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Abstract

Many dimensionality reduction problems end up with a trace quotient formula-
tion. Since it is difficult to directly solve the trace quotient problem, traditionally the
trace quotient cost function is replaced by an approximation such that generalized
eigenvalue decomposition can be applied. In contrast, we directly optimize the trace
quotient in this work. It is reformulated as a quasi-linear semidefinite optimization
problem, which can be solved globally and efficiently using standard off-the-shelf
semidefinite programming solvers. Also this optimization strategy allows one to en-
force additional constraints (for example, sparseness constraints) on the projection
matrix. We apply this optimization framework to a novel dimensionality reduction
algorithm. The performance of the proposed algorithm is demonstrated in exper-
iments on several UCI machine learning benchmark examples, USPS handwritten
digits as well as ORL and Yale face data.
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1 Introduction

In pattern recognition and computer vision, techniques for dimensionality re-
duction have been extensively studied and utilized. Many of the dimensionality
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reduction methods, such as linear discriminant analysis (LDA) and its kernel
version, end up with solving a trace quotient problem

Tr(WTS,W)
W° = argmax ————=, 1
W (WS, W) (1)

where S, S, are two positive semidefinite (p.s.d.) matrices (S, = 0,5, = 0);
Ijxq is the d x d identity matrix (sometimes the dimension of I is omitted
when it can be inferred from the context) and Tr(-) denotes the matrix trace.
W € RP*? is the target projection matrix for dimensionality reduction (typ-
ically d < D). In the supervised learning framework, S, usually encodes the
distance information between different classes, while S, encodes the distance
information between data points in the same class. In the case of LDA, S
is the inter-class scatter matrix and S, is the intra-class scatter matrix. By
formulating the problem of dimensionality reduction in a general setting and
constructing S, and S, in different ways, we can analyze many different types
of data in the above mathematical framework.

Despite the importance of the trace quotient problem, to date it lacks a di-
rect and globally optimal solution. Usually, as an approximation, the quotient
trace cost Tr((WTSUW)*l(WTSbW)) is instead used such that generalized
eigenvalue decomposition (GEVD) can be applied and a close-form solution
is readily available. It is easy to check that when rank(W) =1, ie., Wis a
vector, then Equation (1) is actually a Rayleigh quotient problem, and can be
solved by GEVD. The eigenvector corresponding to the eigenvalue of largest
magnitude gives the optimal W°. Unfortunately, when rank(W) > 1, the
problem becomes much more complicated. Heuristically, the dominant eigen-
vectors corresponding to the largest eigenvalues are used to form the optimal
We. It is believed that the largest eigenvalue contains more useful information.
Nevertheless such a GEVD approach cannot produce an optimal solution to
the original optimization problem (1) [1]. Furthermore, the GEVD approach
does not yield an orthogonal projection matrix. It is shown in [2,3] that or-
thogonal basis functions preserve the metric structure of the data better and
they have more discriminating power. Orthogonal LDA (OLDA) is proposed
to compute a set of orthogonal discriminant vectors via the simultaneous diag-
onalization of the scatter matrices [4]. In [5] it is shown that solely optimizing
the Fisher criterion does not necessarily yield optimal discriminant vectors.
It is better to include correlation constraints into optimization. The features
produced by the classical LDA could be highly correlated (because they are
not orthogonal), leading to high redundancy of information.

Recently semidefinite programming (SDP) (or more generally convex program-
ming [6,7]) has attracted much attention in machine learning due to its flexibil-
ity and desirable global optimality [8-10]. Moreover, there exist interior-point
algorithms to efficiently solve SDPs in polynomial time.



In this paper, we proffer a novel SDP based method for solving the trace
quotient problem directly. It has the following appealing properties:

e The low target dimension is selected by the user and the algorithm guar-
antees a globally optimal solution using fractional programming. In other
words, it is local-optima-free. Moreover, the fractional programming can be
efficiently solved by a sequence of SDPs;

e The projection matrix is intrinsically orthonormal,

e Unlike the GEVD approach to LDA, using our proposed algorithm, the data
are not restricted to be projected onto at most ¢ — 1 dimensions. (Here c is
the number of classes.)

To our knowledge, this is the first attempt that directly solves the trace quo-
tient problem, with a global optimum deterministically guaranteed. Methods
are also proposed for designing appropriate S, and S,. The traditional LDA
is only optimal when all the classes follow single Gaussian distributions that
share the same covariance matrix. Our new S, and S, are not restricted by
this assumption.

