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Abstract

In this paper, we propose an approach to the problem of
simultaneous shape and refractive index recovery from mul-
tispectral polarisation imagery captured from a single view-
point. The focus of this paper is on dielectric surfaces which
diffusely polarise light transmitted from the dielectric body
into the air. The diffuse polarisation of the reflection process
is modelled using a Transmitted Radiance Sinusoid curve
and the Fresnel transmission theory. We provide a method
of estimating the azimuth angle of surface normals from the
spectral variation of the phase of polarisation. Moreover,
to render the problem of simultaneous estimation of surface
orientation and index of refraction well-posed, we enforce
a generative model on the material dispersion equations for
the index of refraction. This generative model, together with
the Fresnel transmission ratio, permit the recovery of the
index of refraction and the zenith angle simultaneously. We
show results on shape recovery and rendering for real world
and synthetic imagery.

1. Introduction
The polarisation of light is a property that describes the

preferential orientation of oscillation of its electromagnetic
field. Although the human vision system is oblivious to po-
larisation, their effects can be captured by devices such as
polarimeters and more recently, polarisation cameras [23].
Such developments have broadened the applications of po-
larisation to areas such as target detection [9] and material
property recovery [24].

Shape and material properties are usually co-existing
factors that influence the appearance of an object to an ob-
server and the polarisation properties of the emitted radia-
tion. In an early discovery, Torrance, Sparrow and Birke-
bak [19] were able to measure the specular reflectance dis-
tribution of rough surfaces for different polarisation orien-
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tations. Reflectance models such as the Wolff model [22]
can also be decomposed into polarisation components and
are applicable to polarised light sources. In these models,
the material properties and the geometry of the reflection
process are expressed in a single equation with multiple de-
grees of freedom. As a result, the simultaneous recovery of
the photometric and shape parameters becomes an under-
constrained problem. To remedy the ill-posedness nature
of the problem, Miyazaki et al. [13] assumed that the his-
togram of zenith angles of a given object is similar to that
of a sphere so as to map the degree of polarisation to zenith
angle. Using a similar experimental setup, which involves
a spherical optical diffuser, Saito et al. [16] were able to re-
cover the shape of transparent objects. Later, Atkinson and
Hancock [1] published their work concerning the recovery
of surface orientation from diffuse polarisation applied to
smooth dielectric surfaces.

To overcome the difficulties in shape recovery from sin-
gle images, the vision community has turned its attention to
the use of multiple images for the recovery task. Rahmann
and Canterakis [15] proposed a method based on polariza-
tion imaging for shape recovery of specular surfaces. Atkin-
son and Hancock [3] also made use of the correspondences
between the phase and degree of polarisation in two views
for shape recovery. Aiming to disambiguate the two pos-
sible zenith angles recovered from the degree of specular
polarisation, Miyazaki et al. [11] analysed the derivative of
the degree of polarisation while tilting the observed object
by a small angle. As an alternative option to the use of mul-
tiple views, polarisation information can also be extracted
from photometric stereo images for shape recovery. Using
a similar experimental setup to photometric stereo, Thilak
et al. [18] presented a nonlinear least-squares estimation al-
gorithm to extract the complex index of refraction and the
zenith angle of surface normals from multiple images illu-
minated by unpolarised light sources.

It is somewhat surprising that there is little work on the
use of polarisation methods for the simultaneous estimation
of surface orientation and photometric invariants, includ-
ing the index of refraction. Whereas material classification
methods [6, 21] have been mainly interested in material in-
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trinsic properties, they have often neglected the wavelength
dependency of the index of refraction. In this paper, we
propose a new approach to make this problem well-posed
by using multispectral information from polarisation im-
ages taken from a single view point. In contrast to prior
literature on polarisation methods for shape and material re-
covery, our work concentrates on the use of the Transmit-
ted Radiance Sinusoid and Fresnel transmission theory so
as to estimate the shape and refractive index simultaneously
from polarisation images observed from a single viewpoint.
This framework assumes little knowledge of the illumina-
tion conditions, as well as the material under study and the
3D surface orientation.

2. Shape and Refractive Index Recovery

In this section, we present a method for the recovery of
surface orientation and index of refraction from a set of po-
larisation images captured in a single view. Firstly, we com-
mence by decomposing the given set of images into polar-
isation components. Next, we present an approach to esti-
mating the azimuth angle of surface normals from the spec-
tral phase angles. To complete the section, we show how to
jointly estimate the zenith angle of the object surface nor-
mals and the refractive index of materials.

