below):

BA ⊆ A(A ∪B)∗ ∪B (∗)

Juxtaposition is being used for composition (xBAz iff there’s a y such that xBy
and yAz) and the asterisk for the reflexive-transitive closure (xB∗z iff there are
y0, y1, . . . , yn, n ≥ 0, such that x = y0By1B · · ·Byn = z).

Jumping (∗) generalizes simpler ways of showing well-foundedness of the
union of two relations. Sans the B possibility on the right, we get quasi-
commutation [1]:

BA ⊆ A(A ∪B)∗ (1)

a condition that comes into play in many rewriting situations (e.g. [12,4,1,5]).
Likewise, the simple A option

BA ⊆ A ∪B (2)

⋆ Based on preliminary work reported in [7,3]. Draft of January 17, 2018.
3 We choose to view the forward direction as descent.



has long been known to suffice for the well-foundedness of the union.

To gain purchase on the manner of reasoning, let R = A ∪ B and imagine a
minimal infinite descending chain in R: x0 R x1 R · · · R xn−1 R xn R · · · . By
“minimal” we mean that its elements are as small as possible vis-à-vis A, which –
as it is well-founded – always enjoys minimal elements. In other words, x0 is the
smallest element in the underlying set from which an infinite chain in R ensues.
By the same token, x1 is the smallest possible y such that x0 R y R · · · . And so
on. On account of the well-foundedness of both A and B, any such chain must
have (indeed, must have infinitely many) adjacent BA steps: x B x′ A x′′ R · · · .
Now, if (2) holds, we could have taken a giant step x R x′′, instead, before
continuing down the infinite path from x′′. But this would imply that the chain
is not actually minimal because x′′ is less than x′ with respect to A, and should
have been next after x.

Similarly, to show that (1) suffices, we choose a “preferred” infinite coun-
terexample, in the sense that an A-step is always better than a B-step, given
the choice. Again, an infinite chain containing a pair of steps x B x′ A x′′ could
not be right since there is a preferred alternative, x A y R · · · R x′′ R · · · ,
dictated by (1).

By combining these two arguments, one obtains the sufficiency of the com-
bined jumping condition (∗). Among preferred counterexamples, always choose
B-steps, x B x′, having minimal x′ with respect to A. Preference precludes
taking an A-first detour instead of a BA pair x B x′ A x′′, while minimality
precludes a B-shortcut x B x′′.

To garner further insight, we first tackle – in the next two sections – the easier
case of just three relations. Then, in Section 4, we extend the tripartite results
and describe the general pattern for an arbitrary number of relations. Letting
Ri:n =

⋃n
j=i Rj be the union of well-founded relations Ri, Ri+1 ..Rn, and letting

R+
i be the transitive closure of Ri, we arrive in Section 5 (Theorem 4) at the

following sufficient condition for the well-foundedness of R0:n: There is some k,
0 ≤ k ≤ n, such that

Ri+1:nRi ⊆ R0R
∗

0:n ∪R+
i ∪Ri+1:n for i = 0 .. k − 1 (∗∗)

Ri+1:nRi ⊆ RiR
∗

i:n ∪Ri+1:n for i = k .. n− 1 (∗∗∗)

In the quadripartite case (n = 3), with k = 2, this amounts to the following:

(B ∪ C ∪D)A ⊆ A(A ∪B ∪ C)∗ ∪B ∪ C ∪D (3a)

(C ∪D)B ⊆ A(A ∪B ∪ C)∗ ∪B+ ∪ C ∪D (3b)

DC ⊆ C(C ∪D)∗ ∪D (3c)

All proofs have been machine-checked using Isabelle/HOL. See Section 6.