The remaining content is organized as follows. In Section 2, we describe our
algorithm in detail. Section 3 applies this optimization framework to dimen-
sionality reduction. In Section 4, we briefly review relevant work in the liter-
ature. The experimental results are presented in Section 5. We discuss new
extensions in Section 6. Finally concluding remarks are discussed in Section 7.

2 Solving the Trace Quotient Problem Using SDP

In this section, we show how the trace quotient problem is reformulated into
an SDP problem.

2.1 SDP formulation

By introducing an auxiliary variable ¢, problem (1) is equivalent to

ma%(i%/nize 1) (2a)
subject to  Tr(W'S,W) > 4§ - Te(W'S,W) (2b)
W'W =104 (2¢)
W e RP*, (2d)

The variables we want to optimize here are § and W. But we are only inter-
ested in W which maximizes ¢. This problem is clearly not convex because



constraint (2b) is not convex, and in addition (2d) is actually a non-convex
rank constraint. (2c) is quadratic in W. It is obvious that 6 must be positive.

Let us define a new variable Z € RP*P Z = WW', constraint (2b) is then
converted to Tr((Sy—05,)Z) > 0since Te(W'SW) = Te(SWW') = Tr(SZ).
Because Z is a matrix product of W and its transpose, it must be p.s.d.
In terms of Z, cost function (1) is a linear fraction, therefore it is quasi-
convex (more precisely, it is also quasi-concave, hence quasi-linear [6]). The
standard technique for solving quasi-concave maximization (or quasi-convex
minimization) problems is bisection search which involves solving a sequence
of SDPs for our problem. The following theorem due to [11] serves as a basis
for converting the non-convex constraint (2d) into a linear one.

Theorem 2.1. Define sets Q; = {WWT : WIW =14} and Qy = {7 : Z =
ZT.Tr(Z) =d,0 < Z < I}. Then Q; is the set of extreme points of Q5.

See [11] for the proof. Theorem 2.1 states that, in terms of constraint, €, is
more strict than 5. Therefore constraints (2c) and (2d) can be relaxed into
Tr(Z) = d and 0 < Z < I, which are both convex. When the cost function
is linear and it is subject to €25, the solution will be at one of the extreme
points [12]. Consequently, for linear cost functions, the optimization problems
subject to 2; and €2, are exactly equivalent.

With respect to Z and ¢, (2b) is still non-convex: the problem may have locally
optimal points. But still the global optimum can be efficiently computed via
a sequence of convex feasibility problems. By observing that the constraint is
linear if 0 is known, we can convert the optimization problem into a set of
convex feasibility problems. A bisection search strategy is adopted to find the
optimal ¢. This technique is widely used in fractional programming [6,13]. Let
0° denote the unknown optimal value of the cost function. Given 6* € R, if
the convex feasibility problem !

find Z (3a)
subject to  Tr((S, —9*S,)Z) >0 (3b)
Tr(Z)=d (3¢c)

0<7<xI1 (3d)

is feasible, then we infer 0° > 0*. Otherwise, if the above problem is infeasi-
ble, then we infer 0° < ¢*. Hence we can check whether the optimal value °
is smaller or larger than a given value 0*. This observation motivates a sim-
ple algorithm for solving the fractional optimization problems using bisection
search, which solves an SDP feasibility problem at each step. Algorithm 1
shows how it works.

L A feasibility problem has no cost function. The objective is to check whether the
intersection of the convex constraints is empty.



Algorithm 1 Bisection search.
Require: ¢; is lower bound of §; §, is upper bound of § and the tolerance
o> 0.

while ¢, — 9, >0 do
5 — 6l+5u
5

Solve the convex feasibility problem described in (3a)—(3d).
if feasible then
51 =4 ;
else
0y = 0.
end if
end while

Thus far, a question remains unanswered: are constraints (3c) and (3d) equi-
valent to constraints (2c) and (2d) for the feasibility problem? Essentially the
feasibility problem is equivalent to

maximize Tr((S, — 6"S,)2) (4a)
subject to Tr(Z) =d (4b)
0Z<IL (4c)

If the maximum value of the cost function is non-negative, then the feasibility
problem is feasible. If the converse condition applies, it is infeasible. Because
this cost function is linear, we know that (2, can be replaced by (s, i.e.,
constraints (3c) and (3d) are equivalent to (2c) and (2d) for the optimization
problem.

