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ABSTRACT

The problems of motion segmentation and face clustering can
be addressed in a framework of subspace clustering methods.
In this paper, we tackle the more general problem of cluster-
ing data points lying in a union of low-dimensional linear(or
affine) subspaces, which can be naturally applied in motion
segmentation and face clustering. For data points drawn from
linear (or affine) subspaces, we propose a novel algorithm
called Null Space Clustering (NSC), utilizing the null space of
the data matrix to construct the affinity matrix. To better deal
with noise and outliers, it is converted to an equivalent prob-
lem with Frobenius norm minimization, which can be solved
efficiently. We demonstrate that the proposed NSC leads to
improved performance in terms of clustering accuracy and ef-
ficiency when compared to state-of-the-art algorithms on two
well-known datasets, i.e., Hopkins 155 and Extended Yale B.

Index Terms— null space, subspace clustering, affinity
matrix, normalized cuts, motion segmentation, face clustering

1. INTRODUCTION

It’s well known that under affine camera model, the trajec-
tories of each motion correspond to a four dimensional lin-
ear subspace (or a three dimensional affine subspace) [1], and
under Lambertian reflectance assumption, faces of the same
subject captured with a fixed pose and varying light sources
lie approximately in a ten dimensional linear subspace [2].
Thus the problems of motion segmentation and face cluster-
ing (See Fig 1) become a problem of subspace clustering. In
this paper, we consider the genenral problem of clustering the
data points according to their respective subspaces, i.e., find-
ing the membership of the data points to the subspaces. This
problem has been proven important, with a lot of application-
s in image processing [3, 4]. Up to now, many different ap-
proaches addressing this problem have been proposed, includ-
ing factorized-based algorithms [5, 6], algebraic methods [7],
and spectral clustering based algorithms [8, 9, 10, 11].

One of the earliest attempts in this research area was the
factorization based algorithm [6], which got subspace cluster-
ing by a low-rank factorization of the data matrix X. To ob-

tain the membership of each data point, the so-called Shape
Interaction Matrix (SIM) was proposed, which is defined as
Q = V1V

T
1 with V1 being the right singular vector (from the

reduced Singular Value Decomposition) of X. Then we can
obtain the clustering results by simply block-diagonalizing
Q [6]. However, this algorithm cannot handle noise and out-
liers explicitly, and thus is not robust enough in practice.

Later, algebraic methods, such as Generalized Principal
Component Analysis (GPCA) [7] and Robust Algebraic Seg-
mentation (RAS) [12], were proposed, which fit polynomials
to data points. Thus subspace clustering problem, in this case,
becomes a problem of fitting and differentiating polynomials.
Unfortunately, the complexity of these methods will increase
exponentially with the number and the dimension of the sub-
spaces.

Recently, there has been a surge of spectral clustering (or
normalized cuts) based methods, among which notable meth-
ods are Sparse Subspace Clustering (SSC) [1, 8], Low Rank
Representation (LRR) [13, 9], Low Rank Subspace Cluster-
ing (LRSC) [11], Subspace Segmentation by Least Square
Regression (LSR) [14], and Efficient Dense Subspace Clus-
tering (EDSC) [10]. These approaches often consist of two
steps: first, build an affinity matrix such that only points in
the same subspace are connected; second, apply spectral clus-
tering with this affinity matrix. The key to the success of
these approaches resides in building a good affinity matrix,
so most recent work focuses on the first step. Typically, the
affinity matrix is constructed utilizing data’s property of self-
expressiveness, i.e., the data matrix can be taken as the dictio-
nary to represent the data itself. In particular, SSC recovers a
sparse representation of each data point via an ℓ1 norm min-
imization formulation to construct an affinity matrix whose
non-zeros entries correspond to points in the same subspace,
whereas LRR, LRSC, LSR and EDSC get dense representa-
tions by rank minimization (LRR, LRSC) or Frobenius norm
minimization (LSR, EDSC).

