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In a setting where approximate inference is necessary, structured learning

can be formulated as a joint optimization of inference “messages” and local

potentials. This chapter observes that, for fixed messages, the optimization

problem with respect to potentials takes the form of a logistic regression

problem, biased by the current set of messages. This observation leads to

an algorithm that alternates between message-passing inference updates, and

learning updates. It is possible to employ any set of potential functions where

an algorithm exists to optimize a logistic loss, including linear functions,

boosted decision trees, and multi-layer perceptrons.

1.1 Introduction

This chapter is concerned with the discrete structured prediction problem,
in which some input vector x is used to predict an output vector y by
maximizing an “energy” function F to find

y⇤ = argmax
y2Y

F (x, y). (1.1)

Here, x 2 X is the input space, typically a set of real vectors. The output
space is a set of N dimensional vectors y 2 Y = Y1 ⇥ Y2 ⇥ ...⇥ Y

N

, where Y
i

is a discrete set of the values y
i

can obtain.
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{↵} = {{1}, ..., {N},{1, 2}, ..., {N � 1, N}}

(a) Original variables (b) Univariate regions (c) Pair regions

Figure 1.1: In imaging problems, it is common to use a “grid” structure, where
there is one region ↵ = {i} corresponding to each pixel i, and one region ↵ = {i, j}
corresponding to each neighboring pair in the 4-connected grid.

Here, we assume that the function F decomposes as

F (x, y) =
X

↵

f
↵

(x, y
↵

). (1.2)

This sum ranges over a set of regions ↵ (Koller and Friedman, 2009, Sec
11.3.7.3), each of which is a subset of {1, 2, ..., N}. Each region is selected to
capture a set of interdependent output variables, see Figure 1.1. The function
f
↵

encourages the variables y
↵

to take on a value such that f
↵

(x, y
↵

) is high.
Given some annotated dataset (x1, y1), ..., (xM , yM ), the structured learn-

ing problem is to pick the form of the function F . Intuitively speaking, one
would like to select F such that

yk ⇡ argmax
y2Y

F (xk, y) 8k 2 {1, ...,M}. (1.3)

However, there are two complicating factors. First, it will typically be
impossible to adjust F such that that Eq. 1.3 is exactly equal for all k.
(More precisely, using a class of functions with su�cient power to accomplish
this would be undesirable due to overfitting.) Thus, a loss function must be
specified to trade-o↵ between di↵erent types of errors on di↵erent examples.
Secondly, when the function F changes, the maximizing argument of Eq. 1.3
changes discontinuously. Thus, the loss must be stated implicitly in terms
of the result of a maximization, which presents computational di�culties in
selecting the best function.
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1.2 Linear vs. Nonlinear Learning

Most commonly, F (x, y) =
P

↵

f
↵

(x, y
↵

) can be written in the linear form

F (x, y) =
X

↵

wT�
↵

(x, y
↵

).

The function �
↵

produces a set of features that reveal aspects of the
interdependency of the variables y

↵

, possibly also taking into account the
input x. The learning problem is then to select the vector of weights w so
as to make the mapping in Eq. 1.1 accurate.
This chapter considers the more general case where each factor f

↵

is only
assumed to be a member of some set of (possibly nonlinear) functions F

↵

.
The learning problem is thus instead to select f

↵

2 F
↵

for all ↵.
A motivation for using more general function classes is the common exist-

ing practice to fit a nonlinear function class to predict each variable indepen-
dently. These univariate potentials are then fixed, while linear weights are
adjusted for interaction potentials (Section 1.9). There are two weaknesses to
this approach. Firstly, only linear weights are learned for interaction poten-
tials, rather than more powerful functions. Secondly, the nonlinear functions
learned for the univariate potentials are suboptimal for joint prediction.

1.3 Overview

The algorithm presented in this chapter can be seen as building upon two
streams of research for fitting structured predictors in the setting where
exact inference is intractable:

Piecewise learning (Sutton and Mccallum, 2009) trains a structured pre-
dictor by splitting the model into a set of “pieces”, which could be individual
factors, or other structures where exact inference can be performed. These
pieces are then trained independently of the rest of the graph. This can be
justified as a bound on the true likelihood. This has advantages of com-
putational convenience, and is fairly amenable to using nonlinear potential
functions when learning, but does not always lead to good performance for
joint prediction, since the bound on the likelihood can be quite loose.

Algorithms based on formulating a joint learning and inference objective
(Hazan and Urtasun, 2012; Meshi et al., 2010) deal with approximate infer-
ence in a principled way by alternating between message-passing updates,
and gradient updates of parameters. However, these algorithms deal only
with linear potential functions.
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The algorithm presented in this chapter is similar to both of the above. As
pictured in Fig. 1.3, it begins by training all factors separately via logistic
regression. This is similar to piecewise learning, and it is possible to use
nonlinear factors. However, after this first step, message-passing inference
proceeds, which creates a new set of logistic regression problems reflecting
the biases from other factors. Iterating this process leads to an optimum of
a learning objective reflecting both messages and potential functions.
Proofs of all the theorems stated in this chapter are given in the appendix.