We conclude with an open quadripartite problem and ideas for future work.
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2 Tricolour Unions

In this section, we study the three-relation case n = 2. We will refer to the
relations A, B, and C as “colours”. Ramsey’s Theorem may be applied in the
following manner:

Theorem 1 (Ramsey). The union A ∪B ∪C of well-founded relations A, B,
and C is well-founded if it is transitive:

(A ∪B ∪ C)(A ∪B ∪ C) ⊆ A ∪B ∪ C (4)

Proof. The infinite version of Ramsey’s Theorem applies when the union is tran-
sitive, so that every two (distinct) nodes within an infinite chain in the union
of the colours has a (directed) edge that is coloured in one of the three colours.
Then, there must lie an infinite monochrome subchain within any infinite chain,
contradicting the well-foundedness of each colour alone. ⊓⊔

The suggestion to use Ramsey’s Theorem for such a purpose is due to Franz
Baader in 1989 [14, items 38–41]; see [11, Sect. 3.1]. Its use in a termination
prover was pioneered in the TermiLog system, as reported in [8]; see also [13,2,16].

Only three of the nine cases implicit in the left-hand side of (4) are actually
needed for the limited outcome that we are seeking, an infinite monochromatic
path, rather than a clique as in Ramsey’s Theorem – as we observe next.

Theorem 2. The union A ∪ B ∪ C of well-founded relations A, B, and C is
well-founded if

BA ∪ CA ∪ CB ⊆ A ∪B ∪ C . (5)

Proof. When the union is not well-founded, there are infinite chains Y = {xi}i
with each relation connecting xi to xi+1 being one of A, B, or C. Extract a
maximal subsequence Z ={xij}j of Y such that xij A xij+1

for each j. If it’s
finite, then repeat at the first opportunity in the tail, and add the intervening
steps to Z. If any is infinite, we have our contradiction. If they’re all finite, then
consider the first occurrence of x (B ∪ C) y A z in Z. Since we could not take
an A-step from x or else we would have, the conditions tell us that x (B ∪ C) z.
Swallowing up all such (non-initial) A-steps in this way, we are left with an
infinite chain in B ∪ C, for which we also know that no A-steps are possible
anywhere. Now extract maximal B-chains in the same fashion and then erase
them, replacing x C y B z with x C z (A- and B-steps having been precluded),
leaving an infinite chain coloured purely C. ⊓⊔

It bears noting that the above condition (5) is better than what would get
by just iterating the simple condition (2), namely

BA ⊆ A ∪B

CA ∪ CB ⊆ A ∪B ∪ C ,

the difference being the option BA ⊆ C.
To guarantee an infinite clique, not just well-foundedness, instead of (4), one

can insist on the three transitivity cases (AA ⊆ A, BB ⊆ B, CC ⊆ C), too:
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Corollary 3. If A, B, and C are transitive relations and

BA ∪ CA ∪ CB ⊆ A ∪B ∪ C , (5)

then, whenever there is an infinite path in the union A ∪ B ∪ C, there is an
infinite monochromatic clique.

Proof. By Theorem 2, (at least) one of A, B, C is not well-founded. By tran-
sitivity, the elements of any infinite chain in that non-well-founded colour form
an infinite clique in the underlying undirected graph. ⊓⊔

Let’s refer to the elements in any infinite descending chain in the union
A∪B∪C as immortal. It turns out that we can do considerably better than the
previous theorem:

Theorem 4 (Tripartite). The union A ∪ B ∪ C of well-founded relations A,
B, and C is well-founded if

(B ∪ C)A ⊆ A(A ∪B ∪ C)∗ ∪B ∪ C (6a)

CB ⊆ A(A ∪B ∪ C)∗ ∪B+ ∪ C . (6b)

Proof (sketch). We first construct an infinite chain Y = {xi}i, in which an A-
step is always preferred over B or C, as long as immortality is maintained. To do
this, we start with an immortal element x0 in the underlying set. At each stage
in the construction, if the chain so far ends in xi, we look to see if there is any
y such that xi A y and from which proceeds some infinite chain in the union,
in which case y is chosen to be xi+1. Otherwise, xi+1 is any immortal element z
such that xi B z or xi C z.

