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Abstract

We describe a new framework forglobally solving the
3D-3D registration problem with unknown point correspon-
dences. This problem is significant as it is frequently en-
countered in many applications. Existing methods are not
fully satisfactory, mainly due to the risk of local minima.
Our framework is grounded on the Lipschitz global opti-
mization theory. It achieves a guaranteedglobal optimal-
ity without any initialization. By exploiting the special
structure of the problem itself and of the 3D rotation space
SO(3), we propose a Box-and-Ball algorithm, which solves
the problem efficiently. The main idea of the work can be
applied to many other problems as well.

1. Introduction

The3D-3D registrationproblem (also known as3D-3D
alignment, 3D absolute orientation, 3D pose) is one of the
outstanding and very basic problems in computer vision. In
this problem, two sets of 3D points are given and the task is
to optimally align these two sets of points by estimating a
best transformation between them. Due to its fundamental
importance, it arises as a subtask in many different applica-
tions (e.g., object recognition, tracking, range data fusion,
graphics, medical image alignment, robotics and structural
bioinformatics etc. [31][18][20][32][14][26]).

What makes the problem challenging (and interesting)
is that point-wise correspondences between the two point
sets are often unknowna-priori. Under this situation, the
registration problem is also known as thesimultaneous pose
and correspondenceproblem (or SPC problem in short).

The goal of the paper is toglobally solve the SPC prob-
lem. We emphasize that we want to find aglobal solution,
meaning that the estimated transformation and correspon-
dences are desirable to be globally optimal, i.e., giving rise
to the globally minimalL2 error. To our knowledge, no
efficient global method is available yet.

The difficulty of the SPC problem comes from the prob-
lem’schicken-and-eggcharacter: it consists of two mutually
interlocked sub-problems,pose estimationandpoint corre-
spondence—solving one is often the pre-condition for solv-
ing the other. Moreover, the problem itself is heavily non-
convex.

1.1. Existing solutions

The most popular class of methods for solving the SPC
problem is probably the EM-type algorithms. The key idea
is to use analternating minimization procedure. Specifi-
cally, it starts from an initial estimation and solves the over-
all problem byalternatelysolving the two sub-problems.

For example, the famous ICP (Iterative Closest Point)
algorithm [6][12][29], and SoftAssign algorithm [13], and
their variants [15] [10] [33], all work in an alternating fash-
ion. Previously, the authors have also proposed a simple
implementation based on the nearest matrix and Newton’s
root finding [25].

While these EM-type algorithms have been popular, they
suffer from common and serious drawbacks. Because they
are alllocalmethods, no global optimality is guaranteed and
there is an evident risk of local minima; moreover, their per-
formances all rely on a good initialization and heavily de-
pend on the spatial configuration (distribution) of 3D points;
additionally, to use them many parameters need to be tuned.
Ideally, we would like an algorithm whoseoptimality is
guaranteed and who does not depend on point configura-
tion.

There is a second class of methods that attempts tode-
couplethose two subproblems, in the sense that it intends to
solve one subproblem without solving the other. The basic
idea is to exploit certain geometric properties that arein-
variant to either the transformation or the point correspon-
dences. For example, thePCA alignment[21] and modal
and spectral matching [30] [22] are methods of this kind.
However, these methods are very sensitive to point set con-
figuration, and often fail badly when the 3D points arede-
generatelyconfigured (e.g.,isotropically).
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Yet another class of methods adopts the hypothesis-and-
test idea. Examples include Generalized Hough Transform,
Geometric Hashing and RANSAC etc. These methods are
fast and accurate in many cases, but, the optimality is not
guaranteed due to their obvious heuristic nature.

1.2. Contribution of the paper

This paper presents a novel framework for globally solv-
ing the 3D-3D SPC problem. Our framework is grounded
on a rigorous mathematical theory—Lipschitzoptimization.
Based on the theory, we propose a global search algorithm
that simultaneously determines the transformation and point
correspondences. The algorithm achieves arbitrarily high
accuracy (up to machine precision) and is independent of
point configuration. Moreover, it does not need any initial-
ization, and has few parameters to be tuned.

