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Abstract

We describe how we formalised the meta-theory of Melvin Fitting’s

dual-tableaux calculi for intuitionistic logic using the HOL4 interactive the-

orem prover. The paper is intended for readers familiar with dual-tableaux

who might be interested in, but daunted by, the idea of formalising the

required notions in a modern interactive theorem prover.
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1 Introduction and motivation

Tableaux calculi originated with the work of Beth in the 1950s [Bet53]. In 1959,
they were used by Kripke [Kri59] to prove the soundness and completeness
of his semantics for modal logics such as S5. They were extended to many
modal logics and to intuitionistic logic by Melvin Fitting [Fit83] in the 1970s.
Since 1992, they have gained a life of their own via the conference series named
“Theorem Proving with Analytic Tableaux and Related Methods” which had its
25th anniversary in Brazil in 2017. However, an honest appraisal of the literature
must acknowledge a parallel, and sometimes more advanced, tradition known
as “dual-tableaux” which arose in Poland from the work of Rasiowa, Sikorski
and Ewa Orlowska [OGP11]. Here, we pay homage to that tradition.

Over the past decade, we have formalised many aspects of proof-theory in-
cluding sequent calculi [DG10] and display calculi [DG02]. Here, we turn our
attention to the meta-theory of dual-tableaux calculi. Specifically, we show
how to formalise the semantic soundness and completeness proofs for the dual-
tableaux calculi for intuitionistic logic given by Melvin Fitting [Fit17]. Our hope
is that it will serve as a guide to others who may want to follow in our footsteps.

We assume that the reader is familiar with Fitting’s chapter [Fit17] in this
volume, but not familiar with interactive theorem proving. All of our HOL4 files
can be found here: http://users.cecs.anu.edu.au/~jeremy/hol/idt/ and
are also available on GitHub at https://github.com/jeremydaw/idt in the
directory hol together with a README.md file detailing the HOL version used
and instructions for compiling and running the proof files.

2 HOL4: an interactive theorem prover

We chose to work with the interactive theorem prover called HOL4 [Gor08], which
implements Dana Scott’s Logic of Computable Functions [Sco93]. The user must
first encode all of the required definitions of the meta-theory into HOL4 so we
provide most of the details of our definitions. The user then inputs a goal which
HOL4 is asked to prove. Typically, HOL4 reduces that goal into multiple subgoals
and expects the user to choose the next step of the proof to perform. HOL4

accepts the next step only if it can be used in a sound way to reduce the chosen
subgoal into further subgoals. Thus HOL4 also keeps track of the proof process
and the current stage of the proof is always visible to the user. Here, we only
show our encoding of the various aspects of the meta-theory of dual-tableaux,
and state the lemmata and theorems that we proved inside HOL4.

2.1 Why should we trust HOL4?

As with many other interactive theorem provers, HOL4 is a trusted system be-
cause its code-base is small, around 4000 lines of code, is written in a functional
programming language ML, and has been scrutinised by experts in logic and
theorem proving over a period of 40 years. Moreover, HOL4 can produce a proof-
script of the final proof which can be checked by other scrutineers or even other
interactive theorem provers.
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2.2 The syntax of HOL4

The logic implemented by the HOL4 theorem prover is called classical higher-
order logic. It is “higher-order” in that functions and predicates are first-class
citizens which can be quantified over and which can be passed to each other as
arguments. The basic operators of higher-order logic are these:

⊤ ⊥ ∧ ∨ → ¬ ∀ ∃
T F /\ \/ ==> ~ ! ?

The syntax of HOL4 also provides for writing lists, pairs and various other
data structures which we shall illustrate as needed.

The logic is typed and so there is a separate syntax for defining new types
from existing base types provided by HOL4 such as nat and int for the types of
natural numbers and integers respectively.

For example, the symbol # is the infix type constructor denoting the type
of pairs and the symbol : is the infix operator for “member of type”. Thus,
a : alpha encodes that “a is of type alpha”. If also b : beta then HOL4 can
deduce that (a, b) : alpha # beta which encodes “(a, b) is in the type
that consists of pairs of objects from types alpha and beta respectively”. But
generally, type constructors are written postfix, so alpha set is the type of sets
of items of type alpha.

3 Capturing the syntax of dual-tableaux

We now describe how we encoded the syntax of dual-tableaux into HOL4. We
build the encoding by first encoding the notion of formulae, then sets of (signed)
formulae and then the notions of dual-tableau rules, and finally the notion of
(closed) dual-tableaux.

3.1 (Unsigned) Formulae

Strings prefixed with an apostrophe (’) are treated by HOL4 as type variables.
Using such a type variable ’a, we first define a datatype for formulae where the
type ’a of an atom is a variable left to be chosen later.

Definition 1 (formula). The formulae of intuitionistic logic are built from an
infinite supply of atomic formulae (Atom ’a over some base type ’a) using the
connectives ∧ (And), ∨ (Or), → (Imp), and ¬ (Not) as usual:

datatype formula = And formula formula

| Or formula formula

| Imp formula formula

| Not formula

| Atom ’a ;

Thus we get the type ’a formula where ’a is a type variable: in text, we
use α, β, . . . for type variables.

The effect of this definition is to declare to HOL4 how it can recognise a string
as a formula over the type ’a: for example, the string Imp (Atom 1) (Atom 2)

would be recognised by HOL4 as a formula built out of atoms of type num of
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natural numbers since the items in the scope of the string Atom are all natural
numbers.

The strings And, Or, Imp, Not and Atom are called the constructors of the
datatype formula. Moreover, these constructors are the only way to construct
formulae, hence we can perform induction on the structure of a formula by
starting at the atoms and dealing with a case for each connective.

3.2 Signs and signed formulae

In HOL4, there are two pre-defined constants T and F which make up the pre-
defined type bool whose members are exactly these two constants. By forming
a pair (b,f) where b is of type bool and f is of type ’a formula, we shall use
these constants as the signs of our signed-formulae. Thus the type bool # ’a

formula contains the set of all pairs where the first component is one of the
“signs” T and F and the second component is a formula. We then define sf as a
type abbreviation for such pairs, thereby hiding the specifics of signed formulae.

Definition 2 (signed formula). A signed formula of type sf is a pair (b, f)

where b is either the constant (sign) T or else is the constant (sign) F, and f is
a formula:

val _ = Parse.type_abbrev ("sf", ‘‘: (bool # ’a formula)‘‘) ;

This just means that all occurrences of the type ’a sf are expanded to the
type bool # ’a formula making sf a type operator with one argument ’a.

In the sequel, we sometimes use sf as the name of a signed-formula and also
sometimes use it as the type of signed formula defined above. Sometimes, we
also use ’sf to indicate an arbitrary type variable, which will be instantiated
with the type ’a sf when used in our HOL4 proofs. We try to explain these uses
when they occur.

3.3 Signed-formula sets as unsigned formula set pairs

For a set S of signed formulae, Fitting [Fit17, Definition 5] defines the two sets
ST = {T X | T X ∈ S} and SF = {F X | F X ∈ S}. He also defines the
ability to strip the signs and extract only the unsigned formulae via: S◦ =
{X | T X ∈ S or F X ∈ S}. A set of signed-formulae can also be seen as
a sequent built out of unsigned formulae collecting the F -signed formulae on
the left and the T -signed formulae on the right (without their respective signs).
For example, the set {(F, a), (T, b), (F, c)} of signed-formulae can be seen as
the sequent a, c ⊢ b which can be represented by a pair ({a, c}, {b}) of sets
of (unsigned) formulae. The ability to move to and fro between these two
representations is useful later, so we define functions mk seq and dest seq which
switch between the two representations. We also illustrate some HOL4 syntax.