If there are infinitely many B’s and/or C’s in Y , use them – by means of
the first condition – to remove all subsequent A-steps, leaving only B- and C-
steps going out of points from which A leads of necessity to mortality. From
what remains, if there is any C-step at a point where one could take one or
more B-steps to any place later in the chain, take the latter route instead. What
remains now are C-steps at points where B+ detours are also precluded. If there
are infinitely many such C-steps, then applying the condition for CB will result
in a pure C-chain, because neither A(A ∪B ∪ C)∗ nor B+ are options. ⊓⊔

Example 5. would be nice; maybe based on dependency pairs

Dropping C from the conditions of the previous theorem, one gets the jump-
ing criterion, which we explored in the introduction:

Definition 6 (Jumping Criterion [9,10]). Binary relation A jumps over bi-
nary relation B if

BA ⊆ A(A ∪B)∗ ∪B (∗)

Clearly, then,
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Corollary 7 (Jumping [9,10]). The union A∪B of well-founded relations A
and B is well-founded whenever A jumps over B.

Applying this jumping criterion twice, one gets somewhat different (incom-
parable) conditions for well-foundedness of the union of three relations.

Theorem 8 (Jumping I). The union A ∪ B ∪ C of well-founded relations A,
B, and C is well-founded if

BA ⊆ A(A ∪B)∗ ∪B (7a)

C(A ∪B) ⊆ (A ∪B)(A ∪B ∪ C)∗ ∪ C . (7b)

Proof. The first inequality is the jumping criterion (∗). The second is the same
with C for B and A ∪B in place of A. ⊓⊔

For two relations, jumping provides a substantially weaker criterion for well-
foundedness than does the appeal to Ramsey. But for three, whereas jumping
allows more than one step in lieu of BA (in essence, AA∗B∗), it doesn’t allow
for C, which Ramsey does.

Switching rôles, start with jumping for B ∪ C before combining with A, we
get slightly different conditions yet:

Theorem 9 (Jumping II). The union A∪B ∪C of well-founded relations A,
B, and C is well-founded if

(B ∪ C)A ⊆ A(A ∪B ∪ C)∗ ∪B ∪ C (8a)

CB ⊆ B(B ∪ C)∗ ∪ C . (8b)

Both this version of jumping and our tripartite condition allow

(B ∪ C)A ⊆ A(A ∪B ∪ C)∗ ∪B ∪ C (6a,8a)

CB ⊆ B+ ∪ C . (cf. 6b,8b)

They differ in that jumping also allows the condition shown below on the left
whereas tripartite has the one shown on the right instead:

jumping allows tripartite allows
CB ⊆ B(B ∪ C)∗ CB ⊆ A(A ∪B ∪ C)∗

Sadly, we cannot have the best of both worlds. Let’s colour edges A, B, and
C with (solid) azure, (dashed) black, and (dotted) crimson ink, respectively. The
graph below only has multicoloured loops despite satisfying

(B ∪ C)A ⊆ C

CB ⊆ A ∪B(B ∪ C)∗ .

• •

•

•
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Even

(B ∪ C)A ⊆ C

CB ⊆ B(A ∪B)∗

doesn’t work. To wit, the double loop in the graph below harbours no
monochrome subchain:

• • •

By the same token, the putative hypothesis

BA ∪ CB ⊆ C

CA ⊆ BA∗

is countered by the graph

• • •

3 Tripartite Proof

In preparation for the general case, we decompose the proof of the Tripartite
Theorem (Theorem 4) of the previous section into a sequence of notions and
lemmata.

Definition 10 (Immortality [6]). Let R ⊆ X × X be a binary relation over
some underlying set X. The set R∞ ⊆ X of R-immortal elements are those
elements x0 ∈ X that head infinite (descending) R-chains, x0 R x1 R · · · .

