
Parameter Learning with Truncated Message-Passing

Justin Domke
Rochester Institute of Technology

justin.domke@rit.edu

Abstract

Training of conditional random fields often takes the
form of a double-loop procedure with message-passing in-
ference in the inner loop. This can be very expensive, as the
need to solve the inner loop to high accuracy can require
many message-passing iterations. This paper seeks to re-
duce the expense of such training, by redefining the training
objective in terms of the approximate marginals obtained
after message-passing is “truncated” to a fixed number of
iterations. An algorithm is derived to efficiently compute the
exact gradient of this objective. On a common pixel label-
ing benchmark, this procedure improves training speeds by
an order of magnitude, and slightly improves inference ac-
curacy if a very small number of message-passing iterations
are used at test time.

1. Introduction
This paper focuses on learning graphical model pa-

rameters from data. One line of such research is based
on marginal inference, usually accomplished by iterating
“message-passing” updates until convergence occurs. Here,
one fits the model to optimize some loss function, measur-
ing how well predicted marginals agree with training data.
This approach remains quite computationally challenging,
as it requires re-solving the inference optimization in each
learning iteration. For this reason, the state of the art for
learned CRFs is generally to train a model at a significantly
reduced image resolution[15, 13].
This paper identifies and resolves a major cause of this

computational expense. The starting point is two observa-
tions (Section 3). First, during training, a tight convergence
threshold on inference is necessary, as otherwise the com-
puted loss gradient may not be a descent direction (Fig. 1).
This tight threshold means that many message-passing iter-
ations can be necessary, greatly slowing learning. However,
at inference time, an extremely loose convergence threshold
is sufficient to give good results (Table 2). Why spend so
much effort in the learning stage exploring convergence lev-
els that are irrelevant to the performance of the final model?

Our proposed solution is a modification of the learning
objective. Existing loss functions are defined assuming in-
ference has completely converged. If a loose convergence
threshold is used, one obtains an inexact loss, and an inex-
act gradient. (A technical point should be emphasized here.
The inexact loss and inexact gradient are inexact “in differ-
ent ways”. The inexact gradient is not the gradient of the
inexact loss.)
This paper defines the loss function in terms of the ap-

proximate inference results obtained after message passing
is “truncated” to a finite number of iterations. Computing
the value of this loss function is trivial– simply perform the
chosen number of message-passing iterations, and use the
estimated marginals in place of the fully converged ones.
One can efficiently compute the exact gradient, using an al-
gorithm based on reverse-mode automatic differentiation.
With previous methods, truncating message-passing

leads to an inaccurate gradient, and learning failure. The
proposed solution gives an exact gradient for any number
of message-passing iterations.
Experimental results show two benefits. First, in learn-

ing, an order of magnitude speedup occurs, as the number
of message passing iterations can be reduced from hundreds
to just a few (e.g. 5 − 20) with negligible loss of accuracy.
Secondly, a small improvement in accuracy occurs in some
circumstances. Namely, if one will only use a very small
number (e.g. 1 − 5) of message-passing iterations at test
time, the proposed method will be somewhat more accurate
than a model fit for full convergence.

2. Background
2.1. Graphical Models and Inference
Consider a pairwise conditional random field (CRF) of

the form

p(y|x) =
1

Z(x)

∏

i

ψ(yi,x)
∏

(i,j)∈N

ψ(yi, yj,x),

where N is the set of all pairs in the graphical model,
ψ(yi,x) and ψ(yi, yj ,x) are arbitrary positive functions,

2937



and Z(x) is a normalizing constant.
The goal of inference is to produce univariate and pair-

wise marginals, p(yi|x) and p(yi, yj|x). Though comput-
ing these is intractable in high-treewidth models, they can
be approximated by various methods. The focus here is on
tree-reweighted (TRW) belief propagation[19]. In this al-
gorithm one iterates the message updates

mt→s(ys) ∝
∑

yt

ψ(yt,x)ψ(yt, ys,x)1/ρts ·

1
ms→t(yt)

∏

v∈N(t)

mv→t(yt)ρvt ,

over all pairs (t, s) ∈ N . Here N(t) = {s : (t, s) ∈ N},
and ρts denotes the “appearance probability” of edge (t, s).
In the case that all edge appearance probabilities are one,
this reduces to loopy belief propagation. After messages
have converged, approximate marginals µ can be obtained
via

p(yt|x̂) ≈ µ(yt|x) ∝ ψ(yt)
∏

v∈N(t)

mv→t(yt)ρvt .

