
Statistical Machine Learning Notes 9

Boosting

Instructor: Justin Domke

1 Additive Models

The basic idea of boosting is to greedily build additive models. Let bm(x) be some predictor
(a tree, a neural network, whatever), which we will call a base learning. In boosting, we will
build a model that is the sum of base learners as

f(x) =

M
∑

m=1

bm(x).

The obvious way to fit an additive model is greedily. Namely, with start with the simple
function f0(x) = 0, then iteratively add base learners to minimize the risk of fm−1(x)+bm(x).

Forward stagewise additive modeling

• f0(x)← 0

• For m = 1, ..., M

– bm ← arg min
b

∑

(x̂,ŷ)

L(fm−1(x̂) + b(x̂), ŷ)

– fm(x)← fm−1(x) + v bm(x)

Notice here that once we have fit a particular base learner, it is “frozen in”, and is not further
changed. Once can also create procedures for additive modeling that re-fit the base learners
several times.

2 Additive Regression Trees

It is quite easy to do forward stagewise additive modeling when we are interested in mini-
mizing the least-squares regression loss.

1

Boosting 2

arg min
b

∑

(x̂,ŷ)

L
(

fm−1(x̂) + b(x̂), ŷ
)

= arg min
b

∑

(x̂,ŷ)

(

fm−1(x̂) + b(x̂)− ŷ
)2

= arg min
b

∑

(x̂,ŷ)

(

b(x̂)− r(x̂, ŷ)
)2

(2.1)

where r(x̂, ŷ) = ŷ − fm−1(x̂).

However, minimizing a problem like Eq. 2.1 is exactly what all our previous regression meth-
ods do. Thus, we can apply any method for least-squares regression essentially unchanged.
The only difference is that the target values are given by ŷ−fm−1(x̂)– the difference between
ŷ and the additive model so far.

Here are some examples applying this to two datasets. Here (as in all the examples in these
notes) our base learner is a regression tree with two levels of splits.

Boosting 3

data

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

iteration
R

train
test

1 iteration 2 iterations 3 iterations

4 iterations 9 iterations 50 iterations

Boosting 4

data

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

iteration
R

train
test

1 iteration 2 iterations 3 iterations

9 iterations 49 iterations 100 iterations

3 Boosting

Suppose we want to minimize some other loss function. Unfortunately, if we aren’t using the
least-squares loss, the optimization

Boosting 5

arg min
b

∑

(x̂,ŷ)

L(fm−1(x̂) + b(x̂), ŷ) (3.1)

will not reduce to a least-squares problem. One alternative would be to use a different base-
learner, that fits a different loss. With boosting, we don’t want to change our base learner.
This could be because it is simply inconvenient to create a new algorithm for a different loss
function. The general idea of boosting is to fit a new base learner b to, if not minimize the
risk for fm, to decrease it. As we will see, we can do this for a large range of loss functions,
all based on a least-squares base learner.

4 Gradient Boosting

Gradient boosting is a very clever algorithm. In each iteration, we set as target values the

negative gradient of the loss with respect to f . So, if the base learner closely matches the
target values, when we add some multiple v of the base learner to our additive model, it
should decrease the loss.

Gradient Boosting

• f0(x)← 0

• For m = 1, ..., M

– For all(x̂, ŷ)

∗ r(x̂, ŷ)← −
d

df
L(fm−1(x̂), ŷ)

– bm ← arg min
b

∑

(x̂,ŷ)

(

b(x̂)− r(x̂, ŷ)
)2

– fm(x)← fm−1(x) + v bm(x)

Consider changing f(x) to f(x)+ vb(x) for some small v. We want to minimize the loss, i.e.