So, a relation R is well-founded if and only if every element of the underlying
set is mortal (R∞ = ∅).

Two trivial observations, first.

Proposition 11. If R ⊆ S+, for binary relations R and S, then perforce R∞ ⊆
S∞, that is, every R-immortal is also S-immortal.

It follows that

Proposition 12. Binary relation R is well-founded if it is contained in a well-
founded relation S, and, more generally, if R ⊆ S+.
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As usual, the (forward) image Q[Y ] of a set Y under relation Q consists of
those z such that yQz for some y ∈ Y , and the inverse (or pre-) image Q−1[Y ]
of Y under Q are those y such that yQz for some z ∈ Y .

If yRz for (R-) immortal z, then y is also immortal:

Proposition 13. The inverse image of immortals is immortal: R−1[R∞] =
R∞.

We will make repeated use of the Jumping Criterion (∗), BA ⊆ A(A∪B)∗∪B.
By induction (on the number of A’s), Jumping extends to the transitive closure:

Lemma 14. If binary relation A jumps over relation B, then

BA∗ ⊆ A(A ∪B)∗ ∪B . (9)

A central tool will be the following concept:

Definition 15 (Constriction). The constriction B♯ of relation B (with respect
to relation A) excludes from B all steps of the form zBw for which there is an
A ∪B-immortal y such that zAy:

B♯ = B \ {(z, w) | z ∈ A−1[(A ∪B)∞], w ∈ X} .

The idea of constriction is inspired by the method of Plaisted used in [15].

Lemma 16. The union A ∪ B of binary relations A and B is well-founded
whenever A ∪B♯ is.

Proof. Construct an infinite descending A∪B-chain by using A wherever possible
(when A can lead to immortality), using B only where necessary (which makes
it a constricted step). ⊓⊔

Lemma 17. If binary relation A jumps over relation B and both A and B♯ are
well-founded, then A ∪B♯ is well-founded.

Proof. Consider any infinite descending A ∪ B♯-chain. As A is well-founded, it
must contain infinitely many B♯-steps. As A jumps over B, Lemma 14 tells us
that

B♯A∗ ⊆ A(A ∪B)∗ ∪B♯ .

We have B♯ on the right, because that position is constricting on the left. But
in any infinite A ∪ B♯-chain, we cannot replace B♯A∗ by A(A ∪ B)∗ since that
would mean that A leads to immortality, violating constriction. Hence, all (non-
initial) A-steps may be removed from the chain, leaving an impossible infinite
B♯-chain. ⊓⊔

Combining the previous two lemmata, we have
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Corollary 18. If binary relation A jumps over relation B and both A and B♯

are well-founded, then A ∪B is well-founded.

We will need to revise the following lemma – in the next section – with a
more flexible notion of constriction for when there are more than three relations.
In the meantime, let C♭ be C constricted with respect to both A and B (i.e.
w.r.t. A ∪B), not just A.

Lemma 19. If binary relations B and C♭ are well-founded and

CB ⊆ A(A ∪B ∪ C)∗ ∪B+ ∪ C , (6b)

then B ∪ C♭ is also well-founded.

Proof. Suppose that B and C♭ are well-founded, but B ∪ C♭ is not. So there
exist B ∪C♭-immortal elements. Choose z to be a B-minimal such element, and
also to be C♭-minimal among all possible B-minimal choices.

As z is B-minimal, the first step of an infinite B∪C♭-chain must be zC♭y (for
some y). Considering that B is well-founded, let y be B-minimal among possible
choices for y. Then, by the C♭-minimality of z, although y is B ∪ C♭-immortal,
it is not B-minimal among B ∪ C♭-immortal members. So we have yBx, where
x is B ∪C♭-immortal. Relying on (6b), we could replace zCyBx in the putative
infinite chain by any one of the following:

– zAy′(A∪B ∪C)∗x, for some y′ – but x is B ∪C♭-immortal, and so it heads
an infinite descending B ∪ C-chain, contradicting the constriction of zC♭y;
or

– zB+x, which would contradict our choice of z to be B-minimal; or
– zCx, and so zC♭x, which would contradict our choice of y to be B-minimal,

since x could have been chosen in place of y.