Bivariate marginals can be obtained by a similar, but some-
what more complex formula. One advantage of TRW is that
if appropriate edge appearance probabilities are used, the
algorithm is maximizing a concave function, and so conver-
gence to a local optima is impossible. However, the mes-
sages may still fail to converge at all. Convergence in prac-
tice can be obtained by “damping” of the messages[18, p.
174]. On certain graphs, such as 4-connected grids, a care-
ful ordering of the message-updates can guarantee conver-
gence [10].

2.2. Loss Functions
Here, we are interested in fitting the parameters of a CRF

to optimize some loss function, quantifying how accurate
the model is on training data. If θ are the parameters of the
distribution, the objective function is

∑

(x̂,ŷ)

L(θ, ŷ, x̂).

Loss functions will be defined in terms of the approxi-
mate marginals µ. The experiments will focus on the uni-
variate likelihood[8]

L(θ, ŷ, x̂) = −
∑

s

log µ(ŷs|x̂).

Other marginal-based loss functions include the smoothed
univariate classification accuracy[7] and the surrogate
likelihood[17]. Note that not all loss functions are given
in terms of approximate marginals. In particular, the pseu-
dolikelihood can be computed directly from the factors ψ

without inference, though it generally performs worse than
inference-based loss functions in practice, sometimes dra-
matically so [16, 9, 14].

2.3. Gradient Calculation
A technical problem that emerges here is calculating the

gradient of the loss with respect to the factors ψ(ys, x̂) and
ψ(ys, yt, x̂), namely

dL

dψ(ys, x̂)
and

dL

dψ(ys, yt, x̂)
, (1)

taking into account the dependence of the predicted
marginals µ on the factors ψ.
There are three major existing approaches to the calcu-

lating the derivatives dL/dψ(·). The simplest is that, when
using the surrogate likelihood, the loss gradient is available
in closed form, given µ [17].
A second approach, applicable to a range of loss func-

tions, is to apply implicit differentiation, leading to a matrix
inversion problem[4]. Here, one performs inference, and
then solves a large sparse linear system. A disadvantage of
this approach is that solving this linear system can, in some
cases, be more expensive than inference itself.
A third approach is Back-Belief Propagation (BBP)[5].

This is an algorithm based on applying reverse-mode au-
tomatic differentiation (RAD) to loopy belief propagation.
BBP takes advantage of special properties of RAD when
applied to fixed-point processes [11]. Namely, one need
not store all intermediate values, as in standard automatic
differentiation. The algorithm derived in this paper is es-
sentially a tree-reweighted variant of BBP, generalized to
the “truncated” setting where messages may not have fully
converged.
A technical note: it can cause some confusion to pursue

the derivatives in Eq. 1, since in practice the factors will
usually be parameterized by some vector θ. Given the pre-
vious derivatives, it is easy to calculate the parameter gra-
dient dL/dθ via the chain rule1. This abstraction allows us
to neglect the dependence of ψ on x, which is application-
specific, and often complex.
This paper explores the following issue: All three of

the above methods assume that message-passing is iter-
ated until convergence is exact. In practice, a reasonably
tight convergence threshold is adequate. However, as we
will see, the choice of this threshold can be quite problem-
atic. Too loose, and inaccuracy in the gradient can cause

1Namely,

d

dθ
L(θ, ŷ, x̂) =

X

s

X

ys

dL(θ, ŷ, x̂)

dψ(ys , x̂)

dψ(ys, x̂)

dθ

+
X

(s,t)∈N

X

ys,yt

dL(θ, ŷ, x̂)

dψ(ys, yt, x̂)

dψ(ys, yt, x̂)

dθ
.