The polarisation of light reflected from a surface can be
measured by mounting a linear polariser in front of the cam-
era’s optics. By rotating the polariser, one can capture polar-
isation components that are oriented at different angles in a
plane orthogonal to the light propagation direction. The in-
tensity captured at each image pixel varies sinusoidally with
respect to the angle of rotation of the polariser. Specifically,
at each pixel u and wavelength λ, the variation of the im-
age intensity can be described by the following Transmitted
Radiance Sinusoid (TRS) curve

I(u, λ, ϑ) =
Imax + Imin

2
+

Imax − Imin

2
cos(2ϑ − 2φ)

(1)
where φ is the phase angle of polarisation of the reflected
light, and Imin and Imax are respectively the minimum and
maximum intensities on the sinusoid at the pixel and wave-
length of reference.

Thus, at input, we have a set of N multispectral image
cubes I(ϑ1), I(ϑ2), . . . , I(ϑN ), where the image I(ϑi)
has been acquired with the polariser’s transmission axis
oriented at the ith step-angle with respect to a reference
axis. We can index each of these images to wavelength
λ ∈ {λ1, . . . λK} by denoting Ii(u, λ) , I(u, λ, ϑi) as
the measured intensity at the pixel-site u and wavelength λ
on the image I(ϑi) corresponding to the ith polariser angle
ϑi.

2.1. Decomposing Polarisation Images

There are several alternative methods of recovering the
Imin, Imax and φ in Equation 1 from a successive sequence
of polarisation images captured at several polariser angles.
Note that Equation 1 contains three unknowns Imin, Imax

and φ. Thus, by capturing the same scene with three or more
polariser orientations, one can fit a sinusoidal curve through
the intensity-polariser angle pairs using a numerical nonlin-
ear least square fitting algorithm. This method is, however,
not efficient since the optimisation has to be performed per
pixel. Alternatively, these parameters can be obtained mak-
ing use of the method in [23], where three images at 0◦, 45◦

and 90◦ with respect to a reference axis are acquired so as
to compute the phase, intensity and degree of polarisation.

However, the method in [23] is susceptible to noise cor-
ruption since it employs only three images. Here, we em-
ploy an alternative that yields a stable estimation of the in-
tensity, phase and degree of polarization by solving an over-
determined linear system of equations. The method is akin
to that described by Nayar et al. in [14]. We commence by
rewriting Equation 1 for each pixel-site u and wavelength λ
in the following vector form

Ii(u, λ) =

 1
cos(2ϑi)
sin(2ϑi)

T  Imax+Imin

2
Imax−Imin

2 cos(2φ)
Imax−Imin

2 sin(2φ)


= fT

i x (2)

After collecting N ≥ 3 measurements at three or more
polariser orientations, one arrives at the folllowing over-
determined linear system

I = Ax (3)

where I =


I1(u, λ)
I2(u, λ)

. . .
IN (u, λ)

 and A =


fT
1

fT
2

. . .
fT

N


Equation 3 is well-constrained since the number of equa-

tions N ≥ 3 is not less than the number of unknowns.
Moreover, the coefficient matrix A depends solely on the
polariser angle, and therefore allowing for an efficient solu-
tion of Equation 3 over all the image pixels and wavelengths
simultaneously.

Having obtained the solution for x = [x1, x2, x3]T , one
can recover the maximal and minimal intensities on the si-
nusoid and the phase of polarisation at each pixel u and
wavelength λ as

Imax = x1 +
√

x2
2 + x2

3

Imin = x1 −
√

x2
2 + x2

3

φ =
1
2

arctan
x3

x2



2.2. Estimation of the Azimuth Angle

Now, we turn our attention to the estimation of the az-
imuth angle of the surface normals from the phase angles
recovered above. Let us consider a diffuse reflection pro-
cess from dielectric surfaces. In such a process, diffuse re-
flection takes place due to incicident light penetrating the
surface and scattering within the dielectric body. We can
safely assume that the internal scattering within the dielec-
tric body is largely unpolarised, and that the diffusely emit-
ted light from the surface occurs due to refraction through
the material-air boundary. Further, the polarisation com-
ponent oscillating parallel to the plane of reflection is the
one that is refracted through the media-air surface bound-
ary with the maximal efficiency. This can be explained by
the fact that, the internally scattered light incident upon the
material-air boundary is unpolarised and the Fresnel trans-
mission component parallel to the reflection plane is always
equal to or higher than the perpendicular component. In ad-
dition, the diffuse polarisation oriented at an arbitrary angle
is a convex combination of its parallel and perpendicular
oscillation components [20].

