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Abstract. Hidden Markov Models (HMMs) have proven valuable in 
segmentation of brain MR images. Here, a combination of HMMs-based 
segmentation and morphological and spatial image processing techniques is 
proposed for the segmentation of retinal blood vessels in optic fundus images. 
First the image is smoothed and the result is subtracted from the green channel 
image to reduce the background variations. After a simple gray-level stretching, 
aimed to enhance the contrast of the image, the feature vectors are extracted. 
The feature vector of a pixel is formed from the gray-level intensity of that pixel 
and those of its neighbors in a predefined neighborhood. The ability of the 
HHMs to build knowledge about the transitions of the elements of the feature 
vectors is exploited here for the classification of the vectors. The performance 
of the algorithm is tested on the DRIVE database and is comparable with those 
of the previous works.  

Keywords: Hidden Markov models (HMM), context-dependent image 
segmentation, retinal images. 

1   Introduction 

Early symptoms of systematic diseases can be detected by the assessment of retinal 
images. Eye is considered as a window to the retinal vasculature, where the influence 
of the factors that affect the human body vasculature can be observed in vivo non-
invasively. Furthermore, inspection of optic fundus photographs [1]-[4], and 
flourocein images [2] may help to diagnose and monitor the progress of general 
diseases such as diabetes, hypertension, arteriosclerosis, cardiovascular diseases, 
stroke and eye diseases like retinopathy of prematurity [1]-[3]. Thus, the measurement 
and analysis of retinal blood vessels is of diagnostic value for a wide range of 
pathological states. However, manual analysis of the complex retinal blood vessel 

mailto:a.pourmorteza@ece.ut.ac.ir
mailto:hszadeh@ut.ac.ir
mailto:hamids@rad.hfh.edu


trees in fundus images is a tiresome and laborious task, and as the number of images 
increases, it may even be impossible. 
Segmentation of the vessels from the background is an initial requirement for the 
automatic assessment of retinal images. Many automatic algorithms are proposed for 
the segmentation of retinal blood vessels. According to [9], methods for detecting 
blood vessels generally fall into three categories: kernel-based, tracking based, and 
classifier-based.  

In this paper, we will introduce a novel method for the automated segmentation 
of blood vessels. We start with simple kernel-based preprocessing operations 
followed by a contrast enhancement step. Then a Hidden Markov Model-based 
classification is used to assign the pixels to vessel or background classes.  

Recently, Hidden Markov Models (HMMs) are used for MRI brain segmentation 
in [5]. Markov Random Fields (MRF), Hidden Markov Random Fields (HMRF), and 
Hidden Markov Models, take advantage of the relative information of the vectors and 
fall under the category of context-dependent classifiers. Kernel-based and 
thresholding methods, simply assume no relation between different classes, i.e. once a 
feature vector (corresponding to a pixel) is assigned to a class, the next vector may be 
assigned to any other class. Whereas in context-dependent classification, the class to 
which a vector is assigned, depends (a) on its own value, (b) on the value of other 
feature vectors and (c) on the existing relation among various classes.  

MRFs and HMRFs were introduced in several segmentation frameworks [11]-
[14]. While these frameworks encode the dependency between the pixel to be 
segmented and its first-degree neighbors, they are computationally intensive and 
therefore, they are not welcome in medical environments [5]. In contrast, HMMs have 
proven valuable in Automatic Speech Recognition (ASR) and MRI brain 
segmentation tasks [5],[6].  

The primary goal of this paper is to report a method which combines kernel-
based techniques with state-of-the-art HMM-based segmentation. The algorithm is 
evaluated using the images obtained from the publicly available DRIVE database 
[16]. This combined method allows for results comparable with manually segmented 
images as well as with those reported by other authors. A brief introduction to HMMs 
and its training algorithms is provided in section 2. Section 3 details the preprocessing 
and feature extraction algorithm. Section 4 includes the segmentation algorithm and 
necessary post-processing step to improve the results. Finally, experimental results of 
the proposed method are presented in section 5. 

2   Hidden Markov Models 

Similar to the work done in [5], the fundamental idea of this paper relies on the ability 
of the underlying HMM to encode the knowledge about the input data vectors or 
sequences that reflect the characteristics of the image to be segmented e.g. intensity 
information about the pixel and its neighborhood.  

HMMs are made of different states statically bound by transition probabilities. 
An HMM is characterized by a set of internal states, the transition probabilities among 
the states in response to an input symbol from the sequence, and the emission 



probabilities of symbols from the different states[5]. The knowledge is built in the 
form of the transition and the emission probabilities of the states that are trained 
during the learning stage. HMMs assume that the states are hidden and cannot be 
observed at the output stage. Instead, only the output emitted from the states are 
observable, without knowing which states emitted those outputs. From this point of 
view, the HMM is regarded as a symbol generating process in which the observations 
are viewed from the outside without knowing which state emitted them. Here, similar 
to what has been previously done in [5] HMMs are viewed from a different 
perspective. In using HMMs for blood vessel segmentation, the goal is to find the best 
state sequence that might have produced a specific output.  

