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Abstract—The growing uptake of residential PV (photovoltaic)
systems creates challenges for electricity grid management, owing
to the fundamentally intermittent nature of PV production. This
creates the need for PV forecasting based on a distributed
network of sites, which has been an area of active research in the
past few years. This paper describes a new statistical approach to
PV forecasting, with two key contributions. First, we describe a
“local regularisation” scheme, wherein the PV energy at a given
site is only attempted to be predicted based on measurements
on geographically nearby sites. Second, we describe a means of
incorporating wind velocities into our prediction, which we term
“wind expansion”, and show that this scheme is robust to errors
in specification of the velocities. Both these extensions are shown
to significantly improve the accuracy of PV prediction.

Index Terms—Solar energy, Solar power generation, Machine
learning algorithms

I. INTRODUCTION

A high uptake of photovoltaic (PV) systems creates instabil-
ity in the electricity grid due to the intermittency of sunlight.
Grid operators thus need a reliable method to estimate the
contribution of distributed residential PV systems to the power
grid. While there has been a large body of work focussed on
PV forecasting at a single site – see e.g. Inman et al. [1]
for a survey – as noted by Yang et al. [2], such methods
do not provide any spatial irradiance information. As such
information is invaluable to grid management, there has been a
recent flurry of interest in PV forecasting techniques based on
a distributed network of sites [2, 3, 4, 5, 6, 7]. These methods
all focus on intra-minute to several minute data and forecast
horizons, leveraging multiple ground sensors from either solar
irradiance sensors or PV system power output.

In this paper, we describe a new statistical approach to short-
term (5–60 minute) distributed PV prediction. Our basic model
predicts the PV at a given site based on the PV at other sites,
but with two important extensions. First, we enforce local
regularisation so that the PV at a given site is only determined
by the few sites that are geographically nearby, rather than all
sites. Second, we describe a wind expansion scheme whereby
wind velocities are exploited in the final predictor, such that
the final predictor is robust to errors in the wind velocities.
Put together, these (to our knowledge novel) ideas result in a
simple but demonstrably effective distributed PV forecaster.

The idea of using wind velocities in PV forecasting is
by itself not new, as several recent works have discussed
the perceived importance of including this information. For
example, Lonij et al. [3] demonstrated that the inclusion
of the 700 mb wind from the NOAA RUC weather model
was important for maximising prediction accuracy. Bosch and

Kleissl [8] proposed a “triplet method” for extracting the
apparent cloud velocity from a distributed sensor network,
a method then used by Lipperheide et al. [6] and shown to
be essential for the generation of precise forecasting across a
48MWp solar array. Furthermore, Lorenzo et al. [7] proposed
and evaluated a real-time solar radiation forecasting method
based on a network of 12 irradiance sensors, wherein the
extracted wind velocity estimates from Weather Research &
Forecasting model were essential to improvement over their
previous forecasting work [3].

Each of the above studies has shown that inclusion of
the cloud velocity is helpful for distributed solar forecasts.
However, in this paper, we wish to go a step further, and
propose a technique (“wind expansion”) which demonstrates
that (a) if perfectly known, the cloud motion vectors can result
in improved forecasts, and (b) errors in cloud motion vectors
(when estimated using an image processing heuristic) cause
only mild degradation in forecast accuracy.

A. Short-term forecasting

A fairly thorough review of time-series forecasting methods
at hourly, daily and monthly forecast horizons has recently
been provided in Voyant et al. [9], with the majority of state
of the art forecasting research moving to sub-hourly timeseries
from 2013 onwards. As discussed in several papers, sub-hourly
forecast horizons are “completely different” from hourly or
daily timescales [9], owing to the probability distribution of
persistence changing, such that conditions are much more
unlikely to change between time steps.

B. Distributed versus single-site prediction

A important part of accurately forecasting the spatio-
temporal variability of solar radiation fields is the deployment
and use of distributed sensor networks to produce spatial
solar forecasts [2]. In the area of distributed solar forecasting
methods, a number of techniques appear in the literature, all of
which focus on the intra-minute to a several minute data and
forecast resolutions/horizons. They leverage multiple ground
sensors from either solar irradiance sensors or PV system
power output and generate solar forecasting techniques which
leverage this joint spatial-temporal nature of the data.