Furthermore, the maximal intensity on the TRS curve at
pixel u and wavelength λ is reached at the phase angle φ.
Thus, the azimuth angle α at pixel u is either the same as
the phase of polarisation φ or differs from it by π [1], i.e.
α(u) = φ or α(u) = φ ± π. To disambiguate the azimuth
angle between the two possibilities, φ and φ±π, we assume
convexity on the surface under observation. Under this as-
sumption, surface normals point in the opposite direction to
that of image gradients. One can determine the azimuth an-
gle as the one between φ and φ ± π that yields the closer
orientation to the negative gradient direction.

However, across a broad spectrum, the estimated phase
angle φ at a given pixel may vary widely. This is due
to weak polarisation that causes a drift in phase angle es-
timation. Hence, the azimuth angle can be estimated as
the weighted mean of the spectral phase of polarisation.
The weights can be chosen to reflect the fitting error of
the TRS curve to the intensity-polariser angle pairs at each
wavelength. Here, the fitting error ε(u, λ) is quantified as
the L2-norm of the residual ε(u, λ) of the Equation 3, i.e.
ε(u, λ) = ‖I − Ax‖2, where I, A and x have been com-
puted per pixel and wavelength. The weight ω(u, λ) asso-
ciated with the phase of polarisation at each wavelength is
defined via a kernel weighting function. Here we employ
the Epanechnikov kernel such that

ω(u, λ) =

{
1 − g(ε(u, λ))2 if |g(.)| < 1
0 otherwise

(4)

where g(ε(u, λ))2 = ε2(u,λ)
h and h is a bandwidth parame-

ter.
Since the azimuth angle is a directional quantity, instead

of averaging the spectral phase angles directly, we estimate
the mean of the sines and cosines of the spectral phase an-
gles for each pixel-site as follows

〈sin(φ)〉λ =
∑

λ sin(φ)ω(u, λ)∑
λ ω(u, λ)

〈cos(φ)〉λ =
∑

λ cos(φ)ω(u, λ)∑
λ ω(u, λ)

where 〈·〉λ denotes the mean value across wavelengths.
The estimated azimuth angle at pixel u then becomes

α∗(u) =


arctan

(
〈sin(φ)〉λ
〈cos(φ)〉λ

)
if 〈cos(φ)〉λ > 0

arctan
(
〈sin(φ)〉λ
〈cos(φ)〉λ

)
+ π if 〈cos(φ)〉λ < 0

π
2 if 〈cos(φ)〉λ = 0

(5)

2.3. Joint Estimation of the Zenith Angle and Re-
fractive Index

In Section 2.2, we have shown how to estimate the az-
imuth angle of surface normals from the spectral phase of
polarisation, and how to disambiguate between the azimuth
candidate angles. To fully determine the surface shape, one
needs to estimate the zenith angle of the surface normals
with respect to the viewing direction. In this section, we
will show how both the zenith angle and the material in-
dex of refraction can be recovered from the Fresnel ratio of
diffuse polarisation.

Note that, in prior literature, the degree of polarisation
has been heavily exploited for the purpose of recovering
the zenith angle of surface normals and the index of refrac-
tion [1, 2, 4, 11, 12, 18]. However, there are a number of
limitations that prevent the application of these methods in
general uncontrolled and unpolarised lighting conditions for
unknown shapes and materials. The main reason for this
is that, these methods usually rely on either known index
of refraction [1, 2, 4, 11, 12], or require many images to
be captured in multiple views [11] or under several known
light source directions [18]. The need for multiple mea-
surements and complicated setups makes them impractical
for shape and material analysis on real-world data.