Thus, for each alternative we arrive at a contradiction. It follows that B ∪C♭ is
well-founded. ⊓⊔

Everything is in place now for a modular proof of Theorem 4, repeated here
for convenience:

Theorem 4 (Tripartite). The union A ∪ B ∪ C of well-founded relations A,
B, and C is well-founded if

(B ∪ C)A ⊆ A(A ∪B ∪ C)∗ ∪B ∪ C (6a)

CB ⊆ A(A ∪B ∪ C)∗ ∪B+ ∪ C . (6b)

Proof. Since A jumps over B ∪ C (6a), by Corollary 18, it is enough to show
that (B ∪ C)♯ is well-founded. Given (6b), by Lemma 19, we have that B ∪ C♭

is well-founded. Clearly (B ∪ C)♯ ⊆ B ∪ C♭, because constricted B is in B and
C is constricted to the same degree (w.r.t. A∪B) in both (B ∪C)♯ and B ∪C♭.
By Proposition 12, the required well-foundedness of (B ∪ C)♯ follows. ⊓⊔
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4 Preferential Commutation

The two three-relation conditions, Jumping I and Jumping II, can each be
straightforwardly extended by induction to arbitrarily many relations.

Corollary 20 (Jumping I). The union R0:n of well-founded relations R0, R1 ..
Rn is well-founded if

Ri+1R0:i ⊆ R0:iR
∗

0:i+1 ∪Ri+1 for all i = 0 .. n− 1 .

Proof. Given that B = Ri+1 is well-founded, assume that A = R0:i is well-
founded by induction, and use Jumping I (Theorem 8) to establish that their
union A ∪B = R0:i+1 also is. ⊓⊔

Similarly,

Corollary 21 (Jumping II). The union R0:n of well-founded relations
R0, R1 .. Rn is well-founded if

Ri+1:nRi ⊆ RiR
∗

i:n ∪Ri+1:n for all i = 0 .. n− 1 . (11)

Proof. Let A = Ri and B = Ri+1:n in Theorem 9, and reason by induction. ⊓⊔

We now extend Theorem 4 to an arbitrary number of relations, and show the
sufficiency of what we will call Preferential Commutation.

Theorem 4 (Preferential Commutation). The union R0:n of well-founded
relations R0, R1 ..Rn is well-founded if it satisfies this Preferential Commutation
condition:

Ri+1:nRi ⊆ R0R
∗

0:n ∪R+
i ∪Ri+1:n for all i = 0 .. n− 1 . (12)

In the quadripartite case, Preferential Commutation (12) asserts that A ∪
B ∪ C ∪D is well-founded if

(B ∪ C ∪D)A ⊆ A(A ∪B ∪ C ∪D)∗ ∪B ∪ C ∪D (12a)

(C ∪D)B ⊆ A(A ∪B ∪ C ∪D)∗ ∪B+ ∪ C ∪D (12b)

DC ⊆ A(A ∪B ∪ C ∪D)∗ ∪ C+ ∪D (12c)

Notice the inclusion of the options B+ and C+ in (12b) and (12c), respectively,
when compared with the jumping criteria. The A+ has been omitted from (12a)
on account of its inclusion in A(A ∪ · · · )∗.

Foremost to the argument will be a more general “detour” condition given
below (replacing R0 in Preferential Commuting with arbitrary P and R0:n with
any S), which specializes to the two conditions (6a,6b) of Theorem 4 in the
tripartite case and to the conditions (12a–12c) required of A,B,C,D in the case
of four relations. The point is that we require the union of B,C,D to be well-
founded so as to apply jumping in conjunction with A, but were we to simply
use the same method of jumping to establish this, we would not be allowed to
introduce any A-steps in the inclusions for compositions of pairs from B,C,D.