2938



0 20 40 600.1

0.12

0.14

0.16

0.18

Learning Iterations

Tr
ai

ni
ng

 L
os

s

0 20 40 600

100

200

300

400

Learning Iterations

M
es

sa
ge

 P
as

si
ng

 It
er

at
io

ns

0 0.5 1 1.5 2
x 104

0.1

0.12

0.14

0.16

0.18

Learning Time (seconds)

Tr
ai

ni
ng

 L
os

s

 

 

10 1 convergence
10 2 convergence
10 3 convergence
10 4 convergence

Figure 1. Learning with different message-passing convergence thresholds. These experiments use L-BFGS to optimize the univariate
likelihood with tree-reweighted belief propagation on the MSRC-9 dataset. While a relatively tight threshold is necessary to avoid bad
search directions, this results in hundreds of message passing iterations per learning step, greatly slowing the learning process.

Dataset MSRC-9
# Classes 9

# Images Train 120
# Images Test 120
Resolution 213x320
Model

∏
i ψ(yi,x)

∏
(i,j)∈N ψ(yi, yj)

Linear Factors ψ(yi = a,x) = wa · fi(x)

Features fi

Name # Components
Constant 1
Position 2
RGB 3
HoG 36
Total 42

Parameters

Type # Parameters
vertical ψ(yi, yj) 81 = 9 · 9
horizontal ψ(yi, yj) 81 = 9 · 9

wa 378 = 42 · 9
Total 540

Table 1. A summary of the experimental setting.

a bad search direction in the learning optimization. How-
ever, when made tight enough to avoid this problem, a huge
number of message-passing iterations can result.

3. Motivating Example
Table 1 summarizes the experimental setting for all ex-

periments in this paper, using the MSRC-9 dataset. While
previous work on this dataset[12, 15] makes clear that so-
phisticated features are key to maximum performance, in
the interests of experimental transparency, only a small-
number of simple features are used here. These are a con-
stant of 1, the vertical and horizontal position of each pixel,
the RGB intensities of the pixel, and a histogram of oriented
gradients[2], computed over an 8 × 8 patch of pixels, using
the implementation of Dollar[3].
This section shows a example motivating why trunca-

tion might be helpful, comparing the performance of a tree-
reweighted variant of the back-belief propagation algorithm
(Section 4), with various convergence thresholds. Here, im-
ages are reduced to 25% resolution for speed. (The expense
of parameter learning at full resolution with existing meth-
ods is, of course, the motivation for this paper.)
Figure 1 shows the results. We see that a convergence

threshold of less than 10−3 is necessary, experimentally, to
avoid getting stuck at a suboptimal solution. However, us-
ing a tight convergence threshold means a very large num-
ber of message passing iterations is necessary in later learn-
ing iterations, meaning that learning becomes very slow.
However, in Table 2, we see a surprise. Take the param-

eters learned with a tight convergence threshold, and sim-
ply evaluate the loss with different thresholds. Here, con-
versely, a loose convergence threshold performs extremely
well.
Is it really necessary to spend hundreds of iterations in

the learning stage exploring convergence levels that are ir-
relevant to the performance of the final model? The above
results suggest that tight convergence is not necessary for
good inference results, but simply for an accurate gradient
estimate. A question naturally arises, then: consider the loss
that is computed with a loose convergence threshold. Exist-
ing methods do not find the gradient of this. However, is
it not possible to compute the exact gradient of this loss by
other means?

Evaluation of Final Parameters
Threshold Mean Iterations Loss Error

10−1 9.5 .101 .0336
10−2 59.2 .106 .0333
10−3 148.8 .107 .0335
10−4 368.4 .108 .0335

Table 2. Evaluation of the final parameters learned with a 10−4

threshold. When the parameters are actually to be used, a loose
convergence threshold is perfectly adequate.

