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Abstract

In this paper we present a motion segmentation algo-
rithm for image sequences based on the Hadamard (or
Schur) product of shape interactionmatrices computed over
a range of dimensions of the ambient space and using a
spectral clustering algorithm. Most motion segmentation
algorithms proposed to date are based on the use of a
shape interaction matrix, obtained via factorization, since
it encodes the essential information to segment indepen-
dently moving rigid objects. However, so far, most stud-
ies have been limited to using a single shape interaction
matrix to cluster the motions of different objects. In this
paper, we propose to combine the shape interaction matri-
ces computed for different subspace dimensions using the
Hadamard product. The benefit of this approach is that
the affinity of trajectories belonging to the same object is
stressed while the affinity between trajectories belonging to
different objects is diminished. Once the final shape inter-
action matrix is computed, we use a spectral clustering al-
gorithm to segment the different motions. Experiments on
the Hopkins155 data set for both independent and articu-
lated motions show that our new algorithm provides a lower
miss-classification error rate, outperforming other state of
the art algorithms.

1. Introduction

Motion segmentation for image sequences has been stud-
ied for decades in computer vision. The factorization algo-
rithm introduced by Tomasi and Kanade [11] recovers the
motion and 3D structure of an object viewed by an ortho-
graphic camera by taking the singular value decomposition
(SVD) of a measurement matrix of n 2D image positions
across f images. Since then, the factorization algorithm has
been widely used by researchers as an approach to tackle
the motion segmentation problem.
Costeira and Kanade [1] proposed decomposing a mea-

Figure 1. Comparision of miss-classification rate. Our HSC
method outperforms other methods – GPCA, LSA4n ALCsp and
LS [13, 15, 6, 4].

surement matrix and then extracting the motion invariant in-
formation which is encapsulated in a matrix, called “shape
interaction matrix”. Their method works well for inde-
pendently moving objects, however, most real image se-
quences tend to have dependent motions so their method
fails if the motions are dependent. For dealing with de-
pendent motions, Zelnik-Manor and Irani [18] suggested to
use the k dominant eigenvectors of the matrix that separates
the dependent motions. They also decompose a measure-
ment matrix but instead of using all eigenvectors, they use
only k (the number of motions) eigenvectors for construct-
ing a shape interactionmatrix. Although their algorithm can
solve the problem for dependent motions, it does not per-
form well for articulated motions. Yan and Pollefeys [15]
proposed an algorithm which can manage articulated mo-
tions by local subspace sampling. Instead of taking the dot
product of two vectors to build the shape interaction matrix,
they used the principal angles computed by sampling the
two different subspaces. Their algorithm works particularly
well for the case of articulated motions.
Vidal and Hartley [13] introduced a GPCA algorithm



with PowerFactorzation to deal with missing data in motion
segmentation. Schindler et al. [7, 8] suggested an algorithm
to solve the multi-body structure and motion problem by us-
ing Monte-Carlo sampling in two views and n views. Rao
et al. [6] worked on an algorithm for motion segmentation
based on a subspace separation approach by using a lossy
compression technique from information theory. More re-
cently, Silva and Costeira [2] suggested a subspace separa-
tion algorithm when the data has outliers.

Lauer and Schnönrr [4] have recently proposed an al-
gorithm to search for the best dimension of ambient space
by analysing the gap between eigenvalues which eventually
finds the correct number of clusters for the spectral cluster-
ing algorithm. However, their algorithm assumes that the
number of motions is known and uses it for searching the
best dimension. Therefore, without knowing the number of
motions, it is not applicable to practical applications.

The motion segmentation algorithm proposed in this pa-
per is most closely related to Lauer and Schnönrr’s work [4].
We also find an upper bound for the dimension of the am-
bient space but instead of searching for the best dimension
within the bounds, we mix a range of possible dimensions
of the ambient space (r = 2, . . . , n) by combining the shape
interaction matrices computed for different values of r us-
ing the Hadamard product. Effectively the affinity matrix
built using the Hadamard product increases the separability
of the different motion subspaces.

We provide convincing results on the Hopkins155
dataset that show the superiority of our motion clustering al-
gorithm with respect to the other state of the art algorithms
discussed above.