In this paper, we propose a novel subspace clustering al-
gorithm called Null Space Clustering (NSC), which is also
a spectral clustering based algorithm. Our key observation is
that the null space of the data matrix contains the desirable in-
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formation for subspace clustering and the orthogonal projec-
tor of the null space V2V

T
2 forms block-diagonal structure,

i.e., only points on the same subspaces will be connected. To
better deal with noise and outliers, it is converted to an equiv-
alent formulation with Frobenius norm minimization, which
allows us to model the noise and outliers explicitly and can al-
so be solved efficiently. We demonstrate the effectiveness and
efficiency of our algorithm on motion segmentation and face
clustering. In particular, we get state-of-the-art results on two
well known datasets, i.e., Hopkins 155 motion segmentation
dataset and the Extended Yale B face dataset [15].

2. BACKGROUND

In this section, we introduce the background of subspace clus-
tering problem and explain the related algorithms, e.g., SS-
C [8], LRR [9] and LSR [14].In the following part of the
paper, X ∈ RD×N denotes the data matrix whose columns
are the data points drawn from a union of k independent sub-
spaces and assume columns of X have been sorted according
to the subspaces.

2.1. ℓp Norm Minimization Based Algorithms

The algorithms with ℓp norm minimization can be compactly
formulated as

min
C

∥C∥p s.t. X = XC (diag(C) = 0) . (1)

Then SSC, LRR and LSR become the special cases of E-
q. (1). When p = 1, Eq. (1) turns out to be the noise free
formulation for SSC, which represents each data point as a
sparse linear combination of all other points. In this case, the
constraint diag(C) = 0 should be enforced to avoid trivial so-
lution. When p denotes nuclear norm (∥·∥∗) or Frobenius nor-
m (∥·∥F ), it results in the noise free formulations for LRR and
LSR respectively, which have been shown to be two equiva-
lent formulations sharing the same solution C∗ = V1V

T
1 ,

c.f. [10]. This solution again coincides with SIM, c.f. [10].
In these two cases of LRR and LSR, the diagonal constraint
diag(C) = 0 is not necessary since it obviously will not lead
to trivial solution even without this constraint. Then the affin-
ity matrix can be built as A = |C|+ |CT |, and the clustering
result can be obtained by applying normalized cuts algorith-
m [16] on A.

2.2. Null Space Formulation

We now introduce our null space formulation. Let V2 be the
null space of data matrix X. In general, each column of V2

is a linear combination of the basis of the subspaces, and thus
V2 does not exhibit a block-diagonal structure. However, the
orthogonal projector constructed by V2 preserves the struc-
ture of the original subspaces, as defined below:

W = V2V
T
2 . (2)

The matrix W can be proved to be block-diagonal in a
similar way to SIM [6]. Then, the affinity matrix can be con-
structed as A = |W|+ |WT |, or via some intuitive methods
to enhance the block structure of C as in [17, 13].

3. PROBLEM REFORMULATION WITH
FROBENIUS NORM MINIMIZATION

The key drawback of formulation (2) is that the noise and out-
lier cannot be explicitly handled, thus it is sensitive to them.
When the data is contaminated by noise or outliers, it be-
comes hard to recover the true null space of the clean data
matrix. However, we can show that the null space clustering
problem can be equivalently reformulated as:

min
C

∥I−C∥2F s.t. XC = 0, (3)

which makes it easy to handle noise and outliers explicitly, as
will be shown in the following subsections.

We then show by a lemma that formulations (2) and (3)
are equivalent.

Lemma 1. The solution to (3) is: C∗ = V2V
T
2 , which is

equal to W defined in (2).

Proof. The linear constraints in (3) can be eliminated by ex-
pressing C = V2Φ, where Φ is the new variable. Then

Φ∗ = argmin
Φ

∥I−V2Φ∥2F (4)

= argmin
Φ

trace(−2V2Φ+ ΦTVT
2 V2Φ) (5)

= argmin
Φ

trace(−2V2Φ+ ΦTΦ) (6)

Take the derivative over Φ and set it to zero, yielding
Φ∗ = VT

2 . So C = V2Φ
∗ = V2V

T
2 , which concludes the

proof.

In the following subsections, we’ll show how to handle
noise, outliers and affine subspaces with the Frobenius norm
reformulation of NSC.

