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Abstract

This paper presents a new method for calibrating and cor-
recting large radial distortion. It makes use of a number
of image point correspondences from two views only. No
knowledge of the scene structures, nor camera intrinsic pa-
rameters, is required. By using two singularity conditions,
the method successfully decouples the estimation of the ra-
dial distortion from the estimation of fundamental matrix.
The solution technique is basically non-iterative, it thereby
does not need any initial guess, with no risk of local min-
ima. It also proposes a kernel-voting scheme (instead of the
conventional RANSAC scheme). The result is shown to be
reliable and robust to noise. In addition, the method is easy
to implement.

1 Introduction

This paper presents an easy method for calibrating and cor-
recting large radial lens distortions. Radial distortion is a
significant problem in the analysis of digital images. It
is very common for wide-angle camera, fisheye camera,
catadioptric camera and those cheap cameras with short
focal-lengthes. Although this problem was widely stud-
ied by photogrammetrists, striving for extreme accuracy, it
has been largely overlooked in the extensive literature of
structure-from-motion (SfM) during the past decade or so.
Using a radially mis-aligned image in a SfM algorithm may
cause significant skewness [4].

The classic methods for camera geometric calibration
make use of a carefully manufactured calibration grid. And
almost exclusively, lens distortion parameters, as well as
other intrinsic/extrinsinc camera parameters are estimated
in a single optimization framework at the same time. Such
nonlinear iteration can be troublesome, due to lack of con-
vergence, choosing an initial estimation, local minima, and
determining a stop criterion. In addition, employing such
classic method is very laborious. Zhang in hisflexible cal-
ibration work based on a planar calibration grid also incor-
porated the estimation of radial distortion [3].

Figure 1: Demo of our method. Input: two views with
significant radial distortions, find image point correspon-
dences. (Here theunknown 3D scene points can be copla-
nar or not); Output: centre-of-distortion, distortion parame-
ters, and the corrected images.

Many papers have been devoted to the so-calledplumb
line idea which utilizes the fact that straight line (as a whole)
is an invariant entity under the ideal pinhole projection [21].
In fact, any single-view projective invariant can be plugged
into this scheme [14]. The difficulties with this kind of
method is that a knowledge of the scene must be known in
advance, and the particular image object corresponding to
this knowledge must be identified as well. For example, in
theplumb linealgorithm the user must tell computer which
curve is actually the image of a straight line. Some semi-
automatic approaches have been introduced therein such as
theradial distortion snake[22]. In this paper we attempt to
only use image point correspondences to calibrate the radial
distortion. The 3D points can be coplanar or not. A sam-
ple scenario of applying our method is shown in figure-1.
This method can be roughly thought as an auto-calibration
technique. Zhang has studied this idea, and proposed a gen-
eralized two-view epipolar relationship with lens radial dis-
tortion [2]. He suggested usingbundle adjustmentto solve
for the distortion. Stein proposed a method to calibrate lens
distortion from point correspondences of two view case and
three view cases [13]. Both methods need to solve an en-
larged camera calibration problem where the unknown set
also includes the distortion parameters. Usually an iterative
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optimization algorithm (bundle adjustment) is employed.
Fitzgibbon introduced an interesting method for simulta-
neously estimating radial distortion and fundamental ma-
trix [4]. He formulated the problem in a Quadratic Eigen-
value Problem (QEP) form and applied available numerical
technique to solve it. His framework works only for one-
parameter radial distortion model. Micusik and Pajdla have
extended this idea to a two-parameter model for fisheye-
lens, but after approximation they essentially solve a similar
one-parameter problem [7].

We already mentioned some drawbacks withnonlinear
iteration. Here, we point out another one issue, which is
more serious: experiment results have shown that there is
certain kind ofcouplingor correlation among camera pa-
rameters, which could make the estimation result rather
unreliable (see [24]). We show in this paper that our
method has successfullydecoupledthis coupling. It there-
fore yields more stable and more reliable estimation. Our
method bases itself on some non-linear equations of sin-
gularity, but the solution techniques it applied are non-
iterative.