2. Factorization for Motion Segmentation

In this section we revisit Tomasi and Kanade’s factoriza-
tion algorithm [11] to compute the 3D structure and motion
of a scene observed by an orthographic camera given 2D
image tracks. We also define the concept of shape inter-
action matrix introduced by Costeira and Kanade in [1] to
solve the problem of motion segmentation for multiple in-
dependently moving objects. We investigate the properties
of the shape interaction matrix in detail in the cases when
the objects move independently and when there are depen-
dencies in the motions.

2.1. Factorization Algorithm

The case of a single object. Assuming an affine camera
viewing a single 3D object with n points, the projection of

those world points onto f frames can be described as

W =

⎡
⎢⎢⎢⎣

x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

...
xf1 xf2 . . . xfn

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

M1

M2

...
Mf

⎤
⎥⎥⎥⎦ [ s1 s2 . . . sn

]
,

where xij = (uij vij)� encodes the 2D image coordinates
of point j in the i-th image, Mi = [Ri | ti] is the 2 × 4
affine projection matrix for frame i which encodes the 2×3
rotation matrix Ri and the 2 × 1 translation vector ti, and
sj = (Xj Yj Zj 1)� are the 4-vectors that encode the 3D
coordinates of the n points.
Therefore, the 2f × n measurement matrix W can be

factorized into the product of two low-rank matrices as
W = M2f×r Sr×n, where M and S correspond to the motion
and shape subspaces respectively. As a result, the rank of W
is constrained to be rank{W} ≤ r where r = 4 in the case
of an affine camera viewing a single object. This rank con-
straint forms the basis of Tomasi and Kanade’s factorization
method for the estimation of 3D structure and motion.
The classic approach in factorization is to exploit the

rank constraint to factorize the measurement matrix into
a motion matrix M and a shape matrix S by truncating
the SVD of W to the rank r specific to the problem as
W = MS = UD

1
2 D

1
2 V� , where M = UD

1
2 is the motion ma-

trix, S = D
1
2 V� is the shape matrix. However, this fac-

torization is not unique since any invertible r × r matrix
T can be inserted, leading to the alternative factorization:
W = (M̂T)(T−1Ŝ). Therefore, we now have a factorization of
the measurement matrix as follows:

W = M̂Ŝ =
(
UD

1
2 T
)(

T−1D
1
2 V�

)
.

In the structure from motion scenario, the problem is
then to find the transformation matrix T that removes the
affine ambiguity, upgrading the reconstruction to metric and
constraining the motion matrices to have the appropriate
structure.

Multiple objects with independent motions. Consider
now k independently moving objects in the scene and as-
sume that the image coordinates have been ordered accord-
ing to the different objects. In this case, the measurement
matrix may be described as W = [ W1 | W2 | . . . | Wk ] ,
where Wk contains the image coordinates of the k-th object.
Assuming there are ni points on each object, the total num-
ber of points is n =

∑k
i=1 ni. In the case of independently



moving objects we may decompose the measurement ma-
trix W = MS as follows:

M =

⎡
⎢⎢⎢⎣

M11 M21 . . . Mk1

M12 M22 . . . Mk2

...
...

. . .
...

M1f M2f . . . Mkf

⎤
⎥⎥⎥⎦

S =

⎡
⎢⎢⎢⎣

S1

S2

. . .
Sk

⎤
⎥⎥⎥⎦ ,

where Mij is the 2 × 4 matrix that projects the coordinates
of the j-th object onto the i-th frame, and Sj is the 4 × nj

shape matrix for j-th object. Therefore, the 2f × n mea-
surement matrix W may be decomposed into the product of
two matrices as W = M2f×4kS4k×m. For this reason, in the
multi-body factorization case the rank of W is at most 4k, so
it can be decomposed via SVD as follows:

W = [ W1 | W2 | . . . | Wk ] = MS

M = [ U1 | U2 | . . . | Uk ]

⎡
⎢⎢⎢⎢⎣

D
1
2
1

D
1
2
2

. . .
D

1
2
k

⎤
⎥⎥⎥⎥⎦

S =

⎡
⎢⎢⎢⎢⎣

D
1
2
1

D
1
2
2

. . .
D

1
2
k

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

V�1
V�2

. . .
V�k

⎤
⎥⎥⎥⎦

where Wk = UkDkV�k .
Once more, this decomposition is not unique since a

non-singular matrix block diagonal matrix T of the form
T = blkdiag(T1, T2, . . . , Tk) would give the alternative fac-
torization:

M̂ = MT

Ŝ = T−1S .

