
A practical algorithm for L ∞ triangulation with outliers

Hongdong Li
RSISE, Australian National University

VISTA, National ICT Australia

Abstract

This paper addresses the problem of robust optimal
multi-view triangulation. We propose an abstract frame-
work, as well as a practical algorithm, which finds the best
3D reconstruction with guaranteed global optimality even
in the presence of outliers. Our algorithm is founded on
the theory ofLP-type problem. We have recognized that
theL∞ triangulation is a concrete example of the LP-type
problems. We propose a set of non-trivialbasis operation
subroutines that actually implement the idea. Experiments
have validated the effectiveness and efficiency of the pro-
posed algorithm.

1. Backgrounds

The triangulation problem. Triangulation is the process
of computing 3D structure from known camera matrices.
Formally, let{Pi; i = 1,...,n} be a sequence ofn known
cameras, andxi be the image point (at view i) of an un-
known 3D pointX in 3-space. Thus we havexi = PiX
(up to scale). Then the problem of reconstructing the 3D
pointX, given the camera matricesPi and image pointsxi,
is known astriangulation.

In the absence of noise or outliers, the triangulation
problem is trivial, involving finding the intersection point
of rays in space. However, noise and outliers are often
unavoidable. In such circumstance to find a unique and
optimal solution is much desirable but difficult [7][3][4].

The L∞ optimization. A recent paper [3] has been spark-
ing the interest of usingL∞-norm for various geometric vi-
sion problems. The interest is growing, as evidenced by
the increasing numbers of publications devoted to the topic,
e.g., [8][6][14][13].

One of the chief advantages of theL∞ scheme is that:
problems formulated by theL∞-norm often possess a sin-
gle, hence global, optimum. By contrast, hardly has any
conventionalL2-based methods ensured the global optimal-
ity. Another benefit ofL∞ is that, compared withL2, it
often leads to a simpler formulation for the same problem.

However, it is well known that theL∞-optimization is
extremely vulnerable to outliers. This is because: theL∞-
norm based method is aimed at minimizing the point-wise
maximal residual, whereas outliers often give rise to the
maximal residual. As a result, a single outlier may destroy
the whole estimation. This is the Achilles’s Heel of theL∞-
based method. To salvage the method somedata cleaning
procedures (i.e., outlier-removal) must be applied first.

2. Existing approaches

The problem of outlier-removal has been extensively re-
searched in the areas ofstatisticsandcomputational geome-
try (c.f. [11] [2] and references therein). Statistical methods
such as the robust M-estimator often assume a large-size
data set (in order to bestatistically significant). Whereas, in
the triangulation context the available data set size is often
small. For this reason we will not discuss the M-estimator
methods here.

2.1. A remark on RANSAC

RANSAC is a powerful technique for outlier-removal,
which allows the user quickly removing a large portion of
outliers from the data. Particularly, for triangulation the
optimal L2 solver proposed by [4] is very suitable to the
RANSAC framework, because it can be used as an effi-
cient minimal-solver (for the RANSAC) requiring only two
points from two views.

However, this is not good enough in theL∞ setting. Be-
ing a randomized algorithm, the RANSAC may easily miss
a few outliers. In other words, it is not very reliable in thor-
oughly removing all outliers. Whereas, even a single re-
maining outlier may destroy the overallL∞ estimation.

Nevertheless, we do not oppose the use of RANSAC for
solvingL∞ problems. On the contrary, we highly recom-
mend it for quickly removing the most egregious outliers
in the first stage. Our algorithm can be employed after
the RANSAC, in order to further remove any remaining
outliers—-if removing them does providefurther andsub-
stantialdecrease in the residual error.
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Figure 1.The existence of multiple local minima of the k-th median. This
figure shows three cost functions. While there is only a single minimum for
theL∞ solution (i.e, minimax, in red dot), there are two level-1 minima
(in green dots) and three level-2 minima (in blue dots).

2.2. K-th median optimization

So far, there have been only two papers that devoted
specifically to the outlier problem in theL∞ triangulation
context: Ke&Kanade’s [8] and Sim&Hartley’s [14].

Ke and Kanade relax the objective of theL∞ of minimiz-
ing the point-wisemaxima. Instead, the k-th level maxima
(i.e., k-th median) is to be minimized. The idea is similar
to the LMeds (least median) in robust regression where the
median is exactly then2 -th level maximum.