First, we generalise the notion of constriction (Definition 15) of the previous
section.
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Definition 23 (Constriction). For arbitrary binary relation S, the S-
constriction BQ♯S of binary relation B, with respect to Q, excludes from B all
steps of the form zBw where there exists some element in the Q-image of z that
is S-immortal:

BQ♯S = B \
(

Q−1[S∞]×X
)

Think of this as B minus cases where Q could have granted immortality with
respect to S.

The basic constriction B♯ of Definition 15 in the previous section is BA♯A∪B ,
while C♭ of Lemma 19 is CA♯A∪B∪C .

It follows from the above definition that

Proposition 24. If

B ⊆ C, Q ⊆ PR∗, S ⊆ R+ ,

for binary relations B,C, P,Q,R, S, then

BP♯R ⊆ CQ♯S .

Proof. By definition, we need to show that

B \ P−1[R∞]×X ⊆ C \Q−1[S∞]×X .

Since B ⊆ C, it suffices to show that no less is excluded on the left than on the
right, that is, Q−1[S∞] ⊆ P−1[R∞]. Consider any S-immortal z such that xQz.
By Proposition 11, z is also R-immortal. By assumption, we have xPz′R∗z, for
some z′. By Proposition 13, z′ is also R-immortal. ⊓⊔

Our central lemma is the following; it generalizes Lemma 19 of the previous
section.

Lemma 25. If, for relations A, B, and Q, we have

BA ⊆ Q ∪A+ ∪B , (13)

then, for any relation S such that A ∪ B ⊆ S∗, it is the case that A ∪ BQ♯S is
well-founded whenever A and the constricted relation BQ♯S each are.

Proof. Let A and B be relations A and B, respectively, restricted to the A∪B-
immortal elements (of X) – if any. Assuming A and BQ♯S are well-founded, so
are A and BQ♯S . Consider any pair of adjacent steps

x BQ♯S y A z .

On account of constriction, the detour xQz allowed by (13) in place of xBAz is
not a viable option, since z is immortal in A ∪ B ⊆ S∗, hence in S. Therefore,
xBy is not constricting. So we always have

BQ♯SA ⊆ A+ ∪BQ♯S ,

which is a special case of jumping (∗). Note that the B step on the right is
constricting because it is on the left. By Corollary 7, A ∪BQ♯S is well-founded,
and so is A ∪BQ♯S , since it surely terminates for mortal elements of A ∪B. ⊓⊔
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Definition 26 (Detour). Binary relations A,B, P, S satisfy the detour condi-

tion ∆P♯S
B;A if

BA ⊆ PS∗ ∪A+ ∪B .

This is equation (13) with PS∗ for Q.

Lemma 27. For all binary relations A,B, P, S, such that A∪B ⊆ S∗ and both
A and BP♯S are well-founded, if the detour condition ∆P♯S

B;A holds, then the union

A ∪BP♯S is well-founded, as is the more restricted union (A ∪B)P♯S.

Proof. By the previous lemma, A ∪BPS∗♯S is well-founded. By Proposition 24,
BP♯S ⊆ BPS∗♯S . But (A∪B)P♯S = AP♯S ∪BP♯S ⊆ A∪BP♯S ⊆ A∪BPS∗♯S , so,
a fortiori, (A ∪B)P♯S is well-founded (Proposition 12). ⊓⊔

Given a sequence of binary relations R0, . . . , Rn, let R = R0:n, and let ∆j

abbreviate detour ∆R0♯R
Rj+1:n;Rj

, which is Rj+1:nRj ⊆ R0R
∗ ∪ R+

j ∪ Rj+1:n. Pref-

erential Commutation (12) is, then, simply

∆0 ∧∆1 ∧ · · · ∧∆n−1 . (12)

The side condition A ∪ B ⊆ S∗ of the previous lemmata is satisfied by these
detours, as Rj ∪Rj+1:n ⊆ R∗ for all j.