To utilize multiple noisy measurements, we propose a
scheme ofkernel-votingwhich proves to be robust to noise,
and is more applicable than the conventional RANSAC in
the problem context. We have obtained good results. Our
method is generic enough in that in principle it allows for
any algebraic parametric distortion model. We do not make
any assumption about the form of the distortion model ex-
cept for beingalgebraic.

Our work benefits from the following very recent results.
Thirthala and Pollefeys proposed a method calledradial tri-
focal tensor[5]; Claus and Fitzgibbon presented a Rational
Function Model applying to non-linear lifted image corre-
spondences [6]. They have successfully rectified (straight-
ened) the epipolar lines, yet some ambiguities in extracting
distortion parameters remain; Hartley and Kang provided a
model-free model for radial distortion correction. They also
gave a novel algorithm to estimate centre-of-distortion [9].

2 Radial distortion models

This section explains several commonly adopted radial dis-
tortion models that are most related to our work described
here. We already mention that our method does not rely on
particular model. However, a minimal requirement is that
the model must be (elementary)algebraic (rather than tran-
scendental). Therefore, we will not consider here the FOV
model [21], nor the model used by Micusik and Pajlda[7],
because they contain trigonometry functions.

Polynomial Model (PM) is the most popular model to
describe radial distortion:

xu − e = (xd − e)L(rd,k), (1)

where

L(rd,k) = 1 + k1r
2
d + k2r

4
d + · · ·+ kpr

2p
d , (2)

and2p is model order,e the centre-of-distortion (COD) and
rd the pixel radius toe.

PM model works best for lens with small distortions. For
wide-angle lens or fish-eye lens that have large distortion, it
often require too many terms than practical.

Fitzgibbon suggested the use of Division Model (DM):

xu − e = (xd − e)/L(rd,k), (3)

whereL(rd,k) is the same in (2). The most remarkable
advantage of DM over PM is that it is able to express high
distortion at much lower order. In particular, for many cam-
eras one parameter suffices [4][6].

Of course, combining (3) and (1) we can get a more
generic Rational Model (RM):

xu − e = (xd − e)
L1(rd,k1)
L2(rd,k2)

, (4)

This RM should not be confused with [6]’s Rational Func-
tion Model, nor with [8]’s rational cubic model, as the for-
mer applies to lifted coordinates, and the latter encapsulates
all imaging process including the projective transformation.
One favorable property of the above models (to our method)
is that they are all elementary algebraic models.

There are other radial distortion models designed for
other non-traditional camera using curve-mirror. For ex-
ample, [17],[23],[15],[20],[14]. Since they are mostly al-
gebraic, our method can be easily adapted to these novel
models without effort, yet we will not discuss them in this
paper.

3 Find COD using radial fund-
matrix

The main correction algorithm proposed in this paper relies
on an accurate estimation of the centre-of-distortion (COD).

While it is common in the literature to assume the COD
is known, usually assumed at principal point, we argue this
is not a safe assumption in general. In this paper, we make
no assumption about the position COD. Instead, we actu-
ally estimateit. Traditionally, the actual estimation of the
COD is obtained at the same time of performing a full-scale
camera calibration, which is often a tedious procedure. Mi-
cusik and Pajdla suggested using the center of the circular
field-of-view as the COD, but it only works for the situation
when the whole (circular) field-of-view is seen in full in one
image [7].

We adopt a new method proposed in [9]. This method
is simple, yet produces good result. Here we briefly sketch
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this method. For more details the reader is referred to [9].
We assume the radially distorted image have all square pix-
els, i.e., the aspect ratio is unity. Now, let the camera ob-
serve a planar scene with known coordinates, for example a
planar checkerboard calibration pattern (e.g., fig-1). Given
xc as known point on the planar calibration pattern, and
xd the corresponding image point in the distorted image.
These two points are related by a so-called radial funda-
mental (epipolar) relationship, which can be written as:

xT
d Frxc = 0,

where the matrixFr is called asradial fundamental ma-
trix by [9], and its formal mathematical derivation is also
given there. The matrix may be computed in the usual way
(for example, the eight point algorithm) from several point
correspondences, and the COD extracted as theleft epipole:

eT Fr = 0.