Hence, during the training, the goal of the training algorithm is to increase the 
output probability of the input sequences representing a class of tissue [5]. 
The transition and emission probabilities are updated in a manner that maximizes the 
output probability of a given class. As a result, the relationship between the elements 
of a sequence (voxels of a neighborhood) is encoded in the transition and emission 
matrices.  

The concept of Minimum Classification Error is used to update the parameters of 
both discrete and continuous mixture of Gaussian distributions in [5]. In [6], an 
Expectation Maximization (EM) algorithm is utilized to optimize the parameters of a 
HMM which has Gaussian pdfs for emission probabilities. Here, the algorithm used in 
[6] is selected. In our model, the sequence of observations is nothing more than a 
sequence of pixel intensities. There are many ways to generate this observation 
sequence. One reasonable way is to consider a 3 × 3 neighborhood of a certain pixel 
and put the intensity of the pixel along with the intensities of its neighbors in a 9 × 1 
feature vector. Other choices of neighborhoods are also possible. The increase in size 
of the neighborhood may adversely affect the accuracy due to smoothing effect of 
large neighborhoods [5].  

3   Preprocessing 

The goal of preprocessing phase is to reduce the unwanted effects of noise and 
background intensity variations, and enhance the contrast between the vessel and non-
vessel pixels prior to segmentation. Since the HMMs will have to learn respond to 
feature vectors from different images, the images must share nearly similar brightness 
and contrast characteristics. By compensating for these through and across data set 
variations, one can improve the performance of the segmentation process. 

First step is to choose a monochromatic image that shows high contrast between 
vessel and non-vessel pixels. A Monte Carlo simulation of retinal vessel profiles [15] 
predicts that light that is observed from a retinal vessel at green band on a RGB color 
image is predominantly backscattered from the vessel or transmitted once through the 
vessel [2]. This is confirmed by experimental results [1],[4],[8]. Hence we have 
selected the green channel representation. In an attempt to compensate for the contrast 
and brightness variations among the images of the data set, the mean and standard 
deviation of the histograms of the images are changed so that they nearly match 
predefined values of mean=0.5 and S=0.075. 



To compensate for the background intensity variations, a smoothing kernel is 
convolved with the green channel. This convolution gives an approximation of the 
background variations. Next, this approximation is subtracted from the green image. 
The result is a background normalized image as can be seen in fig.1(c). Size of the 
smoothing kernel is empirically selected to be 11 × 11.  

Histogram of the background normalized image resembles a Gaussian distribution 
with a small variance in which most of the pixels have midrange gray-levels. In an 
attempt to enhance the global contrast, the histogram is stretched by a sigmoid 
function. Results of this step are illustrated in fig. 1. 

 

 
 

Fig. 1. (a) green channel of original image, (b) image with corrected mean and 
variance values, (c) background normalized image, and (d) contrast enhanced image. 

4   Segmentation and Post-processing 

The notion behind HMMs-based segmentation [5] is that, by training a HMM with 
feature vectors representing a special class of data, the model learns to produce higher 
outputs when a vector of that class is presented to the model as an input sequence. 
Hence, the segmentation algorithm is straightforward. A HMM is trained for each 
class of data, the output probability of every HMM for the feature vector representing 
the pixel to be classified is then computed using the trained transition matrices and 
emission vectors that encode the relative dependency of the elements of the feature 
vector. The segmentation is then done, by simply assigning the pixel to the class 
associated with the HMM showing the highest output probability.  



In this paper, two HMMs are trained. The first model is trained using feature 
vectors randomly chosen from vessel pixels of manually segmented images. The 
second HMM is trained using non-vessel feature vectors. Feature vectors 
corresponding to every non-black pixel of the image is then presented to the HMMs. 
The output probabilities of the HMMs are represented in two likelihood maps (see 
figure 2). The maps are then compared pixel by pixel and the pixels whose vessel 
likelihoods are greater are segmented as vessel. The HMMs do not learn every 
possible form of blood vessel or background sequences. This is because the training 
features are chosen randomly.  

Therefore, some sequences may never show up in the training step. This fact and 
the presence of noise and contrast variations, result in falsely detected blood vessels. 
To eliminate these, a post-processing step is necessary. Morphological operations 
such as erosion and dilation can be very helpful in this step. First, the image is eroded 
using a structural element of a certain size. Next, connected components smaller than 
a specified size are removed. Finally the image is dilated using the same structural 
element that was used for eroding (see fig. 3.).   

 

 
 

Fig. 2. Likelihood maps of (a) vessel and (b) non-vessel classes. 
 