Note that constraint (3d) is not in the standard form of SDP. It can be rewrit-
ten into the standard form as

Z 0

=0, (ba)
0Q
Z+Q=1, (5b)

where the matrix () acts as a slack variable. Now the problem can be solved
using standard SDP packages such as CSDP [14] and SeDuMi [15]. We use
CSDP in all of our experiments.

2.2 FEstimating bounds of 0

The bisection search procedure requires a lower bound and an upper bound
of 6. The following theorem from [11] is useful for estimating the bounds.



Theorem 2.2. Let S € RP*P be a symmetric matrix, and ps1 > pg2 >
- > ws,p be the sorted eigenvalues of S from largest to smallest, then
max Tr(W'SW) =%, 08,

WTW=I4xq

Refer to [11] for the proof. This theorem can be extended to obtain the fol-
lowing corollary (following the proof for Theorem 2.2):

Corollary 2.1. Let S € RP*P be a symmetric matrix, and g1 < g <
- < g p be its sorted eigenvalues from smallest to largest, then

min  Tr(W'SW) Z Vs,i-

WTW=I4xq

Therefore, we estimate the upper bound of 9:

5u Zz 1 9051;, (6)
:1 /(/}S'u,

In the trace quotient problem, both S, and S, are p.s.d. That is to say, all of
their eigenvalues are non-negative. Be aware that the denominator of (6) could
be zeros and 9, = 4+00. This occurs when the d smallest eigenvalues of S, are
all zeros. In this case, rank(S,) < D — d. In the case of LDA, rank(S,) =
min(D, N). Here N is the number of training data. When N < D — d, which
is termed the small sample problem, 9, is invalid.

A principle component analysis (PCA) preprocessing can always be performed
to remove the null space of the covariance matrix of the data, such that &,
becomes valid.

A lower bound on ¢ is then given by

5[ _ d 1wa,"
ZZ 1(10Sv7

Clearly 6; > 0.

The bisection algorithm converges in [logy(2=%)] iterations, and obtains the
global minimum within the predefined accuracy of o. The bisection procedure
is intuitive to understand. Next we describe another algorithm—Dinkelbach’s
algorithm—which is less intuitive but faster, for fractional programming.



Algorithm 2 Dinkelbach algorithm.

Require: An initialization Z(® which satisfies constraints (4b) and (4c).
Set

5 Tr(S,Z©)
- Tr(S,Z20)
and k = 0.
(x) k = k+ 1. Solve the SDP (8) subject to constraints (4b) and (4c) to get
the optimal Z®*) given 6.
if Tr((S, — 85,)Z%) =0 then
stop and the optimal Z° = Z(*),
else
Set
5o Tr(S,Z")
- Tr(S,ZW)
and go to step (x).
end if

2.3 Dinkelbach’s algorithm

Dinkelbach’s algorithm [16] proposes an iterative procedure for solving the
fractional program maximize,, f(x)/g(x), where @ is constrained on a convex
set, f(x) is concave, and g(x) is convex. It considers the parametric problem
maximize,, f(x) — dg(x) where J is a constant. Here we need to solve

maximizey Tr((S, — §5,)2). (8)

The algorithm generates a sequence of values of d’s that converge to the
global optimum function value. The bisection search converges linearly while
the Dinkelbach’s algorithm converges super-linearly (better than linearly and
worse than quadratically).

Dinkelbach’s iterative algorithm for our trace quotient problem is described
in Algorithm 2. We omit the convergence analysis of the algorithm which can
be found in [16]. In Algorithm 2, note that: (1) A test of the form Tr((S, —
§5,)Z™) > 0 is unnecessary since for any fixed k, Tr((S, — 85,)Z") =
maxy Tr((S, —0S,)Z) > Tr((S, —6S,)Z*~Y) = 0. However due to numerical
accuracy limits, in implementation it is possible that the value of Tr((S, —
§S,)Z™) is negative and is very close to zero; (2) To find the initialization Z(®
that must reside in the set defined by the constraints, in general, one might
solve a feasibility problem. In our case, it is easy to show that a square matrix
Z0) ¢ RP*P with d diagonal entries being 1 and all the other entries being
0 satisfies (4b) and (4c). This initialization is used in our experiments and
it works well. Dinkelbach’s algorithm needs no parameters and it converges
faster. In contrast, bisection requires estimation of the bounds for the cost
function.
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Fig. 1. The connected edges in (1) define the dissimilarity set D and the connections
in (2) define the similarity set S. As shown in (1), the inter-class marginal samples
are connected while in (2), each sample is connected to its k' nearest neighbors in
the same class. For clarity only a few connections are shown.

