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Abstract

In this paper, we present a surface reflectance descriptor
based on the control points resulting from the interpolation
of Non-Uniform Rational B-Spline (NURBS) curves to mul-
tispectral reflectance data. The interpolation is based upon
a knot removal scheme in the parameter domain. Thus,
we exploit the local support of NURBS so as to recover a
compact descriptor robust to noise and local perturbation
of the spectra. We demonstrate the utility of our NURBS-
based descriptor for material identification. To this end, we
perform skin spectra recognition making use of a Support
Vector Machine classifier. We also provide results on hyper-
spectral imagery and elaborate on the preprocessing step
for skin segmentation. We compare our results with those
obtained using an alternative descriptor.

1. Introduction

The development of image sensor technology has made
it possible to capture image data in hundreds of bands cov-
ering a broad spectrum of wavelengths. In contrast with
trichromatic sensors, multispectral and hyperspectral sens-
ing devices can acquire wavelength-indexed reflectance and
radiance data in thousands of bands across a broad spec-
trum.

Thus, hyperspectral cameras, filter-sets and multiplexed
light provide a means to recover an information-rich rep-
resentation of the reflectance and radiance data. In [18],
a method to capture hyperspectral imaging through multi-
plexed light is presented. Angelopoulouet al. [2] have used
spectrophotometric data to model skin colour. In [1], fil-
ters are used to recover multispectral images for highlight
removal.

Moreover, the spectral response of the material under
study over a number of wavelengths permits the recovery
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of the reflectance spectra as a feature for material identi-
fication and recognition. Due to the high dimensional na-
ture of the spectral data, many classical algorithms in pat-
tern recognition and machine learning have been naturally
borrowed and adapted so as to perform feature extraction
and classification [11]. Techniques such as Principle Com-
ponent Analysis (PCA) [10], Linear Discriminant Analysis
(LDA)[7], Projection Pursuit [9] and their kernel versions
[6] treat raw spectra as input vectors in a higher-dimensional
space, where the dimensionality is given by the number of
bands. The task is then viewed as a mapping onto the fea-
ture space, often with reduced dimensionality, via the opti-
misation of a given cost function which leads to statistically
optimal solutions to classification.

An alternative to the use of raw spectra as a means to
classification and recognition is the use of a reflectance de-
scriptor, robust to changes in illumination, noise and sur-
face geometry. Recognition and identification methods have
benefited from the recovery of properties which are invari-
ant to geometric and photometric effects. Nayar and Bolle
[16] have proposed a method of object recognition based
on the reflectance ratio between object regions. Slater and
Healey [22] used a set of Gaussian filters to derive moment
invariants for recognition. Jacobset al. [8] have developed a
method for comparing images under variable illumination.
Lin and Lee [14] have used chromaticity distributions for
3D object recognition. Lenzet al. [13] have used perspec-
tive projections to separate intensity from chromaticity so
as to recover a three-dimensional colour descriptors.

In constrast with other approaches elsewhere in the lit-
erature, here we focus on the development of a free-form
representation for arbitrary spectral data. This provides a
compact representation of wavelength dependent informa-
tion. To this end, we profit from the properties of NURBS
curves [20]. NURBS are widely used in Computer-Aided
Design and graphics but do not appear to have been used
for the representation of spectra. This is somewhat surpris-
ing since NURBS allow the representation of analytical and
free-form shapes using a set of control points with local sup-
port, i.e. the control points have a bounded effect on the



span of the curve. As a result, the descriptor presented here
is robust to perturbations in the spectra. Moreover, the de-
scriptor permits both, interpolation via a set of numerically
stable algorithms and the representation of spectra of dis-
similar lengths captured by different acquisition methods.

2. NURBS-Based Descriptor

As mentioned earlier, our NURBS-based descriptor can
cope with densely sampled reflectance spectra, which could
potentially consist of hundreds of data points over the vis-
ible spectrum. For purposes of classification, long feature
vectors has been known to degrade performance since they
incur computational cost and learning-theoretic limitations.
Thus, it is desirable that our descriptor has the most dis-
criminative power with the lowest possible dimensionality.