[3]. A very important paper, often cited by other distributed
network based solar forecasting papers, this study presented
a method for fore- casting power output from 80 distributed
PV systems installed in a 50 x 50 km region in Tucson,
AZ which had a mean separation distance of 3km. The 15
minute interval data was normalised by the methods outlined
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Fig. 1: The basic idea of wind expansion: If one had different
predictors for a fixed mesh of wind directions, one could
predict for an arbitrary wind direction by interpolating the
predictions of the closest wind directions in the mesh. This
paper expands the feature space so that the accuracy of this
”interpolated predictor” is itself fit at training time.

in Lonij et al. [3] and then discretized before the fields were
advected forward in time according to a cloud motion vector.
This motion vector was determined by four methods, including
persistence, extraction of the 700 mb wind from the NOAA
RUC weather model and vector extracted from the sensor
network itself through choosing the wind that minimizes the
RMSE of the predictions. Their approach was able to beat
persistence based forecasts out to 60 minutes and demonstrated
improvement over the existing satellite methods at the time
(SolarAnywhere, 2012).

II. BASIC PREDICTOR

Our basic predictor is least-squared linear regression. The
idea is that the power at a site 10 minutes ahead can be
approximated by a linear combination (with learned weights)
of the previous power measurements at all sites at the previous
five time steps. However, two major changes are made to this
predictor to reflect the geometric relationship between different
sites, and how wind changes how this geometry is reflected in
power measurements: firstly, ”local regularization” means that
only sites within some fixed distance of the target can be used.
If an infinite amount of training data we available, it would be
best to use all sites, but given a finite amount of data, this can
dramatically reduce over-fitting. Secondly, we introduce the

idea of ”wind expansion” where the input measurements are
transformed based on the current wind velocity. This allows
the known wind direction to be incorporated in a very simple
way into the predictor.

III. SIMULATION

For two reasons, this paper uses a somewhat crude simulated
data set, as this enables experiments with unlimited numbers
of sites, without the cost of manually instrumenting and
measuring each of them. For the sake of disambiguating the
effects of different phenomena on predictive accuracy, we
present three different simulations, and ”easy”, ”medium”, and
”hard” simulation.

The ”hard” simulation can be described as follows. First,
some number of sites are randomly scattered on the unit
square. First, for each day, a cloud creation probability is
chosen uniformly on [0, 1] and an overall cloud movement
uniformly chosen as (δx, δy) where δx and δy are randomly
chosen from [−0.02, 0.02]. After each time step, representing
10 minutes, a new cloud is created with the aforementioned
cloud-creation probability. A maximum radius rmax for clouds
is chosen from a Poisson distribution. Next, a set of clouds
are generated uniformly over the square, with sizes chosen
as min(r4, rmax) where r is chosen uniformly on [0, 1]. The
opacity of each cloud is chosen uniformly on [0, 1].

Figure 2 shows some example sites and cloud covers.
After each time step, the cloud centers are advanced by

(δx, δy) and each dimension of the cloud position is corrupted
by a “jigger” of a normal with standard deviation 0.005. finally,
the radius is re-computed as .95 times the old radius, and .05
times a new radius randomly chosen from the same Poisson
distribution. Note that this neglects the possibility that clouds
at different heights might move in different directions.

For each site, an “occlusion” constant is computed by
multiplying the opacity of each cloud that is overhead (Figure
3, left). Finally, the power is generated from a 10 hour
sinusoid multiplied by the occlusion (Figure 3, right). All the
experiments described here use one year of data for training
and one year for testing.

A. Easy and Medium Simulation

These settings are slightly different in making the movement
of the wind easier to predict. In the medium setting it is still
somewhat random, but has a general predictable tendency,
while in the easy setting the movement is completely fixed.

1) The overall wind direction is less variable. In the
medium setting, the cloud movement directions δx and
δy for each day are randomly chosen from [0, 0.02]. In
the easy setting, these are fixed at δx = δy = 0.01,
meaning the overall wind direction does not change.

2) In the easy setting, the random ”jigger” at each time-step
to the center and radius of each cloud is removed.

IV. LOCAL REGULARIZATION

A first experiment tested the concept of ”local regulariza-
tion” in connection with the total number of available sites.



Fig. 2: Some examples of simulation with random clouds and 500 randomly scattered sites.
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Fig. 3: Examples of occlusion tracks and simulated power (as a
fraction of total site capacity) for a day. Each line corresponds
to one site (10 total).