The remaining problem would now be to find the trans-
formation T that imposes the metric constraints to upgrade
the reconstruction to metric and imposes the block structure
to the motion and shape matrices expressed above. How-
ever, the difficulty with this is that so far we have assumed
that the image tracks have been ordered according to the dif-
ferent objects so the metric constraints are only applicable
once the segmentation is known. To achieve this necessary
motion segmentation, Costeira and Kanade [1] defined the
shape interaction matrix, a mathematical structure that pre-
serves the original subspace structure. In this framework,
motion segmentation amounts to the problem of linear sub-
space separation.

3. Shape Interaction Matrix
The main difficulty in using a factorization approach to

segment the image trajectories arising from the different ob-
jects is that the shapematrix Ŝ is not uniquely determined by
SVD. Moreover, although the matrix V� is uniquely com-
puted, it looses its block diagonal structure since in general
it is a linear combination of the different motion subspaces.
Therefore, the matrix V cannot be used alone to determine
separate motions for different objects.

The case of independent motions. In the case of inde-
pendent and non-degenerate motions, a motion segmenta-
tion algorithm was proposed by Costeira and Kanade in [1]
using the shape interaction matrix which they defined as:

Q = VV� ,

where V� = blkdiag(V�1 , V�2 , . . . , V�k ). Costeira and
Kanade proved that the in the case when the entries of the
measurement matrix are ordered according to each object,
the shape interaction matrix is block diagonal with each
block corresponding to each independently moving object.
More importantly, in the case when the segmentation of the
tracks is unknown the values of the entries of the shape in-
teraction matrix do not vary, only their ordering is affected.
For k independent motions, the shape entries of the shape
interaction matrix Q satisfy the following property:

Qij

{ �= 0 if point i and j correspond to the same motion
= 0 otherwise.

Another important property of Q is that it is invariant
to the motion. Therefore the shape interaction matrix en-
codes all the information to carry out motion segmentation
of independentlymoving objects and Costeira and Kanade’s
segmentation algorithm reduces to finding the permutations
that will impose a block diagonal structure to the shape in-
teraction matrix.

The case of dependent motions. In the case of multiple
objects with fully or partially dependent motions, the shape
interaction matrix Q is not a block diagonal matrix as shown
by Zelnik-Manor and Irani [18] who proved that Q has block
diagonal structure if and only if the matrix V is block diago-
nal. By definition, the columns of V are the eigenvectors of
the matrix W�W which has the form:

W�W =
[
W1 W2 . . . Wk

]� [
W1 W2 . . . Wk

]

=

⎡
⎢⎢⎢⎣

S�1 M�1 M1S1 S�1 M�1 M2S2 . . . S�1 M�1 MkSk

S�2 M
�
2 M1S1 S�2 M

�
2 M2S2 . . . S�2 M

�
2 MkSk

...
...

. . .
...

S�k M
�
k M1S1 S�k M

�
k M2S2 . . . S�k M

�
k MkSk

⎤
⎥⎥⎥⎦



The off-diagonal blocks of W�W are only zero if the motions
Mi, . . . , Mj are independent. Therefore, V and Q will only
have a block diagonal structure if and only if the motions
are independent.
Consequently, motion segmentation algorithms that de-

pend on the diagonal structure of the shape interaction ma-
trix, such as Costeira and Kanade’s, will fail in the pres-
ence of dependencies between the motions of the different
objects. This can occur frequently in real sequences. The
specific case of articulated motion was treated by Yan and
Pollefeys [15].

3.1. Dimension of the Shape Interaction Matrix

In the case of dependent motions, Zelnik-Manor and
Irani [18] noticed that when the dependence between the
motions is not full there will be at least some vectors in
V that will capture the independence between the motions.
Therefore, they proposed to build the shape interaction ma-
trix using only the most dominant vectors in V. In partic-
ular, they take r vectors where r was equal to the number
of objects. However, the number of vectors from V cho-
sen to build the shape interaction matrix Q can vary from
r = 2, . . . , n (where n is the number of points in total).
The values of the entries of the shape interaction matrix

will depend on the dimension of the subspace constructed
using the rows of the matrix V. Let V(r) be a sub-matrix
of V constructed by taking the first r columns of V. We
may define the shape interaction matrices Q(r) for different
dimensions r as follows:

Q(r) = V(r)V(r)� , (1)

for the range of dimensions r = 2, . . . , n.
The shape interaction matrix Q(r) of variable dimension

is a square matrix of size n and the values of its entries are in
the range of 0 to 1 because it is a matrix constructed taking
the dot product of column vectors of V(r) which is a unitary
matrix.