2939



4. Truncated Fitting
Consider performing a given number of message updates

in a fixed order, followed by estimation of the marginals,
and then computation of one of the previous loss functions.
Each of these steps is differentiable, and so computing the
gradient of the loss with respect to model parameters can
be done, in principle, simply by application of reverse-
mode automatic differentiation[6]. These techniques trace
the execution of the original algorithm and then automati-
cally reverse-propagate derivatives of the final loss over the
execution trace, in time proportional to the original execu-
tion. Initial attempts to apply some standard autodiff tools
(specifically ADOL-C[1] and RAD[6]) suffered from pro-
hibitively poor performance, for two reasons. First, the
reverse-propagation step was approximately 10-20 times
slower than the manual method derived below, due to inter-
pretation overhead in the reverse-propagation step. Second,
autodiff tools lead to large memory requirements, due to
storing all intermediate computational values. The method
below only stores the computedmessagesms→t(yt), mean-
ing an order of magnitude lower memory usage.
For more efficiency, a manually derived method to

reverse-propagate derivatives is shown as Algorithms 1 and
2. Following Eaton and Ghahramani[5], we use the no-
tation of /da to denote a (possibly intermediate) derivative
of a with respect to the loss. Because the derivation is
quite tedious, details are postponed to the Appendix2. The
computational properties of Alg. 2 are now compared to
message-passing inference, back-belief propagation (BBP)
and a naive application of reverse-mode automatic differ-
entiation (RAD). Suppose there are a total of M pairs of
variables, each variable can take V possible values, and
message passing takes N iterations. Message-passing in-
ference will require at least on the order of MV 2N time,
depending on the density of the graph. The same time is
required for Alg. 2, BBP, and RAD. However, memory re-
quirements differ. Alg. 2 requires MV N storage. This is
less than RAD which, storing all intermediate values, will
require MV 2N storage. However, this is more than BBP,
which requires onlyMV .
In our implementation, the reverse-propagation step

took approximately twice the amount of time of forward
execution. The reverse-propagation algorithm makes use of
the following lemma for “back-propagating with respect to
normalization”:

If bi =
ai∑
j aj

, then

dL

dak
=

dL

dbk

1∑
j aj

−
∑

j

dL

dbj

aj(∑
j aj

)2 . (2)

2Our Matlab/C++ implementation will be made freely available for the
sake of reproducibility.

If steps involving the stack are omitted, and message-
passing is iterated until convergence, Algorithm 2 reduces
to a tree-reweighted variant of back-belief propagation[5].
Normal back-belief propagation follows from using ρ ts =
1.

Algorithm 1 Truncated tree-reweighted belief propagation
with message storing.
(Forward Propagation)
RepeatN times for all pairs (t, s):

• Push the messagesmt→s(ys) onto a stack.

• m0
t→s(ys) ←

∑

yt

ψ(yt)ψ(yt, ys)ρ−1
ts

∏

v∈N(t)

mv→t(yt)ρvt

ms→t(yt)

• mt→s(ys) ←
m0

t→s(ys)∑
y′

s
m0

t→s(y′
s)

(Calculate Predicted Marginals)

• µ0(ys) ← ψ(ys)
∏

v∈N(s)

mv→s(ys)ρvs

• µ(ys) ←
µ0(ys)∑
y′

s
µ0(y′

s)

• µ0(ys, yt) ← ψ(ys)ψ(yt)ψ(ys, yt)ρ−1
st ·

∏

v∈N(s)

mv→s(ys)
ρvs

mt→s(ys)

∏

v∈N(t)

mv→t(yt)
ρvt

ms→t(yt)

• µ(ys, yt) ←
µ0(ys, yt)∑

y′
s,y′

t

µ0(y′
s, y

′
t)

5. Experiments
These experiments compare “full fitting” (i.e. learning

based on running message passing to convergence and ap-
plying Alg. 2 without the stack as a tree-reweighted variant
of BBP) to “truncated fitting” with various numbers of iter-
ations. All algorithms used uniform edge-appearance prob-
abilities of ρ = .5 on a 4-connected grid.
The motivation for this paper is the expense of existing

methods for learning at high resolution. However, this very
issue makes comparison to previous methods challenging.
The set of experiments consider learning at low-resolution.
This makes it possible to run all methods until convergence
with multiple train/test splits, systematically comparing ac-
curacy. A second set considers the motivating setting of
learning at high resolution. Here, computational expense

2940



Algorithm 2 Truncated back tree-reweighted belief propa-
gation. (This is run after completion of message passing.)
(Initialize reverse-propagation structures.)