1.4 Loss Functions

Structured learning usually follows the standard framework of empirical
risk minimization, wherein given a dataset (x1, y1), ..., (xN , yN ), the goal
of learning is to select F to minimize the empirical risk

R(F ) =
X

k

l(xk, yk;F ), (1.4)

for some loss function l. In early work on structured learning (Taskar et al.,
2003), the loss takes the form

l0(x
k, yk;F ) = �F (xk, yk) + max

y2Y
F (xk, y) +�(yk, y), (1.5)

where �(yk, y) is a discrepancy measures of how “di↵erent” yk is from y. If
� = 0, notice that l0 is a perceptron-type loss, which measures the energy
of the top-scoring value max

y2Y F (xk, y) minus the energy of the true value
F (xk, yk). The loss will be zero if yk scores as well as any other value. When
� is nonzero, it is necessary for the score of yk to be at least �(yk, y) better
than y in order for the loss to be zero. Essentially, if some configuration y

is extremely “bad”, then yk must score significantly higher than y in order
to incur zero loss.
A common discrepancy function is the indicator �(yk, y) = I[yk 6= y],

which is one if yk 6= y and zero if yk = y. In this case, it is easy to show that
the loss becomes the multiclass hinge loss (Crammer and Singer, 2002)

l0(x
k, yk;F ) = max

✓
0, 1 + max

y 6=y

k2Y
F (xk, y)� F (xk, yk)

◆
. (1.6)

Another common discrepancy (which will be used in the experiments later
in this chapter) is the Hamming distance �(yk, y) =

P
i

I[yk
i

6= y
i

], which
measures the number of components in which yk and y di↵er. The rest of
this chapter will assume that the discrepancy decomposes over the set of
regions, i.e. it can be written as �(yk, y) =

P
↵

�
↵

(yk
↵

, y
↵

).



1.4 Loss Functions 5

2

1 3

4

(a) Original Graph

2

1

1 3 2 4

3

4

1 2 3 4
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Figure 1.2: An example graph with four nodes and eight regions, namely {↵} =
{{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}}. The parent child graph represents
each region, with links between “parent” regions that contain all the nodes in
“child” regions.

The maximization in Eq. 1.5 ranges over all discrete labelings, a set that
is in general exponentially large. Thus, this loss is practical only when there
exists a special structure that allows one to quickly find the maximum. For
example, if the graph obeys a tree structure, then dynamic-programming
algorithms can compute the maximum. If using a linear energy, learning
can then proceed either through subgradient descent (Ratli↵ et al., 2007)
or constraint generation methods (Tsochantaridis et al., 2005; Taskar et al.,
2003).
To overcome these issues, a common approach is to use a relaxed version

of the loss, where rather than optimizing over all discrete labelings, one
optimizes over all sets of marginals. The relaxed loss is defined as

l1(x
k, yk;F ) = �F (xk, yk) + max

µ2M
F (xk, µ) +�(yk, µ). (1.7)

Here µ = {µ
↵

(y
↵

)} is a set of marginals, assigning some probability to each
possible configuration of each region. As a slight abuse, the notation of F
and � is overloaded to allow arguments of marginals1.
If the set M is defined appropriately, l1 is equivalent to l0. Specifically,

suppose that each marginal µ
↵

is restricted to put all probability on one

1. Specifically, F is defined as F (xk
, µ) =

X

↵

X

y↵

f↵(x
k
, y↵)µ↵(y↵), while � is defined as

�(yk
, µ) =

X

↵

X

y↵

�↵(y
k
↵, y↵)µ↵(y↵).
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configuration, and that these assignments are consistent between regions
that consider the same set of variables. Let µ

↵�

(y
�

) =
P

y↵\�
µ
↵

(y
↵

) denote
µ
↵

marginalized out over a subregion �. If M takes the form

M = {µ|µ
↵

(y
↵

) 2 {0, 1} 8↵, y
↵

,
X

y↵

µ
↵

(y
↵

) = 1 8↵,

µ
↵�

(y
�

) = µ
�

(y
�

) 8↵ � �, y
�

}, (1.8)

and it is not hard to show that l0 and l1 are equivalent. (See Chapter ?? for
a detailed discussion of the marginal polytope and its relaxations.) Here,
a “parent-child” representation of the graph is used, where each region
↵ interacts with those regions that are subsets or supersets (Figure 1.2).
However, with this constraint set, l1 is no easier to evaluate than l0, as it
takes the form of a di�cult integer linear programming problem. However,
as is commonly done to approximate integer programs (Vazirani, 2001), this
can be approximated by replacingM with a set that makes the maximization
in Eq. 1.7 easier. Specifically, it is common (Finley and Joachims, 2008) to
use a linear programming relaxation like

M = {µ|µ
↵

(y
↵

) 2 [0, 1] 8↵, y
↵

,
X

y↵

µ
↵

(y
↵

) = 1 8↵,

µ
↵�

(y
�

) = µ
�

(y
�

) 8↵ � �, y
�

}, (1.9)

which leads to a loss that can be evaluated through the solution of a linear
programming problem. Moreover, since M has been replaced with a larger
set, it is easy to see that l1 � l0, meaning good performance on this surrogate
loss will guarantee good performance in the original one.
It is convenient to introduce the notation of