Finding the k-th level residual is not an easy task. The
authors thus suggest a convex programming algorithm,
based on solving aconvex feasibility problem. This algo-
rithm works well, in terms of obtaining anapproximatek-th
order median. Moreover, if anexact solutionis required, the
authors further suggest an integer programming approach.

While the algorithm is novel and useful, there is how-
ever a problem that seemingly has been overlooked. That is,
even if the convex programming (or integer programming)
does converge toa k-th median solution, there is however,
noguarantee that this solution is theuniqueglobal optimum
at level k. In fact,k-th medians are generally not unique,
but can have many local minima. In this sense, the output
of the algorithm is unpredictable. It is not clear which local
minimum the algorithm has eventually found. As a result,
the k-th median algorithm has deviated from the original
promise of theL∞ idea which was meant to find asingle,
uniqueandglobal solution. Fig-1 illustrates the existence
of multiple k-th medians.

Moreover, since at level k theα-sublevel set is not nec-
essarily aconvex set(otherwise there would not be multi-
ple local minima), so theconvex feasibility problemis no
longer easy to solve. Nonetheless, since a bi-section search
is adopted, their algorithm frequently ends up with a good
approximation, which probably explains its success in ex-
periments.

2.3. Throw away bad points

Sim and Hartley conduct a rigorous investigation of a
simple idea for outlier-removal:throwing away bad points
with the maximal residuals. Given that certain conditions

are satisfied, the paper has proven theoretically that the
above simple idea effectively reduces outliers in a pre-
dictable manner.

Their algorithm proceeds in an iterative fashion. In each
iteration, at least one outlier will be removed from the
measurement. Experiment for optimalL∞ triangulation
with outliers has obtained encouraging success. While
effective, the algorithm is however, not efficient. Usually,
in the process of throwing away a “support-set” (cf. [14])
not only outliers but also inliers are discarded. This is
very ‘wasteful’ especially when the number of matching
points is limited. For instance, in triangulation one often
does not have a long track for each feature point. The
authors do suggest a remedy ofreinstatement, based on
residual analysis. However, this remedy is generally not
very reliable for discriminating true inliers from outliers.

In this paper, we provide anabstractframework, as well
as apractical algorithm, that removes outliers in aguaran-
teedway. We present both theoretical foundation, and algo-
rithmic implementation forL∞ triangulation with outlier-
removal. Experiments have obtained satisfactory results.

3. L∞ triangulation, quasiconvex and SOCP

This section gives a brief review of theL∞ triangulation.
For more details the reader is referred to [3][6].

The L∞ triangulation problem is formally cast as a
min-max problem that minimizes the maximum of the re-
projection errors:

min
X

max
i

‖(x̂iPi;3 − Pi;1,2)X‖2
(Pi;3X)2

subject toPi;3X ≥ 0,

(1)

wherePi is the3× 4 camera matrix at framei, Pi;m is the
m-th row vector fromP, andPi;m,n is a sub-matrix from
P consisting itsm-th andn-th rows. x̂ is the inhomoge-
neousimage point (i.e., a 2-vector). To ease notations we
use‖AiX‖2 to represent the numerate part of the cost func-
tion, whereAi is an coefficient matrix depending on̂xi.

It has been proven that the minimax cost function in (1)
is a quasiconvexfunction, and the problem aquasiconvex
programming[6] [8].

Definition 3.1. A functionf : Rn → R is called qua-
siconvex if its domain and all itsα-sublevel sets{X ∈
domf |f(X) ≤ α} are convex.

Every quasiconvex programming has only one local min-
imum, and thus it is also the global optimum. For finding
this unique global optimum, we use thebi-sectionsearch
algorithm:

Algorithm 3.2. (Bisection)
Input: initial bounds[αl, αu], two working variablesu = αu, l =



αl and a toleranceε.
Output: optimizerX∗, and optimal value ofα∗.

1. While (u− l) > ε, do

2. α = (u + l)/2

3. Solve theSOCP feasibility problembelow.

4. if feasible,then u = α,

5. elsel = α, end if.

6. end do.

The SOCP feasibility problem in step-3 is:

Find X, such that:∀i, ‖AiX‖ ≤ αPi;3X, andPi;3X ≥ 0.

If suchX does not exist, then reports ‘infeasible’.

The first inequality constraint is easily recognized as asec-
ond order cone, thus the problem can be efficiently solved
by a SOCP (second-order-cone-program, [1]). The second
inequality is linear, known as thechirality (c.f. [5]).