Moreover, existing methods are limited by the kind of
data at hand. With a single-band or trichromatic image,
there is only a single equation relating the zenith angle
and index of refraction through the degree of polarisation.
Therefore, one is unable to estimate both of these quantities
without further prior knowledge, such as known illumina-
tion directions or index of refraction. With an increasing
number of wavelengths, i.e. image bands, we can utilise the
correlation of the index of refraction across the whole spec-
trum making use of material dispersion equations. There are
several approximating functions of dispersion in the physics
literature. Of these, perhaps Cauchy’s and Sellmeier’s [5]



are the most popular. These equations allow the repre-
sentation of the index of refraction with a few coefficients
making use of a linear combination of rational functions of
wavelength. As more samples are acquired at an increasing
number of wavelengths, the number of equations exceeds
the number of variables, rendering the problem solvable.
Therefore, the recovery problem becomes well-constrained
and can be formulated as a non-linear least square minimi-
sation problem. In brief, the rationale behind our method
lies in the use of dispersion equations, which, as we will
show in our experiments, enforces constraints that replace
the need for prior knowledge of the index of refraction or
illumination conditions.

We focus on showing how the zenith angle and the ma-
terial index of refraction are jointly estimated. Suppose that
the imagery is acquired at K discrete sampled wavelengths
λ ∈ {λ1, . . . , λK}. As shown in Section 2.1, at each pixel
location u and wavelength λ, we have already obtained the
quantities Imax and Imin. Given unpolarised incident light,
the maximal diffuse polarisation is observed in the direc-
tion parallel to the reflection plane, which also contains the
reflected ray. The minimal diffuse polarisation is observed
in the direction perpendicular to the reflected ray. This is a
consequence of the developments presented in Section 2.2.
Since the unpolarised incident light can be decomposed into
incoherent polarisation components oscillating in the paral-
lel and perpendicular planes with equal magnitudes, the po-
larisation components of the reflected light are proportional
to the Fresnel transmission coefficients in the corresponding
planes [5], i.e.

Imin

Imax
=

1 − F⊥(u, λ)
1 − F‖(u, λ)

(6)

=

cos θ(u)
√

n(u, λ)2 − sin2 θ(u) + sin2 θ(u)

n(u, λ)

2

where θ(u) is the zenith angle of the surface normal at lo-
cation u, n(u, λ) is the refractive index of the same location
at wavelength λ, and F⊥(u, λ) and F‖(u, λ) are the perpen-
dicular and parallel Fresnel reflection coefficients.

Let us denote the known quantity
√

Imin

Imax
as r(u, λ). At

each pixel location u, we solve the system of Equations 6
with λ ∈ {λ1, . . . , λK} by converting it to a non-linear least
square problem with the following cost function

E(u) =
K∑

i=1

[cos θ(u)
√

n(u, λi)2 − sin2 θ(u) + sin2 θ(u)

n(u, λi)

− r(u, λi)
]2

(7)

With the equation above in hand, we can provide fur-
ther constraints on the index of refraction according to the
Cauchy’s dispersion equation, as follows

n(u, λ) =
M∑

k=1

Ck(u)λ−2(k−1) (8)

Here, the dispersion equation relates the index of refrac-
tion solely to the wavelength, with coefficients Ck(u), k ∈
{1, . . . ,M} that are characteristic of the material. With this
representation of n(u, λ), the cost function E(u) in Equa-
tion 7 can be reparameterised as a function of M + 1 vari-
ables, including θ(u) and Ck(u), k = 1, . . . ,M . If the
number of M dispersion coefficients is chosen such that
M + 1 ≤ K, where K is the number of wavelengths, then
the non-linear least square problem can be solved numeri-
cally by standard line-search or trust-region methods. Hav-
ing obtained the azimuth and zenith angle of the surface
normals, one can recover the shape under study by means
of a surface integration method such as that in [8]. On the
other hand, the index of refraction can be recovered from
the dispersion equation making use of the dispersion coeffi-
cients Ck(u).

3. Experiments
In this section, we perform experiments using our

method for recovering surface orientation and refractive in-
dex on synthetic and real-world polarisation images. On
the synthetic dataset, we provide the accuracy of our esti-
mated parameters compared to their ground-truth. On the
real-world images, we verify the accuracy of the recovered
surface orientation and index of refraction through images
rendered under novel lighting conditions. For all our exper-
iments, we have set the bandwidth of the Epanechnikov ker-
nel in Section 2.2 to unity. In addition, the form of Cauchy’s
dispersion equation that we employ approximates the re-
fractive index as an eighth-order rational function of wave-
length, with five coefficients. The non-linear least square
minimisation problem posed in Section 2.3 is solved by a
subspace trust-region method that is based on the interior-
reflective Newton method described in [7].