This method can be extended to image with non-square pix-
els and to unknown planar scene. For notation’s sake, in the
remaining parts of the paper, where there causes no confu-
sion, we simply assume that the CODe has already been
estimated and subtracted from the point coordinatesxu and
xd.

4 Basic idea: nine-point algorithm

Consider two views of a static scene. Letxu
′ andxu denote

a pair of correspondences, of the two undistorted images,
respectively. The epipolar (coplanar) relationship is written
as:

xu
′T Fxu = 0, (5)

where matrixF is fundamental matrix ( or essential matrix
if the camera is intrinsically calibrated).

Assume image pixels are all square (i.e.,zero-skew and
unity aspect-ratio). Now plugging any (algebraic) radial
distortion model into it, we thus get a generalized epipolar
equation, which explicitly depends on the radial distortion.
For example, using (3) in (5) we get

[xd
′/L(rd

′,k)]T F[xd/L(rd,k)] = 0. (6)

Note that the image coordinates being used are homoge-
neous, they are thereby admit arbitrary change in scale with-
out changing the equity of the equation. We thus multi-
ply theL(rd,k) on both sides of the left-term of the equa-
tion, and rearrange it in a bilinear form of the homogeneous
coordinates components(x, y, z), using Kronecker product
symbol⊗, so get

((xd
′, yd

′, L(rd
′,k))⊗ (xd, yd, L(rd,k)))vec (FT ) = 0.

Now we do so for nine points, whose coordinates denoted
by matricesX′ andX, and then stack the nine bilinear equa-
tions together, thus get a homogeneous equation system:

M(X′,X,k)f = 0, (7)

where the square matrixM is calledmeasurement matrix,
which depends explicitly on input distorted coordinates and
the distortion parameterk, f the right null vector. For sim-
plicity, later we will drop theX andX′ in M.

We then make two important observations: firstly, we
find that thef is nothing else but thevec (FT ). This is
because the row-wise re-scaling ofM does not affect its
null-space at all; secondly, this row-wise re-scaling does not
change its rank either.

This homogeneous equations will have non-trivial solu-
tion iff matrixM(k) is singular. Moreover, since its solution
is a valid fundamental matrix, so it itself (after rearranging)
must be singular too. Writing down these two singularity
conditions, we then get a pair of nonlinear equations.

det(M(k)) = 0 (8)

det(Mtx [Ker [M(k)]]) = 0, (9)

where theKer[] is the null-space operator, andMtx[] is
thematrix operatorwhich rearranges a vector into a matrix.

These two singularity conditions are well-known in vi-
sion geometry research, but to the best of our knowledge
they have never been used for such problem. They play a
central role in this paper, and therefore are called asbasic
equations. Note that the distortion parameter only depends
on the singularity conditions, and has little to do with the en-
try values of theF. We therefore successfully decouple the
estimation of distortion from the fundamental matrix. Con-
sequently, our method works equally well for calibrated (in
the usual sense) and un-calibrated camera.

Now that having a group of nine correspondences, two
nonlinear basic equations are established. If the distortion
model makes use of two parameters, then nine points are
sufficient to estimate them. When more parameters are
used, in principle we may simply collect more groups of
measurements and then solve the resultant equations.