In this section we present a method of recovering a com-
pact descriptor for reflectance spectra. Nonetheless, in the-
ory, this descriptor may be of arbitrary length, we show how
the descriptor may be rendered compact by means of knot
removal. To do this, we commence with an introduction to
NURBS curves and relate them to an interpolation step on
the spectrum. We then formulate the reflectance descrip-
tor through performing knot removal by minimising a cost
function in the parameter domain of the spline curve.

2.1. Descriptor Formulation

To commence, recall a B-spline is a function that has
support with respect to degree, smoothness and domain par-
tition. These properties make B-spline a flexible tool for
fitting arbitrary shapes and data. The smoothness prop-
erty makes the interpolating curve robust to noise. The lo-
cal support property permits the modification of the curve
over a given wavelength range while keeping the rest of the
spline unaffected.

First, we require some formalism. Since spectra are a
function of wavelengthλ, we restrict our analysis to the
two-dimensional case. Ap-degree B-Spline curveC in R2

composed ofn segments is a function in the parameter do-
mainU of the univariate variablet given by the linear com-
binationC(t) =

∑n
i=0 Ni,p(t)Pi, wherePi = (xi, yi) are

the 2D control points, andNi,p(t) are thep-degree B-spline
basis functions defined on the parameter domain [20]. The
coordinates(x, y) of a point on the curve are expressed in
the parametric form

x(t) =
n∑

i=0

Ni,p(t)xi (1)

y(t) =
n∑

i=0

Ni,p(t)yi (2)

A B-Spline is characterised not only by the control points
but also by a knot vectorU = {u0, . . . , um}, wherem =

n + p + 1. With these ingredients, we can define theith

B-spline basis functionNi,p(t) of degreep as follows

Ni,0(t) =
{

1 if ui ≤ t < ui+1

0 otherwise

Ni,p(t) =
t− ui

ui+p − ui
Ni,p−1(t)

+
ui+p+1 − t

ui+p+1 − ui+1
Ni+1,p−1(t)

Note that the basis functionNi,p(t) is a piecewise
polynomial assuming non-zero values only on the interval
[ui, ui+p+1). Therefore, it only affects the shape of the
spline in a local section governed by the parametert.

To formulate the descriptor, we treat a spectrum as a col-
lection of spectral samples with two coordinates(λk, Rk),
whereRk is thekth reflectance sample at the wavelength
λk. Thus, the parametric form of a B-spline curve through
these data points is obtained by representing the wavelength
and reflectance as two functions oft, which we denoteλ(t)
andR(t), respectively. The descriptor is then governed by
a knot vector and a control point-set which minimise a cost
function defined by squared differences between the mea-
sured reflectanceRk and the one computed in the parame-
ter domainR(t). We depart from an initial interpolation of
the sampled reflectance spectrum so as to arrive at the curve
that minimises the cost function through a knot removal al-
gorithm.

Once the control points and knot vector that minimise
the cost function are at hand, we proceed to construct the
NURBS descriptor. We do this by selecting the most dis-
criminative components from the control point-set and the
knot vectorU . We observe that the knots andx–coordinates
of each control point, i.e. thexi variables in Equation 1,
vary in a specific neighbourhood of the parameter domain
where they govern the local support of the NURBS. This
is reflected in the wavelength domain and, therefore, their
variations across the spectra may not be as related to the
spectrum shape as they–coordinates of the control points,
i.e. theyi variables in Equation 2. In other words, the vari-
ations in they–coordinates of the control points primarily
determine the general shape of the spectrum. Thus, they–
coordinates should provide better discrimination between
spectra than the knots andx–coordinates. To minimise
the complexity of the descriptor in terms of vector length
and computational cost, we limit our descriptorY to they–
coordinates of the control pointsY = [y0, y1, . . . , yn]T .

2.2. Target Function

As mentioned earlier, in statistical learning, a descrip-
tor is desired to retain statistical information that gives high
discriminative power. Hence, we devise a target function
to optimise the choice of the interpolating B-spline curve



for each reflectance spectrum. Given a surface with re-
flectanceRk at each wavelength{λk}, k = 1, . . . , l, we
aim to recover an interpolating curveC with control points
Pi = (xi, yi) and a knot vectorU such that

λ(tk) =
n∑

i=0

Ni,p(tk)xi (3)

R(tk) =
n∑

i=0

Ni,p(tk)yi (4)

where the parametertk ∈ U corresponds to thekth wave-
length, i.e.λk = λ(tk)∀k.