3.2. Shape Interaction Matrix for Segmentation

Costeira and Kanade used the shape interaction matrix to
determine independent motions for multiple objects in [1].
However, the method does not work well for articulated ob-
jects. Motion segmentation for articulated objects is studied
by Yan and Pollefeys in [15, 16, 17]. They take the matrix
V from the SVD of W and normalize V, then an affinity ma-
trix is constructed by principal angles of locally sampled
subspaces to cluster articulated motions.
A spectral clustering algorithm for motion segmentation

is proposed by Lauer and Schnörr in [4]. Their method
searches for the dimension of ambient space, which is best
suited for spectral clustering.

4.Motion Segmentation by Spectral Clustering
4.1. Spectral Clustering

In recent years, the spectral clustering algorithm has be-
come attractive to the computer vision andmachine learning
communities because of its powerful performance and easy
implementation [14, 5, 10, 9]. Spectral clustering is anal-
ogous to a min-cut problem, which splits a graph into two
subgraphs to minimize the amount of capacity (or weight)
of an edge between two partitioned subgraphs.
The spectral clustering algorithm uses an affinity matrix

of the data to perform the partitioning. The affinity matrix,
which encodes the similarity between different vectors, is
generally defined as Aij = exp(−|xi − xj |/2σ), where xi

are the data vectors. In the case of motion segmentation the
data vectors are the rows vi of the matrix V given by the
SVD of the measurement matrix.
The partitioning is then achieved by taking the largest

k eigenvectors of the graph laplacian of the affinity ma-
trix. Because the definition of the graph laplacian is not
consistent between authors, here we use the following def-
inition: L = D−

1
2 AD−

1
2 , where D is a diagonal matrix

with Dii =
∑n

j=1 Aij . The k largest eigenvectors of L are
computed and used for clustering using any clustering algo-
rithm, for instance, a k-means algorithm.

4.2. Affinity Matrix for Motion Segmentation

Spectral clustering has been used in the context of mo-
tion subspace segmentation by different authors [15, 4].
One of the main differences between these algorithms is
the way in which the affinity matrix is specifically de-
fined. Yan and Pollefeys [15] define the affinity matrix as
A = e−

P
sin2(θ) where θ is principal angles of two sub-

spaces. Lauer and Schnörr [4] define the affinity matrix as
A = cos2α(θ) where θ is the angle between two vectors in
subspaces and α is a scalar.

4.3. Dimension of Ambient Space

Another important issue is the choice of the dimension
of the ambient space. For k independent motions, Vidal
and Hartley suggested to use r = k + 1 for the dimension
of ambient space in [13]. Lauer and Schnörr proposed to
search for the optimal dimension of ambient space within
the bounds r = [k+1, . . . , 4k+1] in [4] by choosing the di-
mension that maximizes the separation between subspaces.
Motivated by Lauer and Schnörr’s work [4], in this paper,

we find an upper bound for the dimension of the ambient
space but instead of searching for the best dimension within
the bounds, we mix a range of possible dimensions of the
ambient space ( r = 2, . . . , n) by combining the shape in-
teraction matrices computed for different values of r using
the Hadamard product.



5. Our New Motion Segmentation Algorithm
To create the mixture of shape interaction matrices, com-

puted for different values of r we define a new affinity ma-
trix (or similarity matrix) A(r) computed from the shape in-
teraction matrix as follows:

A(r) = exp(Q(r)) , (2)

where r is the chosen subspace dimension, Q(r) is the shape
interaction matrix for that dimension, as defined in (1) and
exp(P) computes the exponential of a square matrix P.