Our algorithm makes use of thebranch-and-bound
search idea. We design anoctreedata structure to actually
implement the search. Each of the tree nodes is a 3D box
(voxel). Each box has a data member of a ball with radiusε.
As such, we call our new algorithm the BnB (box-and-ball)
algorithm.

It is not our intention to replace the already successful
ICP or SoftAssign algorithm. However, our algorithm can
be of help in places where these classic algorithms have dif-
ficulties (e.g.,when a global solution is desirable, or a good
initialization is hard to obtain, or point distribution can be
arbitrary, etc.).

2. Problem statement

DenotexT
i andyT

i (i ∈ [1, n]) as row vectors from ma-
tricesX ∈ Rn×3 andY ∈ Rn×3, respectively.X andY
represent two 3D point sets, andxi andyi are coordinates
of the i-th points in the two sets, respectively.

Formally, the SPC problem aims at finding an optimal
rigid motion and point correspondences that minimize the
(squared)L2 error, where the motion is represented by a
translationt and a rotationR, and the correspondences are
represented by apermutation matrixP ∈ Pn whose entries
arepij = 1 if xi matchesyj , and0 otherwise.

Supposexi andyi(P) are matched (underP), then theL2

error is given by:

d(X,Y |P, R) =
1
n

n∑

i=1

‖xi − Ryi(P) − t‖2 (1)

In order to highlight our main contribution, we assume that
bothX andY are of equal size (|X| = |Y | = n), and there
is no missing-data (or outliers). Dealing with such an ideal
and the simplest case does not compromise our method.
This is because: (1) up to date, no global optimal method
ever exists even for the simplest case; (2) in practice, the

user can often apply some robust techniques beforehand to
remove outliers; (3) our method, by some modifications,
could possibly handle the missing-data situation.

Since the translation can be relatively easily found be-
fore solving other parameters, we assume that the centers
of the two point sets are pre-aligned at the origin. Now the
problem is neatly formulated as minimizing the meanL2

error metric overP ∈ Pn and rotationR∈ SO(3):

d(X, Y |P, R) =
1
n
‖X − PY RT‖2. (2)

Note that in the problem setting we do not make any as-
sumption about the points’ configuration (e.g., they do not
necessarily reside on a smooth surface, or have certain local
connectivity). In addition, we deliberately avoid the use of
any domain-dependent information (e.g. image patch corre-
lation); Instead, we regard the point coordinates as the only
available information. All these restrictions will render our
method more generic, hence having wider applicabilities.

2.1. Two subproblems

It turns out that: even with the simplest SPC model the
task of simultaneously finding theoptimal R andP is ex-
tremely hard. The problem itself is non-convex, with bi-
nary entries inP. Conventional gradient-descent methods
can hardly reach a global optimum. The iterative EM-type
algorithm dose not work either.

It is noticed however: if eitherR or P is known or fixed
in advance, then finding the other is relatively easy. In fact,
solving one of the subproblems (conditioning on the other)
proves to be aconvex(henceglobal) problem.

If P is fixed, then the optimalR (for a givenP) can be
found by e.g. SVD [2], quaternion method [18], or [27][11]
optimally and in closed-form.
If R is fixed, then finding the optimalP (for a givenR) is a
typical linear assignment problem[9], which can be solved
globally by Linear Programming (LP), or theHungarian
algorithmmore efficiently.

3. The main idea

The paper aims at finding a truly globally-optimalRand
P. This goal is non-trivial and little successful attempt was
made before. To achieve the goal, we propose a novel
framework, which basically conducts anexhaustive search
over all possible combinations ofRandP.

This seemed to be impossible, because the entire com-
binatorial space to be searched is theproduct spaceof Pn

andSO(3), which is extremely huge. A naivebrute force
search is doomed to fail. Note that there areinfinitely many
rotations andexponentially manypermutations.