2.4  Computing W from Z

From the covariance matrix Z learned by SDP, we can calculate the projec-
tion matrix W by eigen-decomposition. Let V; denote the i eigenvector, with
eigenvalue \;. Let Ay > Ay > --- > Ap be the sorted eigenvalues. It is straight-
forward to see that W = diag(v/A1, VA2, -,V Ap)VT, where diag(-) is a
square matrix with the input as its diagonal elements. To obtain a D x d
projection matrix, the smallest D — d eigenvalues are simply truncated. The
projection matrix obtained in this way is not the same as the projection corre-
sponding to maximizing the cost function subject to a rank constraint. How-
ever this approach is a reasonable approximation. Moreover, like PCA, drop-
ping the eigenvectors corresponding to small eigenvalues may de-noise the
input data, which is desirable in some cases.

This is the general treatment for recovering a low dimensional projection from
a covariance matrix. In our case, this procedure is precise. This is obvious: A;,
the eigenvalues of Z = WW', are the same as the eigenvalues of WTW = I;.4.
That means, A\ = Ay = --- = Ay = 1 and the left D — d eigenvalues are all
zeros. Hence in our case we can simply stack the first d leading eigenvectors
to obtain W.

3 Application to Dimensionality Reduction

There are various strategies to construct the matrices S, and S,, which rep-
resent the inter-class and intra-class scatter matrices respectively. In general,
we have a set of data {x,})7, € RP** and we are given a similarity set S and
a dissimilarity set D. Formally, {S : (x,,x,) € S if x, and x, are similar}
and {D : (z,,z,) € D if x, and x, are dissimilar}. We want to maximize



the distance

Z diSt%/V(wpawq) = Z HWTwp - WTa)qHQ
(p,9)€D (p,q)€D
= Z (x, — wq)TZ(wp —x,)
(p,9)€D

= Tr (5,2),

where S, = 3, yyen(@p—x4) (€, —2,)". This measures the inter-class distance.
We also want to minimize the intra-class compactness distance:

> distiy (2, 2,) = Tr (S,2),

(p,9)€S
where S, = Z(M)Es(a)p —x,)(x, — wq)T.

Inspired by the marginal fisher analysis (MFA) algorithm propesed in [17], we
construct similar graphs for building S, and S,. Figure 1 demonstrates the
basic idea. For each class, assuming x, is in this class, and if the pair (p, q)
belongs to the k closest pairs that have different labels, then (p,q) € D. The
intra-class set S is easier: we connect each sample to its k' nearest neighbors
in the same class. k and k' are parameters defined by the user.

This strategy avoids certain drawbacks of LDA. We do not force all the pair-
wise samples in the same class to be close (this might be a too strict re-
quirement). Instead, we are more interested in driving neighboring samples as
closely as possible. We do not assume any special distribution on the data. The
set D characterizes the margin information between classes. For non-Gaussian
data, it is expected to better represent the separability of different classes
than the inter-class covariance of LDA. Therefore we maximize the margins
while condensing individual classes simultaneously. For ease of presentation,
we refer to this algorithm as SDP;, whose S, and S, are calculated by the
above-mentioned strategy.

In [18] a 1l-nearest-neighbor margin is defined based on the concept of the
nearest neighbor to a point & with the same and different label. Motivated
by their work, we can slightly modify MFA’s inter-class distance graph. The
similarity set S remains unchanged as described previously. But to create the
dissimilarity set D, a simpler way is that, for each x, we connect it to its
k differently-labeled neighbors x,’s (x, and x, have different labels). The
algorithm that implements this concept is referred as SDP,. It is difficult to
analyze which one is better. Indeed the experiments indicate for different data
sets, no single method is consistently better than the other. One may also use
support vector machines (SVMs) to find the boundary points and then create
D (and then Sp) based on those boundary points [19].