The construct ’f is a type variable: it will stand for a (unsigned) formula.
In HOL4, the type α set is “syntactic sugar” for α → bool . Whether a particular
term x (say) of type α is or is not in the set P of type α set is determined by
the value T or F from bool which the predicate P (x) takes. Separately, x ∈ P

(x IN P) is logically defined to be P (x) (P x). Although x IN P and P (x) are
provably equivalent, and thus synonymous, they are not identical terms.
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The function FST : γ × δ → γ returns the first component of type γ of a
pair of type (γ, δ). If we put γ = bool then FST is of type bool × δ → bool ,
which is “syntactic de-sugar” for (bool × δ) set in HOL4. For a term z : bool × δ,
the predicate FST (z) evaluates to true exactly when the first component of z
evaluates to T . Thus FST : (bool × δ) set means the set of all pairs (of the
appropriate type) of the form (T, x).

Definition 3. The functions get ts and get fs are defined as:

get ts : (bool # ’f) set -> ’f set

get ts sfs = (IMAGE SND (sfs INTER FST))

= {f : ′f | (T, f) ∈ sfs}

get fs : (bool # ’f) set -> ’f set

get fs sfs = (IMAGE SND (sfs INTER ($~ o FST))

= {f : ′f | (F, f) ∈ sfs}

Here, the function get ts accepts a set of pairs of type bool # ’f, for any
type ’f and returns a set of items of type ’f. By giving it an argument of type
’a sf set, we will cause ’f to become ’a formula. We therefore use the name
sfs in the code to stand for the name of a set of signed-formulae.

The construct INTER is the HOL4 symbol for set intersection ∩. Since sfs

will be type ’a sf set, the construct (sfs INTER X) immediately forces (sfs
INTER X) to take type ’a sf set for any function X. Putting X to be FST

forces FST to be of type α sf → bool, effectively putting γ in the general
type of FST to bool as described above. So FST in the context (sfs INTER

FST) is the set of all signed-formulae where the first component, the sign, is
the Boolean value T. The constructor o stands for “composition” so ($~o FST)

is the “composition” of Boolean negation ~ and FST , so ($~o FST) effectively
“flips” the required first component T to be F. Thus (sfs INTER ($~o FST))

is the set of F-signed formulae (pairs) from sfs. The construct SND returns
the second component of a pair while IMAGE f Y returns the result of applying
f to each y ∈ Y . Thus (IMAGE SND (sfs INTER ($~o FST)) is the set of
second components of the set of F-signed formulae (pairs) from sfs: that is, the
formulae f that are signed F in sfs.

Definition 4. The sets mk seq sfs and dest seq (fs, ts) are defined as:
mk seq : (bool # ’f) set -> ’f set # ’f set ;

dest seq : ’f set # ’f set -> (bool # ’f) set ;

mk seq sfs = (get fs sfs, get ts sfs)

= {(Fs, Ts) | Fs = {f : ′f | (F, f) ∈ sfs} and
Ts = {f : ′f | (T, f) ∈ sfs} }

dest seq(fs, ts) = IMAGE($, F) fs UNION IMAGE ($, T) ts

= { (F, f) | f ∈ fs } ∪ { (T, f) | f ∈ ts }

Here, IMAGE ($, T) ts applies the pair-constructor ($, T) to each member
f of ts, turning f into the T -signed formula (T, f). Similarly, IMAGE ($, F)

fs turns every member f of fs into the F -signed formula (F, f).
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The function mk seq accepts a set of pairs where, in each pair (a, b), the a is
of type bool (a sign) and b is of type ’f (an unsigned formula in the case that
’f is ’a formula). It produces a result which is a pair (L,R) of sets where L

(the antecedent) and R (the succedent) are both sets of type ’f set. That is,
(L,R) is the sequent L ⊢ R. For some given set S of signed formulae, Fitting
would write these as L = (SF )◦ and R = (ST )◦ respectively.

The function dest seq does the reverse: it accepts a pair (L,R) of sets, each
of type ’f set, and produces a result which is a set of pairs where, in each pair
(a, b), the a is of type bool and the b is of type ’f. When ’f is ’a formula,
this gives us a set of signed formulae of type bool # ’a formula.

We can convert between the two formalisms via the following lemma.

Lemma 1. Let sf be a set of signed formulae and let sq be a sequent (a pair of
sets of unsigned formulae). Then (dest seq sq = sf) iff (mk seq sf = sq).

(dest_seq sq = sf) <=> (mk_seq sf = sq)

3.4 Rule-skeletons, contexts and rules

A dual-tableau rule consists of a single premise, which is a set of signed formulae,
and multiple conclusions, each of which is a set of signed formulae. The premise
typically has a single principal formula and each conclusion has possibly multiple
side-formulae. There is usually also a context S which remains unchanged from
premise to conclusions. For example, consider the rule for F X∨Y shown below
on the left. It consists of a rule-skeleton as shown below on the right, which is
then decorated uniformly by the context S to give the actual rule shown on the
left. Its principal formula is F X∨Y and its side-formula sets are {F X,F X∨Y }
and {F Y, F X ∨ Y }:

S;F X ∨ Y

S;F X ∨ Y ;F X S;F X ∨ Y ;F Y

F X ∨ Y
F X ∨ Y ;F X F X ∨ Y ;F Y

This describes Fitting’s first six rules [Fit17, Figure 1.6].

Definition 5 (rule skeleton). A rule-skeleton of type ’a rule sk is a pair (psk,
cssk) consisting of a single item psk of type ’a and a set cssk of sets of items
of type ’a using the type abbreviation below:

val _ = Parse.type_abbrev ("rule_sk", ‘‘: (’a # ’a set set)‘‘) ;

Ensuring that ’a is always a signed formula type ’b sf then restricts rule
skeletons to be over a signed formula and a set of sets of signed formulae.

For example, consider the rule skeleton for F X ∨ Y shown above at right.
The intuition is that the first component psk will encode the single formula
F X ∨ Y in the premise of the rule-skeleton while the second component cssk
of the pair will encode the set {{F X ∨ Y, F X}, {F X ∨ Y, F Y }} of sets
{F X ∨ Y, F X} and {F X ∨ Y, F Y } of signed formulae.

Definition 6. A rule of type ’a rule is a pair (p, cs) consisting of a (premise)
set p of type ’a and a (conclusions) set cs of terms of type ’a.

val _ = Parse.type_abbrev ("rule", ‘‘: (’a # ’a set)‘‘) ;

6



The intuition is that the first component p will encode the formula set S ∪
{F X ∨ Y } as the premise of the rule while the second component cs of the
pair will encode the set { S ∪ {F X ∨ Y, F X} , S ∪ {F X ∨ Y, F Y } } of sets
S ∪ {F X ∨ Y, F X} and S ∪ {F X ∨ Y, F Y } of signed formulae.

Thus rule sk (rule-skeleton) models the operation that has a premise of
type ’a (here, a signed formula) and a set of conclusions where each conclusion
is a set of items of type ’a (here, signed formula), while rule (a rule, with
context, as applied) models an operation that has a premise of type ’a (here,
a set of signed formulae) and a set of conclusions, each of which is an item of
type ’a (here, a set of signed formulae).

Definition 7. For all s and st, is tab rule (s, st) returns the set of pairs of
the form

({s} ∪ U, {U ∪ t | t ∈ st})

is_tab_rule : ’sf rule_sk -> ’sf set rule set

!s st U. is_tab_rule (s, st) ({s} UNION U, IMAGE ($UNION U) st)

Intuitively, the relation is tab rule (s, st) applies a context U to the
premise s and to each branch of the conclusion st of such a rule-skeleton. Here
we choose to write the type variable as ’sf, to suggest that, while is tab rule

can be used for any type, we will use it for the signed formula type. Also A

UNION B encodes A ∪ B. The ! is the universal quantifier ∀, while ? is the
existential quantifier ∃. The function IMAGE x y returns the result of applying
the function x to every member of the set y and ($UNION U) is the function
that forms the union of its argument with the set U : thus IMAGE ($UNION U)

st encodes {U ∪ t | t ∈ st}.
The type given for is tab rule uses the type abbreviations given above for

rule sk and rule which means that the type ’sf rule sk is an abbreviation
for ’sf # ’sf set set, and ’sf set rule is an abbreviation for ’sf set #

’sf set set.
So where a rule-skeleton, as in [Fit17, Fig. 1.3], has, for its premise, a signed

formula and, for its conclusion, a set of sets of signed formulae (so of type ’sf

rule sk), adding context gives a rule as in [Fit17, Fig. 1.6], which has, for its
premise, a set of signed formulae and, for its conclusion, a set of sets of signed
formulae (so of type ’sf set rule).

