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Graphical Models

• Markov Random Field / Factor Graph:

p(x) ∝ ∏
c

ψ(xc)
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Graphical Models

c1 = {1,2,3}, c2 = {3,4}, c3 = {4,5,6}

p(x) ∝ ∏
c

ψ(xc)

= ψ(x1,x2,x3)ψ(x3,x4)ψ(x4,x5,x6)
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Marginal Inference

• Want to recover p(Xi = xi ).

• Brute-force sum: Define p̂(x) = ∏c ψ(xc)

P(Xi = xi ) =
1

Z ∑
x1

... ∑
xi−1

∑
xi+1

...∑
xM

p̂(x)

Z = ∑
x1

...∑
xM

p̂(x)

• On trees, can do sums quickly by dynamic programming.

• Sum-product algorithm / belief propagation

• #P-hard

• Approximate: Tree-reweighted belief propagation (TRW)
• This paper: Same approximation as TRW, different algorithm.
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Motivation

• TRW Convergence rates can be very slow.

• If lucky, TRW = block coordate ascent on dual.

• TRW may fail to converge.

• Damping converges in practice, slower.
• Recent alternatives guarantee convergence.

[Hazan & Shashua 2009, Globerson & Jaakkola 2007b]

• Not claimed faster than TRW. TRW-S [Meltzer et al. 2009] is
an exception.

• This paper: use a quasi-newton method on dual.

• Line searches guarantee convergence.
• Hopefully, faster convergence.
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Ising Model

• xi ∈ {−1,+1}

• p(x) ∝ ∏ij exp
(

θ(xi ,xj )
)

∏i exp(θ(xi )
)

• θ(xi ) = αF xi , αF ∈ [−1,+1]

• θ(xi ,xj ) = αI xixj , αI ∈ [0,T ] for various T
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θ(xi ,xj ) = αI xixj , αI ∈ [0,1]
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θ(xi ,xj ) = αI xixj , αI ∈ [0,1]
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θ(xi ,xj ) = αI xixj , αI ∈ [0,3]
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θ(xi ,xj ) = αI xixj , αI ∈ [0,3]
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θ(xi ,xj ) = αI xixj , αI ∈ [0,3]
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θ(xi ,xj ) = αI xixj , αI ∈ [0,5]
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θ(xi ,xj ) = αI xixj , αI ∈ [0,5]
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θ(xi ,xj ) = αI xixj , αI ∈ [0,5]
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Wait a Second

Question: Why should I care about very accurately

computing approximate marginals!?

Answer: You might not.

One reason to care:

• Number of iterations TRW needs for reasonable results is not
easy to predict.
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Why I Care

Want to fit a CRF with some loss L(θ ) = M(µ(θ )).

Algorithm (Domke, 2010):

1. Get µ by running TRW with parameters θ .

2. Compute dM(µ)
dµ

3. Get µ+ by running TRW with parameters θ + r dM
dµ

4.
dL

dθ
≈

1

r

(

µ+−µ
)

Strong convergence needed for difference µ+−µ to be
meaniningful.
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Dual Decomposition with Two subproblems

max
x

f (x)+g(x)

• Can quickly and exactly maximize f (x)+a ·x.

• Can quickly and exactly maximize g(x)+b ·x.
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Dual Decomposition with Two subproblems

• Transform max
x

f (x)+g(x) to a constrained problem:

max
x,y

f (x)+g(y)

s.t. x = y

• Leads to dual problem:

min
λ

h(λ ), h(λ ) = max
x

f (x)+ λ ·x

+ max
y

g(y)−λ ·y
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Dual Decomposition with Two subproblems

min
λ

h(λ )

max
x

f (x)+ λ · x max
x

g(x)−λ · x
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Dual Decomposition with N subproblems

max
x

N

∑
i=1

fi(x)

• Can quickly and exactly maximize fi(x)+ai ·x, for all i .
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Dual Decomposition with N subproblems