✓k
F

(y
↵

) = f
↵

(xk, y
↵

) +�
↵

(yk
↵

, y
↵

), (1.10)

in which case l1 can be written in the equivalent form

l1(x
k, yk;F ) = �F (xk, yk) + max

µ2M
✓k
F

· µ, (1.11)

where we define the inner product between ✓ and µ as ✓·µ =
P

↵

P
y↵

✓(y
↵

)µ
↵

(y
↵

).
Now, while it is tractable to compute l1, it is not smooth as a function of

F , which rules out the use of certain optimization methods for learning. A
solution to this is to add “entropy” smoothing. That is, to replace the loss
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with

l(xk, yk;F ) = �F (xk, yk) + max
µ2M

 
✓k
F

· µ+ ✏
X

↵

H(µ
↵

)

!
, (1.12)

where H(µ
↵

) = �
P

y↵
µ
↵

(y
↵

) logµ
↵

(y
↵

). Hazan and Urtasun (2012) con-
sider a more general class of approximate entropies (where di↵erent factors
↵ can have varying weights ✏

↵

), and note that depending on the entropy
approximation and the divergence �, l2 can encompass both surrogate like-
lihood (Wainwright, 2006) and structured prediction types of objectives.
Meshi et al. (2012) consider approximating the inference problem of

max
µ2M ✓ ·µ with the smoothed problem max

µ2M ✓ ·µ+ ✏
P

↵

H(µ
↵

). They
show that message-passing algorithms for performing this maximization can
have guaranteed convergence rates and that di↵erence of the two objectives
is linear in ✏. A similar result can be shown that bounds the di↵erence of
the two losses, as stated in the following theorem.

Theorem 1.1. l and l1 are bounded by (where |y
↵

| =
Q

i2↵ |Yi

| is the number

of configurations of y
↵

)

l1(x, y, F )  l(x, y, F )  l1(x, y, F ) + ✏Hmax, Hmax =
X

↵

log |y
↵

|.

It is sometimes convenient to write l as

l(xk, yk;F ) = �F (xk, yk) +A(✓k
F

),

A(✓) = max
µ2M

✓ · µ+
X

↵

✏H(µ
↵

).

Intuitively speaking, here F (xk, yk) measures the score of the correct output
yk. Meanwhile, A(✓k

F

) measures the score of the “worst” configuration,
taking into account the discrepancy � and approximated using entropy
smoothing and the relaxation of M from Eq. 1.9. Thus, one would like
F (xk, yk) to be large, and A(✓k

F

) to be small, which is exactly what l

measures.

1.5 Message Passing Inference

Evaluating the loss defined in the previous section on a particular datum
requires performing an optimization to evaluate A(✓k

F

) for that datum. As
will be discussed in the following section, it is convenient to represent A in
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a dual form as a minimization.

Theorem 1.2. A(✓) can be represented in the dual form A(✓) = min
�

A(�, ✓),
where

A(�, ✓) = max
µ2N

✓ ·µ+✏
X

↵

H(µ
↵

)+
X

↵

X

�⇢↵

X

x�

�
↵

(x
�

) (µ
↵�

(y
�

)� µ
�

(y
�

)) ,

(1.13)

and N = {µ|
P

y↵
µ
↵

(y
↵

) = 1 8↵, µ
↵

(y
↵

) � 0 8↵, y
↵

} is the set of locally

normalized pseudomarginals. Moreover, for a fixed �, the maximizing µ is

given by

µ
↵

(y
↵

) =
1

Z
↵

exp

0

@1

✏

0

@✓(y
↵

) +
X

�⇢↵

�
↵

(y
�

)�
X

��↵

�
�

(y
↵

)

1

A

1

A , (1.14)

where Z
↵

is a normalizing constant to ensure that
P

y↵
µ
↵

(y
↵

) = 1. More-

over, the actual value of A(�, ✓) is

A(�, ✓) =
X

↵

✏ log
X

y↵

exp

0

@1

✏

0

@✓(y
↵

) +
X

�⇢↵

�
↵

(y
�

)�
X

��↵

�
�

(y
↵

)

1

A

1

A .

(1.15)

The problem remains of how to actually minimize A(�, ✓) with respect to
�. This is a smooth unconstrained optimization, which could in principle be
performed by a variety of generic optimization methods, for example gradi-
ent descent. However, there is now long precedent for optimizing objectives
like this through “message-passing” algorithms that more closely mirror the
structure of the graph (Wainwright and Jordan, 2008).
Consider doing coordinate descent. Danskin’s theorem states that taking

the derivative of A(�, ✓) with respect to an element �
↵

(y
�

) will recover the
constraint that this multiplier enforces, namely that

dA(�, ✓)

d�
↵

(y
�

)
= µ

↵�

(y
�

)� µ
�

(y
�

),

where µ is as defined in Eq. 1.14.
Thus, if one can find a set of multipliers such that all marginalization

constraints are satisfied, the gradient of A(�, ✓) with respect to � is zero,
meaning the global optimum would have been found. In practice, such a
solution cannot usually be found in closed-form, and one resorts to iterative



1.6 Joint Learning and Inference 9

methods. Suppose, however, that one could adjust the values of a subset
of multipliers �

↵

(x
�

) to enforce the corresponding set of constraints, while
leaving other multipliers fixed. This would mean A(�, ✓) is optimal in the
adjusted multipliers, for the fixed values of the non-adjusted multipliers.
Thus, an iterative process that repeatedly adjusts blocks of multipliers like
this constitutes a block coordinate descent scheme.
Di↵erent sizes of “blocks” are possible, ranging from a single set of

multipliers from a region ↵ to a subregion �, to subtrees of the original graph
(Sontag and Jaakkola, 2009). Here, we consider an intermediate strategy,
where, given some region ⌫, all multipliers �

↵

(y
⌫

), with ↵ � ⌫ are adjusted
simultaneously. This is essentially what is done in the parent-child algorithm
(Heskes, 2006) and the “star” update of Meshi et al. (2012), albeit with
slightly less general conditions on the graph structure than used here.

Theorem 1.3. Suppose that, for all ⌘ � ⌫ simultaneously, we set �0
⌘

(y
⌫

) =
�
⌘

(y
⌫

) + �
⌘

(y
⌫

), where

�
⌘

(y
⌫

) =
✏

1 +N
⌫

0

@logµ
⌫

(y
⌫

) +
X

⌘

0�⌫

logµ
⌘

0
⌫

(y
⌫

)

1

A� ✏ logµ
⌘⌫

(y
⌫

). (1.16)

and N
⌫

= |{⌘|⌘ � ⌫}|. Then, if µ0 denotes the marginals after update, the

marginalization conditions µ0
⌘⌫

(y
⌫

) = µ0
⌫

(y
⌫

) will hold. Moreover, each will

be proportional to the geometric mean of all marginals considered, i.e.

µ0
⌘⌫

(y
⌫

) = µ0
⌫

(y
⌫

) /

0

@µ
⌫

(y
⌫

)
Y

⌘

0�⌫

µ
⌘

0
⌫

(y
⌫

)

1

A
1/(1+N⌫)

, (1.17)

1.6 Joint Learning and Inference

Explicitly writing the problem of minimizing the empirical risk (Eq. 1.4)
with respect to F using the final loss (Eq. 1.12) gives the optimization of

min
F

R(F ) = min
F

X

k

h
�F (xk, yk) +A(✓k

F

)
i

= min
F

X

k

"
�F (xk, yk) + max

µ2M

 
✓k
F

· µ+ ✏
X

↵

H(µ
↵

)

!#
,

which takes the form of a saddle-point problem, since one is minimizing with
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respect to F , but maximizing with respect to all the inference variables. One
could conceivably solve this through an algorithm for direct saddle-point
optimization (Nedi and Ozdaglar, 2009), but this is less convenient than a
joint minimiztion.
However, as shown in the previous section, A(✓) has a dual representa-

tion as A(✓) = min
�

A(�, ✓). Thus, one can instead write the problem of
minimizing the empirical risk as

min
F

R(F ) = min
F

min
{�k}

X

k

h
�F (xk, yk) +A

⇣
�k, ✓k

F

⌘i
, (1.18)

where �k is the vector of messages corresponding to datum k. Meshi et al.
(2010) pursue an optimization like Eq. 1.18, though without entropy smooth-
ing. They learn linear weights through iteratively updating �k for a single
datum k, and then taking a stochastic gradient step with respect to weights.
Similarly, but including entropy smoothing, Hazan and Urtasun (2012) learn
linear weights, alternating between message-passing updates to {�k}, and
gradient updates to weights.
This chapter builds on this previous work in two ways. As before, op-

timization alternates between updating the energy F and the messages �.
However, here it is observed that, given a fixed set of messages, the prob-
lem of optimizing F with respect to an individual factor f

↵

is equivalent to
solving a logistic regression problem with “bias” terms determined by the
current messages added to each datum. There are two possible reasons such
an observation might be useful. First, one can optimize the empirical risk
“all the way” for fixed messages, rather than taking a single gradient step.
This allows one to use a range of standard optimization methods, possibly
speeding up convergence. Second, it is possible to use nonlinear functions
f
↵

, provided only that some algorithm exists to minimize a logistic loss with
respect to that function class. Thus, one can easily use, e.g., decision trees
in structured prediction, with no need to develop new specialized learning
algorithms.

1.7 Logistic Regression

In traditional linear logistic regression, one is given a dataset (x1, y1), ..., (xN , yN ),
where xk 2 RN , and yk 2 {1, 2, ..., L}. Then, the logistic regression opti-
mization is to find

max
W

X

k

"
(Wxk)

y

k � log
X

y

exp(Wxk)
y

#
.
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Here, (Wx)
y

denotes the y-th component of the vector of “margins” Wx.
One interpretation of this optimization is fitting a conditional likelihood
with a probabilistic model of the form p(y|x;W ) / exp(Wx)

y

by maximum
conditional likelihood. Alternatively, it can simply be seen as a convex
surrogate for classification error.
To be used in structured prediction, two generalizations of this optimiza-

tion are needed. First, this chapter generalizes this to the case where the
mapping from the input x to margins is some arbitrary set of functions F.
Then, the optimization is

max
f2F

X

k

"
f(xk, yk)� log

X

y

exp f(xk, y)

#
.

Note that this is equivalent to the previous optimization if f(x, y) = (Wx)
y

,
i.e. that F is the set of linear functions.
The second generalization is to add a “bias” term bk corresponding to each

datum (xk, yk). This is simply a term given with the dataset that biases the
set of margins in a given direction. With these in place, the optimization
becomes

max
f2F

X

k

"
f(xk, yk) + bk(yk)� log

X

y

exp
⇣
f(xk, y) + bk(y)

⌘#
.