4. Outlier removal: complexity analysis

Although there is a lack of rigorous mathematical defi-
nition of outliers, in this paper we however take a practical
view: we consider outliers as a small portion of data points
(say, at mostk) containing in then input data, which con-
tributes to the greatest residual error in the estimation.

Under this view, our strategy for outlier-removal is thus
to identify a subset of at leastn−k data points that produces
the least residual error. Here thek is simply anupper bound
estimate of the number of outliers (e.g., a percentile), and is
not hard to find. In practice,k is often very small, especially
after using the RANSAC for pre-filtering.

Now the outlier-removal problem has a more formal
description ofsubset-selection. That is, given a set ofn
elements, the task is to identify a small subset containing at
mostn− k elements that gives the minimal error of certain
cost function.

To exactlysolve the above subset-selection problem is
very challenging in general. To see this, we examine the
computational complexity of the problem below.

4.1. Exhaustive search

A trivial method for solving the subset-selection problem
is by abrute-forcesearch (over all possible combinations).
This results in a typical combinatorial problem whose com-
plexity is O(

∑k
i=0 Ci

n) (Ci
n is the number of combina-

tions). As the problem sizen increases, this complexity
growsexponentially. Clearly, due to such an exponential ex-
plosion the trivial search method soon becomes intractable
whenn or k is moderately large.

For example, consider a triangulation problem from 100
views. If one wishes to removeat mostk = 4 outliers
by a brute-force search, then in total he has to conduct
C0

100 + C1
100 + C2

100 + C3
100 + C4

100 ≈ 4 million tests of
all combinations. InL∞ triangulation context, each of these
tests involves several loops of bisection iterations, and more
loops of SOCP feasibility tests.

4.2. Our new method

In this paper we give a new method for exactly remov-
ing up tok outliers fromn measurements. In spirit, our
method belongs to exhaustive search. However, it works at
a speed far more efficient than the brute force search. To
demonstrate this, we will give an example below.

Consider a 100-view triangulation problem. Suppose af-
ter RANSACing there is still a small number of at mostk
outliers remaining. In other words,k is an upper bound
of the number of outliers. Now the task is to thoroughly
(exactly) eliminate all these outliers and get an accurate tri-
angulation. By using our new method we are able to enu-
merate all local minima up to a desired levelk. Choosing
the minimum corresponding to the least residual error as
the best solution, we then get a guaranteed optimal triangu-
lation.

Empirical, we have obtained the following results shown
in Table-1. It displays the numbers of tests needed (i.e. the
number of local minima) in order to obtain a globally opti-
mal solution by two different methods at different level ofk.
Clearly, our method is much more sensible, while the trivial
exhaustive search is computationally prohibitive whenk is
large.

5. The geometric intuition

As mentioned above, our mew method is in principle an
exhaustive search method, but, it works in a way far more
efficient than brute-force search.

Before proceeding to introduce the main theory of the
paper, which looks obscure at first glance, we will first
present the underlying geometric intuition. Specifically, it
is the following two key observations that motivate our new
method.

f1(x), · · · , f10(x)

x

k = 0

k = 1

k = 2

· · ·

k = 8

k = 7

k = 6

k = 9

Figure 2. This figure depicts 10 quasi-convex cost functions
f1(x), · · · , f10(x). The red dots indicate all the local minima. A tree
structure rooted fromk = 0 connecting all local minima is formed.



Num of local minima (mthd/levelk) k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
Exhaustive search 1 101 5051 166751 4087976 79375496 1.2714×109

Our new method 1 4 12 35 104 302 879

Table 1. A comparison of the number of tests required (i.e. number of local minima) for obtaining a guaranteed global optimum. The data
is taken from a 100-view triangulation experiment, allowing up tok outliers. Our method is much more efficient.

Consider a simple example of finding all thek-th level
local minima of a set of ten one-dimensional quasi-convex
cost functionsf1(x), · · · , f10(x), as shown in fig-2. In the
figure, all local minima are indicated by red dots.

Note that at levelk there are exactlyk + 1 local minima
(i.e. the number of red dots at levelk). This number is
much less than what is predicted by the complexity analysis
conducted in the previous section, i.e. exponential.