4.1 An example: One-parameter problem

In this section we demonstrate our method (and nine-point
algorithm) to the one-parameter DM model, i.e,xu =
xd/(1 + kr2

d). This is by no means atoy problem, because
all the basic operations applied here can be adapted to the
multi-parameter case in a similar fashion. The DM model
not only has pedagogical meaning, but also is of practical
significance. It is shown that in practice the DM model has
much richer expressing power in describing large distortion
than the PM model does ([6]).
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Since we use algebraic function to describe radial dis-
tortion, the basic equations are thereby algebraic in the un-
known k. This facilitates the application of various alge-
braic nonlinear equation solution techniques, for example,
companion matrix technique, or Sturm bisection technique,
etc [12]. Here we wish to avoid the use of Newton iteration,
nor Homotopy, as the former requires good initial estima-
tion and the convergence is not always guaranteed, and the
later is often subject to numerical unstable.
Our nine-point algorithm goes as follows.

1. Input two images; find image point correspondences.
-This can be done by a Harris corner detector followed by
a correlation matching algorithm. The point coordinates are
required to reach sub-pixel precision.

2. Normalize image coordinates by scaling them using an
isotropic scale factor, so that the maximal radius (with
respect to COD) is 1.00.
-This normalization is very crucial for the success of the
algorithm, as high-degree nonlinear equations are involved
here. Without good conditioning, the final result would be far
from correct. A further remark about normalization is that:
there is an inherent ambiguity in estimating distortion param-
eter and magnification parameter (i.e., the focal length). In
particular, the change of the scale of the distortion parameter
can be absorbed in the change of focal length. In this paper,
we will not always enforce the correct scaling condition, but
will correct the overall scale at the end of the whole process.

3. Collect a group of nine points, write down the pair of
basic equations.
-Because there is only one unknownk that needs to estimate,
in our implementation we only use the first basic equation,
also because it has lower total degree than the second. Note
that in matrixM thek appears only in five columns, thus a
six-degree univariate polynomial ink of the first equation is
obtained.

4. Solve this six-degree polynomial equation bycompan-
ion matrixmethod.
-We choose this method mainly for its linearity and simplic-
ity. The notion ofcompanion matrixis simple: the roots of
a monic polynomial equation ofp(x) = xn + an−1x

n−1 +
· · · + a1x + a0 are simply the eigenvalues of its companion
matrix:

Cp(x) =



0 0 . . . . . . . . . −a0

1 0 . . . . . . . . . −a1

0 1 . . . . . . . . . −a2

0 0
. . .

...
...

...
. . .

...
0 0 . . . . . . 1 −an−1


In matlab, the command for computing companion matrix

is compan(p) , and there are plenty of efficient algorithms
for eigen-decomposition. The reader may argue that there
may involves a hidden non-linear iteration that is used by an

eigen-decomposition procedure, there is, however little risk
in choosing initial guess, or local minima.

5. In general, we will always get six complex roots, but
only need to keep the real ones. However, there could
be still more than one, or even no real soot. For ei-
ther case, we need to use multiple measurements, solve
them and then single out thebest root.
-By the best rootwe mean the one that is consistent with
most measurements. A possible way to choose it is to test
this root against all other measurements by, for example, a
RANSAC technique. However, we argue that RANSAC is
not the best suited technique for the underlying problem. In
next section we will propose an alternative and more efficient
technique.

6. Output the best root and end.

5 Using more measurements: voting
on real roots

Using more measurements in general increases the stability
of computation. If we useN (N � 1) groups of corre-
spondences, we then end up with a system ofN simulta-
neously nonlinear equations. Physically, even though the
true k should satisfy all these equations, due to noise the
obtained simultaneous equations can hardly find any con-
sistent solution. In other words, the system of equations has
no solution.

The last step of the above nine-point algorithm is to use
RANSAC to find a most consistent real root. But RANSAC
is inefficient in such problem context. The reasons are:

• firstly, unlike in the problem of estimating a line or a
fundamental matrix where the inlier-outlier-test can be
performed fairly efficiently, for radial distortion esti-
mation there is not simple way to do so. If one insists
in using RANSAC, he has to first tentatively undistort
the image using the current distortion parameter esti-
mation, then compute the fund-matrix and reprojection
error, and count inliers/outliers. This approach is a bit
of over-kill, and does not thoroughly decouple the dis-
tortion form the fundamental matrix.