This loss can be solved under various function classes (albeit sometimes
only to a local maximum).

1.8 Reducing Structured Learning to Logistic Regression

This section presents the main technical result of the chapter, namely that
the problem of minimizing Eq. 1.18 with respect to f

↵

is equivalent to a
logistic regression problem.

Theorem 1.4. If f⇤
↵

is the minimizer of Eq 1.18 for fixed messages �, then

f⇤
↵

✏
= argmax

f↵

X

k

"
f
↵

(xk, yk
↵

) + bk
↵

(yk
↵

)� log
X

y↵

exp
⇣
f
↵

(xk, y
↵

) + bk
↵

(y
↵

)
⌘#

,

(1.19)
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Algorithm 1.1 Structured learning via Logistic Regression

1. For all k, ↵, initialize �

k(y↵) 0.

2. Repeat until convergence:

(a) For all k, for all ↵, set the bias term to

b

k
↵(y↵) 

1

✏

0

@�(yk
↵, y↵) +

X

�⇢↵

�

k
↵(y�)�

X

��↵

�

k
�(y↵)

1

A
.

(b) For all ↵, solve the logistic regression problem

f↵  argmax
f↵2F↵

KX

k=1

"
f↵(x

k
, y

k
↵) + b

k
↵(y

k
↵)� log

X

y↵

exp
⇣
f↵(x

k
, y↵) + b

k
↵(y↵)

⌘#
,

(c) For all k, for all ↵, form updated parameters as

✓

k(y↵) ✏f↵(x
k
, y↵) +�(yk

↵, y↵).

(d) For all k, perform a fixed number of message-passing iterations to update �

k

using ✓

k. (Eq. 1.16)

where the set of biases are defined as

bk
↵

(y
↵

) =
1

✏

0

@�(yk
↵

, y
↵

) +
X

�⇢↵

�
↵

(y
�

)�
X

��↵

�
�

(y
↵

)

1

A . (1.20)

The proof of this theorem, which is given in the appendix, essen-
tially consists of just substituting the value of A(�, ✓) from Eq. 1.15 intoP

k

⇥
�F (xk, yk) +A

�
�k, ✓k

F

�⇤
and performing some manipulations.

Using this result, learning can simply alternate between message-passing
updates (which minimize 1.18 with respect to �) and logistic regression
updates to f

↵

(which minimize with respect to F ). Algorithm 1.1 summarizes
this approach.

1.9 Function Classes

All the function classes considered in this paper assume that the input vector
x has a subvector x

↵

corresponding to each factor ↵. Then the function f
↵

for factor ↵ will depend on x only through x
↵

. Thus, through a slight abuse
of notation, it is convenient to write f

↵

(x, y
↵

) as f
↵

(x
↵

, y
↵

) to emphasize
that it only depends on the subvector x

↵

.
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(a) Step 1: Solve Logistic Regression Problems (similar to piece-
wise learning)
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(b) Step 2: Update Messages
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3

4

1 2 3 4

(c) Step 3: Solve biased logistic regression problems

Figure 1.3: An example of learning on the graph from Fig. 1.2

1.9.1 Zero

For comparison purposes, the experiments will sometimes use the set F
↵

of
functions that just consists of the “zero” function

f
↵

(x
↵

, y
↵

) = 0.
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(a) Step 4: Update Messages
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(b) Step 5: Solve biased logistic regression problems

Figure 1.4: An example of learning (continued)

As there is only a single element f
↵

in F
↵

, optimizing a logistic loss is trivial.

1.9.2 Constant

Another simple class of functions is the set of “constant” functions

f
↵

(x
↵

, y
↵

) = f
↵

(y
↵

)

that do not depend on x
↵

. These can be thought of simply as a table of
values, one for each configuration y

↵

. Algorithmically, this class can be
optimized over by fitting a linear function (as described in the following
subsection) with single constant feature.
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1.9.3 Linear

The most popular set of potential functions to be used in structured predic-
tion is the linear functions. If f

↵

2 F
↵

,

f
↵

(x
↵

, y
↵

) = (Wx
↵

)
y↵ , (1.21)

for some matrix W . Here, Eq. 1.21 should be understood as multiplying the
vector x

↵

with the matrix W , and then selecting the component correspond-
ing to y

↵

.
Optimizing a logistic loss under this function class can be easily done by

gradient-based methods that optimize over W . The following experiments
use limited-memory BFGS to perform this optimization.

1.9.4 Boosted Decision Trees

Trees, or ensembles of trees, are another popular choice of potential function
(Shotton et al., 2009; Gould et al., 2008; Xiao and Quan, 2009; Ladicky et al.,
2009; Winn and Shotton, 2006; Nowozin et al., 2011; Schro↵ et al., 2008).
Here, these are learned following the basic strategy of gradient boosting
(Friedman, 1999). The basic idea is to repeatedly induce decision trees to
reduce the logistic loss

L
k

(f
↵

) = f
↵

(xk
↵

, yk
↵

) + bk
↵

(yk
↵

)� log
X

y↵

exp
⇣
f
↵

(xk
↵

, y
↵

) + bk
↵

(y
↵

)
⌘
.