The cost of interpolating the points(λk, Rk) using the
B-spline curve above is then given by

K = α

l∑

k=1

(R(tk)−Rk)2 + (1− α)|U | (5)

where|.| denotes the length of the vector argument andα is
a constant between zero and unity.

Note that the first term in Equation 5 above is the
weighted sum of squared errors in the 2D space defined by
the wavelength-reflectance pairs, whereas the second term
is the weighted number of knots. Thus, the optimal in-
terpolating curve minimises the sum of squared distances
(R(tk) − Rk)2, while penalising a large number of knots.
This imposes a balance in the resulting curve between de-
scribing the general shape of the reflectance data, while
minimising the number of knots required to describe it. This
trade-off is governed byα. A small value ofα favours a
short descriptor over one that respects the general shape of
the original data. Also, note that, as the number of knots
decreases, the interpolating curve becomes smoother. Thus,
an appropriate choice ofα makes the descriptor less suscep-
tible to noise while preventing over-smoothing and loss of
detail.

2.3. Minimisation of the Cost Function

This section presents our knot removal method which
aims at minimising the interpolation cost introduced in
Equation 5. We depart from an initial approximation of the
NURBS curve to the reflectance spectrum under study. To
this end, we apply the curve interpolation algorithm in [20],
which employs the centripetal method of Lee [12] to re-
cover parameter values for every control point.

With this initial approximation at hand, we proceed to re-
move knots sequentially using a knot removal method akin
to that in [23]. The algorithm is a two-pass process. In
the first pass, removable knots are identified. In the second
pass, knots are sequentially removed and new control points
are computed. Although being effective, this algorithm does
not automatically determine the best knot to remove at each

pass, but rather assumes the knot to be removed to be des-
ignated as input. Our knot removal algorithm computes the
potential cost reduction for removable knots. Once these
knots and their contributions to the cost function are at hand,
we employ Tiller’s algorithm [23] to remove them.

Thus, our algorithm selects amongst the candidate knots
the one that yields the maximum cost reduction. Also, note
that, following the strategy above, the parametertk should
be recovered for every wavelengthλk. This is not a straight-
forward task since the functionλ(tk) is expressed as a linear
combination of the basis functionsNi,p given in Equation 3.
Nonetheless, this equation may not be solved analytically.
We adopt a numerical approach in order to find an approx-
imate solution and reduce the computational cost involved.
In fact, it is reasonable to assume that the wavelengthλ(tk)
is an increasing function in the parameter domain. There-
fore, for a given wavelengthλk, we can perform a binary
search fortk such thatλk ∼ λ(tk).

Algorithm 1 KnotRemoval(Q, p, α, target)
Require: Q, p, α, target

Q: The given data points
p: The degree of basis functions
α: The balance factor
target: The target number of knots
U0, P0: the returned knots and control points

1: (U0, P0)← Interpolate(Q, p)
2: while true do
3: Reductionmax ← −1 //Highest cost reduction
4: for all u ∈ U0 do
5: (flag, U1, P1) ← RemoveKnot(u) //flag is

true if knot u is removable
6: if flag then
7: SSEold ← SSE(U0, u)
8: SSEnew ← SSE(U1, u)
9: Reduction← (1−α)+α(SSEold−SSEnew)

10: if Reduction > Reductionmax then
11: Reductionmax ← Reduction
12: candidate← u
13: end if
14: end if
15: end for
16: if Reductionmax < 0 then
17: return U0, P0

18: end if
19: Remove thecandidate one time
20: Remove a data point corresponding tocandidate
21: Q′ ← The remaining data points.
22: (U0, P0)← Interpolate(Q′, p)
23: end while
24: return U0, P0



2.4. Implementation Issues

The knot removal process can be viewed as a greedy ap-
proach which is reminiscent of a gradient descent method.
In practice, this is an iterative method in which, at every it-
eration, we locate the knot that maximises the reduction in
the costK. The knot removal algorithm is summarised in
Algorithm 1, where the sum of squared errors before and
after knot removal are denoted asSSEold and SSEnew,
respectively. TheRemoveKnot(·) procedure implements
the knot removal algorithm in [23].