The definition of is tab rule is an inductive definition, which means that
is tab rule is defined to be the predicate which is satisfied (only) by pairs that
can be inferred to satisfy it using the definition clause given.

For rules such as the last two of [Fit17, Fig. 1.6], where only F -signed context
items are allowed in the result, we have similar relations:

Definition 8. For all s, st and U , is ag tab rule (s, st) returns the pair

({s} ∪ U, {t ∪ UF | t ∈ st}) where UF = {(F, g) | (F, g) ∈ U}

is_ag_tab_rule : ’a sf rule_sk -> ’a sf set rule -> bool ;

!s st U. is_ag_tab_rule (s, st)

({s} UNION U, IMAGE ($UNION (U INTER ($~ o FST))) st)

Here, the construct ~ is boolean negation, meaning that it returns true iff its
argument is of type bool and is F. The construct o is relational composition and
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FST is the function that returns the first component of a pair. So the construct
($~ o FST) is effectively the set of all F-signed formulae. The construct INTER is
set intersection so (U INTER ($~ o FST)) is the set of F -signed formulae from
U. Thus is ag tab rule allows any context in the premise, but only F -signed
context in the conclusion (as in the last two rules of [Fit17, Figure 1.6]),

Definition 9. For all s, st and U , is aa tab rule (s, st) returns the pair

({s} ∪ UF , {t ∪ UF | t ∈ st}) where UF = {(F, g) | (F, g) ∈ U}

is_aa_tab_rule : ’a sf rule_sk -> ’a sf set rule -> bool ;

!s st U. is_aa_tab_rule (s, st)

( {s} UNION (U INTER ($~ o FST)) ,

IMAGE ($UNION (U INTER ($~ o FST))) st )

Thus is aa tab rule allows F -signed contexts only, in the premise and con-
clusion (this is useful for a lemma we need).

Each rule is defined in its skeletal form (without the context). For example,
the rule-skeleton for F X ∨ Y shown above is encoded as below resulting in the
type shown:

!X Y. or_left (

(F, Or X Y),

{ {(F, Or X Y); (F, X)} ; {(F, Or X Y); (F, Y)} }

)

or_left : ’a sf rule_sk set

or_left : ((bool # ’a formula) # ((bool # ’a formula) set set)) set

We then collect these rule skeletons into two sets as below.

Definition 10 (gen idt rule, ant idt rule). The following sets of rules are
defined in skeleton form:

gen idt rule: skeleton form of the six rules which allow arbitrary contexts;

ant idt rule: the skeletons of the imp right and not right rules which have
only a F -signed context in the result (see [Fit17, Figure 1.6]).

We then define all the rules of the system by taking these skeletons and
allowing contexts appropriately as below.

Definition 11 (idt tab rule). The set idt tab rule is inductively defined
via the two clauses below:

gen idt rule gr: For all gr, if gr is the skeleton of a rule from the first 6 rules
of Fig 6, and rl is obtained from gr by adding an arbitrary context then
rl is a rule of the dual-tableau calculus.

ant idt rule: For all gr, if gr is the skeleton of a rule from the last two rules
of Fig 6, and rl is obtained from gr by adding an arbitrary context to the
premise but adding only the F-signed part of this context to the conclusions
then rl is a rule of the dual-tableau calculus.
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idt_tab_rule : ’a sf set rule set

(!gr rl. gen_idt_rule gr

/\ is_tab_rule gr rl ==> idt_tab_rule rl)

/\

(!gr rl. ant_idt_rule gr

/\ is_ag_tab_rule gr rl ==> idt_tab_rule rl);

Here, gr will be a pair consisting of the skeleton premise and the skeleton
conclusions while rl will be those pairs, each extended by some appropriate
context. Again, the above is an inductive definition of the rules idt tab rule

for intuitionistic dual-tableaux so these are the only ways to obtain a legal rule.
Notice that we do not define a closed dual-tableau, which is dealt with in

the next subsection.

3.5 Branches, dual-tableaux and their fringes

Each branch of a dual-tableau ends in a leaf which is a set of signed formulae.
So the set of all leaves of a dual-tableau, which we will call its “fringe”, is a set
of sets of signed formulae. When we apply a rule to one of these leaves, the
effect on the fringe is to replace that single leaf by the set of leaves which is the
result of the rule.

Definition 12 (extend fringe). For all s, sfr and rule sets rs, if rs contains a
rule which takes s to the set sfr, and we apply it to a dual-tableau with a fringe
consisting of the leaf s plus the leaf items rf of the other branches, in addition to
s, then the result is the new leaves sfr arising from s plus the unchanged leaves
rf of the other branches.

! rs s sfr. rs (s, sfr)

==> extend_fringe rs ({s} UNION rf, sfr UNION rf) ;

extend_fringe : ’sfs rule set -> (’sfs set # ’sfs set) set ;

So for a rule set rs, the function extend-fringe rs gives the set of resulting
transformations of the fringe of a dual-tableau obtained by applying one of the
rules (s, sfr). Here, we have written the type variable as ’sfs to suggest that
we will use extend-fringe where ’sfs is the type of sets of signed formulae.
(We will also use the term variable sfs to indicate a set of signed formulae).
Moreover, we shall instantiate rs as idt tab rule giving the type:

extend_fringe idt_tab_rule : (’a sf set set # ’a sf set set) set ;

At this point we note that in HOL4, sets and predicates are identified and so
x ∈ P , (i.e. x IN P), means exactly P x (i.e. P x). Consequently, Definition 12
of extend fringe might be more clearly written:

(s, sfr) IN rs

==> ({s} UNION rf, sfr UNION rf) IN extend_fringe rs

This is an inductive definition which means that extend fringe rs is defined
to be the set of those fringe-transformations which can be inferred to be in that
set by application of this definition.

The intuition is that we do not keep track of the internal nodes of a dual-
tableau: we keep track of its root (a set of signed-formulae) and its fringe (a set
of sets of signed-formulae).
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3.6 Closed dual-tableaux and a statement of soundness

By definition, a branch tip, or leaf, is then just a member of the fringe of a
dual-tableau, that is, a leaf is a set of signed formulae.

Definition 13 (closed branch). A branch tip, i.e. a leaf, sfs is closed if it
contains some formula f signed F and T:

br_closed : ’a sf set -> bool

br_closed sfs = ?f. (T, f) IN sfs /\ (F, f) IN sfs

A dual-tableau (fringe) sfss is closed if every branch sfs in it is closed:

dt_closed : ’a sf set set -> bool

dt_closed sfss = !sfs. sfs IN sfss ==> br_closed sfs

A leaf sfs is atomically closed if it contains some atomic formula Atom p

signed F and T:

at_closed : ’a sf set -> bool

at_closed sfs = ?p. (T, Atom p) IN sfs /\ (F, Atom p) IN sfs

Note that we work with closure defined using T - and F -signed occurrences
of an arbitrary formula f rather than an atomic formula Atom p. Later on (see
Lemma 22) we show that everything still goes through if we demand that f is
atomic.

Now, the action of repeatedly applying dual-tableau rules from some set of
rules can be expressed as the reflexive transitive closure of application of any rule
from that set. In HOL4,, a reflexive transitive closure function RTC is provided:
it takes and returns relations of the type ’a -> ’a -> bool. For a relation R

of this type, aRb is expressed in HOL4 as R a b.
Thus our soundness theorem will be of the form below:

If (R, pv) is an intuitionistic Kripke model and if the dual-tableau
fringe bot is obtained from repeated applications of the set idt tab rule

of rules to the initial fringe {{(T, f)}}, and bot is closed then the for-
mula f is true in every world w of (R, pv):

Kripke_model R pv ==>

RTC (CURRY (extend_fringe idt_tab_rule)) {{(T,f)}} bot ==>

dt_closed bot ==> forces R pv w f

Here, CURRY : (α × β → bool) → α → β → bool takes a relation in the
form of a predicate of type (α × β → bool) on pairs (α, β), and returns a
relation in the form of the same predicate with the type (α → β → bool)
on two curried arguments α and β: which is the form required by RTC. Also,
note that the construct A ==> B ==> C in HOL4 is logically equivalent to the
construct A /\ B ==> C, which is why the English prose uses “and” rather
than “implies”.