To overcome this, we resort to the separable property of
the problem mentioned above. Specifically, we observe that
the problem can be separated into two sub-problems. For
a givenR one can easily find an optimalP, and vice versa.
This actually suggests that the search needs only be carried
out overhalf of the parameter space.

At first thought, to perform such a half-space search it
appears natural (and tempting) to start from searching over
all permutations(as opposed to searching over allrota-
tions). The reasons are obvious: (1) there is only a finite
numbers of possible permutations, but there are infinitely
many rotations; (2) the complexity of computing a rotation
for a given permutation is no more than a3× 3 SVD which
is highly efficient. If one did follow this direction, then a
possible procedure would be as follows:

• For every possibleP ∈ Pn, compute the bestR that
gives the minimal residual errord(P, R). If the least
residual error obtained so far is less than a prescribed
accuracy, or the entirePn space has been exhausted,
then output the least error and its corresponding opti-
mal parameter pair(P, R).

While the above procedure is workable, it is however,
very inefficient—whenn grows big it becomes intractable,
because the number of permutations increases exponen-
tially. Check that20! ≈ 2.4 × 1018, 50! ≈ 3.1 × 1064 and
100! ≈ 9.3× 10157. Whereas, in real applications, to match
hundreds of feature points isnot uncommon.

In our implementation we choose to use theoppositedi-
rection, namely, to search over all 3D rotations. But, the
problem is: how can one exhaustively search a continuous
spaceSO(3)? The next section will show that, by exploit-
ing the special structure of the space onecanindeed do such
a search quite efficiently. This is perhaps surprising and
counter-intuitive. The outline of our procedure is as fol-
lows:

• For everyR ∈ SO(3), compute the bestP that gives
the minimal residual errord(R, P). If the least resid-
ual error obtained so far is less than a prescribed ac-
curacy, or the entireSO(3) space has been exhausted,
then output the least error and the corresponding opti-
mal parameter pair(R, P).

4. Theory: Lipschitz optimization

This section explains how a global search over the rota-
tion spaceSO(3) can be carried out effectively.

A key observation to the success of our new method is
that, certain error functions donot change too abruptly. In
other words,upper boundsexist for the speed of changing
of such functions. This property can be used to derive global
optimal optimization algorithm. A rigorous mathematical
theory, the Lipschitz optimization [16], precisely addresses
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Figure 1. Top row: left: the originalL2 metric f(x) = x2

(left); middle and right: two of itsLipschitzizedmetric functions,
f1(x) = 1 − 1

(1+x2)
andf2(x) = 1 − exp(−x2), respectively;

Bottom row: their derivative functions. This figure shows that:
while the functionf(x) = x2 has un-bounded derivatives in the
real axis, the derivatives of its two Lipschitzized functions are
bounded globally. For example, read form the figure we have
|f ′1(x)| < 0.65,∀x ∈ R.

this issue. Our new method is grounded on the theory of
Lipschitz optimization. To begin with, let us consider a sim-
ple case: 1-dimensional global optimization. Here are some
useful results.

Definition 4.1. A real-valued functionf defined on the real
domainR is a (global)Lipschitz function(or said satisfy a
Lipschitz condition) if there exists a constantL ≥ 0 such
that for∀x, y ∈ R:

|f(x)− f(y)| ≤ L|x− y|. (3)

The smallest suchL is called theLipschitz constant.

Result 4.2. If f is a differentiable function with bounded
derivatives|f ′(x)| ≤ L, thenf is a global Lipschitz func-
tion with a Lipschitz constant estimateL.

The Lipschitz condition says that a Lipschitz function
cannot change too fast. Indeed, all its slopes are bounded
by the constantL. This is the key insight that is used by the
Lipschitz optimization to achieve global optimality.

4.1. Lipschitzize theL2 metric

Note however, that the commonly adoptedL2 error func-
tion is not globally Lipschitzianin the entire domain ofR.
This is easy to check: the slope of functionf(x) = x2 be-
comes arbitrary large asx →∞.