Also note that for any given local minimum at level-
k, (k ≥ 1), there is always adirect path that leads to a
(k − 1)-th level local minimum. In other words, for any
node (i.e. a red dot) at levelk there is always a preceding
node (red dot) at level(k− 1). This gives rise to atreedata
structure that links all the tree nodes (i.e. red dots) together.
To recap, the two key observations are:

1. The number of local minima at levelk is bounded from
above, and the bound is much lower than exponential.

2. There is always a direct path from a local minimum of level
k to a local minimum of levelk − 1, ∀k ≥ 1.

As a result, one can perform an exhaustive search over
all local minima (i.e. tree nodes) by a simple tree search.

We thus wonder:whether these two observations (,which
were made upon aspecificone-dimensional minimization
problem,) aregenericenough so that itappliesto theL∞
triangulation problem as well? If the answer is affirmative,
then this will suggest an effective search method. Fortu-
nately, for theL∞ triangulation problem the answer is in-
deed “yes”. To prove this, in the next section we will re-
sort to an abstract, but elegant and powerful, optimization
theory—the LP-type problems.

6. LP-type problems

6.1. Some terminologies

The theory of LP-type problems is mainly due to Sharir
and Welzl [12], and Matousek with Sharir and Welzl [10],
who actually coined the concept and originated the research.

An abstract optimization problem is specified by a pair
(H, w), whereH is a finite set, andw : 2H → W is a func-
tion with valuesin a linearly ordered set(W,≤). The ele-
ments ofHare called constraints. One can consider theHas
the universe of constraints for a given optimization problem
(H, w). The domain space2H contains all combinations of
feasibility-test applied to the constraint setH. For a subset
G⊆ H, w(G) is called thefunction valueof G. Intuitively,
the valuew(G) stands for the minimal value attainable for

certain objective function while satisfying all the constraints
of G.

Solvingan abstract optimization problem is defined as:
find a minimal-size subsetB of H such that their values are
identical, i.e.,w(H) = w(B) > −∞. The function value
−∞ (standing for ‘undefined’) precedes all values in set
W.

Definition 6.1. (LP-type problem) An abstract optimiza-
tion problem is called anLP-type problemif the following
two axiomsare satisfied:

1. (Monotonicity) For any constraint setsF, Gwith F ⊆
G⊆ H, we havew(F) ≤ w(G).

2. (Locality) For anyF, Gwith F ⊆ G⊆ H with w(F) =
w(G) > −∞ and anyh ∈ H, w(G) < w(G∪h) implies
that alsow(F) < w(F ∪ h).

Remark. The term ‘LP-type’ stands for ‘linear program-
ming type’. However, an LP-type problem is not neces-
sarily a linear programming problem. Moreover, it is not
even necessarily a linear problem. In fact, many nonlinear
problems (including theL∞ triangulation) are examples of
LP-type problem.

Definition 6.2. (Basis.) A finite set of constraintsB is called
a basis, if any proper subset of this setB′ ⊂ B has strictly
smaller function value, i.e.,w(B′) < w(B). For a subsetG
of H, we say thatB⊂ G is abasisof G if w(B) = w(G).

Definition 6.3. We say that a constrainth ∈ H violatesa
subsetG⊆ H if we havew(G∪ h) > w(G). The violation
setV(G) is all the constraints that violateG. The cardinality
k of the violation setV(G) of G is called thelevel of the set
G, k = |V(G)|.
Example: The violation set of the universe setV(H) = ∅,
and the level ofH is zero.

Definition 6.4. (Combinatorial dimension). The maxi-
mal cardinality of any basis of (H ) is defined as thecom-
binatorial dimensionof the LP-type problem, denoted by
dim(H, w).

Note that for a specific LP-typed-dimension optimiza-
tion problem, e.g.,minx f(x),x ∈ Rd, thedomain dimen-
siond is not necessarily equal to its combinatorial dimen-
sion. In fact they are different in general.



6.2. Two main theorems

It turns out that the above abstract LP-type framework
provides an effective way of solving a wide class of opti-
mization problems. In particular, in a few moment we will
show that under this framework the outlier-removal problem
is reduced to:finding a basis which produces the smallest
function value and satisfies all but at mostk constraints.

Such a basis-finding problem, as an instance ofsubset-
selection, of course could be solved exactly by a brute-force
search. However, as explained before, the complexity for
brute-force search is exponential.

Remarkably, an LP-type problem can be solved much
more efficiently (than brute-force search), thanks to the fol-
lowing two main theorems ([12] [10]).