Notice that we defined a (portion of a) dual-tableau using reflexive transitive
closure of the relation which takes one fringe to the next, so the initial fringe is
a singleton set {{(T, f)}} containing the initial leaf {(T, f)}.

Note: some of the rules copy their principal formulae into all of their con-
clusions. So why do we not have to worry about termination in the soundness
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proof? Because, by definition, the reflexive-transitive closure is obtained by a
finite number of applications, thus each dual-tableau is finite by definition.

To complete this theorem, we now have to formalise the Kripke semantics of
intuitionistic logic, thereby formalising the notions of Kripke model R pv and
forces R pv w f.

4 Formalised intuitionistic Kripke models

The Kripke semantics of intuitionistic logic are based upon classical logic, so we
can encode these semantics directly into the classical higher-order logic of HOL4.

Using R to encode the underlying binary relation, using v and w for worlds,
and using pv for the (classical) propositional valuation of an atom a to one of
true or false at a world, we define a persistent valuation function directly:

Definition 14. A binary relation R over some given set of worlds of type ’w

is a function that maps a pair w and v of worlds of type ’w to T or F depending
on whether the pair (w, v) is or is not in the relation, ie, whether wRv or not.

A propositional valuation pv maps a world w of type ’w and an atom of type
’a to T or else F depending on whether the atom a is true or false at world w.

R : ’w -> ’w -> bool

pv : ’w -> ’a -> bool

Definition 15 (persistent R pv). The classical valuation pv is persistent
over a binary relation R over some set of worlds if for all worlds v and w, and
all atoms a, if w is an R-successor of v then if a is true at v then a is true at w:

persistent R pv = !v w a. R v w ==> pv v a ==> pv w a

Using the predicates transitive and reflexive which are pre-defined in
HOL4, we define R, pv to be a Kripke model as follows.

Definition 16 (Kripke model). R and pv is a Kripke model iff the binary rela-
tion R is reflexive and transitive, and the valuation pv is persistent over R:

Kripke_model R pv

= transitive R /\ reflexive R /\ persistent R pv

Note, currently there is no condition that the set of worlds is non-empty
as is usual in Kripke semantics. For the moment, we do not need it. As we
shall see, it will become essential later in the completeness proof. Also, note
that intuitionistic Kripke frames are often defined to be reflexive, transitive and
anti-symmetric: ∀x, y.R x y & R y x =⇒ x = y. The “persistence” of the
binary relation R ensures that the two definitions give rise to the same notion
of validity. But again, we do not require this extra condition.

Definition 17 (forces R pv w f). The usual forcing relation forces R pv

w f that holds between a model R, pv, a world w and a formula f is then as
defined below:

(forces R pv w (Atom a) = pv w a)

/\ (forces R pv w (And p q) = forces R pv w p /\ forces R pv w q)

/\ (forces R pv w (Or p q) = forces R pv w p \/ forces R pv w q)

11



/\ (forces R pv w (Not p) = !v. R w v ==> ~ forces R pv v p)

/\ (forces R pv w (Imp p q) =

!v. R w v ==> forces R pv v p ==> forces R pv v q)

forces : (’w -> ’w -> bool) -> (’w -> ’a -> bool)

-> ’w -> ’a formula -> bool ;

We say a world v is a future world of world w if R w v.

Lemma 2 (FORCES PERSISTENT). If the binary relation R is transitive and the
valuation pv of atomic formulae is persistent over R then so is the forcing pred-
icate forces R pv:

transitive R ==> persistent R pv ==> persistent R (forces R pv)

In the above, the two uses of persistent have different types, the first
is about a valuation of atoms while the second is about the forcing predicate
(which is a derived valuation of formulae).

We obtain an equivalent version of FORCES PERSISTENT:

Lemma 3 (FORCES IF ALL). If R, pv is a Kripke model then a world w in the
model forces a formula f if and only if every future world v forces f.

Kripke_model R pv ==>

((!v. R w v ==> forces R pv v f) = forces R pv w f)

5 Attributed formulae and soundness

The proof of soundness involves attributing an intuitionistic formula to each
signed-formula set in a fringe of the dual-tableau, and proving that the rules
preserve intuitionistic validity of these attributed formulae upwards: that is, for
each rule, if each intuitionistic formula attributed to a conclusion of that rule
is intuitionistically valid then so is the intuitionistic formula attributed to the
premise of that rule.

We first tried to encode this notion of a valuation for the attributed for-
mula directly but got stuck when, contrary to our expectations, we found that
Lemma 7 does not hold for these valuations. We therefore reworked all the
definitions as shown next.

Given a set sfs of signed formulae, the intuitionistic formula attributed to sfs
is
∧

Fs ⊃
∨
Ts where Fs and Ts are each the set of unsigned formulae that are

F -signed and T -signed in sfs, respectively. Here, the empty disjunction is read
as contradiction ⊥ and the implication p ⊃ ⊥ is intuitionistically equivalent to
the negation of p. According to Definition 17, the intuitionistic semantics of
p ⊃ q (Imp p q) at a world w involves evaluating the classical logic implication
forces R pv v p ==> forces R pv v q over all R-successors v, so we first
encode this “classical” notion and put Fs for p and Ts for q.

Definition 18. The predicate sfs val aux R pv v sfs is true iff: if every
formula f signed F in the set sfs of signed-formulae is forced at v then some
formula t signed T in the set sfs of signed-formulae is also forced at v.

12



sfs_val_aux R pv v sfs =

let (Fs, Ts) = mk_seq sfs in

(!f. f IN Fs ==> forces R pv v f)

==> (?t. t IN Ts /\ forces R pv v t)

Here, we first convert the set sfs of signed formulae into a sequent Fs ⊢ Ts

using our previously defined function mk seq. Then we encode the classical logic
formula ∀f ∈ Fs. forces R pv v f ⇒ ∃t ∈ Ts . forces R pv v t rather than the
intuitionistic formula

∧
Fs ⊃

∨
Ts attributed to sfs. To obtain the valuation

of the attributed formulae, we have to evaluate this auxiliary classical formula
over all future worlds.

Definition 19. The predicate sfs val R pv w sfs holds iff every future world
v of w satisfies sfs val aux R pv v sfs:

sfs_val R pv w sfs = !v. R w v ==> sfs_val_aux R pv v sfs

Definition 20. The valuation of the conclusions fss of a branching rule is the
conjunction of the valuations of the signed formula sets sfs in each conclusion.
The valuation of a dual-tableau fringe fss is the conjunction of the valuations
of each constituent leaf sfs. Both notions can be captured by instantiating the
definition below appropriately:

tab_val R pv w fss = (!sfs. sfs IN fss ==> sfs_val R pv w sfs)

Again, it is also useful to define a corresponding auxiliary function giving
the “classical” valuation of the whole dual-tableau fringe, or of the conclusions
of a rule, at a particular world v :

Definition 21. The predicate tab val aux R pv v fss holds of a fringe fss

iff every leaf sfs in the fringe satisfies sfs val aux R pv v sfs:

tab_val_aux R pv v fss

= (!sfs. sfs IN fss ==> sfs_val_aux R pv v sfs)

The open loop below captures that tab val aux is defined in terms of
sfs val aux which is used to define sfs val which is used to define tab val:

sfs_val_aux --- sfs_val

| |

tab_val_aux tab_val

The next lemma “closes the loop” by expressing tab val in terms of tab val aux,
stating that tab val does indeed evaluate tab val aux over all future worlds.