4 Related Work

The closest work to ours is [1] in the sense that it also proposes a method
to solve the trace quotient directly. [1] finds the projection matrix W in the
Grassmann manifold. Compared with optimization in the Euclidean space, the
main advantage of optimization on the Grassmann manifold is the use of fewer
variables. Thus the scale of the problem is smaller. However, there are major
differences between [1] and our method: Firstly, [1] optimizes Tr(WT.S,W —
§ - WTS,W) and has no principled way to determine the optimal value of §.
In contrast, we optimize the trace quotient function itself and a determinis-
tic bisection search or the Dinkelbach’s iteration guarantees the optimal ¢;
Secondly, the optimization in [1] is non-convex (difference of two quadratic
functions). Therefore it is likely to become trapped into a local maximum,
while our method is globally optimal.

[20] simply replaces LDA’s cost function with Tr(WTS,W — WIS, W), i.e.,
setting 6 = 1. Then GEVD is used to obtain the low rank projection matrix.
Obviously this optimization is not equivalent to the original problem, although
it avoids the matrix inversion problem of LDA.

[21] proposes a convex programming approach to maximize the distances be-
tween classes and simultaneously to clip (but not to minimize) the distances
within classes. Unlike our method, in their approach the rank constraint is not
considered. Hence it is metric learning but not necessarily a dimensionality re-
duction method. Furthermore, although the formulation of [21] is convex, it is
not an SDP. It is more computationally expensive to solve and general-purpose
SDP solvers are not applicable. SDP (or general convex programming) is also
used in [22,23] for learning a distance metric. [22] learns a metric that shrinks
distances of neighboring similarly-labeled points and repels points in different
classes by a large margin. [23] also learns a metric using convex programming.

We borrow from [17] the method of constructing the similarity and dissimi-
larity sets. The MFA algorithm in [17] optimizes a different cost function. It
originates from graph embedding. Note that there is a kernel version of MFA.
It is straightforward to kernelize our problem since it is still a trace quotient
for the kernel version. We leave this topic for future research.

5 Experiments

In all our experiments, the Bisection Algorithm 1 and Dinkelbach’s Algorithm
2 output almost identical results but Dinkelbach converges twice as fast as
Bisection.
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We observe that the direct solution indeed yields a larger trace quotient than
that obtained by the quotient trace using GEVD because that is what we
maximize.

Data visualization. As an intuitive demonstration, we run the proposed SDP
algorithms on an artificial concentric circles data set [24], which consists of four
classes (shown in different colors). The first two dimensions follow concentric
circles while the left eight dimensions are all Gaussian noise. When the scale
of the noise is large, PCA is distracted by the noise. LDA also fails because the
data set is not linearly separable and each class’ center overlaps in the same
point. Both of our algorithms find the informative features (Figure 2-(3)(4)).
Ideally we should optimize the projected neighborhood relationship as in [24].
Unfortunately it is difficult. [24] utilizes softmax nearest neighbors to model
the neighborhood relationships before the projection is known. However the
cost function is non-convex. As an approximation, one usually calculates the
neighborhood relationships in the input space. Laplacian eigenmap [25] is an
example. When the noise is large enough, the neighborhood obtained in this
way may not faithfully represent the true data structure. We deliberately set
the noise of the concentric data set very large, which breaks our algorithms
(Figure 2-(5)(6)). Nevertheless useful prior information can be used to define a
meaningful D and S whenever it is available. As an example, when we use the
sets D and S of Figure 2-(3)(4) and then calculate S, and S, with the highly
noisy data, our algorithms are still able to find the first two useful dimensions
perfectly, as shown in Figure 2-(7)(8).

Classification. In the first classification experiment, we evaluate our algo-
rithm on different data sets and compare it with PCA, LDA and large margin
nearest neighbor classifier (LMNN) 2. Note that our algorithm is much faster
than [22] especially when the number of training data is large. That is because
the complexity of our algorithm is independent of the number of data while in
[22] more data produce more SDP constraints that slow down the SDP solver.
A description of the data sets is in Table 1.

PCA is used to reduce the dimensionality of image data (USPS handwritten
digits® and ORL face data®) as a preprocessing procedure for accelerating
the computation. For most data sets the results are reported over 50 random
70/30 splits of the data. USPS has a predefined training and testing sets.