As a result of the local support property of B-spline
curves, the removal only affects the curve partition in the
neighbouring sections of the knot. Thus, for the sake of
efficiency, the change in sum of squared errors can be com-
puted as the change within the neighbourhood of the re-
moval candidateu, to profit from the local support of the
NURBS. To do this, we use the span of the NURBS [20]
and employ lists to back-track their effect across the spline.

The knot removal algorithm terminates when removing
any knot cannot further reduce the interpolation cost. How-
ever, the number of knots should be imposed as a hard con-
straint since descriptors should be normalised in length be-
fore they are input to classifiers. Hence, the knot removal
method in Algorithm 1 is applied recursively by resampling
data points in the parameter domain. The pseudocode for
the recursion on the knot removal algorithm is shown in Al-
gorithm 2. The resampling operation allows further knots
to be removed by reducing the number of curve sections
without changing the distribution of the control points from
the original data. Note that smoothing becomes most acute
when the parameter values for the resampling operation are
given by the midpoints of the knot spans. Thus, we sam-
ple parameter values near the resulting knots to preserve the
shape of the original curve.

Algorithm 2 IterKnotRemoval(Q, p, α, target)
Require: Q, p, target

Q: The given data points
p: The degree of basis functions
target: The target number of knots
α: The balance factor
U2, P2: The final knots and control points

1: samples← Q
2: while |U2| > target do
3: (U1, P1)← Interpolate(samples, p)
4: (U2, P2)← KnotRemoval(samples, p, α, target)
5: Select Parameters(t1, . . . , tl)
6: samples← Resample(p, U2, P2, t1, . . . , tl)
7: end while
8: return U2, P2

To illustrate the behaviour of our algorithm, Figure 1

Figure 1. Result of knot removal on spectral reflectance samples
of human skin (left) and a leaf (right).

shows the resulting NURBS curves achieved by removing
knots from the reflectance spectra of human skin and a leaf.
The original reflectance data, plotted in red, are sampled
every4nm. In the figure, we have performed iterative knot
removal with B-Spline basis functions of degree3. This
yielded 34 knots and30 control points per curve. Note
that, while this number of knots is considerably less than
the number of original data points, the resulting NURBS
curve, plotted in green, still aligns well with the original
data. Thus, our cost-optimal knot removal algorithm is
able to perform dimensionality reduction while respecting
the global shape of the reflectance spectra. This is evident
throughout the whole spectrum between400 and750nm.

3. Applications

In this section we illustrate the utility of the NURBS-
based descriptor for recognition and segmentation in hy-
perspectral images. Firstly, we perform skin spectra recog-
nition on spectrometer data. We then expand this experi-
ment to perform skin segmentation in hyperspectral images.
Recognition and classification of the spectra is effected us-
ing a soft-margin Support Vector Machine (SVM) [3, 5].
with a polynomial kernel of degree3.

In our experiments, we compare our results with those
yielded by descriptors recovered through Gaussian Mix-
ture Regression [2]. The Gaussian Mixture model yields
a better approximation to the raw spectral data than that of
Principal Component Analysis (PCA). In fact, the sum of
five Gaussian Mixtures gives an average root mean squared
(RMS) error of1.0% over 46 skin spectra, as compared to
a much noisier approximation yielded by PCA with an er-
ror of 4.65%. Thus, through comparing the NURBS-based
descriptor with the Gaussian Mixture descriptor, we are, by
transitivity, comparing it with PCA.