This is done by initializing f
↵

(x
↵

, y
↵

) = 0 and then repeating the following
steps:

1. For each datum calculate the gradient of the loss gk(y
↵

) = dL
k

/df
↵

(xk
↵

, yk
↵

)

2. Induce a regression tree t to minimize
P

k

P
y↵

�
gk(y

↵

)� t(xk
↵

, yk
↵

)
�2

.

3. Leaving the split points of t fixed, adjust the values of the leaf nodes (via
L-BFGS) to minimize the empirical risk

P
k

L
k

(f
↵

+ t).

4. Multiply t by a step length ⌫ and add it to the ensemble as

f
↵

(x
↵

, y
↵

) f
↵

(x
↵

, y
↵

) + ⌫ ⇥ t(x
↵

, y
↵

).

Several details are needed to fully describe the method:
First, note the a single regression tree t is induced for all classes, rather

than inducing one tree for each class, as is more common. To do this, a tree
needs to be induced to minimize a multivariate squared loss. This can be
written as finding t to minimize

P
k

||gk � t(xk
↵

)||2 where gk and t(xk
↵

) are
vectors of the values gk(y

↵

) and t(xk
↵

, y
↵

) respectively. As is typical when
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fitting regression trees, this is done greedily: the algorithm repeatedly picks
a dimension and split point to divide the data into two groups, such that the
sum of squared distances of all points to the mean of gk in the corresponding
group is minimized. Implemented naively, this would require on the order
of DinK

2Dout operations2, where K is the number of data and Din is the
number of input dimensions, and Dout is the number out output dimensions.
However, exploiting a recursion in the structure of the costs can reduce this
to the order of DinK(logK +Dout) operations3.
Second, when inducing the tree, splits are only considered that leave at

least 1% of the original data in each leaf node. Nodes are not split at all if
they contain less than 2.5% of the original data.
Finally, two heuristics are borrowed from stochastic gradient boosting.

When inducing a tree in step 2 above, and also when adjusting the values
of the leaf nodes in step 3, only a random subset of 10,000 elements of
the data are used. (The same subset for both sets, but randomly selected
for each iteration.) This greatly speeds up computation, and induces some
randomness into the selected trees. Finally, a step size of ⌫ = .25 is used,
which compensates for the randomness and improves test-set performance.
A total of 200 boosting iterations are performed.

1.9.5 Multi-Layer Perceptrons

Multi-Layer perceptrons are also sometimes used as potential functions (He
et al., 2004; Silberman and Fergus, 2011). These experiments use a simple
multi-layer perceptron with a single hidden layer, which can be written as

f
↵

(x
↵

, y
↵

) = (W�(V x
↵

))
y↵ .

This can be understood as multiplying the input x
↵

by a matrix V and pass-
ing it through the “sigmoid” function � (that applies a tanh elementwise) to
obtain a hidden representation �(V x

↵

). W maps this hidden representation
to the ouput space. In all experiments, the hidden representation has 100
elements. To fit a logistic loss, stochastic gradient descent is used with mini-
batches of size 100, and a step size of 0.25 for factors corresponding to single
variables, and 0.05 for pairs. A momentum constant of .9 is used, meaning
each step taken is a combination of .9 of the last step and .1 of the current
gradient.

2. There are K unique split points in each of the D

in

dimensions, and checking the cost
of each can be done with KD

out

operations.
3. Here, D

in

K logK is the cost of sorting each input dimension, and after sorting, all split
points in each single input dimension can be evaluated in KD

out

time.
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Of course, gradient methods will only find a local optimum of the logistic
loss. To at least guarantee improvement in each iteration, parameters are
initialized to the those from the previous iteration.

Linear Boosting MLP
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Figure 1.5: Training (dashed) and test (solid) error rates as a function of the
number of learning iterations for each combination of univariate (rows) and pairwise
(columns) potential functions.

1.10 Example

This section presents a simple example of learning using the Stanford
Background dataset (Gould et al., 2009), split into a training set of 572 and
a test set of 143 images, each of resolution roughly 320 x 240. For each pixel,
41 univariate features were computed, including the RGB value, the x and
y horizontal position, normalized to [0,1], and a 36 component Histogram of
Oriented Gradients (Dalal and Triggs, 2005). There are 3 pairwise features,
consisting of a constant of 1, the l2 distance of the RGB components of the
two pixels, and the output of a Sobel edge filter. Images were reduced to
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Zero Constant Linear Boosting MLP

Zero .853 / .863 .641 / .673 .553 / .593 .470 / .483 .497 / .518

Constant .769 / .793 .640 / .673 .553 / .593 .470 / .485 .497 / .518

Linear .322 / .345 .304 / .329 .283 / .304 .272 / .296 .272 / .296

Boosting .289 / .331 .259 / .304 .249 / .296 .239 / .287 .239 / .284

MLP .262 / .310 .226 / .281 .216 / .280 .210 / .271 .209 / .272

Table 1.1: Train / Test Error rates for each combination of univariate (rows) and
pairwise (columns) potential functions.