In the experiments, we did not carefully tune the parameters (k, k") associated
with our proposed SDP approaches due to computational burden. However,
we find that the parameters are not sensitive in a wide range. They can be op-

2 The codes are obtained from the authors’ website http://www.weinbergerweb.
net/Downloads/LMNN.html

3 http://www.gaussianprocess.org/gpml/data/

4 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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timally determined by cross-validation. We report a 3-NN (nearest neighbor)
classifier’s testing error. The result is shown in Table 2, where the baseline
is obtained by directly applying 3-NN classification on the original data. We
have chosen one of the simplest classifiers, k-NN, for benchmarking. Clearly,
the best choice of k depends upon the data. Generally, larger values of k re-
duce the effect of noise on the classification, but make boundaries between
classes less distinct. Thus far there is no a elegant method to determine the
optimal k. Typically cross-validation is used. In most cases, one sets k to 1
or 3 for simplicity. We have set £ = 3 in all the experiments. But the results
presented here also hold for k£ = 1. Next we present details of tests.

UCI data sets: Iris, Wine and Bal. These are small data sets with only 3
classes, and are from the UCI machine learning repository [26]. Except from
the Wine data, which are well separated and LDA performs best, our SDP
algorithms present competitive results on the other two data sets.

USPS digit recognition. Two tests are conducted on the USPS handwriting
digit data set (referred to as USPS1 and USPS2). In the first test, we use all
the 10 digits. USPS has predefined training and testing subsets. The training
subset has 7291 digits. We randomly split the training subset: 20% for training
and the remaining 80% for testing. The dimensionality of these 16 x 16 images
are reduced to 55D by PCA. 90.14% of the variance is preserved. LMNN
gives the best result with an error rate of 4.22%. Our SDPs have similar
performance. For the second test, it is only run once with the predefined
training subset and test subset. The digits 1,2 and 3 are used. On this data
set, our two SDPs deliver lowest test errors. It is worth noting that LDA
performs even worse than PCA. This is likely due to the data’s non-Gaussian
distribution.

ORL face recognition. This data set consists of 400 faces of 40 individuals:
10 faces per individual. The image size is 56 x 46. We down-sample them by
a factor of 2. Then PCA is applied to obtain 42D eigenfaces, which captures
about 81% of the energy. Again two tests are conducted on this set. The
training and testing sets are obtained by 7/3 and 5/5 sampling for each person
respectively (referred to as dataset ORL1 and ORL2). In both tests, LMNN
performs best, and SDP; is the second best. Also note that for each method,
its performance on ORL1 is better than its corresponding result on ORL2.
This is expected since ORL1 contains more training examples.

For all the tests, our algorithms are consistently better than PCA and LDA.
The state-of-the-art LMNN outperforms ours on tasks with many classes such
as USPS1, ORL1 and ORL2. This might be due to the fact that, inspired by
SVM, LMNN enforces constraints on each training point. These constraints
ensure that the learned metric correctly classifies as many training points as
possible. The price is that LMNN’s SDP optimization problem involves many

13



constraints. With a large amount of training data, the required computational
demand could be prohibitive. Therefore as SVM, it is difficult to scale it to
large size problems. In contrast, our SDP formulation is independent of the
amount of training data. The complexity is entirely determined by the dimen-
sion of the input data.

Because we have observed that for the data sets with few classes, our SDP
approaches usually are better than LMNN, we now verify this observation
empirically. We run SDP, and LMNN on the data set ORL2. We vary the
number of classes ¢ from 5 to 32. The first ¢ individuals’ images are used. The
parameters of SDP, remain unchanged: k£ = 2 and k' = 3. For each value of ¢,
the experiment is run 10 times. We report the classification result in Table 3.
This result confirms that our SDPs perform well for tasks with few classes.
It also explains why LMNN outperforms our SDPs for data sets having many
classes. It might also be possible to include constraints as LMNN does in our
SDP formulation.

The second classification experiment we have conducted is to compare our
methods with two LDA’s variations, namely, uncorrelated linear discriminant
analysis (ULDA) [27] and orthogonal linear discriminant analysis (OLDA)
[4]. ULDA was proposed for extracting feature vectors with uncorrelated at-
tributes. The crucial property of OLDA is that the discriminant vectors of
OLDA are orthogonal to each other (In other words, the transformation ma-
trix of OLDA is orthogonal).