The idea is that faraway sites, since they are likely to be
under different cloud cover, contain less predictive information
than nearby sites. Since data is limited, it is helpful to
restrict the predictor’s access to extra information. Thus, we
experimented with building a standard linear predictor with
the single change that the predictor for one site would only
have access to information from other sites within a given
radius. This experiment was repeated with various numbers
of total sites, and is shown in Fig. 6. The conclusions are
clear: with a small number of sites, local regularization has
little impact. With a large number of sites, it has a huge
impact– to the degree that with 500 sites, joint prediction is no
better than local prediction unless local regularization is used.
Further, each of these curves has a minimum test error at a
radius of around 0.1. Notice that this is much larger than the
cloud movement, which is in the range on (−0.02,−0.02) to
(0.02, 0.02). The reason for this, presumably, is that the clouds
themselves are quite large, and thus somewhat distance sites
can still provide valuable information. Nevertheless, with more
years of training data, this step would not be necessary.

V. WIND EXPANSION

If we disregard training for a moment, and think of how
a test-time predictor might take advantage of a known wind
direction, it is easy to imagine a situation like the following:
There are a set of different weight vectors, one for each
of a mesh of possible wind directions. Given the particular
known wind direction, the weights for the current situation
are selected by a linear interpolation of the weights in the
nearest grid points.

While training a system as described above might seem
difficult, it is easy to do using the standard duality between
feature-spaces and parameter-spaces. Namely, rather than in-
terpolating weights, we expand the feature space by a factor
of the number of mesh points. To create the features for a
given point in time a “reverse-interpolation” is used. Namely,
one calculates the weights that the point would receive from
each of the neighboring mesh points. Then, each of the
corresponding feature spaces is given the original features,
multiplied by the corresponding weight. Training this model
with a fixed set of weights and “reverse-interpolated features”
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(a) 50 sites
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Fig. 4: Local regularization with the ”easy” simulated data. There is a modest benefit to local regularization with many sites.
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(b) 200 sites
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Fig. 5: Local regularization with the ”medium” simulated data. There is a larger benefit to local regularization compared with
the easy setting.
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Fig. 6: Local regularization with the ”hard” simulated data. With 500 sites, using a large radius (equivalent to skipping local
regularization) has similar error to using a tiny radius (equivalent to doing single-site prediction).
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Fig. 7: The benefits of feature expansion of the wind for the
three simulated settings. In the easy setting, there is no benefit,
as the wind direction is fixed. There is a larger benefit in the
hard setting than the medium setting, probably reflecting the
more variable wind directions there.

Fig. 8: Interpolated occlusion maps 10 minutes apart with
500 simulated sites. There is significant change beyond simple
translation due to irregular site locations and changes in cloud
positions, sizes, and opacity.
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Fig. 9: Estimated vs. true wind directions. The x-axis shows
one component of the true wind direction at different times,
while the y-axis shows the same quantity estimated from
registration of images of the type shown in Fig. 8
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Fig. 10: Errors with estimated vs. true wind directions. The
upper blue line shows the error with no wind expansion, while
the (nearly identical) green and red lines show the errors
with wind expansion with the true wind and predicted wind,
respectively.

is exactly equivalent to training a model of the above type
with an interpolated set of weights.

To test this in the simplest setting, we considered a very low-
order expansion, where there are 3 grid points for the wind
in each direction, for a total of 9. Thus, the feature space
is expanded by a factor of nine. Because of the success of
local regularization above, and because we now have an even
larger feature space, this expansion is used in conjunction with
the weights being constrained to a radius of 0.1, as this was
nearly optimal in all the experiments above. The grid points
are chosen as −0.02,0, or 0.02, since this is the range of the
wind. The results are shown in Figure 7. One can see that wind
expansion creates a substantial improvement, which increases
with the number of sites available.

In practice, of course, one will not typically have access
to the exact known wind direction. An interesting question
is if this can be estimated from simulated data alone. After
some experimentation, we found a very simple strategy for
this. Firstly, at each time, a nonlinear interpolation is used to
estimate the current occlusion map on a discretized regular
grid of the image. See Figure 8 for an example. Next, a
simple image transformation algorithm is used to estimate the
”shift” between the two images which is equivalent (after a
change of coordinates) to an estimate of the wind. Figure
9 shows a scatter-plot of the estimated vs. true wind using
this algorithm. One can see that, while far from perfect, this
generally produces an estimate close to the true one. Finally,
we take this estimated wind direction and use it in the final
predictor in place of the true wind. This is shown in Figure 10.
Remarkably, there is essentially zero difference between using

the estimated wind direction and the true one. This suggests
that, given a sufficiently large number of sites, the wind can
be estimated accurately enough to improve the predictor. This
makes sense, given that the wind is still only being used in a
somewhat crude way above, via wind expansion.
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