• Secondly, because noise also affects the nine-point
group, it thus consequentlydistorts the basic equa-
tions as well, as what we handle here are all polyno-
mial equations of high-degree which are in general not
so stable. In other words, the equation we just solved
may be not the equation that we intended to solve. In
such case there is little hope to obtain a genuine root
from RANSACing.
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To overcome this problem, we propose a kernel-voting
scheme. By experimentations, we found: although noise
affects the basic equations significantly, the solved roots
actually all surround the genuine root. The distribution
of all roots from multiple measurements shows a peak
shape. So long as we collect enough measurements, an
asymptotically-correct root will be eventually found. Our
simulations show that this number needs not to be very
large. Usually30 ∼ 70 suffices. Another benefit of the
voting scheme is that it is very robust to outliers. A similar
theoretical analysis of the success-rate (probability) as used
in the RANSAC scheme could be carried out.

In the voting scheme, we apply a kernel density estimator
(KDE) to find the position corresponding to the (globally)
maximal (peak) probability. This peak detection task could
also be done by a simple histogram technique. But with
histogram there is the difficulty of determining bin numbers.
Another possible way is to use median position, but it lacks
theoretic justification.

The goal of density estimation is to approximate the
probability density function of random variables. Assume
we have independent observations from the random vari-
able. The Kernel Density Estimator (KDE) for the estima-
tion of the density value at point is defined as

f̂h(x) =
n∑

i=1

K(xi − x)
h

(10)

whereK() denoting a so-called kernel function, andh the
bandwidth. Here we choose a Gaussian kernel with fixed
bandwidth. Basing on the estimated distribution density of
real roots, we then easily identify the root position corre-
sponding to the largest peak of the density function. Exper-
iments show that the precision is good(see figure-4).

6 Multi-parameter problem

Following the same algebraic fashion, our algorithm can be
extended naturally to multi-parameter case. Now we give
some thoughts and preliminary experiment for this issue.
As an example, we study the two-parameter DM case (after
COD removal),i.e,xu = xd/(1 + k1r

2
d + k2r

4
d).

Collecting a group of nine points, we find equation eq.
(8) is a two-variable polynomial consisting of the following
28 monomials:

{k1k2
2 , k2

2 , k2
1k2, k2

1k3
2 , k4

1 , k3
1k2, k1k4

2 , k2
1 , k1, k3

1 ,

k3
2 , k5

2 , k2
1k2

2 , k3
1k2

2 , k4
1k2

2 , k5
2 , k2

1k4
2 , k13k3

2 , k5
1k2,

k1k2, k4
1k2, k1k3

2 , k4
2 , k5

1 , k6
2 , k6

1 , k2, 1}.

For this particularbi-variate problem, one direct way to
solve it is by plane-curves-intersecting. Regarding the two
basic equations, eq. 8 and eq. 9 as two plane algebraic
curves in thek1k2 plane (,we are able to do so because the

basic equations are all in real coefficients), then the inter-
section points must be the commonreal roots that we are
after.

Alternatively, we propose another approach. Since we
do not want to use eq. 9 because it involves higher de-
gree polynomial, while eq. 8 still remains degree-six for
each of the variables. Therefore, our strategy is to collect
enough groups of data, and obtain enough number of equa-
tions, then form a system of equations in the variablek1 and
k2. In principle, Gr̈obner basis method can be applied here
to generate new equations, but it is no need here because
we may have enough linearly independent equations simply
by collectingsufficientmeasurements. Reducing this equa-
tion system using a modified Gaussian-Jordan Elimination
method similar to [11] and [12], we again get an univariate
polynomial ink1. Applying the same method of companion
matrix and root-voting described in sec. 4 and 5, we then
find the bestk1. Substituting it back, we may findk2 too.