• Calculate loss L and partial derivatives dL/dµ

• Calculate dL/dµ0 from dL/dµ via Eq. 2.

• /dψ(ys) ← dL

dµ0(ys)
µ0(ys)
ψ(ys)

+
∑

v∈N(s)

∑

yv

dL

dµ0(ys, yv)
µ0(ys, yv)

ψ(ys)

• /dψ(ys, yt) ← 1
ρst

dL

dµ0(ys, yt)
µ0(ys, yt)
ψ(ys, yt)

• /dm0
v→s(ys) ← ρvs

dL

dµ0(ys)
µ0(ys)

mv→s(ys)
+

∑

t∈N(s)

∑

yt

(
ρvs − Iv=t

) dL

dµ0(ys, yt)
µ0(ys, yt)
mv→s(ys)

(Back-propagate predicted marginals)
Repeat N times for all pairs (t, s), in reverse order:

• Calculate /dm0
t→s from /dmt→s via Eq. 2.

• /dmv→t(yt)
+←

∑

ys

(ρvt − Iv=s)/dm0
t→s(ys)

m0
t→s(ys)

mv→t(yt)

• /dψ(yt)
+←

∑

ys

/dm0
t→s(xs)

m0
t→s(ys)
ψ(xt)

• /dψ(yt, ys)
+← 1

ρst
/dm0

t→s(ys)
m0

t→s(ys)
ψ(yt, ys)

• Overwritemt→s(xs) by pulling from the stack.
• /dmt→s(xs) ← 0

(Output Results)

• ReturnL,
dL

dψ(ys)
= /dψ(ys),

dL

dψ(yt, ys)
= /dψ(yt, ys).

prevents running full fitting until a highly accurate solution
is obtained with all methods. Instead, we compare how ef-
fectively different methods can reduce training loss with a
given amount of training time.
Though the purpose here is to improve speed– not

accuracy– the overall test errors of around 14.5% are in line
with recent work on this dataset[15, 12].

5.1. Low-Resolution
Here, image resolution reduced by a factor of four. Fea-

ture maps are computed on the original image, and then re-
duced by bilinear interpolation. Training and test errors are

Image Ground Truth

Truncated Fitting

Full Fitting

0 1 2 5 20
Figure 4. The (small) benefits of truncated training at test time. An
example image on which truncated fitting for a given number of
iterations gives different results from full fitting. (On many other
images, there is little visible difference.)

measured by randomly splitting the 240 training images into
half training and testing, averaging over five random splits.
Parameters are learned to optimize the univariate likelihood
using batch L-BFGS. Figure 2 summarizes the results, com-
paring the results of truncated fitting with a given number
of iterations, to traditional full fitting, with the number of
message-passing iterations fixed at evaluation time. We
were surprised to see that performing full fitting and then
truncating message-passing at test time performs quite well
(in terms of accuracy). If one will only use 2-3 iterations at
test time, there is a benefit to truncated fitting, but it is mod-
est. At higher numbers of iterations, performance is nearly
identical. However, due to the fact that full fitting must use
a huge number of message-passing iterations to achieve the
chosen convergence level of 10−4, it is far slower. Figure 3
shows example test images and results.

5.2. Medium Resolution
A second experiment considers the images with resolu-

tion reduced by a factor of two. In Figure 5, the training loss
is plotted as a function of the training time, with one day of
training time given to each method on an 8-core 2.26 Ghz
machine, with all cores used in parallel to compute the av-
erage loss over the 120 training images. After a full day of
computation, full fitting can only obtain a loss reached by
truncated fitting in around 4 hours. Truncated fitting with

2941



0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

iterations

Loss

 

 

(Train)

(Test)

truncated fitting
full fitting

0 10 20 30 40 500

0.05

0.1

0.15

0.2

iterations

Error

 

 

(Train)

(Test)

truncated fitting
full fitting

1 2 3 5 10 20 full0

0.5

1

1.5

2

2.5

3 x 104

iterations

Total training time (seconds)

Figure 2. Quantitative evaluation of truncated fitting against full fitting at low resolution, evaluated with various numbers of iterations. For
small numbers of test iterations, truncated fitting performs slightly better than full fitting. For larger numbers of iterations, the results are
almost the same. However, truncated fitting is much faster for learning.