In [2], a linear combination ofM Gaussian basis func-
tions with meansµk, standard deviationsσk and mix-
ture coefficientsβk is fitted to each reflectance spectrum.
The fitting problem is treated as a nonlinear least-squares
optimisation one, which can be solved numerically us-
ing a Levenberg-Marquardt optimisation procedure [15].
To construct the feature vector, we concatenate the triplet
(βk, µk, σk) for every Gaussian. We have done this since,



Feature combination Accuracy (%)
y–coordinate 91.27± 1.6
x–coordinate 84.04± 5.02

Knots 88.83± 3.38
x andy–coordinate 90.86± 2.15

Knots andy–coordinate 91.14± 2.91
Knots andx–coordinate 87.21± 4.60

Knots,x andy–coordinate 91.04± 2.61

Table 1. The mean and standard deviation of the classification ac-
curacy over20 random tests with various feature combinations
from a NURBS descriptor consisting of31 knots and27 control
points.

in our experiments, these triplets consistently deliver better
classification performance than other tuple combinations in-
volving βk, µk or σk.

3.1. Skin spectra recognition

We first turn our attention to skin spectra recognition. To
this end, we have acquired in house 297 surface reflectance
spectra using a StellarNet spectrometer. These surface re-
flectance spectra correspond to nine material categories, in-
cluding cloth, paints, human skin, leaves, metal, coloured
paper, plastic, porcelain and wood. In our dataset there are
157 spectra of human skin and 140 of the other materials
above. All the spectra have been sampled in0.5nm inter-
vals between430–720nm with a normalised reflectance be-
tween[0, 1]. The performance of the descriptors is given
by the average performance over20 random tests. In each
random test, we train a classifier on a randomly selected
training set comprised by50 skin and50 nonskin spectra.
The remaining spectra are used for testing.

At this point, we turn our attention to the discrimina-
tive power ofY = [y0, y1, . . . , yn]T as compared to the
x-coordinates of the control points and the knot vector. In
Table 1, the recognition rate usingY is compared with other
choices of descriptor formulation. For the results shown
here, we have used31 knots and27 control points with basis
functions of degree3. Our choice of descriptorY achieves a
higher and more stable recognition accuracy than the knots
andx-coordinates. Note that combining the knots andx, y-
coordinates does not necessarily improve the classification
performance.

We now compare the performance of the NURBS de-
scriptor with that yielded by the Gaussian Mixtures over
various descriptor lengths. Figure 2 shows the mean and
standard deviation of recognition accuracy when using the
two descriptors with varying lengths between9 and30, and
raw spectral reflectance consisting of291 bands. Overall,
the NURBS descriptor performs better and is more stable
than the Gaussian Mixture descriptor, corresponding to a
recognition rate with a higher mean and a lower range of
standard deviation as compared to that yielded by the Gaus-

Figure 2. Classification performance on spectrometer data for the
NURBS and Gaussian Mixture descriptors with varying lengths
and raw spectral data.

sian Mixture descriptor. As shown in the figure, the NURBS
descriptor is able to perform well, even with a descriptor
length shorter than15, achieving a mean classification ac-
curacy between88.43% and93.20%. On the other hand,
the Gaussian Mixture descriptor obtains the peak perfor-
mance of84.44% with 5 mixture components (correspond-
ing to a length of15) and declines rapidly as the order of
the descriptor increases. This is consistent with the results
reported in [2], where5 mixture components give the low-
est average root mean squared reconstruction error with re-
spect to the original spectra. This also shows that using
more than5 mixture components not only adds computa-
tional complexity, but also degrades the classification ac-
curacy severely. The NURBS descriptor does not suffer
from this problem and achieves a performance comparable
to the raw spectra. It is worth stressing that raw spectra
have a length of291, whereas our descriptor is never longer
than 30 elements, which means our descriptor is much more
computationally efficient.

3.2. Skin Segmentation

We now focus our attention on segmentation of hyper-
spectral imagery. Our hyperspectral images were taken us-
ing an OKSI Turnkey Hyperspectral Camera System which
acquires wavelength resolved images in10nm intervals
over the visible spectrum. Our imagery depicts 7 subjects:
two Caucasian, two Indian and three Asian. Figure 4 shows
the images of these subjects at670nm. For purposes of val-
idation, we have performed denoising on the spectral data.
Each spectrum is smoothed by a2nd order Savitsky-Golay
[17] filter with window size of5 bands. This reduces the
effects of noise and provides us with filtered spectral data
which can then be used for our experiments.



Figure 3. Comparison of the normalised lower boundL̂(λ) (solid
line) and the true spectrum of the illuminant (dashed line).