Lemma 28. The constricted unions RR0♯R
j:n , j = 0 .. n, of preferentially-

commuting well-founded binary relations R0, . . . , Rn are all well-founded.

Proof. By induction, starting with j = n (when the conclusion holds by assump-
tion) and working our way to j = 0. For the inductive step, given ∆j and the

well-foundedness of RR0♯R
j+1:n, and substituting A = Rj , B = Rj+1:n, P = R0, and

S = R in the previous lemma, we obtain that RR0♯R
j:n is likewise well-founded. ⊓⊔

We are now ready for our main result, namely that the union R of well-
founded R0, R1, . . . , Rn is well-founded when the detour conditions (12) hold for
them.

Proof (of Theorem 4). The above lemma tells us in particular (j = 1) that RR0♯R
1:n

is well-founded. Considering that ∆0 means precisely that R0 jumps over R1:n,
Corollary 18 gives the desired result. ⊓⊔

5 Preferential Jumping

Preferential Commutation (12) generalises the conjunction of conditions (6a,6b)
of the Tripartite Theorem 4. Its beauty lies in that it allows initial “preferred”
R0-steps and multiple Ri-steps. It does not, however, generalise condition (8a)
of Jumping II (Corollary 7).

We can, however, extend Theorem 4 to allow a mix of Preferential Commu-
tation and Jumping, with Jumping taking over from Commuting at some point
k.
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Theorem 4 (Preferential Jumping). The union R0:n of well-founded rela-
tions R0, R1, . . . , Rn is well-founded if, for some k, 0 ≤ k ≤ n,

Ri+1:nRi ⊆ R0R
∗

0:n ∪R+
i ∪Ri+1:n for i = 0 .. k − 1 (∗∗)

Ri+1:nRi ⊆ RiR
∗

i:n ∪Ri+1:n for i = k .. n− 1 . (∗∗∗)

When k = n this leaves only (∗∗), which is pure Preferential Commutation
(Theorem 4); when k = 0 this leaves (∗∗∗), which is Jumping II (Theorem 9).

Proof. By (∗∗∗) and Jumping II, Ri:n is well-founded. Taking that into account,
by (∗∗) and Preferential Commuting, R1:n is. ⊓⊔

6 Formalising the Proof

All the results of the preceding sections have been verified using Isabelle/HOL
2005. The proofs are located at http://users.cecs.anu.edu.au/~jeremy/

isabelle/2005/gen/.
When formalising this work in Isabelle, we faced a problem in defining “well-

foundedness” and “relational composition” since these are defined in exactly
opposite ways in the term-rewriting and interactive theorem-proving communi-
ties. Fortunately, the two notions are always used together, meaning that the
two effects cancel each other out, as we explain next.

In Isabelle, the well-foundedness and composition of relations are defined as
follows: Relation R is well-founded if there is no infinite descending chain

· · · <R xn <R xn−1 <R · · · <R x1 <R x0 ,

where x <R y means (x, y) ∈ R, and descent goes to the left.
The Isabelle definition below states the positive form, which is that a relation

R is well-founded iff the principle of well-founded induction over R holds for all
properties P :

wf ?R == ALL P.

(ALL x. (ALL y. (y, x) : ?R --> P y) --> P x)

--> (ALL x. P x)

(To make a concrete connection, we display Isabelle code explicitly so that read-
ers can make a visual connection with our repository.) In this definition, the
question mark symbol ? indicates implicit universal quantification and so ?R is
a free variable (parameter) that is instantiated. The explicit quantifiers are ALL
and EX.