• Transform max
x

∑
i

fi(x) to a constrained problem:

max
{xi }

∑
i

fi(xi)

s.t. xi =
1

N ∑
j

xj

• Leads to dual problem:

min
λ

h(λ ), h(λ ) = ∑
i

hi (λ )

hi (λ ) = max
xi

fi(xi )+ (λ i −
1

N ∑
i

λ j) ·xi
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Dual Decomposition with N subproblems

min
λ

h(λ )

max
x

f ′1(x,λ ) max
x

f ′2(x,λ ) max
x

f ′3(x,λ )

f ′i (x,λ ) = fi(xi )+ (λ i −
1

N ∑
i

λ j) ·xi
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Dual Decomposition with N subproblems

• Has been used extensively for MAP inference.

• h(λ ) is non-differentiable.

• For marginal inference, h(λ ) is differentiable, convex.
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Variational Inference

Can represent a graphical model in exponential family:

p(x;θ ) = exp
(

f(x) ·θ −A(θ )
)

, A(θ ) = log∑
x

exp
(

f(x) ·θ
)

Can compute A as [Wainwright and Jordan]

A(θ ) = max
µ∈M

θ ·µ +H(µ)

• M is marginal polytope (hard).

• H is entropy (hard).
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Variational Inference

Exact inference: A(θ ) = max
µ∈M

θ ·µ +H(µ)

TRW approximation: B(θ) = max
µ∈L

θ ·µ +∑
T

ρTH(µ(T ))

• L - is marginal polytope (easy)

• H(µ(T )) - entropy of marginals projected onto tree T (easy)

Our problem: how to compute B?
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Dual Decomposition for Marginal Inference

TRW approximation: B(θ) = max
µ∈L

θ ·µ +∑
T

ρTH(µ(T ))

Theorem (main result):

B(θ ) = min
{θT }

h({θ T}) s.t. ∑
T :a∈T

θT
a =θa

h({θ T}) = ∑
T

BT (θT )

BT (θT ) = max
µT∈MT

θT ·µT + ρTHT (µT )

BT (θ T ) is computable by running regular sum-product algorithm.
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Dual Decomposition for Marginal Inference

min
{θT }

h({θ T})

max
µT∈MT

f T (θT ,µT ) max
µT∈MT

f T (θT ,µT )

f T (θ T ,µT ) = θT ·µT + ρTHT (µT )
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Dual Decomposition for Marginal Inference



Introduction Dual Decomposition Experimental Results Conclusions

Dual Decomposition for Marginal Inference

Inference: Plug min
{θT }

∑
T

BT (θT ) into L-BFGS.

• Guarantees convergence. (Line searches)

• Fast convergence rates.
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Ising Model

• xi ∈ {−1,+1}

• p(x) ∝ ∏ij exp
(

θ(xi ,xj )
)

∏i exp(θ(xi )
)

• θ(xi ) = αF xi

• θ(xi ,xj ) = αI xixj
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Algorithms

Algorithms Compared:

• Dual Decomposition + L-BFGS

• TRW

• TRW with damping of 1/2 in the log-domain.
• TRW-S [Meltzer et al. 2009]

Max of 105 iterations allowed.



Introduction Dual Decomposition Experimental Results Conclusions

Dual Decomp vs. TRW
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Dual Decomp vs. TRW
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Dual Decomp vs. TRW
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Dual Decomp vs. TRW-damped
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Dual Decomp vs. TRW-damped
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Dual Decomp vs. TRW-damped
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Dual Decomp vs. TRW-S
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Dual Decomp vs. TRW-S
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Convergence

Convergence Level
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Conclusions

• Dual Decomposition

• Faster on “hard” problems or if strong convergence needed.

• Caveats

• Not really faster on “easy” problems.
• Restriction on tree distribution P(T ).
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Conclusions

Thank you

Graphical models toolbox: people.rit.edu/jcdicsa/
(Dual decomposition coming soon.)
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