20% resolution before computing features.
Learning proceeds through a set of iterations. In each learning iteration,

the univariate potential function is updated, followed by 25 message-passing
iterations (each of which passes over the entire image from top-left to bottom
right, then in the reverse order). This is followed by an update to the pairwise
potentials, and another 25 message-passing iterations. There were 25 total
learning iterations.
The univariate training and test error rates are shown in Fig. 1.5 and

Table 1.1. It is easy to see that more powerful potential functions lead to
lower training errors, but this is somewhat o↵set by more overfitting.

1.11 Conclusions

This chapter builds on two streams of previous work for structured learning.
In the first, the likelihood is replaced with a piecewise (Sutton and Mccallum,
2009) or pseudolikelihood approximation. This decomposes the learning
objective into a sum of local objectives. These can be optimized e�ciently,
and make it possible to use nonlinear function classes, such as trees or
multi-layer perceptrons. The downside of these training methods is that
the approximation to the likelihood can sometimes be weak, leading to poor
performance of the learned model in the face of joint prediction.
The second stream of related research is based on phrasing structured

learning with linear predictors as a joint optimization of inference messages
and model parameters (Hazan and Urtasun, 2012; Meshi et al., 2010),
alternating between optimization of each. These optimize a loss that deals
with approximate inference in a principled way, but are fairly specific to
linear energies.
The main result here is that, when pursing this latter strategy, optimizing

model parameters with fixed inference messages leads to a set of logistic
regression problems, each biased by the current messages. This yields an al-
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gorithm alternating between message-passing updates and logistic regression
problems. Given the high degree of similarity between logistic regression and
piecewise training, one can view this as using message-passing to iteratively
tighten a piecewise-style learning objective towards better joint prediction.
Additionally, it is easy to use any function class over which a logistic loss
can be fit, such as ensembles of trees or multi-layer perceptrons.
Future work should understand the convergence rates of a procedure that

alternates between message-passing an logistic regression updates. Given
the existing results on convergence rates for this style of message-passing
inference (Meshi et al., 2012) and standard results for convex optimization,
this could lead to joint convergence rates.
Another possible extension of this procedure would be to consider more

general entropy approximations. That is, one might extend the approach
described here to the case where the entropy smoothing takes the form ofP

↵

✏
↵

H(µ
↵

), with di↵erent entropy weights ✏
↵

for di↵erent regions ↵. This
would allow the use of this style of algorithm for so-called ”surrogate likeli-
hood” (Wainwright, 2006) training, in which the likelihood is approximated
using an algorithm like loopy belief propagation. Now, if ✏

↵

> 0 for all ↵,
this extension is trivial. However, standard entropy approximations involve
the use of negative weights, where ✏

↵

< 0 for some ↵. These terms introduce
non-convexity, which defeats obvious extensions of the method described
here.

Appendix: Proofs

This appendix contains proofs of all the main results of the paper.
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Boundedness of Entropy Smoothing

Proof of Theorem 1.1. We can write

l(x, y;F )� l1(x, y;F ) = �F (x, y) + max
µ2M

 
✓ · µ+

X

↵

✏H(µ
↵

)

!

+F (x, y)�max
µ2M

✓ · µ

= max
µ2M

 
✓ · µ+

X

↵

✏H(µ
↵

)

!
�max

µ2M
✓ · µ

= ✓ · µ0 � ✓ · µ⇤ +
X

↵

✏H(µ0
↵

)

 ✏
X

↵

log |y
↵

|.

where we have defined µ⇤ = argmax
µ2M ✓ · µ and µ0 = argmax

µ2M ✓ · µ +
✏
P

↵

H(µ
↵

). The last line follows from the fact that ✓ · µ⇤ � ✓ · µ0, and that
H(µ0

↵

)  log |y
↵

|.

Dual Representation of A

This section presents a proof which requires the following standard result.

Lemma 1.5. The conjugate of the entropy is the “log-sum-exp” function.

Formally,

max
p

:
P

i pi=1,pi�0
✓ · p� ✏

X

i

p
i

log p
i

= ✏ log
X

i

exp
✓
i

✏
.

Moreover, the maximizing p is given by

p =
exp(✓/✏)P
i

exp(✓
i

/✏)

Proof of Theorem 1.2. Firstly, we transform the optimization of A into the
following form, where we use a set N to denote the set of locally normalized
distributions, but explicitly enforce marginalization constraints.