To recover the illumination-invariant reflectance at in-
dividual pixels from the radiance of a hyperspectral im-
age without prior knowledge of the light spectrum we have
adopted a method akin to the continuum removal in [4].

Let an object with surface radianceI(λ, u) at pixel u
and wavelengthλ be illuminated by an unknown illuminant
whose spectrum isL(λ). The dichromatic model [21] has
long been used to decompose surface radiance into a diffuse
and a specular component such that

I(λ, u) = g(u)L(λ)S(λ, u) + k(u)L(λ) (6)

Using this model, we aim to recover the spectral re-
flectanceS(λ, u) at locationu and wavelengthλ from the
measured spectral radianceI(λ, u) on the image. In Equa-
tion 6, the shading factorg(u) governs the proportion of
diffuse light reflected from the object and depends solely
on the surface geometry. On the other hand, the factork(u)
accounts for the specularities on the image.

To recover the light spectrumL(λ), we employ a vari-
ant of the continuum removal technique widely used in re-
mote sensing [4]. The rationale behind the method used
here is that, since objects in the scene cannot reflect more
energy than what they receive from the light source, the ra-
diance at the brightest pixel in the image can be treated as
a lower bound on the illuminant. If the sample set over the
spectra is large, the measured lower bound is expected to
approximate the true illuminant. Thus, in a hyperspectral
image with millions of pixels, we can use the lower bound
L̂(λ) = maxu I(λ, u) as an alternative to the light spec-
trum L(λ). Figure 3 shows the lower bound̂L(λ) recov-
ered from the hyperspectral image, in comparison with the
illuminant spectrum as measured by a spectrometer. Both
spectra are normalised to the range[0, 1]. From the fig-
ure, we can conclude that the lower boundL̂(λ) is approxi-
mately proportional to the true illumination spectrumL(λ),
i.e L̂(λ) = ρL(λ), whereρ is a constant.

With the approximate light spectrum̂L(λ), we have

I(λ, u)
L̂(λ)

' 1
ρ

(g(u)S(λ, u) + k(u)) (7)

We can assume that the spectral reflectanceS(λ, u) at
pixel u is normalized to[0, 1], i.e. maxλ S(λ, u) = 1 and
minλ S(λ, u) = 0. From Equation 7, we obtain

k(u) ' ρ min
λ

I(λ, u)
L̂(λ)

g(u) ' ρ

(
max

λ

I(λ, u)
L̂(λ)

−min
λ

I(λ, u)
L̂(λ)

)

S(λ, u) ' 1
g(u)

(
ρ
I(λ, u)
L̂(λ)

− k(u)

)

Later, we use the spectral reflectanceS(λ, u) recovered
from hyperspectral images to classify image pixels into skin
and nonskin using a method akin to that in Section 3.1. Note
thatρ can be further removed by means of normalisation of
the spectra.

For purposes of skin segmentation on our imagery, we
label 1259 skin and1256 nonskin pixels in the image of
the CaucasianC1, 1141 skin and1177 nonskin pixels in the
image of the IndianI1 and983 skin and994 nonskin pix-
els in the image of the AsianA1. Subsequently, we use the
labelled pixels from each image as the training data to per-
form skin pixel recognition on the remaining images. We
also perform experiments in which the training set contains
the labelled pixels and the spectrometer data collected in
Section 3.1. This illustrates the ability of our NURBS de-
scriptor to generalise well to spectral data measured by var-
ious devices, with different spectral resolutions and spec-
trum lengths. For our NURBS descriptor, we have used20
y-coordinates, whereas for the Gaussian Mixture descriptor
we have employed, as before,5 components. We have also
compared the performance of the NURBS descriptor with
raw pixel spectra consisting of30 bands.

In Figure 5, we show segmentation results on our hy-
perspectral images. The first two columns show the nor-
malised shading factork(u) and the specularity termg(u)
at each pixel in the hyperspectral images. The next columns
show, from left-to-right, the segmentation results using
the NURBS, Gaussian Mixture descriptor and raw spectral
data, in which whiter pixels indicate a higher likelihood of
being skin. The last three columns show that our descrip-
tor clearly distinguishes between skin and non-skin pixels.
Conversely, the raw spectral data and Gaussian Mixture de-
scriptor produce false positives in the background and on
clothes.