To salvage this, we introduce a “Lipschitzization” pro-
cess to theL2 metric. The idea is: by applying a proper
algebraic transform to the traditionalL2 metric, we hope to
reduce its speed-of-change without severely altering the po-
sitions of its minima. This idea is explained in fig-1. There
are many algebraic transforms that can be used for the pur-
pose. Here we choosef1(x) = 1− 1

(1+x2) (of fig-1).



Figure 2. This figure shows a Lipschitz functionf(x) with Lips-
chitz constantL. The slope of the red regions equalsL. f∗ is the
minimal value achieved so far. By evaluating the function at a sin-
gle pointx, one can safely eliminate a neighborhood region with
radius(|f(x) − f∗|/L) (shown in hatched lines) without losing
the true global minimizerx0.

By plugging the transformf1(·) into eq.(2), we have

dL =
1
n

∑

i=1..n

f1(‖xT
i − RyT

i ‖2). (4)

This formula serves as our lipschitzizedL2 error function.
Besides making the traditionalL2 metric globally Lip-

schitzian, the Lipschitzization serves another purpose too.
That is, it simplifies the estimation of the Lipschitz con-
stant. This is seen from the following result.

Result 4.3. The Lipschitz constant of eq.(4) is less than
0.65‖yi‖,where‖yi‖ is the average length of all vectors
yi, i = 1 · · ·n.

Proof. Consider a single pair of matched points(xi,yi) and its
contribution to the error function. If we rotateyi by an angleθ
(in radian) about an arbitrary axis, then according to thechain rule
the induced change to the error function isat most(θ · |f ′1(‖yi‖)| ·
‖yi‖)/n < (θ · 0.65 · ‖yi‖)/n (where 0.65 is read from fig-1
due to the Lipschitzization). Now consider alln matches. Using
the fact that the Lipschitz constant of the sum of a set of Lipschitz
functions is the sum of their constants, we reach:L < 0.65‖yi‖.
The inequality holds even when the correct point-correspondences
are unknown. Such completes the proof.

4.2. Search for global optimum

In this subsection we show that: by using the Lipschitz
condition, one can quickly eliminateun-promisingregions
(in the domainspace) which cannot possibly contain the
global optimum.

Consider a one-dimensional Lipschitz function (shown
in fig-2) with a Lipschitz constantL. We wish to find the
global minimum within the given regionD.

Let f∗ = f(x∗) be the minimal function value obtained
so far. Suppose we are now evaluating the function atx. If
f(x) ≤ f∗, then we replacef∗ with f(x); Otherwise, we
conclude that:

Within a neighborhood region ofx with radius
ε = |f(x)−f(x∗)|

L , therecannotbe any domain variabley
such thatf(y) > f(x∗).

This result follows directly from|f(x)−f(x∗)| ≤ L|x−
x∗| (i.e., the Lipschitz condition). Consequently, as shown
in the figure, by evaluating the function at a single point, we
can safely remove anε-neighborhood region without losing
the global minimum.

Repeating this process systematically withinD, we will
eventually find the global minimum inD. This is the basic
idea ofunivariateLipschitz global optimization algorithms
(e.g., the Piyavskii-Shubert algorithm [16]).

4.3. Finding neighbors in SO(3)

Although the above idea of Lipschitz optimization can
be extended to multi-dimensionalvector space, where the
ε-neighborhood becomes a hyper-cube inside the domain,
it is however,non-trivial to extend it to the rotation space
SO(3). The major obstacle is that: it is not apparent at all
how to define a proper neighborhood inSO(3). Because all
3D rotation matrices do not form a vector space, the neigh-
boring region to a given rotation is not a hyper-cube.

To overcome this: next we will first work out the shape
of the neighborhood region inSO(3), then we will approx-
imate it by a simpler cubic region.