Hadamard product of affinity matrices. Given two ma-
trices X and Y in IRm×n, the Hadamard product (or Schur
product) is the element-wise multiplication of the two ma-
trices X and Y defined as: (X·Y)ij = XijYij .We have chosen
to mix affinity matrices computed for different dimensions
r of the vector space using the Hadamard product. The new
affinity matrix is defined as follows:

Hij =
D∏

r=2

A(r)ij , (3)

where D is the upper bound of the range of subspace di-
mensions considered (D ≤ n where n is the total number
of points). Note that each affinity matrix is normalized be-
fore the Hadamard product is applied (for instance, by the
largest singular value of the matrix). The computation of
the upper bound for the subspace dimensionD will be con-
sidered in one of the following sections. Without loss of
generality, consider the values of Hij in (3) without the nor-
malization scale. Combining (1) and (2), equation (3) may
be rewritten as follows:

Hij = exp

(
D∑

r=2

V(r)iV(r)�j

)

= exp

(
D∑

r=2

cos θ(r)ij

)
≤ eD−1 ,

where V(r)i is the i-th column vector of the matrix V(r) and
θ(r)ij is the angle between two vectors i and j in the sub-
space of dimension r. In the case of independent motions,
if the vectors of V(r) for points i and j belong to different
subspaces subspace at any dimension r, the entry of Hij will
be close to zero because the angle between the two vectors
for that dimension is close to zero. However, if the vec-
tors at i and j are from the same subspace over the range of
dimensions r = 2, . . . , D, then Hij will be close to eD−1.
Accordingly, the off-diagonal blocks of the matrix H will
become close to zero and the main-diagonal blocks will be-
come close to eD−1.

An example. In this section we use a simple examplewith
data generated synthetically to describe the benefits of us-
ing the Hadamard product of affinity matrices to segment
different motions using spectral clustering. The synthetic
data was generated assuming three different objects moving
independently viewed by an affine camera which is static in
the world. The 3D points on the three objects were moved
independently by introducing different rotations and trans-
lations, then projected onto images by the affine camera. To
verify the independence of the motions, the block diagonal
structure of W�W and VV� is examined. Figure 2 shows the
affinity matrices and the Hadamard product of affinity ma-
trices calculated for subspace dimensions r = 2, . . . , 9 in
the case when the objects are moving independently. Note
that the affinity matrices A(r) have zero (gray) values on
the off-diagonal blocks and non-zero (white) values on the
main-diagonal blocks when r = 8. However, the Hadamard
product of affinity matrices H has zero (black) values in
the off-diagonal blocks and non-zero (white) values in the
main-diagonal blocks when r >= 5. Note that the off-
diagonal blocks of H are closer to zero (darker) than the off-
diagonal blocks of A(r). Therefore, there is a better chance
to separate independent motions using the matrix H.

r = 2 3 4 5 6 7 8 9
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Figure 2. A(r) and H for independent motions at r = 2, . . . , 9.
(Top row) Affinity matrices for r = 2, . . . , 9. (Bottom row) The
Hadamard product of affinity matrices for r = 2, . . . , 9.

For dependent motions, the three objects move depen-
dently because they share the same rotations. In Figure 3,
the form of the affinity matrices and the Hadamard prod-
uct of affinity matrices for dimensions r = 2, . . . , 9 are
shown in the case of dependent motions. The off-diagonal
blocks of the matrix A(r) are not zero which reflects simi-
larity within points in different objects. This is not a good
property for motion segmentation. However, the Hadamard
product of affinity matrices H has zeros in the off-diagonal
blocks. Hence, the matrix H has a better affinity information
than A(r) for motion segmentation.
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Figure 3. A(r) and H for dependent motions at r = 2, . . . , 9.
(Top row) Affinity matrices for r = 2, . . . , 9. (Bottom row) The
Hadamard product of affinity matrices for r = 2, . . . , 9.



Advantages of the Hadamard product of A(r). The
main advantage of computing the Hadamard product of
affinity matrices calculated for different dimensions is to in-
tegrate information about the object for different subspace
dimensions. Given a dimension r, we have a shape inter-
action matrix Q(r) where the range of dimensions r can be
between 2 and n. If the dimension r is 2, then the shape in-
teraction matrix Q(2) is a projection onto a two-dimensional
subspace. Therefore, it has information to cluster data pro-
jected onto the two-dimensional space. For r = 2, for in-
stance, the affinity matrix A(2) has a large number of high
values (near to 1) in total while, for r = n, the affinity ma-
trix A(n) has a large number of low values (near to 0) in
total. Therefore, it seems reasonable to mix the different
types of information rather than selecting a single dimen-
sionality for clustering.