This procedure can be further extended to cases with
more than two parameters. For solving a nonlinear system
with multiple unknowns, various type ofresultantmethods
can be used here. Detailed explanations for handling such
multi-parameter case will be reported separately. It is how-
ever worth noting, as the increase of number of parameters,
the total degree and the number of terms of the resulting
nonlinear equation also increases quickly, and this will have
some practical problems. Fortunately, for the radial distor-
tion problem,1 ∼ 4 parameters usually suffice.

The reader might have thought that our method in
essence is very similar to Fitzgibbon’s [4]. However, even
for the one-parameter case, that method attempts to simulta-
neously solve both fundamental matrix and distortion, while
ours spares the unnecessary computation of the fundamen-
tal matrix.

7 Experiments

We give some experimental results in this section, to show
the effectiveness and efficiency of the proposed method.

7.1 Tests on synthetic images

We generated a 3D points scene, where the points uniformly
randomly distribute within a cube. Then, perspectively pro-
jected them on two image planes with different poses and
positions, and then applied the radial distortion. The ob-
tained image size is of about256 × 256. We used one-
parameter DM model with known parameterk to synthesize
the distortion. We tested our method for different values of
k. After the above procedures, we added Gaussian noise to
the image points coordinates. Figure-2 left is the simulated
3D scene, and the right is the corresponding 100 feature
correspondences of the two views. the image size is about
256× 256.
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Figure 2: (Left) 3D points scene used for simulation.
(Right) distorted image correspondences (100 points). Im-
age size is about 256x256.

Random choosing groups of measurements from the 100
samples, each group has 9 points, we then applied our nine-
algorithms to each group. Here we show an example of the
six-degree polynomial, just to get a flavor:

p(k) = −0.435e−18k6 − 0.306e−15k5 + 0.104e−13k4 − 0.968e−13k3

+0.294e−12k2 − 0.117e−11k + 0.328e−11.

It is worth stressing again that: due to the effect of noise,
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Figure 3: Root voting result: KDE estimation of the density
of real roots computed from 50 data groups. Red: Gaussian
kernel width=0.5, Green: Gaussian kernel width=0.3, noise
level=0.05 .

solving any single of the resulting equation in general will
not give a correct result. The reader may verify this us-
ing the above polynomial. By using a Gaussian kernel, we
performed a kernel density estimation on all the solved real
roots. In our experiment we had sampled 50 data groups, so
we got in total 50 polynomial equations.

The resulting density function is depicted in figure-3. It
is the average of 200 random tests. The noise level was 0.05
pixels. For this we can easily read out the root value at the
peak position of the estimated density function, which is
k = −4.0000127521, while the ground-truth value isk =
−4.000.

Zhang [2] ever observed an interesting phenomenon that
if distortion is small, his method may not give accurate
estimation. We specially test this issue by simulating a
very small distortion. Our results (average of 20 tests,under
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Figure 4: Distortion removal precision versus various noise
levels applied to synthetic data. Here we show the maxi-
mal pixel deviation and mean deviation away from the ideal
position by a pinhole camera.

Figure 5: Sample input real images, with extracted feature
points superimposed on.
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Figure 6: KDE estimated real roots density function. From
this we can read out the best root ask = −1.475.
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0.01 pixels noise) are given in the table below, which are
satisfying.

true-k 0.0 -1e-5 -1e-3 -1e-1
est-k -0.152e-14 -0.997e-5 -0.989e-3 -1.021e-1

We tested the performances of our algorithm under dif-
ferent levels of image noise. Figure-4 gives the correction
precision vs. different noise levels. Note that the synthetic
image coordinates were in the range [-128, +127], say, im-
age size is by 256 pixels. In the original distorted image, the
largest pixel displacement (from the ideal position by a pin-
hole camera) is about 27.33 pixels, and the mean displace-
ment is 7.25 pixels. When noise level is below 0.5 pixels,
the distortion-correction procedure gives positive correction
result. In fact, in real image experiments using Harris cor-
ner detector with sub-pixel precision one can easily reach
< 0.1 pixel precision in a256× 256 image.