Parametrization of rotations A rotation matrixR with
rotating angle at mostπ can be represented by theexpo-
nential mapof a real 3-by-3 skew-symmetric matrix[v]×
induced by a 3-vectorv, namely,R = exp([v]×), where
exp(·) is the matrix exponentialdefined byexp(M) =∑∞

k=0
Mk

k! . The angle of the rotation equals to the norm
‖v‖, and its axis is given by the unit vectorv̄. Conversely,
[v]× = log(R).

Geometrically, this parametrization is equivalent to us-
ing a 3D solid ball with radiusr ≤ π (which we call theπ-
ball) to represent all 3D rotations (see fig-3) up to angleπ.
The parametrization is one-to-one on the interior of theπ-
ball. Any voxel (cell) inside theπ-ball represents a cluster
of similar rotations. Because 3D rotations do not commute
in general, namely,R1R2 = exp([v1]×) exp([v2]×) 6=
exp([v1]× + [v2]×). In fact, the correct relationship is
given by the celebrated Baker-Campbell-Hausdorff (BCH)
formula:

exp(A) exp(B) = exp(BCH(A, B)) =

exp(A+B+
1
2
[A, B] +

1
12

([A, [A,B ]]− [B, [A,B ]]) + · · · )
(5)

where[·] denotes the Lie bracket.



Figure 3. Parametrization ofSO(3) using a radiusπ ball inR3. A
small cell inside theπ-ball represents a cluster of similar rotations.

Angular distance between two rotations. The group of
rotations has a natural metric structure, defined by the an-
gular distance as follows. LetR1 andR2 be two rotations.
Then, the distance between these two rotations is measured
by the angleθ (0 ≤ θ ≤ π) of the composite rotation of
R−1

2 R1, or R−1
1 R2. By using the exponential-map we have

θ = ‖ log(R−1
1 R2)‖/2 = ‖ log(exp(−[v1]×) exp([v2]×))‖/2

= ‖BCH([v2]×,−[v1]×)‖/2.
(6)

Now, for any two given rotations we can compute their an-
gle distance using theBCH-formula. As a result, the (ex-
act) neighborhood structure in SO(3) is properly defined.

Vector distance between two rotations. Directly com-
puting theexactneighborhood in rotation space (by using
theBCH formula) can be very involved. We hence propose
a simplerapproximationwhich is based on the following
result ([3]).

By exp-map any vectorv inside theπ-ball is mapped to a
valid rotationR = exp([v]×). For two vectors inside theπ-
ball,v1,v2, we can naturally compute theirvector distance
‖v1 − v2‖. Then we have,

Theorem 4.4. For any two 3D rotations,R1 and R2, the
following inequality holds:

θ(R1, R2) = ‖BCH([v2]×,−[v1]×)‖/2 ≤ ‖v1 − v2‖.
(7)

Proof. It is only necessary to prove that the tangent-mapT of
the exp-map is of norm not exceed 1. ButTv exp = Re

exp(v) ◦
Φ(ad(v)), whereRe

exp(v) is right-translation fromTe to Texp(v),
ad is the adjoint operator andΦ the holomorphic functionΦ(z) :=
ez−1

z
(,z being complex, c.f. [3]). AsRe

exp(v) is an isometry and
‖Φ(z)‖ ≤ 1, the result follows.

The inequality suggests a much simpler way to compute
neighborhood. Recall that in Lipschitz optimization each
time we need to remove a neighborhood region if it is not

promising. Instead of computing anexactneighborhood us-
ing the theBCH-formula, we can compute the vector dis-
tance to obtain an approximate neighborhood. This approx-
imation, remarkably, incurs no loss of optimality, because
the approximate neighborhood-region to be removed is ac-
tually smaller than what is predicted by theBCH formula.
In other words, the search is more conservative and impos-
sible to miss global optimum.

5. Implementation: the BnB algorithm

So far we have done necessary preparations: now we
have a globally Lipschitz error function; we have a con-
creteπ-ball representing the space to be searched; we have
also a well-definedε-neighborhood and its vector-distance
approximation. The only thing remaining is to design an al-
gorithm to search the theπ-ball systematically, eliminating
those unpromising regions and keep the promising regions
until the global optimum is found.