3.1. Dealing with noise

In practice, the data is often contaminated by noise, e.g.,
Gaussian noise. A common way to deal with Gaussian noise
is to relax the equality constraints of (3), yielding the follow-
ing formulation

min
C

1

2
∥I−C∥2F +

λ

2
∥XC∥2F . (7)

This formulation has the nice property that it has closed-
form solution, given simply by solving the linear equation

(I+ λXTX)C = I . (8)
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(a) Motion segmentation (Better viewed in color) (b) Face clustering
Fig. 1: (a) Motion segmentation: segment the trajectories according to the motions, i.e. the trajectories of the same motion are
segmented into the same cluster; (b) Face clustering: find the face images that belong to the same subjects

3.2. Affine Subspace

Affine subspaces are more general subspaces that do not nec-
essarily go through the origin and they are important general-
ization of linear subspaces.In general, adding affine constraint
allows us to represent the subspaces more compactly. So for
affine subspaces, we formulate the problem as:

min
C

1

2
∥I−C∥2F +

λ

2
∥XC∥2F s.t. 1TC = 0 . (9)

It again has closed-from solution given by solving the lin-
ear equation

(νT ν + λνTXTXν)Φ = −νT , (10)

where ν is the null space of 1T , and Φ is the new variable to
estimate. Given Φ, the coefficient matrix C is computed as
C = νΦ.

3.3. Dealing with outliers
When the data is corrupted by sparse outliers, we formulate
the problem as

min
C,E

1

2
∥I−C∥2F+

λ1

2
∥XC∥2F+λ2∥E∥1 s.t. XC−E = 0,

(11)
with ℓ1 norm regularization on the outlier term E.

The Problem (11) can be solved via the Alternating Direc-
tion Method of Multipliers (ADMM) [18, 19]. In particular,
the corresponding augmented Lagrangian is expressed as:

L(C,E,Y) =
1

2
∥I−C∥2F +

λ1

2
∥XC∥2F + λ2∥E∥1

+trYT (XC−E) +
ρ

2
∥XC−E∥2F ,

(12)

where Y is the matrix containing the Lagrange multipliers,
and ρ is the penalty parameter of the augmented quadratic
term.

The detailed algorithm is outlined in Algorithm 1. Specif-
ically, the update of C can be achieved by solving linear
equations, and the update of E can be obtained by the soft-
thresholding operator [19] defined as Tτ [x] = sign(x) ·
(max|x| − τ, 0). Then the update of E is given by E =
Tλ2

ρ
(XC+Y/ρ).

Algorithm 1 Solving (11) via ADMM

Input:
Data matrix X, parameters λ1, λ2;

Initialization:
C = 0,Y = 0, ρ = 10−6, η > 1, ρm = 1010, ε = 10−8

while not converged do
1. Update C by solving the linear equation

(I+ (λ1 + ρ)XTX)C = I−XTY + ρXTE .

2. Update E by solving the following problem

E = argmin
Ẽ

λ2

ρ
∥Ẽ∥1 +

1

2
∥Ẽ− (XC+Y/ρ)∥2F ,

= Tλ2
ρ
(XC+Y/ρ) .

3. Update the Lagrange multipliers Y and the penalty
parameter ρ as

Y = Y + ρ(XC−E) ,

ρ = min(ηρ, ρm) .

4. Check convergence
∥XC−E∥∞ < ε .

end while

Output: Coefficient matrix C

4. EXPERIMENTS

In this section, we present experiments on two standard
datasets, i.e., Hopkins 155 for motion segmentation and Ex-
tended Yale B for face clustering, to evaluate the performance
of our proposed NSC. We compare NSC with state-of-the-art
algorithms, including SSC [8], LRR [9], and LRSC [11].
Note that for the sake of fair comparison, NSC, LRR and
LRSC employ the same heuristic way [17] to build the affini-
ty matrix, while SSC builds the affinity matrix as |C|+ |CT |
since it gets no better result in that heuristic way.