Lemma 4 (tab val alt). The predicate tab val R pv w fss holds iff the aux-
iliary predicate tab val aux R pv v fss holds at every future world v of w:

tab_val R pv w fss = !v. R w v ==> tab_val_aux R pv v fss

We want to prove soundness in terms of closed dual-tableaux, so we have

Lemma 5 (idt br sound,idt dt sound). If a dual-tableau branch is closed,
then the valuation (using sfs val) of the leaf of that branch is true, and if a
dual-tableau is closed, then the valuation (using tab val) of the fringe is true.
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idt_br_sound : br_closed br ==> sfs_val R pv w br

idt_dt_sound : dt_closed tab ==> tab_val R pv w tab

The intuition of the above lemma is, of course, that the leaf of each closed
branch contains at least one formula f that appears in both Fs and Ts, and
hence is the witness for the right-hand side of

∧
Fs ⊃

∨
Ts .

For the first six rules of [Fit17, Figure 1.6] (without the context S) the
preservation of validity is in fact an equivalence where we use b as a place-
holder for a sign:

Lemma 6 (idt rules aux eqv). For the skeletons of the first six rules of
[Fit17, Figure 1.6] (without the context S), the auxiliary valuation of the signed
formula (b, f) from the rule premise equals the auxiliary valuation of the set sfss
of signed formula sets from the conclusions of the rule, as long as R is reflexive:

reflexive R ==> gen_idt_rule ((b,f),sfss)

==> (tab_val_aux R pv w sfss = sfs_val_aux R pv w {(b,f)})

Here, we have deliberately used (b, f) rather than the equivalent sf to
highlight the following: why do we suddenly need reflexivity? Because for the
⊃-F rule (ignoring the S), where b = F and f = (X ⊃ Y ), the tab val aux of
the conclusions F (X ⊃ Y ), FY and F (X ⊃ Y ), TX is the conjunction of the
respective semantic clauses w 
 X ⊃ Y ⇒ w 6
 Y and w 
 X ⊃ Y ⇒ w 
 X

while the sfs val aux of the premise F (X ⊃ Y ) is w 6
 X ⊃ Y . For the former
to imply the latter we require w 6
 Y and w 
 X to imply w 6
 X ⊃ Y . But
w 6
 X ⊃ Y is ∃v. wRv & v 
 X & v 6
 Y , which holds if we choose v = w by
reflexivity of R.

Adding the context preserves this property:

Lemma 7 (is tab rule pres eqv). If a dual-tableau rule (sfs, sfss) pre-
serves auxiliary valuations, then the extension (esfs, esfss) of that rule by a
context also preserves them.

is_tab_rule (sf, sfss) (esf, esfss) ==>

(tab_val_aux R pv w sfss = sfs_val_aux R pv w {sf}) ==>

(tab_val_aux R pv w esfss = sfs_val_aux R pv w esf)

Here, notice that we first need to turn the single signed-formula sf into a
set {sf} of signed-formulae while esf is a set of signed-formulae since it is an
extension of sf by adding context.

We tried to prove Lemma 7 for the actual (“non-auxiliary”) valuations, but
it doesn’t hold.1 This means that the proof of Lemma 13, so far as it concerns
these rules, depends on first applying Lemma 7 to Lemma 6 and only then
quantifying over future worlds.

However Lemma 6 clearly extends to the actual valuations, and we get a
similar equivalence for the last two rules of [Fit17, Figure 1.6].

1The predicates tab val aux R pv x sfss and sfs val aux R pv y {sf} may be false
only at worlds x = u and y = v respectively, where u and v are different future worlds of
w, which make tab val aux R pv w sfss and sfs val aux R pv w {sf} equal (both false);
however adding context may change the valuation to make it true at world u but not v, or
vice versa, which would make tab val aux R pv w esfss and sfs val aux R pv w esf un-
equal. This doesn’t suggest a flaw in Fitting’s proof, rather that the level of detail he gives
doesn’t indicate precisely the sequence of lemmata to be used.
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Lemma 8 (ant rules eqv). For the skeletons of the last two rules of [Fit17,
Figure 1.6] (without the context S or SF ), the valuation of the premise signed
formula equals the valuation of the set of signed formula sets in the conclusions,
as long as the relation is reflexive and transitive:

transitive R ==> reflexive R ==>

ant_idt_rule ((b, f), sfss) ==>

(tab_val R pv w sfss = sfs_val R pv w {(b,f)})

Note that we now need both reflexivity and transitivity.
We can characterise the effect of adding antecedent context, that is, adding

F -signed formulae to the context:

Lemma 9 (ant ctxt eqv). For a set U of signed formulae, if we add the set UF

of all F -signed formulae from U to a signed formula set sfs then the valuation
of the augmented set UF ∪ sfs is given by: w 
 UF ∪ sfs iff forall v such that
wRv, if v 
 (F, f) for all (F, f) ∈ UF then v 
 sfs.

Kripke_model R pv ==>

(sfs_val R pv w ((U INTER $~ o FST) UNION sfs) =

!v. R w v ==>

(!f. (F, f) IN U ==> forces R pv v f) ==> sfs_val R pv v sfs)

Here, the right-hand side of the equality intuitively captures the valuation of
the attributed formula UF ⊃ (SF ⊃ ST ) where mk seq sfs = (SF , ST ) since the
outermost quantification over future worlds v captures the outermost occurrence
of ⊃, and the use of sfs val captures the inner occurrence of ⊃. The left-hand
side of the equality intuitively captures the valuation of the attributed formula
(UF ∧ SF ) ⊃ ST since the inner ∧ is handled by the UNION operation and the
outer ⊃ is handled by the quantification over future worlds inside sfs val. Thus
it relies on the intuitionistic logic theorem ((A ∧B) → C) ↔ (A → B → C). A
similar characterisation of the effect of adding succedent context is not available
because it is not the case that SF ⊃ (ST ∨UT ) is expressible (intuitionistically)
as (SF ⊃ ST ) op UT for any operator op.

So we get the following result, that if a dual-tableau rule preserves the valua-
tion (at all future worlds), then the extension of that rule by adding antecedent
context preserves the valuation (at the present world).

Lemma 10 (is aa tab rule pres eqv). If, at all future worlds, the valuation
of the conclusions sfss of a rule equals the valuation of the premise sf of the
rule, then, when the rule is extended with antecedent context, the valuation of
the extended conclusions esfss equals the valuation of the extended premise esf .

Kripke_model R pv

==> is_aa_tab_rule (sf, sfss) (esf, esfss)

==> (!v. R w v ==> (tab_val R pv v sfss = sfs_val R pv v {sf}))

==> (tab_val R pv w esfss = sfs_val R pv w esf)

Why is it {sf} but not {esf}? Because sf is a single signed formula and sfs val

requires a set of signed-formulae, while esf is a set of signed-formulae since it
is {sf} extended by adding context.

To get from this to the case where the premise can have an arbitrary context,
we just need weakening as shown next.
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Lemma 11 (sfs val wk sub). If a signed formula set A has valuation true,
then so does any signed formula superset C of A.

A SUBSET C ==> sfs_val R pv v A ==> sfs_val R pv v C

Combining all these results we get the “upward” preservation of valuations
from the conclusions of a rule to its premise that we seek.

Lemma 12 (idt pres). If we apply a rule to a dual-tableau branch leaf sfs,
and the resulting conclusions sfss have valuation true, then the branch leaf sfs
has valuation true.

Kripke_model R pv

==> idt_tab_rule (sfs, sfss)

==> tab_val R pv w sfss

==> sfs_val R pv w sfs

Now we get the corresponding result for the application of a rule to the fringe
of a dual-tableau, rather than a single leaf (set of signed formulae).

Lemma 13 (idt pres frg). If we apply a rule to a dual-tableau fringe prev,
and the resulting fringe next has valuation true, then so does prev:

Kripke_model R pv ==>

extend_fringe idt_tab_rule (prev, next) ==>

tab_val R pv w next ==> tab_val R pv w prev

A similar result also holds for the reflexive transitive closure of the set of
rules, not just a single rule.

Lemma 14 (idt rtc pres frg). If we apply a sequence of rules to an initial
dual-tableau fringe top, and the resulting fringe bot has valuation true, then so
does the starting fringe top:

Kripke_model R pv ==>

!bot. RTC (CURRY (extend_fringe idt_tab_rule)) top bot ==>

tab_val R pv w bot ==> tab_val R pv w top

For a dual-tableau proof of formula f, the starting point (the initial fringe)
is {{(T, f)}} and we have the following lemma.