Our algorithm is based onbranch-and-bound, a well-
known technique in global optimization. It was adopted
by vision researchers for object recognition and geometric
matching a decade ago [7] [19], and recently is recurrent in
new contexts with new bounding techniques [1] [28].

Branch-and-bound (minimization) works by recursively
subdividing feasible transformation region into a set of sub-
regions, and eliminating subregion which cannot contain
global minima by evaluating lowerboundsover the con-
sidered subregion. The process stops when the global min-
imum is bracketed into a small enough region that guaran-
tees the desired accuracy.

For our SPC problem at hand, a Lipschitz constant (L <
0.65‖yi‖) is used to predict the bounds.

5.1. Octree data structure

Manipulating (e.g., cut/combine/intersect) a set ofε-
balls is not an easy task. Alternatively, we propose the
use of regular cubic boxes. This results in a simpleoctree
data structure—which is subsequently used to implement
the branch and bound search.

We call our method thebox-and-ball (BnB) algorithm.
It starts from a 3D box circumscribing theπ-ball. Sup-
posef∗ is the best function value obtained so far. Evaluate
the function at the center point (denoted byx) of the box
currently under examined. Now compute the radiusε of a
neighboring ball,ε = (f(x) − f(x∗))/L. If the ε-ball en-
closes the entire volume of the current box, then this box
can be eliminated safely; otherwise subdivide the box into
eight sub-boxes. Repeat this process until the desired ac-
curacy is reached. For visualization purpose we show a 2D
slice of the octree in fig-4, i.e., a quadtree.



Figure 4. A 2D slice (viz. a quadtree) of our octree data structure.
The blue circles indicate theε-balls. During a branch-and-bound
process, the green box can be safely removed as its volume is con-
tained entirely inside itsε-ball, but the red box deserves further
subdivision (the figure is better viewed in color).

5.2. The box-and-ball (BnB) algorithm

In detail, the BnB algorithm proceeds as follows:

1. (Preparation) Build an octree data structure, each node
of which is a box. At the very beginning there is only
one box which circumscribes theπ-ball. Each box has
an associatedε-ball. Radii of these balls are set to 0
initially, ε = 0. Make a rough estimate of the rotation
by any available method (e.g., even a random guess).
Denote the best function value obtained so far asf∗.
Make a proper estimate to the Lipschitz constantL.
The desired accuracy is set toγ.

2. (Branch and bound search) Do repeated depth-first-
search over the octree. For each tree node:

(a) Compute a rotation matrixR using the center
pointx of the box.

(b) Compute the best permutation matrixP for the
givenRby calling the Hungarian algorithm. Out-
put the current function valuef(x). If f(x) ≤
f∗, then updatef∗; otherwise compute the radius
of its ε-ball by ε = |f(x)− f∗|/L.

(c) If the box is entirely contained in its ownε-ball,
then remove this box from the octree; otherwise,
subdivide it into eight sub-boxes and insert these
sub-boxes at the current position in the octree.

(d) Stop the search whenf∗ ≤ γ.

3. Report the centerxopt of one of the remaining boxes
that produces the least function value as the optimal
rotationRopt, and the corresponding permutationPopt

as the optimal correspondences. End.

Remark-1.Different tree-search strategies (such as breadth-
first-search or best-first-search [4]) can be used as well[8];
Remark-2.The tighter the estimated Lipschitz constant is,
the quicker the algorithm terminates;Remark-3. The Hun-
garian algorithm used in the inner loop is a guaranteed

Figure 5. Theπ-ball with function evaluated at every grid point
inside the ball. We also show the positions of three slices.

global solver. It always returns the best permutation for
a hypothesized rotation, even when the rotation is not the
correct one.

6. Experiment results

To validate our new framework, we have conducted ex-
periments with both synthetic and real-world data. This sec-
tion briefly presents some results, mainly demonstrating the
effectiveness of our approach.