Selecting the value for D. It is crucial to select a rea-
sonable upper bound for the highest subspace dimensionD
used in the Hadamard product. A good mixture of affin-
ity matrices which provides good separation between spaces
should have high values (close to 1, meaning high affinity)
for points belonging to the same motions and low values for
points belonging to different motions. To choose the sub-
space dimensionD at which to stop adding new matrices to
the Hadamard product we examine the histogram of H and
find two centroids from bins of the histogram. If the two
centroids are far apart, then the matrix H has distinct high
and low values, meaning there is a good separation between
the subspaces. In addition, we compute the number of hits
close to each of the two centroids. If the difference between
these two values is high then the matrix H has a good shape
for clustering. We choose the value forD according to these
two measures.
Figure 4 (top row) compares the values of the distance

between the centroids and the difference of hit counts for
the histograms computed using the affinity matrix A(r) in
one case and the Hadamard product H(r) in the other, for
different values of the dimension r. We analyse the his-
tograms obtained for the examples of independent (left) and
dependent (right) motion illustrated in Figure 2 and Fig-
ure 3 respectively. It is clear that the distance between the
histogram centroids increases as new dimensions are added
to the Hadamard product (blue circles) until a maximum
is reached for r = 7. The bottom row of Figure 4 shows
that this coincides with the point where the lowest mis-
classification rate is reached, which explains that the dis-
tance between the centroids of the histogram is related to
the separability of the subspaces. However, when the affin-
ity matrix is used, the distance between the centroids (green
squares) is smaller and does not increase with the dimen-
sionality meaning that the separability of the subspaces is
smaller than in the Hadamard product case. The differ-
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Figure 4. Selecting the value of D. (Top row) Information on
the histograms calculated with the Affinity matrices and the
Hadamard product for different dimension values for the inde-
pendent motion (left) and the dependent motion (right) examples
shown in Figure 2. We show the distance between the two centroids
of the histograms calculated using the Hadamard product (blue
circles) and the Affinity matrices (green squares). The difference
of hit counts is shown for the Hadamard product (red crosses) and
the Affinity matrices (purple triangles) histograms. (Bottom row)
Misclassification rate using the Hadamard product for the (left)
independent motion and (right) the dependent motion examples.

ence of the hit counts for the histograms calculated using
the Hadamard product H (red crosses) also show higher val-
ues than those computed with the Affinity matrices (purple
triangles). Therefore these graphs illustrate how the choice
of the best value for D is related to choosing good thresh-
old values for the distance between the centroids t1 and the
difference of hit counts t2 of the histogram. For instance,
in the above experiments we found that the values t1 = 0.5
and t2 = 0.8 provided good results.
This simple algorithm can be implemented by using a k-

means clustering algorithm with two clusters. The k-means
algorithm will give two centroids between 0 to 1 if the ma-
trix A is scaled down to maximum 1. Therefore, we find two
centroids using the k-means algorithm, examine the number
of hits around the centroids, using the thresholds defined
above. It is advisable to use a fast k-means algorithm by
Elkan [3] to reduce the computation time.

5.1. Final Segmentation Algorithm
Our motion segmentation algorithm using the Hadamard

and spectral clustering (HSC method) can be summarized
as follows:

HSC Algorithm Given a matrix W ∈ IR2f×n for n points
in f frames



1. Projection: Take the SVD of W and obtain V ∈ IRn×n.
2. Construct affinity matrices A(r) for different dimen-
sions and multiply using the Hadamard product un-
til the upper bound dimension D is reached: For
the range r = [2, . . . , n], consider the r-dimension
subspace of V by taking r columns of V. Build a
shape interaction matrix Q = VV�. Obtain an affin-
ity matrix A and compute the Hadamard product as
Hij = HijAij/|A| where |A| is the norm of the matrix
A.

3. Determine the dimension D: Find two centroids c1

and c2 from H using a k-means algorithm. Repeat step
(2) until the distance of the two centroids is |c1−c2| ≤
t1 and the difference between the hit counts is |h1 −
h2| ≤ t2, where t1 and t2 are threshold values, and
hi = histc(A, ci) is the number of the histogram counts
in A near the centroid ci. Here, the dimensionD is the
value r at the current iteration.