∑

(x̂,ŷ)

L(fm−1(x̂) + b(x̂), ŷ) ≈
∑

(x̂,ŷ)

L(fm−1(x̂), ŷ) +
∑

(x̂,ŷ)

dL(fm−1(x̂), ŷ)

df
b(x̂). (4.1)

However, it doesn’t make much sense to simply minimize the right hand side of Eq. 4.1,
since we can always make the decrease bigger by multiplying b by a larger constant. Instead,
we choose to minimize

Boosting 6

∑

(x̂,ŷ)

dL(fm−1(x̂), ŷ)

df
b(x̂) +

1

2

∑

(x̂,ŷ)

b(x̂)2

which prevents b from becoming too large. It is easy to see that

arg min
b

∑

(x̂,ŷ)

dL(fm−1(x̂), ŷ)

df
b(x̂) +

1

2

∑

(x̂,ŷ)

b(x̂)2 = arg min
∑

(x̂,ŷ)

(b(x̂) +
−dL(fm−1(x̂), ŷ)

df
)2

= arg min
∑

(x̂,ŷ)

(

b(x̂)− r(x̂, ŷ)
)2

Some example loss functions, and their derivatives:

• least-squares. L = (f − ŷ)2 → dL/fd = 2(f − ŷ)

• least-absolute-deviation. L = |f − ŷ| → dL/df = sign(f − ŷ)

• logistic regression. L = log(1 + exp(−ŷf))→ dL/df = −ŷ

1+exp(fŷ)
.

• exponential loss. L = exp(−ŷf)→ dL/df = −ŷ exp(−ŷf)

Fun fact: gradient boosting with a step size of v = 1
2

on the least-squares loss gives exactly
the forward stagewise modeling algorithm we devised above.

Here are some examples of gradient boosting on classification losses (logistic and exponen-
tial). The figures show the function f(x). As usual, we would get a predicted class by taking
the sign of f(x).

Boosting 7

Gradient Boosting, Logistic Loss, step size of v = 1.

data

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

iteration

R

train
test

1 iteration 2 iterations 3 iterations

9 iterations 49 iterations 100 iterations

Boosting 8

Gradient Boosting, Exponential loss, step size of v = 1.

data

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

iteration

R

train
test

1 iteration 2 iterations 3 iterations

9 iterations 49 iterations 100 iterations

Boosting 9

5 Newton Boosting

The basic idea of Newton boosting is, instead of just taking the gradient, to build a local
quadratic model, and then to minimize it. We can again do this using any least-squares
regressor as a base learner.

(Note that “Newton boosting” is not generally accepted terminology. The general idea of
fitting to a quadratic optimization is used in several algorithms for specific loss function (e.g.
Logitboost), but doesn’t seem to have been given a name. The class voted to use “Newton
Boosting” in preference to “Quadratic Boosting”.)

Newton Boosting

• f0(x)← 0

• For m = 1, ..., M

– For all(x̂, ŷ)

∗ h(x̂, ŷ)←
d2

df 2
L(fm−1(x̂), ŷ)

∗ g(x̂, ŷ)← d
df

L(fm−1(x̂), ŷ)

∗ r(x̂, ŷ)← −
1

h(x̂, ŷ)

d

df
L(fm−1(x̂), ŷ)

– bm ← arg min
b

∑

(x̂,ŷ)

h(x̂, ŷ)
(

b(x̂)− r(x̂, ŷ)
)2

– fm(x)← fm−1(x) + v bm(x)

To understand this, consider search searching for the b that minimizes the empirical risk for
fm. To start with, we make a local second-order approximation. (Here, g(x̂, ŷ) = dL(fm−1(x̂),ŷ)

df
,

and h(x̂, ŷ) = d2L(fm−1(x̂),ŷ)
df2 .)

arg min
b

∑

(x̂,ŷ)

L(fm−1(x̂) + b(x̂), ŷ) ≈ arg min
b

∑

(x̂,ŷ)

(

L(fm−1(x̂), ŷ) + b(x̂)g(x̂, ŷ) +
1

2
b(x̂)2h(x̂, ŷ)

)

= arg min
b

1

2

∑

(x̂,ŷ)

h(x̂, ŷ)
(

2
g(x̂, ŷ)

h(x̂, ŷ)
b(x̂) + b(x̂)2

)

= arg min
b

∑

(x̂,ŷ)

h(x̂, ŷ)
(

b(x̂)−
−g(x̂, ŷ)

h(x̂, ŷ)

)2

= arg min
b

∑

(x̂,ŷ)

h(x̂, ŷ)
(

b(x̂)− r(x̂, ŷ)
)2

Boosting 10

This is a weighted least-squares regression, with weights h(x̂, ŷ) and targets −g(x̂,ŷ)
h(x̂,ŷ)

.