The Yale face database® is used here. The Yale database contains 165 gray-
scale images of 15 individuals. There are 11 images per subject. The images
demonstrate variations in lighting condition, facial expression (normal, happy,
sad, sleepy, surprised, and wink). The face images are manually aligned and
cropped into 32 x 32 pixels, with 256 gray levels per pixel. The 11 faces for
each individual is randomly split into training and testing sets by 4/7, 5/6 and
6/5 sampling. PCA is performed to reduce 1024D into 50D, which contains
above 98% of the total energy.

An important parameter for most subspace learning based face recognition
methods is dimensionality estimation. Usually the classification accuracy varies
in the number of dimensions. Cross validation is often needed to estimate the
best dimensionality. We simply set the dimensionality to ¢ — 1, where c is the
number of classes. That means, on the Yale dataset, the final dimension for
all algorithms is 14. As in the first experiment, we also fix the parameters of

SDP, to be k =2 and k' = 3.

Table 4 summarizes the classification results. We see that ULDA performs sim-
ilarly with the traditional LDA. OLDA achieves higher accuracies than ULDA

® http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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4 Train 5 Train 6 Train
baseline || 47.76(4.18) | 44.40(3.61) | 40.87(5.12)
LDA 39.38(8.34) | 24.17(2.88) | 21.40(3.07)
ULDA || 29.14(5.17) | 25.61(2.85) | 22.80(4.12)
OLDA || 27.57(5.55) | 24.61(3.35) | 20.53(3.33)
SDP, 27.05(5.65) | 23.17(3.31) | 20.73(2.85)

Table 4

Classification error of a 3-NN classifier on the Yale face database in the format
of mean(std)%. Each case is run 20 times to calculate the mean and standard
deviation. SDPy performs slightly better than OLDA. Here ULDA means uncorre-
lated linear discriminant analysis [27]; OLDA means orthogonal linear discriminant
analysis [4]; SDPs is one of the proposed methods using semidefinite programming.

and LDA. The proposed SDP algorithm is slightly better than OLDA. Since
both OLDA and the proposed SDP algorithm produces orthogonal transfor-
mation matrix, we may conclude that orthogonality does benefit for subspace
based face recognition.

As mentioned, for the LDA algorithm and its variations, the data are restricted
to be mapped to at most ¢ — 1 dimensions. Our SDP algorithms do not have
this restriction. We have compared the final classification results on Yale when
the final dimensionality varies using the SDPy algorithm in Table 5. It can be
observed that ¢ — 1 is not the best dimensionality for SDP, in this case.

final dimensions 14 20 24 30
SDP, 27.05(5.65)

26.43(5.14) | 26.86(4.18) | 28.62(5.27)

Table 5
Classification error of a 3-NN classifier on the Yale face database with 4 training
examples. Each case is run 20 times.

A disadvantage of the proposed SDP algorithm is that it is computationally
more expensive than spectral methods. In the above experiment, the Dinkel-
bach algorithm needs around 80 seconds to converge. In contrast, LDA, ULDA
and OLDA need about 2 seconds. 6

6 Extension: Explicitly Controlling Sparseness of W

In this section, we show that with the flexible optimization framework, it is
straightforward to enforce additional constraints on the projection matrix. We

6 The computation environment is: Matlab 7.4 on a desktop with a P4 3.4GHz
CPU and 1G memory. The SDP solver used is CSDP 6.0.1.
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consider the sparseness constraints here.

Sparseness builds one type of feature selection mechanism. It has many ap-
plications in pattern analysis and image processing [28-31]. Mathematically,
we want the projection matrix W to be sparse. That is, Card(W) < ©
(0 < ©® < Dd). Here © is a predefined parameter. Card(W) denotes the
cardinality of the matrix W, i.e., the number of non-zero entries in the matrix
W. Since Z = WW', we rewrite Card(W) < © as Card(Z) < ©2. The dis-
crete non-convex cardinality constraint can be relaxed into a weaker convex
one using the technique discussed in [31].

For any u € R”, Card(u) = © means the following inequality holds: [lul|, <
VO ||ull,. We can then replace the non-convex constraint Card(Z) < ©2
by a convex constraint: || Z||; < ©|Z||y, where ||| denotes the Frobenius

norm. Since ||Z]|p = HWWTHF = HWTWHF = ||Lixally = V/d, the sparseness

constraint now becomes convex (it is easy to rewrite it into a sequence of linear
constraints):

1Z||; < ©Vd. 9)

By inserting the constraint (9) into Algorithm 1 or 2, we obtain a sparse
projection. Note that (9) is a convex constraint,” which can be viewed as
a convex lower bound on the function Card(Z). It can be decomposed into
O(D?) linear constraints. For a large D, the memory requirements of Newton’s
method could be prohibitive.