A(✓) = max
µ2N

✓ · µ+ ✏
X

↵

H(µ
↵

) (1.22)

s.t. µ
↵�

(y
�

) = µ
�

(y
�

) 8� ⇢ ↵, y
�

(1.23)

Next, if one introduces a set of Lagrange multipliers
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� = {�
↵

(y
�

), 8� ⇢ ↵, y
↵

},

one can write A in the form

A(✓) = max
µ2N

min
�

✓ · µ+ ✏
X

↵

H(µ
↵

) (1.24)

+
X

↵

X

�⇢↵

�
↵

(x
�

)(µ
↵�

(y
�

)� µ
�

(y
�

)). (1.25)

By Sion’s theorem (Sion, 1958), it is possible to interchange the maximum
and minimum. Thus, if we define

A(�, ✓) = max
µ2N

✓ · µ+ ✏
X

↵

H(µ
↵

) (1.26)

+
X

↵

X

�⇢↵

�
↵

(x
�

)(µ
↵�

(y
�

)� µ
�

(y
�

)), (1.27)

we can represent A(✓) simply as A(✓) = min
�

A(�, ✓).
Now, we can re-write this objective as

X

↵

0

@
X

y↵

✓(y
↵

)µ(y
↵

) +
X

↵

X

�⇢↵

�
↵

(x
�

)(µ
↵�

(y
�

)� µ
�

(y
�

))

1

A+ ✏
X

↵

H(µ
↵

)

(1.28)

=
X

↵

0

@
X

y↵

0

@✓(y
↵

) +
X

�⇢↵

�
↵

(x
�

)�
X

��↵

�
�

(x
↵

)

1

Aµ
↵

(y
↵

) + ✏H(µ
↵

)

1

A .

(1.29)

It remains to actually calculate the µ that maximizes Eq. 1.27. The key
observation here is that the variables µ(y

↵

) corresponding to each factor
can be optimized independently. If we consider an arbitrary factor ↵, the
problem is to maximize

max
µ↵

X

y↵

✓(y
↵

)µ
↵

(y
↵

) + ✏H(µ
↵

) (1.30)

+
X

�⇢↵

�
↵

(x
�

)µ
↵�

(y
�

)�
X

��↵

�
�

(x
↵

)µ
↵

(y
↵

), (1.31)

s.t.
X

y↵

µ
↵

(y
↵

) = 1 (1.32)

µ
↵

(y
↵

) � 0 (1.33)
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We can re-write this as

max
µ↵

X

y↵

0

@✓(y
↵

) +
X

�⇢↵

�
↵

(x
�

)�
X

��↵

�
�

(x
↵

)

1

Aµ
↵

(y
↵

) + ✏H(µ
↵

) (1.34)

s.t.
X

y↵

µ
↵

(y
↵

) = 1 (1.35)

µ
↵

(y
↵

) � 0 (1.36)

Using the above lemma, we see that the solution is

µ
↵

(y
↵

) / exp

0

@1

✏

0

@✓(y
↵

) +
X

�⇢↵

�
↵

(x
�

)�
X

��↵

�
�

(x
↵

)

1

A

1

A , (1.37)

with a corresponding function value of

✏ log
X

y↵

exp

0

@1

✏

0

@✓(y
↵

) +
X

�⇢↵

�
↵

(x
�

)�
X

��↵

�
�

(x
↵

)

1

A

1

A . (1.38)

Message-Passing Update Equations

Proof of Theorem 1.3. It is not hard to see that, after update, the new
marginals will obey the conditions

µ0
⌫

(y
⌫

) / µ
⌫

(y
⌫

) exp

 
�1

✏

X

⌘�⌫

�
⌘

(y
⌫

)

!
(1.39)

µ0
⌘

(y
⌘

) / µ
⌘

(y
⌘

) exp

✓
1

✏
�
⌘

(y
⌫

)

◆
. (1.40)

µ0
⌘⌫

(y
⌫

) / µ
⌘⌫

(y
⌫

) exp

✓
1

✏
�
⌘

(y
⌫

)

◆
. (1.41)

Now, if the marginals are updated as above then, for all ⌘ � ⌫
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µ0
⌘⌫

(y
⌫

) / µ
⌘⌫

(y
⌘

) exp

✓
log µ

⌫

(y
⌫

) +
P

⌘

0�⌫

logµ
⌘

0
⌫

(y
⌫

)

1 +N
⌫

� logµ
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(y
⌫

)

◆

(1.42)

= exp

0

@logµ
⌫

(y
⌫

) +
X

⌘

0�⌫

logµ
⌘

0
⌫

(y
⌫

)

1

A
1/(1+N⌫)

, (1.43)

which can be seen to be equal to Eq. 1.17. Similarly, for ⌫ itself,
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) exp
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which again is equal to Eq. 1.17.

Logistic Regression Reduction

Proof of Theorem 1.4. If we consider minimizing
P

k

⇥
�F (xk, yk) +A

�
�k, ✓k

F

�⇤

with respect to a single f
↵

, it is easy to see from Eqs. 1.2 and 1.15 that the
problem is

argmin
f↵2F↵
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substituting the definition of ✓k
F

as ✓k
F

(y
↵

) = f
↵

(xk, y
↵

) + �
↵

(yk
↵

, y
↵

), and
using the above set of biases, this is

argmin
f↵2F↵

X

k

"
�f
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(xk, yk) + ✏ log
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y↵

exp

✓
1

✏
f
↵

(xk, y
↵
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↵

(y
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)

◆#
.

As adding or multiplying by a constant does not a↵ect the minimizer, this
is

argmin
f↵2F↵

X
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"
�1

✏
f
↵

(xk, yk)� b
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exp
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.

Finally, observing that argmin g(1
✏

·) = ✏ argmin g(·), and that argmin�g(·) =
argmax g(·) gives the result.
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