Lemma 15 (tab val single). The dual-tableau valuation for the fringe { { (T, f) } }
at a world w of a Kripke model R, pv is true iff the world w forces f .

Kripke_model R pv ==>

(tab_val R pv w {{(T,f)}} = forces R pv w f)

Finally, the soundness result, using Lemmas 14, 15 and 5.

Theorem 1 (idt sound). If a dual-tableau for the the signed formula (T, f) is
closed then any model R, pv forces f at any world w.

Kripke_model R pv ==>

RTC (CURRY (extend_fringe idt_tab_rule)) {{(T,f)}} bot

==> dt_closed bot

==> forces R pv w f
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Here, the dual-tableau has an initial fringe {{(T, f)}} and repeatedly ap-
plying the dual-tableau rules to this fringe converts it to the closed fringe bot.
Why do we not have explicit universal quantifiers over R, pv and w? Because
every “free” variable in a statement is automatically considered by HOL4 to be
universally quantified.

6 Formalising completeness

We now describe how we formalised Fitting’s completeness proof [Fit17, Sec-
tion 1.3.3] for intuitionistic dual tableaux.

6.1 I-tautologous sets of signed formulae

We give two ways to formalise I-tautologous sets, one following Fitting and
another using inductive definitions.

6.1.1 I-tautologous sets

We first define an I-tautologous set of signed formulae similarly to [Fit17, Def-
inition 7], but without the requirements that: (i) an I-tautologous set S must
have a finite I-tautologous subset; and (ii) that the closure of each branch is
atomic; and (iii) that dual-tableaux satisfy the single-use restriction, whereby
only active signed formulae are considered for a rule application (see [Fit17,
Definitions 1,4]). We also define an I-tautologous set of sets of signed formulae
(a set of dual-tableau leaves, i.e. a dual-tableau fringe):

Definition 22 (Itautss,Itauts). A set top of sets of signed formulae is I-
tautologous w.r.t. a set rs of rules (i.e. Itautss rs top holds) if starting with
top and repeatedly applying rules from rs gives a fringe bot which is closed. A
set s of signed formulae is I-tautologous w.r.t. a set rs of rules if Itautss rs

{s} holds.

Itautss : ’a sf set rule set -> ’a sf set set -> bool ;

Itautss rs top =

?bot. RTC (CURRY (extend_fringe rs)) top bot /\ dt_closed bot

Itauts : ’a sf set rule set -> ’a sf set -> bool ;

Itauts rs s = Itautss rs {s}

We proved

Lemma 16 (ITAUTSS ALL). A finite set sfss of sets of signed formulae is I-
tautologous if and only if each of its member sets sfs is I-tautologous.

FINITE sfss ==>

Itautss rs sfss <=> (!sfs. sfs IN sfss ==> Itauts rs sfs)

Lemma 17 (ITAUT EX RULE). Assuming a set rs of rules is finitely branching,
a set top of signed formulae is I-tautologous w.r.t. rs iff it is closed, or there
is a dual-tableau rule (top, rb) which can be applied to it and every resulting
branch br in the conclusion rb is I-tautologous.

17



IMAGE SND rs SUBSET FINITE ==>

(Itauts rs top = dt_closed {top}

\/ ?rb. (top, rb) IN rs /\ !br. br IN rb ==> Itauts rs br)

Here, rs is a set of rules and IMAGE SND rs is the set of second components
(results) of those rules. Thus IMAGE SND rs is the set {C1, C2, · · ·} where Ci =
{ci1, c

i
2, · · ·} is the set of conclusions of some rule from rs, where each conclusion

cij is a set of signed formulae. The construct FINITE is the set of all finite sets so
X SUBSET FINITE encodes ∀x ∈ X. x ⊂ FINITE. Thus IMAGE SND rs SUBSET

FINITE says that each Ci is finite, which captures that each rule is finitely
branching.

6.1.2 An inductive definition of I-tautologous sets

Lemma 17 seems obvious, but was difficult to prove in HOL4, so we tried to
reformulate the definition to make the mechanics of the HOL4 proofs easier.
We therefore defined an I-tautologous set of signed formulae as an inductively
defined set, using the fact stated in Lemma 17.

Definition 23 (Itauti). For every rule set rs, a set top of signed formulae
satisfies Itauti rs iff

(i) top is itself closed, or

(ii) some rule (top, rb) in rs is applicable to top to obtain the conclusion
rb and every resulting branch br in rb is I-tautologous w.r.t. rs

and Itauti rs is the unique minimal predicate (set) such that (i) and (ii) hold.

(!top. br_closed top ==> Itauti rs top) /\

(!top. (?rb. (top,rb) IN rs /\ !br. br IN rb ==> Itauti rs br)

==> Itauti rs top)

First, note that the linguistic “or” between clauses (i) and (ii) turns into a
logical “and” (/\) because the English clauses capture the equivalent definition:

!top.( (br_closed top) \/

(?rb. (top,rb) IN rs /\ !br. br IN rb ==> Itauti rs br)

) ==> Itauti rs top

However we used the more common and, for proofs, useful, style of defini-
tion, with multiple clauses. Second, by using HOL4’s inductively defined sets,
the assertion contained in the definition (that there is a unique minimal such
predicate) is proved automatically by HOL4, as expressed in Lemma 18.

Lemma 18 (Itauti ind). For all rule sets rs and all predicates Itauti’ on
signed formula sets, if

(i) every closed signed formula set top satisfies Itauti’, and

(ii) whenever (top, rb) is a rule in rs, and every signed formula set br in
the rule conclusion rb satisfies Itauti’, then top satisfies Itauti’

then every signed formula set a0 satisfying Itauti rs satisfies Itauti’.
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!rs Itauti’.

(!top. br_closed top ==> Itauti’ top) /\

(!top. (?rb. (top,rb) IN rs /\ !br. br IN rb ==> Itauti’ br)

==> Itauti’ top)

==> !a0. Itauti rs a0 ==> Itauti’ a0

Intuitively, the lemma states that any set (predicate) Itauti’ which is closed
under the clauses of Definition 23 for Itauti rs is a superset of Itauti rs:
i.e. Itauti rs is the smallest set satisfying those clauses.

6.1.3 Relating the two notions of I-tautologous sets

We then proved the equivalence of Definition 23 for Itauti and Definition 22 for
Itauts, under the assumption that rules are finitely branching: this assumption
is required since the definition Itauti allows the case of an infinitely branching
dual-tableau even without any path of infinite depth down a branch.

Lemma 19 (ITAUTS EQ I). For every rule set rs, if the rules in rs are finitely
branching then the properties Itauti and Itauts are equivalent.

IMAGE SND rs SUBSET FINITE ==> (Itauts rs = Itauti rs)

Note that the equivalence does not hold for (even a finite set of) infinitely
branching rules because an infinitely branching rule can give an infinite dual-
tableau (which may be of unbounded depth), in which each path down a branch
is finite. If such a dual-tableau is closed then it meets the definition of Itauti,
but not the definition of Itauts since it does not close in a finite number of rule
applications; to put it another way, definition Itauts involves a finite number
of dual-tableau steps, whereas definition Itauti involves a dual-tableau with
only finite paths.

The definition of Itauti was easier to work with than that of Itauts,
avoiding our difficult earlier proof of Lemma 17. However, using both definitions
and proving their equivalence (in the case of finitely branching rules) essentially
shows that, even when using the definition Itauti, we need only finitely many
steps (which is implicit in the way Itauts is defined).