We used MATLAB Symbolic-Math Toolbox for all the
computations. The total computation (for 50 groups) costs
about 15 seconds on a moderate P4@1.8GHz machine. This
timing can be easily and substantially reduced, as in our im-
plementation we have paid no attention to code optimiza-
tion.

7.2 Tests on real images

We tested our algorithm on three different cameras, a
Canon-EOS with fisheye lens (image resolution1536 ×
1024), a Flea-1394 Camera of PtGrey (resolution of1024×
768) and an Hitachi-DZMV580 video camera. The below
is a sample image pair by the Canon-EOS, with the de-
tected feature points superimposed on (fig-5). The feature
points were extracted by a SIFT detector. Then, we manu-
ally found the matches between the two images. After ap-
plied our method (i.e., section 4.1 and section 5 after COD
removal), we got the following roots distribution density
function (fig-6, from which we read the distortion param-
eter isk = −1.47523. We also tried the two-parameter DM
model on the same real image pair, the estimation result is
k1 = −2.2651, k2 = 1.6282. Though we have not quanti-
tatively compare the correcting results by these two models,
but from the resulting images we can see both produce good
distortion removals.

The resulting distortion-corrected images are shown in
figure-7. We tested the reliability of our method against
noise and outliers (mismatches). In the noise experiments,
we rounded the corner coordinates up tointegersand again
added into some extra Gaussian noise of different levels
(up to std of 0.2 pixels), then checked the variation of
the estimated parameter. We found this only introduced a
smoothing-effect in the density curve, but little change to
the peak position. In another outlier experiment, we arbi-
trarily added a small numbers of mismatches into the input
data, then ran our algorithm again. We found although the

Figure 7: Distortion correction result for figure-5. (For dis-
play purpose we only show the center part of the image
(though this would be no good for visual evaluation), be-
cause otherwise due to the large distortion the size of the
corrected image would be too large to fit in with the paper
size.)

Figure 8: Radial correction result for the Flea camera. Left:
input image; Right: output result. (only central-part is
showed.)

roots became more scattering, the peak position remained
stable. Moreover, by increasing the sampling number of
groups, we found the peak can be made as sharp as the
outlier-free case. We tested our method on a Point-Grey’s
Flea IEEE-1394 camera and an Hitachi video camera. They
have smaller yet perceivable radial distortion. Figure-8 and
figure-9 display the distortion correction results.

8 Closure

In this paper, we show that the estimating of large lens radial
distortion can be effectively decoupled from the estimating
of other intrinsic and extrinsic camera parameters. There-
fore, we are allowed to find the distortion parameters simply
from two distorted images without bothering the fundamen-
tal (or essential) matrix. This increases the reliability of the
algorithm, and provides better understanding of lens distor-
tion. It also saves many unnecessary computations, and the
obtained estimation is accurate enough for many practical
applications.

The solution techniques we proposed here are basically

7



Figure 9: Radial correction result for the Hitachi video cam-
era. Left: input image; Right: output result. (only central-
part is showed.)

non-iterative. No initial estimation and no local minima, is
needed or encountered. In order to solve the resulting si-
multaneous and hardly-consistent equation systems, we in-
troduce a voting scheme. We discard the popular RANSAC
idea, because it is quite inefficient in the problem context
for two reasons: (1) it lacks an efficient way of doing in-
lier/outlier test; (2) noise significantly distorts the (mini-
mal) basic equation itself. Our voting scheme gives reliable
and robust results with respect to noise and outliers. The
proposed algorithm is easy to implement. Our algorithm
is best suitable for few-parameter case (say between 1-4).
When the number of parameters is getting larger, potential
instability may happen, as we deal with high degree poly-
nomials, and the efficiency of KDE may get worse with too
many parameters.

Currently we assume that the radial distortion model is
algebraic. However, by some effort our method could be
extended to some transcendental models. This will be our
future work. We still need a better way to quantitatively
evaluate the distortion-removal results for real image ( e.g,
measure the re-projection error.) Another practical issue is
how to automatically match feature points in images under
severe distortion.
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