3.1. Synthetic Data

We commence by performing experiments on a synthetic
dataset. To build the dataset, we generate the 3D surface of
a dome, a ridge, a torus, a volcano and a two-dome test
shape. We render images of these synthetic shapes using
the refractive index of 24 plastic and liquid materials re-
ported in [10]. The image dataset is synthesized using the
Wollf diffuse reflectance model for dielectrics [22] with the
total diffuse albedo parameter being the spectral reflectance
of Polyvinyl Chloride (PVC) under ten illumination con-
ditions. These amount to a total of 1200 combinations of



(a) L3 (b) L4 (c) L5 (d) L2 + L4 (e) L1 + L5

(f) 0◦ (g) 30◦ (h) 45◦ (i) 60◦ (j) 90◦

Figure 1. First row: Sample synthetic images of a dome rendered
with the refractive index of Polystyrene under five different natural
sunlight directions. Second row: Sample synthetic images of a test
shape at five different angles of polarisation, under the frontal light
source direction.

shape and photometric parameters. For each combination,
five polarisation images are generated corresponding to five
polariser orientations at 0◦, 30◦, 45◦, 60◦ and 90◦ in the
clockwise direction with respect to the vertical orientation.
All the multispectral images in our dataset are 30 bands in
length, spanning the 430−720nm range, with a 10nm step
between successive bands.

The illuminants involved in the simulation lie in the same
horizontal plane as the viewing direction. Each illuminant
assumes one of five different directions pointing towards the
surface under study. We have denoted these illuminants as
L1, L2, L3, L4 and L5. These directions form angles of
−26.5◦, −14◦, 0◦, 14◦ and 26.5◦ with respect to the view-
ing direction, where a negative angle means the light direc-
tion is on the left-hand side of the view point and a positive
angle means otherwise. In addition, each light assumes the
power spectrum of either the natural sunlight or an incan-
descent light. These power spectra have been acquired from
sample light sources using a StellarNet spectrometer. The
illuminant combinations used for this dataset include three
instances of single illuminant directions, which are L3, L4

and L5, and two instances of two simultaneous illuminant
directions which are L2 + L4 and L1 + L5.

In Figure 1, we show sample synthetic images generated
for two shapes in the dataset. The first row shows the vari-
ation of shading with respect to the illumination direction,
whereas the second row shows the variation of shading with
respect to the angle of polarisation. The pseudocolour RGB
images have been synthesized from the generated multi-
spectral images using the Stiles and Burch colour matching
function [17]. The images in the figure have been rendered
with the refractive index of Polystyrene under the power
spectrum of natural sunlight.

In Figure 2, we present the shading and needle maps of
all the simulated shapes under the oblique light direction
originating from the right-hand side of the viewing direc-
tion, at an angle of 26.5◦ (L5). The top row shows the
input images, corresponding to the vertical polarisation di-

rection. The middle and bottom rows show the recovered
diffuse maps and needle-maps of the shapes on the top pan-
els. Note that the surface geometry has been successfully
recovered everywhere except for totally dark shadows, ir-
respective of shading variations. Here, the horizontal sym-
metry of the recovered shading and needle maps shows that
our method relies on polarisation rather than shading so as
to reveal the surface geometry. The results also imply that
our method is insensitive to changes in illumination power
and direction.

To support the qualitative results above, in Table 1, we
show the accuracy of the recovered shapes and refractive
index spectra. The shape accuracy is quantified as the Eu-
clidean angle, in degrees, between the estimated surface
normal direction and the corresponding ground truth per
pixel. In columns 2–6, we report the mean of this angular
error for each shape and light direction. The first observa-
tion is that the shape errors are greatest for flatter shapes
such as the Ridge and Volcano. This is since polarisation
weakly occurs at surfaces almost perpendicular to the view-
ing direction. In most cases, the frontal and the combined
light directions yield the lowest shape error. In addition,
the shape error increases by at most three degrees when the
illuminant shifts to the most oblique direction (at an angle
of 26.5◦ from the camera axis). In fact, the variation of
the mean shape error is less than three degrees across dif-
ferent lighting directions. This observation, again, supports
the claim that polarisation is a good cue to surface orienta-
tion because it is robust to changes in illumination direction.
This is in contrast to Shape from Shading and Photomet-
ric Stereo methods, which attribute geometric cues to im-
age shading. Moreover, the standard deviation of the shape
error in our results is negligible being never greater than
0.0027 degrees. This means that the recovered shape is sta-
ble across different materials and illuminant power spectra.