5   Experimental Results 

Our proposed method was tested on images of the publicly available DRIVE 
database [16]. The DRIVE database contains 40 color images of the retina, with 565 × 
584 pixels and 8 bits per color channel, in LZW compressed TIFF format. The images 
were originally captured from a Canon CR5 nonmydriatic 3 charge-coupled device 
(CCD) camera and were initially saved in JPEG-format. The database also includes 
binary images with the results of manual segmentation. These binary images have 
already been used as ground truth for performance evaluation of several vessel 
segmentation methods [16]. The 40 images were divided into a training set and a test 
set by the authors of the database. The results of the manual segmentation are 
available for all the images of the two sets. For the images of the test set, a second 
independent manual segmentation also exists.  



Segmentation accuracy is selected as performance measure to compare our results 
with previous retinal vessel segmentation algorithms. The accuracy is estimated by 
the ratio of the total number of correctly classified points (sum of true positives and 
true negatives) by the number of non-black points in the image. The ground proof for 
computing the performance measures was the manual segmentation result. The values 
for the fraction of pixels erroneously classified as vessel pixels, false positive ratio 
(FPR), and the percentage of pixels correctly classified as vessel pixels, true positive 
fraction (TPR), are also reported. Two experiments were carried out to evaluate the 
performance of the proposed algorithm. 

 
 

 
Fig. 3. Result of segmentation step before (a) and after (b) morphological post-processing. 
 

Table 1.  Performance of vessel segmentation methods. 

Method Accuracy TPR FPR 

2nd human observer 0.9473 0.7761 0.0275 
Mendonça et al. [1] 0.9452 0.7344 0.0236 
Jiang et al. [4] 0. 8911 not reported 
Staal et al. [1] 0.9442 0.7194 0.0227 
Niemeijer [1] 0.9417 0.6898 0.0304 
Soares et al. [4] 0.9466 not reported 
First Experiment 0.9388 0.7342 0.0332 
Second Experiment 0.9401 0.7492 0.0384 

 
In our first experiment, a simple global thresholding algorithm was applied on the 

test set of the DRIVE database. The images were initially pre-processed according to 
the algorithm discussed in section 3. Next a global thresholding algorithm was applied 
on the data set. The threshold level was empirically chosen to be 0.6. Then, we used 
the first two images of the training set to train two HMMs with 2000 feature vectors 
randomly selected for each class of pixels using the labels of the results of the manual 
segmentation. Each HMM had 9 hidden states and the emission probabilities were 
approximated by mixtures of 15 Gaussian distributions. Next, the images of the test 



set were segmented followed by erosion, small connected component removal, and 
dilation to remove the falsely detected vessel pixels. To further improve the results, 
the union of the globally thresholded image and the result of the HMM-based 
segmentation were chosen as the final result, whenever the accuracy of the 
segmentation step was not acceptable.  

The second experiment aimed to decrease the computation time of the 
segmentation step. The whole algorithm was the same as for the first experiment, 
except that the output likelihood maps of the HMMs were formed in a 4-connected 
manner, i.e. starting from the first pixel of the image, its 4-connected neighbors had 
the same likelihood as the pixel. As a result, the computational time was reduced to 
20% of the first experiment. Consequently, once a pixel is chosen to be in class 1, its 
neighbors are also chosen, resulting in a 4 connected segmented image which in turn, 
leads to better TPR since the number of small gaps between the connected 
components of the vessel class is reduced. 

 

Fig. 4. Results from - (a) human observer, (b) our algorithm 

6   Discussion and Conclusion 

Our method proved the ability of Hidden Markov Models in retinal blood vessel 
segmentation. The results are particularly comparable to previous works in which 
classifier-based methods are used. In [4], all 20 images of the training set of the 
DRIVE database were used for training, with about one million feature vectors. 
Whereas in our work, only 2000 feature vectors, extracted from 2 images, were used. 
Thus, the training time was reduced to approximately 1 hour, which is 9 times less 
than the time reported in [4]. However, the accuracies of these two methods are 
approximately equal.  The simplicity of the feature vectors is also remarkable. Unlike 
[4] in which feature vectors are formed by Gabor transforms, our feature vectors are 
merely made of intensities of the pixels in a predefined neighborhood. 

The downside to our algorithm is that the information used for training the HMMs 
is not accurate. In fact, the TPR and FPR for the human observers are 0.7761 and 
0.0275, respectively. Therefore, some training vectors are wrongly presented to the 
HMMs and the models learn the wrong combination of pixel intensities. Another 



drawback of the proposed algorithm is that the EM algorithm used for the training of 
the models, may converge to local minima, resulting in poorly trained HMMs. In [5] 
the authors claim that under certain conditions, the MCE algorithm may achieve the 
global minimum with higher probability. The choice of number of hidden states and 
Gaussian distributions is also open to further investigation. 
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