We then obtained further necessary results, such as the monotonicity of
Itauti and that I-tautologous is a property of finite character (i.e. whether a
set is I-tautologous depends on whether its finite subsets are):

Lemma 20 (Itauti idt mono). Every superset of an I-tautologous set is I-
tautologous: for every s, if s is I-tautologous w.r.t. the set idt tab rule of
dual-tableau rules then so is every superset t of s:

!s. Itauti idt_tab_rule s

==> !t. s SUBSET t ==> Itauti idt_tab_rule t

Lemma 21 (ITAUTI IDT FINITE). Every I-tautologous set s has a finite I-
tautologous subset t:

!s. Itauti idt_tab_rule s ==>

?t. FINITE t /\ t SUBSET s /\ Itauti idt_tab_rule t
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At this point we recall that a tableau branch leaf is closed if it contains
signed formulae (F,X) and (T,X) for some formula X. A leaf is atomically
closed if it contains (F, p) and (T, p) for some atomic formula p (in our encoding,
p = Atom a for some atom a). Fitting [Fit17, Definition 2] uses atomic closure
in his completeness proofs but we have used closure without this restriction. We
want to examine whether this makes any real difference.

Having defined Itauti in Definition 23, we now define a generalised version
Itautg, which is like Itauti except that it allows us to specify the requirement
for a leaf to be considered closed (thus Itauti = Itautg br closed).

Definition 24 (Itautg). For every predicate cl on signed formula sets and
every rule set rs, a set top of signed formulae satisfies Itautg cl rs iff

(i) top satisfies cl, or

(ii) some rule (top, rb) in rs is applicable to top to obtain the conclusion
rb and every resulting branch br in rb is I-tautologous w.r.t. cl and rs

and Itautg cl rs is the unique minimal predicate (set) such that (i) and (ii)
hold.

(!top. cl top ==> Itautg cl rs top) /\

(!top. (?rb. (top,rb) IN rs /\ !br. br IN rb ==> Itautg cl rs br)

==> Itautg cl rs top)

Then Itautg at closed idt tab rule is the set of I-tautologous sets, de-
fined in terms of atomic closure, for intuitionistic dual-tableaux.

We then showed that a closed dual-tableau can be extended to an atomically
closed dual-tableau, so that requiring dual-tableau closure to be atomic makes
no difference: this justifies our approach to simplify proofs by not working
throughout in terms of atomic closure.

Lemma 22 (atomic closure). A set is I-tautologous (per Definitions 23 and
13) iff it is I-tautologous (defined to require atomic closure):

Itauti idt_tab_rule sfs <=> Itautg at_closed idt_tab_rule sfs

We now discuss the three assumptions which we did not incorporate in our
definition of I-tautologous:

(i) Finite character: Fitting defines that an I-tautologous set S must have a
finite I-tautologous subset. Our Definition 23 does not require this, but
we proved, in Lemma 21, that it holds as a consequence. Our I-tautologous
sets are built from dual-tableaux, and each such dual-tableau is a finite
structure. Thus if the root {S} of the dual-tableaux contains an infinite
set S of signed formulae, then we can be assured that our finite dual-
tableau will “touch” only a finite subset of its members. Indeed, this is
essentially the reason why Lemma 21 holds.

(ii) Atomic closure: We dropped this assumption and allowed closure on arbi-
trary formulae as it made our task easier. As discussed above, we have
since gone back and proved Lemma 22 that everything also goes through
if we demand atomic closure. Essentially, this required us to prove that a
dual-tableau which is closed using non-atomic closure can be extended to
a dual-tableau which is closed atomically.
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(iii) Single use restriction: This restriction is also redundant: in fact, by inspec-
tion, it can be seen that applying a rule to an inactive formula does not
make progress towards a closed dual-tableau. This is noted by Fitting
when he observes that “Dual tableaus are sound and complete with or
without a single use restriction, but a single use restriction is better for
proof search. Indeed, it easily gives us decidability.” That each formula is
“principal” only once is also redundant as already stated by Fitting [Fit17,
just after his Definition 2].

6.2 The Lindenbaum construction

We now discuss proving Fitting’s “after Lindenbaum” theorem [Fit17, Theo-
rem 1]. Fitting assumes that the set of signed formulae is countable. We proved
the general lemma which expresses the effect obtained from the Lindenbaum
construction.

Definition 25 (maxnon). maxnon P s means that the set s does not satisfy the
predicate P , but that every proper superset of s satisfies P .

maxnon : (’a set -> bool) -> ’a set -> bool

maxnon_def : maxnon P s = ~ P s /\ !t. s PSUBSET t ==> P t

Here, PSUBSET captures s ⊂ t (the proper subset relation).

Definition 26 (ctns1). ctns1 cs m means that the set m contains at least one
member of the set of sets cs.

ctns1 : (’a set set) -> ’a set -> bool

ctns1_def : ctns1 cs m <=> ?c. c IN cs /\ c SUBSET m

Lemma 23 (MAXNON CTNS1). Provided that we are dealing with members of a
countable set U , if cs is a set of finite subsets of U , m ⊆ U , and m does not
contain any member of cs, then there exists a set s ⊆ U which is a superset of
m and does not contain any member of cs and is maximal with that property.

countable (UNIV : ’a set)

==> (cs : ’a set set) SUBSET FINITE ==> ~ (ctns1 cs (m : ’a set))

==> ?s : ’a set. m SUBSET s /\ maxnon (ctns1 cs) s

Here, we take U to be the set of all members of its type, so U is UNIV, the set
of all things (of the type in question), and then m ⊆ U , s ⊆ U and, for c ∈ cs,
c ⊆ U hold automatically, which is why they do not appear explicitly in the
encoding but do appear in the plain text.

From ITAUTI IDT FINITE and MAXNON CTNS1 we proved the following lemma.

Lemma 24 (LINDENBAUM I). Provided that the set of all signed-formulae is
countable, if s is not I-tautologous then s has a superset M which is maximal
non-I-tautologous:

countable (UNIV : ’a sf set)

==> ~ (Itauti idt_tab_rule s)

==> ?M : ’a sf set. s SUBSET M /\ maxnon (Itauti idt_tab_rule) M
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To use this result, we prove that the set of signed-formulae is countable as
follows.

Lemma 25 (FORMULAE COUNTABLE, SF COUNTABLE). If the set UNIV : ’a set

of all atoms is countable then the set UNIV : ’a formula set of all formulae
(built from those atoms) is countable, as is the set ’a sf set of all signed-
formulae.

countable (UNIV : ’a set) ==> countable (UNIV : ’a formula set)

countable (UNIV : ’a set) ==> countable (UNIV : ’a sf set)

A simple way to ensure that the set of atomic formulae is countable is to
assume that they are indexed by the natural numbers: for example, as the
infinite set p0, p1, p2, · · ·. In HOL4, we can achieve our goal by specifying that
the type variable ’a in the type ’a sf of signed formulae is, in fact, the type
num of natural numbers. We thus obtain

Lemma 26 (LINDENBAUM). Assume that the atomic formulae are indexed by the
natural numbers: that is, let ’a be num in ’a sf. Then, if s is non-I-tautologous,
then s has a superset M which is maximal non-I-tautologous.

~ (Itauts idt_tab_rule s) ==>

?M : num sf set. s SUBSET M /\ maxnon (Itauts idt_tab_rule) M

Here, we specify the type of M as num sf set which causes ’a sf to be instan-
tiated to num sf. That is, num sf is bool # num formula: see Section 3.1.

6.3 The canonical model, Truth Lemma and completeness

The canonical model is built out of a (non-empty) set of “worlds” built from
maximal non-I-tautologous sets [Fit17, just above Theorem 3]. We therefore
define a new type worlds representing the set of maximal non-I-tautologous
sets. But first, we have to show that this set is non-empty, because types in
HOL4 are non-empty.

Lemma 27 (EX NON TAUT). If the atomic formulae are indexed by the natural
numbers then there is a maximal non-I-tautologous set of signed formulae.

?(M :num sf set). maxnon (Itauts idt_tab_rule) M

Definition 27. The new type worlds is isomorphic to the set of maximal-non-
I-tautologous sets.

val worlds_TY_DEF = new_type_definition ("worlds", EX_NON_TAUT) ;

That is, we define the new type worlds to be isomorphic to the set of
things satisfying the property maxnon (Itauts idt tab rule): namely the set
of maximal non-I-tautologous sets which we have just shown to be non-empty
by Lemma 27. The function new type definition also creates functions and a
theorem expressing this isomorphism.