4. Clustering via spectral clustering algorithm: Do the
spectral clustering using the final affinity matrix H.

6. Experiments
In all our experiments we assume that all the feature

points are visible over all frames (no missing data).

Synthetic image sequence. Three objects in 3D are ran-
domly placed in front of cameras and the points on each
object are projected onto an image by an affine camera as
shown in Figure 5. Over f = 50 frames, two of the objects
are moving and the third one is static so we consider it to
be background. There are two independent motions on the
two objects but the affine camera is also moving. There-
fore, there are three independent motions in total. Gaussian
noise with variance 2 pixels is added to image coordinates.
Figure 5-(bottom-right), shows that our algorithm correctly
segments the motions of the three objects.

Real image sequences. We tested our algorithm on the
Hopkins155 dataset [12] which contains real image se-
quences. The sequences in the Hopkins155 dataset con-
tain images of three different types: checkerboard, traffic
and articulated image sequences. In Figure 6, three types of
sample images and motion segmentation on the images are
shown and the correct segmentation is superimposed on the
images using a distinct colour.
For comparison of our algorithm (HSC) with other state

of the art algorithms such as ALCsp [6], GPCA [13],
LSA4n [15], and LS [4], we show the result in table 1 and
table 2. Our HSCmethod significantly outperformsALCsp,
GPCA, LSA4n and performs slightly better than the most
recent LS.
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Figure 5. Synthetic data. (Top row and the bottom-left) 3D Po-
sitions of three objects (red, green and blue) and cameras (black)
over 50 frames. Two objects of blue and green are independent
motions and the red object is static as a background. (Front, side
and top view in the order) (Bottom right) Projected image trajec-
tories for the three objects (red, green and blue) and its motion
classification result by our technique.

Checker(2) ALCsp GPCA LSA4n LS HSC
Average 1.55 6.09 2.57 0.85 1.12
Median 0.29 1.03 0.27 0.00 0.00
Traffic(2) ALCsp GPCA LSA4n LS HSC
Average 1.59 1.41 5.43 0.90 0.33
Median 1.17 0.00 1.48 0.00 0.00
Artic(2) ALCsp GPCA LSA4n LS HSC
Average 10.70 2.88 4.10 1.71 2.44
Median 0.95 0.00 1.22 0.00 0.00
Table 1. Miss-classification rates for two motions. Average miss-
classification error rate for Hopkins155 sequences in two motions.
Reported results from [6, 4].

Checker(3) ALCsp GPCA LSA4n LS HSC
Average 5.20 31.95 5.80 2.15 1.77
Median 0.67 32.93 1.77 0.47 0.55
Traffic(3) ALCsp GPCA LSA4n LS HSC
Average 7.75 19.83 25.07 1.35 0.49
Median 0.49 19.55 23.09 0.19 0.00
Artic(3) ALCsp GPCA LSA4n LS HSC
Average 21.08 16.85 7.25 4.26 1.60
Median 21.08 16.85 7.25 4.26 1.60
Table 2. Miss-classification rates for three motions. Average
miss-classification error rate for Hopkins155 sequences in three
motions. Reported results from [6, 13].

We also test our algorithm on other real image sequences
for instance Schindler’s data [7]. Figure 6 shows that our al-
gorithm achieves the correct motion segmentation. In these
experiments, two threshold values t1 = 0.29 and t2 = 0.87
are used over all real image sequences.



Figure 6. Hopkins155 sample and motion segmentation. (Checkerboard) “1R2RCR” with three motions, (Traffic) “cars5” with three
motions and (Articulated) “arm” with two motions.

Figure 7. Image sequences of “boxes” and “deliveryvan”. Motion
segmentation result using our algorithm on Schindler’s data [7].

7. Conclusions

We have proposed a motion segmentation algorithm that
uses the Hadamard product of affinity matrices computed
for a range of different subspace dimensions. Using the
Hadamard product of affinity matrices gives a better shape
of the affinity matrix for spectral clustering than using a sin-
gle affinity matrix. In experiments, we have shown that our
new algorithm gives better results than other state of the
art algorithms for real image sequences. However, we have
also noticed our method can fail when the images have ar-
ticulated objects because our algorithm does not address the
problem of articulated motion directly. Improving the per-
formance of the algorithm in the case of articulated motion
is a study for future work.
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