Hopkins 155: Hopkins 155 is a standard motion segmen-
tation dataset with 155 sequences, each of which contains
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Table 1: Clustering error (in %) on Hopkins 155.
Method SSC LRR LRSC NSC
(a) 2F-dimensional data points
2 motions
Mean 1.53 2.53 1.69 1.10
Median 0.00 0.00 0.00 0.00
3 motions
Mean 4.40 3.69 5.67 3.07
Median 0.56 1.10 1.22 0.20
All
Mean 2.18 2.85 2.59 1.55
Median 0.00 0.00 0.00 0.00
(b) 4k-dimensional data points by applying PCA
2 motions
Mean 1.83 3.67 1.75 0.85
Median 0.00 0.00 0.00 0.00
3 motions
Mean 4.40 5.31 5.64 2.08
Median 1.53 1.09 1.22 0.20
All
Mean 2.41 4.04 2.63 1.13
Median 0.00 0.00 0.00 0.00

multiple motions. And each motion corresponds to an affine
subspace of dimension three. Since this dataset is free of out-
liers, we use the formulation (9) for NSC, with λ = 240.
For the baseline algorithms, we’ve tuned their parameters to
the best respectively. The experimental results presented in
Table 1 show that NSC outperforms all the other baseline al-
gorithms in terms of clustering accuracy. In terms of runtime,
since NSC gets closed-form solution, it’s much faster than
those iterative algorithms such as SSC and LRR, and is com-
parable to LRSC which also results in closed form solution.

Extended Yale B: This dataset consists of 38 subjects,
each of which contains 64 frontal faces images acquired un-
der different illuminance conditions. We follow the experi-
mental settings of [8] and partition the 38 subjects into four
groups (1-10,11-20,21-30, and 31-38). Since this dataset is
contaminated with outliers, we use formulation (11) for NSC,
with λ1 = 5 × 10−2,λ2 = 5 × 10−4 for 2F dimensional da-
ta and λ1 = 6 × 10−3,λ2 = 3 × 10−3 for 10k dimensional
data. The parameters for baseline algorithms have been tuned
to the best. Table 2 gives the clustering accuracy for different
subjects, and Fig. 2 depicts the runtimes for computing the
affinity matrix. Both of them show that NSC outperforms the
baselines for the problem of face clustering, which evidences
the robustness and efficiency of the proposed algorithm NSC.

5. CONCLUSION

In this paper, we have proposed a novel subspace clustering
algorithm called Null Space Clustering and we have em-
ployed an equivalent Frobenius norm reformulation which
handles the noise and outliers robustly and efficiently. When
the data is contaminated with Gaussian noise, our formulation
leads to a closed-form solution. When the outliers are present,
we efficiently solve the problem via ADMM. We’ve applied

Table 2: Clustering error (in %) on Extended Yale B.
Method SSC LRR LRSC NSC
(a)2F-dimensional data points
2 subjects
Mean 1.86 2.54 5.32 1.85
Median 0.00 0.78 4.69 1.56
3 subjects
Mean 3.10 4.21 8.47 2.69
Median 1.04 2.60 7.86 2.08
5 subjects
Mean 4.31 6.90 12.24 3.42
Median 2.50 5.63 11.25 2.81
8 subjects
Mean 5.85 14.34 23.72 4.93
Median 4.49 14.34 28.03 4.59
10 subjects
Mean 10.94 22.92 30.36 5.36
Median 5.63 23.59 28.75 5.47
(b)10k-dimensional data points by applying PCA
2 subjects
Mean 5.91 5.97 3.26 1.62
Median 2.34 4.69 2.34 0.78
3 subjects
Mean 9.39 7.77 4.95 2.13
Median 6.77 6.25 3.65 1.56
5 subjects
Mean 14.96 12.75 19.46 2.56
Median 14.22 12.81 21.56 2.19
8 subjects
Mean 20.43 20.14 39.95 3.76
Median 18.36 18.36 40.82 3.03
10 subjects
Mean 23.96 24.74 53.65 5.63
Median 24.22 24.38 62.34 4.53

Fig. 2: Average runtimes for computing the affinity matrix on
Extended Yale B.

our algorithm for motion segmentation and face clustering
and evaluated it on two standard datasets. The experiments
have shown that the proposed NSC leads to improved perfor-
mance in terms of clustering accuracy and efficiency when
compared to state-of-the-art algorithms.
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