Here, we collect in a table all of the loss functions and derivatives we might use.

Loss Functions L(f, ŷ)

Name L
dL

df

d2L

df 2

least-squares (f − ŷ)2 2(f − ŷ) 2
least-absolute-deviation |f ′ − ŷ| sign(f ′ − ŷ)

logistic log
(

1 + exp(−ŷf)
) −ŷ

1 + exp(f ŷ)

ŷ2

2 + exp(f ŷ) + exp(−f ŷ)
exponential exp(−ŷf) −ŷ exp(−ŷf) y2 exp(−f ŷ)

Here are some experiments using Newton boosting on the same dataset as above. Generally,
we see that Newton boosting is more effective than gradient boosting in quickly reducing
the training error. However, this does also means it begins to overfit after a smaller number
of iterations. Thus, if running time is an issue (either at training or test time), Newton
boosting may be preferable, since it more quickly reduces training error.

Boosting 11

Newton Boosting, Logistic Loss, step size of v = 1.

data

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

iteration

R

train
test

1 iteration 2 iterations 3 iterations

9 iterations 49 iterations 100 iterations

Boosting 12

Newton Boosting, Logistic Loss, step size of v = 1.

data

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

iteration

R

train
test

1 iteration 2 iterations 3 iterations

9 iterations 49 iterations 100 iterations

Boosting 13

6 Shrinkage and Early Stopping

Now, we have not talked about regularization. What is suggested in practice is to regularize
by “early stoppping”. Namely, repeatedly boost, but hold out a test set. Select the number
of base learners M in the model by the number that leads the minimum error on the test set.
(It would be best to select this M by cross validation, then re-fit with all models, though
this is often not done is practice to reduce running times.)

Notice that we have another parameter controlling complexity, however: the step size v. For
a small step size, we will need more models M to achieve the same complexity.

Experimentally, better results are almost always given by choosing a small step size v, and a
larger number of base learners M . The following experiments suggest that this is a product
of the fact that it yields “smoother” models. Note also from the following experiments that
Newton boosting with a given step size performs similarly to gradient boosting with a smaller
step size.

Boosting 14

Gradient boosting, least-squares loss, v = 1
2

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

iteration

R

train
test

Gradient boosting, least-squares loss, v = 1
20

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

iteration

R

train
test

Gradient boosting, least-squares loss, v = 1
200

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

iteration

R

train
test

Boosting 15

In the following figures, the left column shows f(x) after 100 iterations, while the middle
column shows sign(f(x)).

Newton boosting, logistic loss, v = 1

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

iteration

R

train
test

Newton boosting, logistic loss,v = 1
10

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

iteration

R

train
test

Newton boosting, logistic loss,v = 1
100

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

iteration

R

train
test

Boosting 16

Gradient boosting, logistic loss,v = 1

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

iteration

R

train
test

Gradient boosting, logistic loss, v = 1
10

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

iteration

R

train
test

Gradient boosting, logistic loss, v = 1
100

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

iteration

R

train
test

7 Discussion

Note that while our experiments here have used trees, any least-squares regressor could be
used at the base learner. If so inclined, we could even use a boosted regression tree as our
base learner.

Most of these loss functions can be extended to multi-class classification. This works by, in
each iteration, not fitting a single tree, but C trees, where there are C classes. For newton
boosting, this is made tractable by taking a diagonal approximation of the Hessian.

Boosting 17

Our presentation here has been quite ahistorical. The first boosting algorithms were pre-
sented from a very different, and more theoretical perspective.