In Table 1, we also report the accuracy of the recovered
refractive index. For each synthetic image, the accuracy is
quantified as the Euclidean angle in degrees, between the
mean of the recovered refractive index spectra across all the
pixels and the ground truth refractive index used for syn-
thesizing the image. This accuracy measure is meaningful
because our method aims at recovering an apparent refrac-
tive index, which may be a scalar multiple of the actual one.
Furthermore, for the purposes of recognition, the scaling
factor is a less important issue than the spectral variation of
refractive index. The reported angular errors in columns
7–11 show that we can recover the refractive index with
high accuracy and that the estimation is stable across all the
shapes and lighting directions. In fact, the change in light-
ing direction hardly affects the resulting refractive index.
This observation is consistent with the shape recovery re-
sults. Therefore, these quantitative results demonstrate that
our recovery method, to an extent, is robust against changes



Figure 2. Results on synthetic shapes under an oblique light source direction at an angle of 26.5◦ on the right of the viewing direction. Top
row: Input polarisation images; Middle row: Recovered shading maps from the input images. Bottom row: Recovered needle maps.

Shape error (degrees) Angular error of refractive index spectra (degrees)
L3 L4 L5 L2 + L4 L1 + L5 L3 L4 L5 L2 + L4 L1 + L5

Dome 7.36 7.38 8.49 7.36 7.35 0.41± 0.11 0.41± 0.11 0.41± 0.11 0.41± 0.11 0.41± 0.11

Ridge 16.04 15.11 13.12 16.04 16.04 0.28± 0.18 0.28± 0.18 0.28± 0.18 0.28± 0.18 0.28± 0.18

Torus 10.60 10.92 11.58 10.60 10.60 0.17± 0.13 0.17± 0.13 0.17± 0.13 0.17± 0.13 0.17± 0.13

Volcano 21.54 21.92 23.94 21.55 21.55 0.19± 0.17 0.19± 0.17 0.19± 0.17 0.19± 0.17 0.19± 0.17

Test shape 2.81 3.61 4.55 2.91 3.10 1.98± 0.17 1.87± 0.17 1.63± 0.17 1.98± 0.17 1.98± 0.17

Table 1. The accuracy of the recovered parameters. Columns 2–6 show the error (in degrees) of the needle maps recovered by our method.
Columns 7–11 show the error of the estimated refractive index spectra in terms of the Euclidean deviation angle from the ground truth.

in illumination and material.

3.2. Real-world Imagery

In this section, we turn our attention to real-world mul-
tispectral images acquired in house using a hyperspectral
camera with an acousto-optic tunable filter. To acquire the
imagery in our experiments, we have tuned the filter to the
wavelength range of 400 − 650nm, with a spectral reso-
lution of 5nm. We have acquired multispectral images of
four different objects made of matte plastic and porcelain.
To measure polarisation, we capture polarised images when
the polariser transmission axis is oriented at each of seven
different angles, i.e. 45, 60, 75, 90, 105, 120 and 135 de-
grees in the clock-wise direction with respect to the vertical
axis.

The input images to the recovery algorithm are captured
under two unpolarised artificial sunlights simultaneously il-
luminating the left and right hand side of the objects. Note

that the algorithm does not require prior knowledge of the il-
luminant power spectrum and direction. Here, we have used
two illuminants to ensure that there is no dark shadow in
the captured images. To produce realistic rendering results,
there is a need for obtaining the material reflectance. We
achieve this by capturing an unpolarised multispectral im-
age of the same object under an illuminant direction aligned
to the viewing direction.

Our method delivers the surface orientation and material
index of refraction from input polarisation images. For the
recovery of the reflectance, we utilise the fact that the in-
cident and reflection angles are the same. Suppose that the
illuminant power spectrum is known, we can use the Wolff
model [22] to solve for the material reflectance since the
other parameters involved in the model, i.e. incoming and
outgoing light direction and index of refraction, are recov-
ered by our algorithm.