Theorem 6.5. (upper bound of cardinality.) For a non-
degenerate LP-type problem(H, w) of combinatorial di-
mensiond with w(G) > −∞ for any G ⊂ H, the num-
ber of bases of level at mostk is bounded from above by
|B≤k| = O((k + 1)d).

Theorem 6.6. (basis reachability.) Every basis of levelk
can be reached from the basis of levelk−1 through a direct
path. Consequently, all bases are connected through a tree
structure.

These two theorems have justified our two observations in
sec-5. To prove these theorems requires some knowledge
of probabilistic method [2], and is beyond the scope of the
paper. Interested reader is referred to [10][9] for details.

We say an LP-type problem isnon-degenerateif for any
two distinctbasesB andB′ in Hwe havew(B) 6= w(B′). In
practice, the non-degeneracy condition may be enforced by
applying infinitesimal perturbations to the function values.

6.3. Solving LP-type problems

Solving an LP-type problem is referred to as: finding
all the bases at a given levelk. To solve an LP-type problem,
we will need the following primitive operations:

• Violation test: Given a setGof constraints, and a sin-
gle constrainth, decide whether or noth ∈ v(G).

• Basis finding: Given a setGof constraints, find a basis
B of the set, i.e.,B = B(G), with w(B) > −∞.

• Basis change: Given a setG and one of its basisB,
for a single constrainth find some new bases of the
set-union(B∪ h).

Follow from the two main theorems, a deterministic LP-
type algorithm can be derived ([2]):

Algorithm 6.7. A deterministic algorithm for LP-type problems

Input: an LP-type problem(H; w), a given maximal levelK.
Output: all the basesBk at each level0 ≤ k ≤ K.

1. (Initial basis finding) find the root basis set for the universe
set, i.e.,B0 = B(H). Letk = 0;

2. (Basis change) generate all bases set at levelk + 1 by per-
forming a series of basis-change operations. Specifically, for
everyb ∈ Bk, do the following: generate a basis at level
k + 1 by Bk+1 = B(H\V(Bk)\b), whereV(Bk) is the vio-
lation set ofBk. The symbol\ means ‘exclude’ or ‘deprive
of’;

3. if k = K go to step 4, otherwisek = k + 1, go back to 2.

4. Output all the bases, i.e.,B0, B1,0, B1,1, · · · ,BK,1, · · · .

Intuitively, a basisBk at level-k represents aminimal-
setof constraints thatsupportthe function value at the cur-
rent level—removing any of the member constraintsb ∈ Bk

will further lower the function value. As such, solving
the LP-type problem offers a means to identify which con-
straints are the most active ones—in the context of robust-
estimation they often relate to the outliers.

7. TheL∞ triangulation is an LP-type problem

So far, we have introduced the LP-type framework, and
some of its main results.

However, in order to apply the framework to the triangu-
lation problem, a critical question must be answered:is the
L∞ triangulation problem an LP-type problem?

We now proceed to give an affirmative answer and pro-
vide a proof for it. For convenience, repeat theL∞ trian-
gulation formulation here. This time the objective function
(i.e.,the sub-levelα) is explicitly expressed.

min
x

α, subject to, (2)

∀i, ‖AiX‖ ≤ αPi;3X, andPi;3X ≥ 0. (3)

Result 7.1. (Main Result)

The L∞ multiview triangulation is an LP-type problem;
Moreover, theL∞ multiview triangulation with at mostk
outliers is an LP-type problem.

Proof. The proof is done by specifically constructing an
LP-type problem from Eq.(2). Define the universe setH as
the set of all constraints, including both the second-order-
cone conditions and the chirality conditions. Define a func-
tion w whose value is the minimal value of the sub-levelα,
while satisfying given constraints. In other words,w is the
minimal objective function value at the optimizer pointX∗

which itself is located in the intersecting region of the con-
straints. Clearly, all suchws are linearly ordered. So far we
have constructed a pair of(H, w).