Next, we give its equivalent, which says that a relation R is well-founded if
every non-empty set Q has an R-minimal member:

wf ?R = (ALL Q x. x : Q --> (EX z:Q. ALL y. (y, z) : ?R --> y ~: Q))
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Then the Isabelle expression that states precisely that wf R iff there are no infi-
nite descending chains is as follows, where Suc signifies successor in the naturals:

wf ?R = (~ (EX f. ALL i. (f (Suc i), f i) : ?R))

The symbol ~ encodes classical negation and infix : encodes ∈, so ~: encodes /∈.
In Isabelle, the composition of relations R and S (denoted O) is defined by

?R O ?S == {(x, z). EX y. (x, y) : ?S & (y, z) : ?R}

that is,
R ◦ S = {(x, z) | ∃y. (x, y) ∈ S & (y, z) ∈ R} .

Our notation RS from Section 2 and the Isabelle notation R◦S for “relational
composition” are inverses, obeying RS = (R−1 ◦ S−1)−1:

RS = S ◦R = {(a, c) | ∃b. (a, b) ∈ R & (b, c) ∈ S}

(RS)−1 = R−1 ◦ S−1 = {(c, a) | ∃b. (c, b) ∈ S−1 & (b, a) ∈ R−1}

Since the definition of composition and the definition wf of well-founded
used in Isabelle are both mirror images of those used in the previous sections,
the theorems in our Isabelle repository and this paper are exact correspondents.
(Were only one different, we would have to reverse the order of relation compo-
sition to make the two notions coincide.) For example, the jumping theorem for
two relations of [9] appears in our repository as

[| ?S O ?R <= (?R O (?R Un ?S)^\ast ) Un ?S; wf ?R; wf ?S |]

==> wf (?R Un ?S)

where Un connotes union (∪).

7 Conclusion and Further Work

Whereas previous work has provided sufficient conditions for the union of two
well-founded orderings to be well-founded, we discovered a corresponding result
for the union of three well-founded orderings. We discussed how our sufficient
conditions differ from those that result merely from the repeated application of
the result for two orderings.

We then repackaged the proof of this result for three orderings so as to ex-
tend it to the union of any number of well-founded orderings – in a condition
called Preferential Commutation. Finally, we combined Jumping with Preferen-
tial Commutation.

The answer to the question whether the following conditions suffice in the
quadripartite case has so far eluded us:

(B ∪ C ∪D)A ⊆ A(A ∪B ∪ C ∪D)∗ ∪B ∪ C ∪D (12a,3a)

(C ∪D)B ⊆ A(A ∪B ∪ C ∪D)∗ ∪B+ ∪ C ∪D (12b,3b)

DC ⊆ B(B ∪ C ∪D)∗ ∪ C+ ∪D (cf. 12c,3c)
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The presented proofs of the above results have been verified using the Isabelle
theorem prover. Of course an attempt at a formal proof is most valuable when
it fails, showing up a flaw in the less formal proof. Where that is not the case, as
here, the process of proving the results in Isabelle is valuable because it forces
one to clearly set out the steps of reasoning and the assumptions each depends
on. As here, it also sometimes allows us to give different proofs, using “positive”
notions (such as wf) rather than “negative” notions (such as “no infinite chains”).
Furthermore, as always, formalising a proof confirms that no details have been
overlooked or other errors made.

Further matters to be explored are:

– Can we obtain a better understanding of the detour condition ∆ that might
allow the results reported here to be extended even further?

– What effect would transitivity of the individual relations have on the condi-
tions for well-foundedness? It is known to allow weakening of the Jumping
criterion [6].

– What similar conditions guarantee that, if there is a chain in the union of
well-founded relations from s to t, then there is one that takes steps from
the relations one after the other, in order?

– Focussing on the infinite descending chains, do these results have applications
in terms of liveness?

– One of the motivations for this work is the search for novel termination
orderings, particularly for term rewriting. The conditions herein may be
applicable to a path ordering based on Takeuti’s ordinal diagrams [17], for
which ramified jumping conditions play a part.
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