Figure 3 shows sample input images of the four objects



under study. The images shown here are the pseudocolour
RGB version of the input multispectral images, simulated
with the Stiles and Burch colour matching functions [17].
In the figure, the first row shows the polarised images of the
test objects with the polariser’s transmission axis forming
an angle of 45◦ to the vertical direction. The second and
third rows show the recovered shading and needle-maps of
the objects on the top row. Note that the needle maps show
clear overall surface contours and correct surface normal
orientation along occlusion boundaries. The shading maps
are intuitively correct, being more prone to error along ma-
terial boundaries. This is due to the fact that our method
is based solely on polarisation information and, therefore,
the changes at material boundaries can be interpreted as a
variation in object geometry.

Having obtained the surface orientation and material
properties of the objects under study, we re-render their
images under novel illuminants. For validation, we have
captured ground truth images of these objects under direc-
tional incandescent lights placed in the horizontal plane go-
ing through the camera’s position. Specifically, from left
to right, these light directions point towards the illuminated
object, forming angles of −45, −30, 0, 30 and 45 degrees
with the viewing direction, where, as before, a negative an-
gle means the light is located on the left-hand side of the
camera and vice versa. We denote these light directions L1,
L2, L3, L4 and L5, respectively, so as to be consistent with
the synthetic dataset.

Figure 3. First row: Polarised images of sample real-world objects;
Middle row: Recovered shading maps; Bottom row: Needle maps
yielded by our method.

(e) L3 (f) L4 (g) L1 + L5 (h) L2 + L4

Figure 4. Top row: Rendered images of a bear; Bottom row:
Ground truth images.

In Figure 4, we show the rendering results for one of
the objects in Figure 3 under the incandescent illuminants.
In the top row, from left to right, we show the images ren-
dered under illuminant combinations L3, L4, L1 + L5, and
L2 + L4. The bottom row shows the corresponding ground
truth images captured under the same light directions. The
rendering is successful for the frontal light L3 and the two-
illuminant settings L1 + L5, and L2 + L4. In the extreme
condition of the oblique light L4, the rendering result shows
the effect of the geometric cue induced by material changes
in the object as shadows on the resulting image.

For a more quantitative analysis, in Table 2, we show
the rendering accuracy under novel lighting directions. The
error is measured as the angular difference between the ren-
dered hyperspectral images and their ground-truth on a per-
pixel basis. It is worth stressing in passing that, on the pan-
els, so far we have shown pseudocolour images, nonethe-
less, our error measures are obtained on the spectra and not
on the RGB values yielded by the color matching functions.
The figures reported in Table 2 are the mean and standard
deviation across pixels in each image. The results here are
consistent with the qualitative results in Figure 4, in the
sense that the rendering quality is higher for the cases of
frontal illuminants and two simultaneous illuminants. This
is due to the fact that in such conditions, the objects are fully
illuminated and the rendered image has a smooth shading
variation. For oblique illuminant conditions, the lower ren-
dering accuracy is due to non-smooth shading where shad-
ows occur across material boundaries. Nonetheless, the al-
gorithm can produce rendering results that are in good ac-
cordance with the ground truth.

4. Conclusion

We have presented a method for estimating shape and
refractive index simultaneously based upon polarisation in



L3 L4 L5 L1 + L5 L2 + L4

Bear 13.36 ± 6.33 14.19 ± 5.62 13.39 ± 4.94 11.07 ± 6.12 11.79 ± 7.15
Statue 12.51 ± 6.82 12.91 ± 7.05 12.24 ± 6.00 10.95 ± 5.68 11.10 ± 6.72

Pig 10.96 ± 6.18 12.03 ± 7.89 11.83 ± 7.43 8.11 ± 5.13 9.69 ± 5.70
Dinosaur 14.43 ± 5.73 16.18 ± 8.70 16.69 ± 9.02 11.10 ± 4.69 11.05 ± 5.46

Table 2. The angular deviation (in degrees) of images rendered in the frontal viewing direction, from their ground truth, across different
light source directions.

single-view multi-spectral imagery. The method presented
here utilises the spectral variation of the phase of polarisa-
tion for estimating the azimuth angle of surface normals.
We have also drawn upon the Fresnel transmission ratio to
recover the zenith angle of the surface normals and the re-
fractive index simultaneously. To make this problem well-
posed, we have enforced a wavelength-dependent disper-
sion equation on the index of refraction. We have also
demonstrated the merit of our method for purposes of shape
and refractive index recovery on synthetic and real-world
imagery.
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