In Table 2, we quantify the skin segmentation perfor-
mance for our descriptor and the alternatives in terms of the
classification rate (CR), the correct detection rate (CDR)
and false detection rate (FDR). The correct detection rate
is the percentage of skin pixels correctly classified. The
false detection rate is the percentage of nonskin pixels in-
correctly classified. The classification rate is the overall



percentage of skin and nonskin pixels correctly classified.
From the table, we observe that the NURBS descriptor
achieves a similar classification rate across training sets, in-
cluding either image pixels fromC1, I1, A1, or combina-
tions of images and spectrometer data (C1+Spec, I1+Spec
or A1 + Spec). This implies that the descriptor is able to
generalise well with respect to training skin type. Moreover,
from the table, it becomes evident that this generalisation
ability does not hold for the raw spectral data or the Gaus-
sian Mixture descriptor. Secondly, combining spectrometer
data with image pixel data yields a similar overall classifica-
tion rate. This result shows that the descriptor is applicable
to both high resolution data from the spectrometer, and low
resolution, more noise-prone data from hyperspectral cam-
eras.

Further, the NURBS descriptor consistently outperforms
the alternatives. Note that although the Gaussian Mixture
descriptor achieves a slightly betterCDR, it suffers from a
high false detection rate. In addition, the NURBS descriptor
achieves a significantly lower false detection rate, with an
average of1.86%, while maintaining a competitiveCDR
of 88.58%. Compared with recent results on skin segmen-
tation [19], the NURBS descriptor for hyperspectral im-
agery delivers a significant performance improvement over
trichromatic features. The survey in [19] reported classi-
fication rates of no more than90%, with false detetection
rates not lower than10%. In addition, the NURBS descrip-
tor only requires a training set 10 to thousand times smaller
than those reported in [19].

4. Conclusions
In this paper, we presented a descriptor comprised by the

y-coordinates of the control points for the NURBS curves
interpolated on reflectance spectra. We have presented a
method to recover the knots and control points making use
of a knot removal algorithm in the parameter domain. We
demonstrate the utility of this feature for skin spectra recog-
nition and segmentation. Our experimental results show
that the NURBS descriptor is more stable and provides
a margin of performance improvement over the Gaussian
Mixture representation of reflectance spectra and raw spec-
tral data.
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NURBS Gaussian Mixture Raw spectral data
CR(%) CDR(%) FDR(%) CR(%) CDR(%) FDR(%) CR(%) CDR(%) FDR(%)

C1 98.08 83.78 1.03 92.49 88.95 7.13 94.82 76.38 3.80
I1 96.71 98.99 3.41 87.54 97.66 12.98 86.86 85.06 13.15
A1 97.22 91.18 2.28 87.74 92.85 12.39 95.25 73.55 3.56

C1 + Spec 98.08 81.11 0.91 91.47 89.15 8.22 94.07 86.84 5.26
I1 + Spec 97.81 90.88 1.87 87.76 97.78 12.76 97.74 92.58 1.97
A1 + Spec 97.59 85.53 1.64 86.71 92.36 13.44 94.81 68.04 3.67

Average 97.58 88.58 1.86 88.95 93.12 11.15 93.92 80.41 5.23

Table 2. The classification rate (CR), correct detection rate (CDR) and false detection rate (FDR) on test images using the NURBS descriptor
(with 20 y–coordinates), Gaussian Mixture descriptor (with5 mixture components) and raw spectral data (with30 spectral bands), by
training an SVM on image pixels of the Caucasian subjectC1, the Indian subjectI1 and the Asian subjectA1 and on combinations of
image pixels and the spectrometer data.

(a)C1 (b) I1 (c) A1 (d) C2 (e)I2 (f) C3 (g) A2

Figure 4. Human subjects used for skin segmentation.

Figure 5. Results of skin segmentation using training pixels from the image of subjectC1. From left to right, the columns show the shading
map, specular map, segmentation result using the NURBS descriptor, Gaussian Mixture descriptor, and raw spectral data. The test subjects
(from the top to bottom row) areI1, A1, C2, I2, C3, A2.