We first run a simple experiment on artificial data to show how the sparseness
of the projection matrix W changes as the value of ©v/d varies. For simplicity,
we set d = 1; i.e., W is a 1D vector. We randomly generate the matrices S,
and 9, in this way: S = U' U + 16w w. Here S denotes in turn S, and S, but
with Sy # S,. U € R ig a random matrix with all its elements following a
uniform distribution in [0, 1] and

w=11,0,1,0,1,0,1,0,1,0).

We sample 40 different pairs of matrices S, and .S,. We then input S, and S,
into the Dinkelbach algorithm with the additional sparseness constraint (9).
For each © between 1 and 10, we solve the SDP. W' is extracted by computing
the first eigenvector of Z. The cardinality of W as a function of © is illustrated

7 There is a standard trick from mathematical programming for expressing the £;-
norm as a linear function. By decomposing the variable Z = Z, — Z_ into positive
and negative parts respectively, (9) is written into 1T(Z, + Z_)1 < ©+v/d and
Zy >0, Z_ > 0 (element-wise non-negative). Here 1 is a column vector with all
elements being ones.
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in Figure 3%. We can see that © is indeed a good indicator of the cardinality.
Note that when © = 1, one always gets a W with a single element being one
and all others being zeros in this example. We also plot an example of the
obtained W with © = 3, and W being without sparseness constraints for an
intuitive comparison in Figure 4.

The second experiment is conducted on the Wine data described in Table 1.
Sy and S, are constructed using SDP; using the same parameters shown in
Table 1. The final projected dimension is 8. We want each column of W to
be sparse. In other words, only a subset of features is selected. We compare
our performance against the simple thresholding method [32]. Table 6 reports
the classification error. As expected, the proposed algorithm performs better
than the simple thresholding method.

cardinality 4 5 6

SDP with sparseness || 6.98(3.63) | 5.47(2.44) | 5.09(2.74)
simple thresholding || 7.55(2.52) | 7.55(3.72) | 8.02(3.35)

Table 6
Classification error of a 3-NN classifier on the Wine dataset w.r.t. the cardinality
of each row of W. Each case is run 20 times.

7 Conclusion

In this work we have presented a new supervised dimensionality reduction al-
gorithm. It has two key components: a global optimization strategy for solving
the trace quotient problem, and a new trace quotient cost function specifi-
cally designed for linear dimensionality reduction. The proposed algorithms
are consistently better than LDA. Experiments show that our algorithm’s
performance is comparable to the LMNN algorithm but with computational
advantages. Future work will be focused on the following directions. First,
we have confined ourself to linear dimensionality reduction in this paper. We
will explore the extension to the kernel versions. We already know that some
nonlinear dimensionality reduction algorithms like kernel LDA also need to
solve trace quotient problems. Second, new strategies will be devised to define
an optimal discriminative set D. [19] might prove a useful inspiration. Third,
SDP’s computational complexity is heavy. New efficient methods are required
to scale up to large-size problems.

8 For calculating cardinality, an element is regarded as non-zero if its absolute
magnitude is larger than 10% of the vector’s maximum absolute magnitude.
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Fig. 2. Subfigures (1)(2) show the data projected into 2D using PCA and LDA. Both
fail to recover the data structure. Subfigures (3)(4) show the results obtained by the
two SDPs proposed in this paper. The local structure of the data is preserved after
projection by SDPs. Subfigures (5)(6) are the results when the rear eight dimen-
sions are extremely noisy. In this case the neighboring relationships based on the
Euclidean distance in the input space are meaningless. Subfigures (7)(8) successfully
recover the data’s underlying structure given user-provided neighborhood graphs.
SDP; and SDP3 are the proposed methods using semidefinite programming.
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Cardinality of W

Fig. 3. Cardinality of W v.s. ©. The error bar shows the standard deviation averaged
on 40 runs.
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Fig. 4. The projection vector W obtained with sparseness constraints © = 3 (left)
and no sparseness constraints (right). Clearly the sparseness constraints do produce
a sparse W while most of W’s elements are active without sparseness constraints.

Here z-axis is the index of dimensions of W and y-axis shows the corresponding
values.
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