0 5 10 15 20 250.2

0.4

0.6

0.8

1

trunc:1

trunc:5 trunc:20

full:10 4

full:10 3

full:10 2

training time (hours)

tra
in

in
g 

lo
ss

Figure 5. Training loss as a function of training time for high-
resolution images, comparing full fitting with various convergence
thresholds to truncated fitting with various numbers of message-
passing iterations. One marker is plotted for each iteration. Full
fitting with a threshold looser than 10−4 terminates early due to a
bad search direction. Yet, full fitting with a threshold of 10−4 is
slow to converge, due to the high computational cost per iteration.

one iteration rapidly reduces the loss, but becomes “stuck”,
presumably due to limits on the quality of inference avail-
able in one pass.

6. Discussion
This paper investigated the idea of fitting graphical mod-

els to optimize performance of a given message-passing al-
gorithm after a fixed number of iterations. An algorithm
was derived to compute the gradient, based on reverse-
mode automatic differentiation, but with memory require-
ments from the order of MV 2N to MV N , for M pairs
of variables with V possible values, and N passes of up-
dates. With this algorithm one can, in practice, reduce the

number of message-passing updates used for learning from
hundreds to tens, yielding an order of magnitude speedup.

References
[1] Automatic differentiation by overloading in C++.

http://projects.coin-or.org/ADOL-C.
[2] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005.
[3] P. Dollar. Piotr’s image & video toolbox for matlab.

http://vision.ucsd.edu/ pdollar/toolbox/doc/, 2010.
[4] J. Domke. Learning convex inference of marginals. In UAI,

2008.
[5] F. Eaton and Z. Ghahramani. Choosing a variable to clamp.

In AISTATS, 2009.
[6] D. Gay. Semiautomatic differentiation for efficient gradi-

ent computations. Technical Report, Sandia National Labs,
2004.

[7] S. Gross, O. Russakovsky, C. Do, and S. Batzoglou. Training
conditional random fields for maximum labelwise accuracy.
In NIPS, 2006.

[8] S. Kakade, Y. W. Teh, and S. Roweis. An alternate objective
function for Markovian fields. In ICML, 2002.

[9] S. Kumar, J. August, and M. Hebert. Exploiting inference
for approximate parameter learning in discriminative fields:
An empirical study. In EMMCVPR, 2005.

[10] T. Meltzer, A. Globerson, and Y. Weiss. Convergent message
passing algorithms - a unifying view. In UAI, 2009.

[11] B. A. Pearlmutter and H. E. Link. Algorithmic differentiation
through convergent loops. Technical Report, 2002.

[12] F. Schroff, A. Criminisi, and A. Zisserman. Object class seg-
mentation using random forests. In BMVC, 2008.

[13] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton
forests for image categorization and segmentation. In CVPR,
2008.

[14] C. Sutton and A. Mccallum. Piecewise training of undirected
models. In UAI, 2005.

[15] J. Verbeek and B. Triggs. Scene segmentation with condi-
tional random fields learned from partially labeled images.
In NIPS, 2008.

2942



Figure 3. Low resolution test images showing, in order, the ground-truth labeling (unlabelled regions black), truncated fitting with 0, 1, 2,
3, 5, 10, and 20 iterations, and full fitting. Truncated fitting with 10-20 iterations is very similar to full fitting. (Best in color.)

[16] S. V. N. Vishwanathan, N. Schraudolph, M. Schmidt, and
K. Murphy. Accelerated training of conditional random
fields with stochastic gradient methods. In ICML, 2006.

[17] M. Wainwright. Estimating the "wrong" graphical model:
Benefits in the computation-limited setting. Journal of Ma-
chine Learning Research, 7:1829–1859, 2006.

[18] M. Wainwright and M. Jordan. Graphical models, exponen-

tial families, and variational inference. Found. Trends Mach.
Learn., 1(1-2):1–305, 2008.

[19] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. A
new class of upper bounds on the log partition function.
IEEE Transactions on Information Theory, 51(7):2313–
2335, 2005.

2943