Next, we need to verify that the two axioms in the defi-
nition of the LP-type are satisfied. Axiom-1 (monotonicity)
is quite obvious: adding more constraints to a set can only
further constrain the set, so its function value can never de-
crease. Thus the monotonicity holds. It now remains to
show that axiom-2 (locality) is also satisfied. Since the
L∞ triangulation problem can be solved through the SOCP
level-set bisection method. Each iteration of the bisection
amounts to solving a convex feasibility problem. Let us
consider a non-degenerate feasible case, i.e., whenα is suf-
ficiently large so that all constraints are satisfied (i.e., their
intersections are non-empty) and a single (non-degenerate)
optimum exists. In this case, decreasingα will never in-
crease the areas of the intersecting region. In other words,
the feasible regions of different levels arenested. Suppose
that at two different levels we have two feasible regions with
the same function valuew∗. Then it is easy to check that:
if a constrainth ∈ H violates the smaller feasible region it
must also violate the larger one. (The converse is also true:
if h violates the larger region then it also violates the smaller
one, due to the non-degeneracy.) This says that, the locality
axiom holds. For the outlier case, the proof is similar

To analyze the complexity of the obtained LP-type prob-
lem, we have another result which has useful practical im-
plication.

Result 7.2. The combinatorial dimension of theL∞-
triangulation-induced LP-type problem is finite, and is
bounded from above by4, i.e.,d(H∞, α) ≤ 4.

One way to prove this is through the use of Helly’s cele-
brated theorem ([2]): givenA a finite family of convex sets
inRd. If everyd+1 members ofA have a point in common,
then there is a point common to all members ofA. Exam-
ple: if every3 out ofn disks in the 2D plane intersect at one
point, then all thesen disks must intersect at one point.

8. The proposed triangulation algorithm

The main algorithm

The top-level structure of our algorithm is given below:

Algorithm 8.1. LP-type forL∞ triangulation with outliers

Input: a triangulation problem, and a level K.
Output: all bases and the global optimum up to level K.

1. Set level k =0. Call SOCP bisection algorithm (i.e., alg-3.2)
to find anL∞ triangulation (i.e. the solution at levelk = 0).

2. Call algorithm-(6.7), which consists of the following three
steps:

(a) use thebasis-finding subroutine(see below) to find the
initial root basisB0;

(b) while k < K, do generate new bases by calling the
basis-change subroutine(see below);k = k+1 ; end-
do;

(c) Remove any redundancies in the obtainedk-th level
bases, and output the bases.

3. For each of the obtained bases, compute their function val-
ues, find the smallest value and the corresponding global
minimizer, output them as the final solution;End.

To actually apply the above algorithm some non-trivial
details must be filled in. Specifically, we need to pro-
vide subroutines for violation-test, basis-finding and basis-
change.

Violation-test subroutine

Violation-test is easy to implement, involving only a sin-
gle step SOCP. Given a constraint setG which is initially
feasible. Test a single constrainth: if addingh to Gmakes
G∪ h infeasible, then report ‘h violatesG’. The violation-
test subroutine is frequently invoked by other subroutines.

Basis-finding subroutine

The basis-finding subroutine accepts as input a set offea-
sibleconstraintsG, and output a basisB, which is a subset of
G. We propose the following algorithm which is guaranteed
to produce a basis.

Algorithm 8.2. Basis-finding subroutine

Input: a set of constraintG, and its optimal function valueα∗G.
Output: one basisB(G).

1. letα = α∗G−ε to makeGinfeasible, whereε is a infinitesimal
positive number;

2. for each memberg of G, drop it temporarily fromGand do an
SOCP-feasibility-test; if(G\ g) is still infeasible, then drop
it permanently; otherwise, return it toG;

3. If all members have been tested,outputB(G) = G.

Based on the definition of basis it is easy to see why this
subroutine works.

Basis-change subroutine

The basis-change task is: given a basisB, and a con-
strainth not inBk, find a basis for(B∪h). This task can be
fulfilled by applying the basis-finding subroutine to the set
(H\V(B)\b) (c.f. algorithm-(6.7)). This procedure eventu-
ally invokes an SOCP bisection procedure. Since most of
the bisections are performed locally (i.e., only bisecting a
small range interval), the computational overhead is low.
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Figure 3. Y-axis: number of bases at levelk; X-axis: image point.
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20-views case; right: 100-views case; two curves are nearly iden-
tical which implies that the number-of-bases is independent of the
number of views.

9. Experimental validation

The above LP-type framework looks rather abstract.
However, to actually implement the algorithm is simple. A
central algorithmic component is the SOCP feasibility test,
which will be frequently called by other higher-level rou-
tines. We implement the whole program in less than 200
lines of Matlab code. The adopted SOCP solver is the Se-
DuMi [15].

