
Statistical Machine Learning Notes 2

Overfitting, Model Selection, Cross Validation, Bias-Variance

Instructor: Justin Domke

1 Motivation

Suppose we have some data

TRAIN = {(x1, y1), (x2, y2), ..., (xN , yN)}

that we want to fit a curve to:
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Here, we want to fit a polynomial, of the form

y = w0 + w1x + w2x
2 + ... + wpx

p.

In these notes, we are interested in the question of how to choose p. For various p , we can
find and plot the best polynomial, in terms of minimizing the squared distance to all the
points (ŷ, x̂)

min
w

Ê
TRAIN

(

w0 + w1X + w2X
2 + ... + wpX

p − Y
)2

. (1.1)

We will refer to this mean-squared distance of squares distances as the training error.
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Ê
TRAIN

(

w0 + w1X + w2X
2 + ... + wpX

p − Y
)2
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The question we address in these notes is: what p do we expect to generalize best? Specif-
ically, we will imagine that we will get some new data TEST from the same distribution.
We want to pick p to minimize the same sum-of-squares difference we used for fitting to the
training data. This is called the test data.

Ê
TEST

(

w0 + w1X + w2X
2 + ... + wpX

p − Y
)2

Here, we see a simple example of the basic game of machine learning. It works like this:

• Input some data TRAIN.

• Fit some model to TRAIN.
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• Get some new data TEST.

• Test the model on the TEST.

In machine learning, one is generally considered to have “won” the game if one’s performance
on TEST is best. This is often in contrast to the attitude in statistics, where success is usually
measured in terms of if the model is close to the true model.

Our assumption here is that the elements of TRAIN and TEST are both “drawn from the
same distribution”. What this means is that there is some “true” distribution p0(x, y). We
don’t know p0, but we assume all the elements of TRAIN and TEST are both drawn from
it independently.

An example should make this clear. Suppose that x is a person’s height, and y is a person’s
age. Then (x, y) ∼ p0(x, y) means that we got x and y by showing up at a random house
on a random day, grabbing a random person, and measuring their height and age. If we got
TRAIN by doing this in Rochester, and TEST by doing this in Buffalo, then we would be
violating the assumption that TRAIN and TEST came from the same distribution.

Now, return to our example of choosing p. What will happen to the training error as p gets
bigger? Now, clearly, a larger p means more “power”, and so the training error will strictly
decrease. However, the high degree polynomials appear to display severe artifacts, that don’t
appear likely to capture real properties of the data. What is going wrong here?

2 The Bias-Variance Tradeoff

Let us return to our initial problem of trying to pick the right degree p for our polynomial.
The first idea that springs to mind is to pick that p that fits the data best. If we plot

min
w

Ê
TRAIN

(

w0 + w1X + w2X
2 + ... + wpX

p − Y
)2

.

for each p, we see something disturbing:
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Clearly this is not what we want. Instead, suppose we had a giant pile of 100,000 extra point
drawn from the same distribution as the training error. We will call this test data, and the
average error on it the test error.
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Things blow up after p = 13. (This is intuitively plausible if you look at the plots of the
polynomials above.)

There are two things that are happening here:

• For very low p, the model is very simple, and so can’t capture the full complexities of
the data. This is called bias.
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• For very high p, the model is complex, and so tends to “overfit” to spurious properties
of the data. This is called variance.

Don’t think about the names “bias” and “variance” too much. The names derive from techni-
cal concepts in fitting least-squares regression models, but we will use them more informally
for all types of models. Now, when doing model selection, one often sees a bias-variance

tradeoff. This is commonly thought of by drawing a picture like this:

Bias

Variance

Error

low

complexity

high

complexity

This shows the bias, variance, and error of a range of different learning methods, for a given
amount of training data. It shows the common situation in practice that (1) for simple
models, the bias increases very quickly, while (2) for complex models, the variance increases
very quickly. Since the riskiness is additive in the two, the optimal complexity is somewhere
in the middle. Note, however, that these properties do not follow from the bias-variance
decomposition, and need not even be true.

Question: Suppose the amount of training data is increased. How would the above curves
change?

Answer: The new curves would look something like:

Bias

Variance

Error

low

complexity

high

complexity
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The variance is reduced since there is more data, and so a slightly more complex model
minimizes the expected error.

Bias-variance tradeoffs are seen very frequently, in all sorts of problems. We can very often
understand the differences in performance between different algorithms as trading off between
bias and variance. Usually, if we take some algorithm, and change it to reduce bias, we will
also increase variance. This doesn’t have to happen, though. If you work hard, you can
change an algorithm in such a bad way as to increase both bias and variance.

3 Cross Validation

Let’s return to the issue of picking p. We saw above that if we had 100,000 extra data, we
could just fit the model with each p, and pick the p that does best on the validation data.
What would you do if you don’t happen to have a spare 100,000 extra data sitting around?
The first idea that comes to mind is to “hold out” some of our original training data.

1. Split TRAIN into TRAINfit and TRAINvalidation. (e.g. half in each)

2. Fit each model to TRAINtrain, and evaluate how well it does on TRAINvalidation.

3. Output the model that has the best score on TRAINvalidation.

This can work reasonably well, but it “wastes” the data by only training on half, and only
testing on half. We can make better use of the data by making several different splits of the
data. Each datum is used once for testing, and the other times for training. This algorithm
is called K-fold cross validation.

1. Split TRAIN into K chunks

2. For k = 1, 2, ..., K:

(a) Set TRAINvalidation to be the kth chunk of data, and TRAINfit to be the other
K − 1 chunks.

(b) Fit each model to TRAINfit and evaluate how well it does on TRAINvalidation.

3. Pick the model that has the best average test score.

4. Retrain that model on all of TRAIN, and output that.

If we do 5-fold cross validation on our original set of 60 points, we get:
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We can see that this picks p = 3, rather than the optimal p = 12. Clearly, cross validation is
no substitute for a large test set. However, if we only have a limited training set, it is often
the best option available.

In this case, cross-validation selected a simpler model than optimal. What do we expect to
happen on average? Notice that with 60 points, 5-fold cross validation effectively tries to
pick the polynomial that makes the best bias-variance tradeoff for 48 (60 · 4

5
) points. If we

had done 10-fold cross validation, it would instead try to pick the best polynomial for 54
(60 · 9

10
) points. Thus, cross validation biases towards simpler models. We could reduce this

to the minimum possible by doing 60-fold cross validation. This has a special name: leave-

one-out cross validation. In complex models, this can be expensive, though there has
been research on clever methods for doing leave-one-out cross validation with out needing
to recompute the full model. In practice, we usually don’t see too much benefit for doing
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more then 5 or 10 fold cross validation. In this particular example, 60-fold cross validation
still selects p = 3.
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Cross validation is a good technique, but it doesn’t work miracles: there is only so much
information in a small dataset.

People often ask questions like:

• "If I do clustering, how many clusters should I use?"

• "If I fit a polynomial, what should its order be?"

• "If I fit a neural network, how many hidden units should it have?"
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• "If I fit a mixture of Gaussians, how many components should it have?"

• “How do I set my regularization constant?”

• “I want to fit a Support Vector Machine classifier to this dataset. Should I use a
Gaussian, polynomial, or linear kernel?”

A reasonable answer to all of these is cross-validation.

Though cross validation is extremely widely used, there has been difficulty proving that it
actually works better than just using a single hold-out set of 1

K
th of the data! There is even

a $500 bounty. See: http://hunch.net/?p=29 http://hunch.net/?p=320