Lemma 28 (worlds abs rep). Assuming the atomic formulae are indexed by
the natural numbers, there exists a function w rep from worlds to maximal non-
I-tautologous sets and a function w abs from sets of signed formulae to worlds

such that:
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(i) for every world a of type worlds, w abs (w rep a) = a; and

(ii) for every set s of signed formulae w rep (w abs s) = s iff s is maximal
non-I-tautologous wrt. idt tab rule.

w_rep : worlds -> num sf set

w_abs : (num sf set) -> worlds

( !(a :worlds). w_abs (w_rep a) = a ) /\

( !(s :num sf set). (w_rep (w_abs s) = s) <=>

maxnon (Itauts (idt_tab_rule :(num sf set) rule set)) s )

Here, we specify that the atomic formula are indexed by the natural numbers
by setting the type of s to be num sf set.

We now have a set of worlds built out of maximal non-I-tautologous sets of
signed formulae. We define the canonical model over these worlds by defining
the valuation of atoms over these worlds and the binary Kripke relation between
worlds.

Definition 28 (at val, idt R). The truth value at val of an atomic formula
Atom a at a world w is true iff (F, Atom a) is in the set w. The world ∆ is an
idt R-successor of the world Γ iff {f | (F, f) ∈ Γ} ⊆ {f | (F, f) ∈ ∆}.

at_val w a = (F, Atom a) IN w_rep w

idt_R gamma delta =

(FST (mk_seq (w_rep gamma)) SUBSET FST (mk_seq (w_rep delta)))

Here, the isomorphism function wrep provided by HOL4 identifies a world
delta with its corresponding set w rep delta of signed-formulae, and similarly
for world gamma. We then “partition” the F -signed formulae from the T -signed
formulae from these sets of signed formulae by turning each into the sequents
FsΓ ⊢ TsΓ and Fs∆ ⊢ Ts∆, respectively, using mk seq. Projecting onto the
first component of these sequents gives us FsΓ and Fs∆, respectively, and the
SUBSET construct then gives us the desired result.

The canonical model is thus built from worlds, at val and idt R in the
usual way and we need to prove the Truth Lemma. For proving the Truth
Lemma, we proved

Lemma 29 (NON ITAUT RULE). If the rules from the rule set rs are finitely
branching, and s is maximal non-I-tautologous w.r.t. rs, and all extensions by
a context of the skeleton rule (top/bot) are contained in rs, then if top is in s

then so is some member of bot.

IMAGE SND rs SUBSET FINITE

==> maxnon (Itauts rs) s

==> is_tab_rule (top, bot) SUBSET rs

==> top IN s ==> ?br. br IN bot /\ br SUBSET s

Assume the canonical model is built from worlds, at val and idt R in the
usual way using Definition 28, thus giving rise to a forcing relation forces

idt R at val which maps a particular world Γ and a particular formula X to
true or false. The following result corresponds to Fitting’s “Intuitionistic Truth
Lemma” [Fit17, Theorem 3]. It is proved by induction on the formula X, using
Lemma 29.
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Lemma 30 (TRUTH LEMMA). For all formulae X and for all worlds Γ (ie, max-
imal non-I-tautologous sets of signed formulae)

(i) if (T,X) in Γ then Γ does not force X, and

(ii) if (F,X) in Γ then Γ does force X:

!X gamma.

((T, X) IN w_rep gamma ==> ~ (forces idt_R at_val gamma X)) /\

((F, X) IN w_rep gamma ==> (forces idt_R at_val gamma X))

Again, we utilise the isomorphism function w rep to find the set of signed
formulae represented by Γ.

For the completeness theorem, we first state a lemma about the canonical
model.

Lemma 31 (idt complete). In the canonical model, if every world w forces
formula f then the singleton signed formula set {(T, f)} is I-tautologous.

(!w. forces idt_R at_val w f) ==> Itauts idt_tab_rule {(T,f)}

Now, using the contrapositive form, we get completeness as desired:

if no dual-tableau for the set {(T, f)} is closed then f is falsifiable
in some Kripke model [Fit17].

Theorem 2 (idt complete cp). If the singleton signed formula set {(T, f)} is
not I-tautologous (ie. the formula f has no dual-tableau proof), then there is a
world in the canonical model which does not force f .

~ Itauts idt_tab_rule {(T,f)} ==> ?w. ~ forces idt_R at_val w f

Proof. For a formula f , if {(T, f)} has no closed dual-tableau, that is, if {(T, f)}
is not I-tautologous, then by Lemma 26, it is contained in a maximal non-I-
tautologous set Γ, which is a world in the canonical model. Then, by Lemma 30,
Γ 6
 f .

6.4 Relaxing the countable constraint

The proof described above required that the set of formulae is countable: proving
that this holds, if the set of atoms is countable, was not trivial (see Lemma 25).
An alternative is to drop this requirement and to use Zorn’s lemma, which
is provided in HOL4, giving a version of Lemma 23 without the countable set
restriction.

Lemma 32 (MAXNON CTNS1 ZORN). If cs is a set of finite sets, and m does not
contain any member of cs, then there exists an s which is a superset of m and
does not contain any member of cs and is maximal w.r.t. that property.

cs SUBSET FINITE

==> ~ (ctns1 cs m)

==> ?s : ’a set. m SUBSET s /\ maxnon (ctns1 cs) s
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Both these approaches require the finite character property of a set being
I-tautologous: that is, that an I-tautologous set has an I-tautologous finite
subset.

Finite characterisation of being I-tautologous is conceptually easy, as dis-
cussed earlier, and proved in Lemma 21. However another approach here is to
define an I-tautologous set as one which has a finite I-tautologous subset, as
Fitting does, in [Fit17, Definition 7]. We did this (calling it fITauts), which
made it easy to prove analogues of the results Lemmas 20 and 21, but other
things become more difficult. For example, we proved (at quite some length)
this analogue of Lemma 29. Note that, compared with Lemma 29, we proved it
only specifically for the set of rules for intuitionistic dual-tableaux.

Lemma 33 (NON FITAUT RULE). If s is maximal non-I-tautologous wrt. the
rules idt tab rule for intuitionistic dual-tableaux, and the extensions by a con-
text of the skeleton rule (top/bot) are contained in idt tab rule, then if top
is in s, then so is some member of bot

maxnon (fItauts idt_tab_rule) (s : ’a sf set)

==> is_tab_rule (top, bot) SUBSET idt_tab_rule

==> top IN s ==> ?br. br IN bot /\ br SUBSET s

We didn’t pursue this approach further, and Lemma 21 makes it rather
redundant. It really just illustrates that until one actually performs the proofs,
one doesn’t really know which approach will be simplest to prove.

7 Conclusions

We have shown how to encode the meta-theory of dual-tableaux for intuitionis-
tic logic into HOL4. In the process, we have verified all of the theorems provided
by Melvin Fitting in his chapter in this volume, although our proofs sometimes
proceed differently. We have also highlighted how inductive definitions often
make proofs easier since we can perform structural induction on the clauses that
make up the inductive definition. All of our HOL4-code can be found via the
link (http://users.cecs.anu.edu.au/~jeremy/hol/idt/), and is also avail-
able on GitHub at https://github.com/jeremydaw/idt in the directory hol.

Regarding the effort required. The proof script is 2100 lines of HOL4-code.
Contrasted against Fitting’s original chapter [Fit17], this is a similar length —
but containing much more detail of small proof steps, and much less descriptive
and explanatory material. This contains some results which were proved in a
roundabout way, or with some duplication of effort (such as the issue of Itauti
versus Itauts, see §6.1.3), and a small amount of theory not specific to this
particular task, such as the proof of Lemma 25. (Generally HOL offers good
support for most common generic reasoning tasks, although not for proving an
algebraic data type to be countable).

One caveat: Jeremy Dawson has over 20 years of experience in interactive
theorem proving, and yet it took him 2 months of full-time work to complete
these proofs, so interactive theorem proving is time-consuming and laborious!

Acknowledgements. We are grateful to the anonymous reviewers for their
suggestions for improvements.
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