We have conducted three experiments to validate our the-
ory and algorithm. All experiments have obtained convinc-
ing successful results. Some of which even provide new
theoretical insight.

In the first experiment, we generate a synthetic 3D
scene containing 100 points. We take 21 images from 21
positions. This amounts to a 21-view 100-point triangula-
tion problem. We add Gaussian noise, as well as different
proportions of outliers to the21, 000 image points. We en-
sure that each 3D point has at most 3 corresponding image
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Figure 5. Min-max residual (at levelk) vs. View; The percentiles
of outliers are 0%, 5%; 10%,20% in sub-figure 1–4, respectively.
The min-max errors obtained by a linear method are also shown
for comparison. This figure is better viewed in color.
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Figure 6. 3D circle experiment: Reconstructed circle at different
level k. Whenk = 0 the obtained result is almost identical to the
ground-truth.

points corrupted by a 10-pixel uniform noise (as outlier),
and each view has at least one such corrupted image point.
This amounts to about20% outliers. Then use our new LP-
type algorithm to do the triangulation.

The purpose of the first experiment is to answer the fol-
lowing question:up to a given levelk, how many bases are
there? This is actually equivalent to asking:how many tests
are needed in order to ensure a guaranteedk-level global
optimality?
Answer to this question is given in fig-3. We applied our al-
gorithm to the 100 points. Each point is processed indepen-
dently. As an example, we show the results for 10 points. It
reveals that up to levelk ≤ 3 the number of bases is limited
to the range of 20-50. This result is very encouraging. Oth-
erwise this number would be1562 if a brute-force search
were used for solving the 21-view triangulation problem.
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Figure 7.Experiment results on the dinosaur sequence. Top left:
one of the input images; Others: the rms residual errors at k=0,1,3
are 4.17,2.61,0.57 pixels, resp.

In terms of computation time, one SOCP-test for the trian-
gulation problem costs only about 0.03 seconds on a modest
P4 machine.

Fig-5 gives the min-max residual errors over 21 views
after applying our algorithm to level-k. At k = 3 (i.e. about
10%− 15% outliers) the min-max residual error is reduced
to about 0.2 pixels, clearly indicating that most of the out-
liers have been removed successfully. In conclusion, this
figure illustrates that our method does effectively remove
all outliers.

Next, we want to examine how the number of bases in-
creases as the levelk grows. So we test for largek. Fig-
4 gives the results for 20 views and 100 views cases. We
plot them inlog10-axis, and surprisingly find that it fits well
with a straight line. Whilst for the moment we do not have
a theoretic explanation to this, it does provide a practical
guideline in predicting the number of bases.

In thesecond experiment, we synthesize 100 points on
a 3D circle, and take 20 views of it. About 10% outliers
are added into the image points. Our algorithm produces
the results shown in fig-6. The right sub-figure gives the 3D
reconstruction errors at different levels. Again, at level-3
the reconstruction error is sufficiently low, indicating that
all outliers have been removed successfully.

In the third experiment , we perform experiments on
real data set (e.g. the dinosaur sequence). About 10% image
points are perturbed by 5-pixel uniform noise as an simula-
tion of the outliers. The 3D reconstruction results obtained
at k=0,1,3 are shown in fig-7. The reconstruction quality
improves ask increases. The average RMS re-projection
error is reduced to about 0.6 pixels at level-3, which is al-
ready close to the ideal outlier-free situation.

10. Conclusion

We have shown that theL∞ triangulation is actually an
LP-type problem. We provide a practical algorithm for im-
plementing this idea for robustL∞ triangulation. Our al-
gorithm handles outliers in an exact and predictable man-
ner. It always finds the unique global optimum at relatively
low cost. Quantitative comparisons among different outlier-
removal methods are planned as our future work.

Since our method has received convincing success for
the triangulation problem, we expect more general applica-
tions to other problems. There have been shown that many
geometric vision problems accommodate a simplerL∞ so-
lution, see [6] [3] for example. So long as these problems
are LP-type problems, our method could be applied to find
a guaranteed global optimum, even in the presence of out-
liers.

Currently, the computational burden time is very heavy.
In fact, if we strictly follow the LP-type theory framework,
much faster algorithms (e.g., in linear expectation time, or
sub-exponential time) are clearly possible.

Potentially, the central idea of our outlier-removal
method can also be applied to other problems where an ex-
act robustness is desired.
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