Synthetic data. We generate a set of Gaussian random
vectors with zeros mean and identity covariance matrix, and
use it as the point setX. Such an isotropic symmetric point
distribution would disable the conventional PCA alignment
algorithm. We rotateX by a random angle to get the point
setY . We then perturb both sets by adding Gaussian (or
uniform) noise with different levels of std. (or limits).

The existence of local minima. First of all, for illustra-
tion purpose we would like to examine the existence of lo-
cal minima. Recall that when the point correspondencesP
is known, then the subproblem of finding rotation is convex,
possessing only a single minimum. Since our error function
is defined within theπ-ball, we thus can compute such a ball
with function evaluated at every discretized grid points. We
depict such a function-value ball in fig-5 based on an exper-
iment with 50 synthetic points. For visualization purpose
we also give three of its 2D slices (fig-6, top row). They
clearly exhibit a single local minimum.

Similarly, we compute the function-value ball for the
case when the point correspondencesP are not known, see
the bottom row of fig-6. It convincingly reveals the exis-
tence of multiple local minima. This explains why, in the
journey of seeking of global optimum, most of the conven-
tional methods, be it a gradient-descent method or an EM-
type algorithm, unavoidably fail.

Algorithm performance. We have implemented the pro-
posed BnB algorithm in C++, and tested it on a modest PC
(Intel P4, 3Ghz, 1GB) running Linux. Initialization of the
rotation matrix is chosen at the center of theπ-ball, i.e., the
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Figure 6. Three slices taken from theπ-ball in fig-5 with error
function contours. Top row: when correct correspondences are
given, it exhibits only a single minimum; Bottom row: when cor-
respondences are not known, there are multiple local minima. In
the experiment the ground-truth rotation angle is 100 degrees.

identity matrix. The ground-truth rotation angles are ran-
domly chosen among[0, π).

Table-1 (in the next page) summarizes major aspects of
the performance of our algorithm. The data are based on the
average of 5 independent runs. Gaussian coordinates noise
of level of 0.05 (in std.) is directly added toX. From the
above table, we see that the algorithm achieves high accu-
racy,e.g. around 0.5 degrees in both rotating angle and ro-
tation axis orientation. In fact, our algorithm is guaranteed
to reach any prescribed accuracy (though the computation
time may be long). In simulations,however, we simply stop
the algorithm when the total volumes of unexplored boxes
is below a threshold (e.g.7% in our experiments).

Also, the estimated point correspondences arecorrect (,
otherwise the overallL2 error and the rotation error would
be much bigger).

Our algorithm is much more efficient than brute-
force search. At convergence, the numbers of-function-
evaluations lie within the range of 10k to 300k. By con-
trast, this range is much less than the number of discrete
cells inside aπ-ball if the same accuracy is required. For
example, if the brute-force search is used to achieve a 1-
degree accuracy, then the space needs to be discretized into
4
3

π4

(2π)3 × 3603 ≈ 25 millions of cells.

The running time of our algorithm is acceptable to many
applications (such as medical image landmark alignment).
In fact, we consider our algorithm works quite fast, because
otherwise in worst-case a general branch-and-bound search
could have exponential complexity. The timing results in
table-1 do not suggest a combinatorial explosion. The over-
all theoretic computational-complexity of our algorithm is
not known yet. But its inner loop has only cubic complex-
ity, because of the Hungarian algorithm [9].
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Figure 7. Results on real point clouds. Left: image; Middle: one of
the 3D point sets; Right: registration result. The two point clouds
are shown in red dots, and in blue dots, resp.

Real data. We test three sets of real 3D data. The first one
is a down-sampled Stanford Bunny meshes with 500 facets.
We artificially rotate the point cloud to generate a second in-
stance and add extra noise. Our algorithm has successfully
aligned the two point clouds as shown in fig-7 row-1.

We try our algorithm on point clouds which were recon-
structed from images by triangulation algorithm [17][24].
The possible application context is to align two partially
overlapping surfaces with shared landmarks. We manually
identify and remove the outliers. The results are given in
fig-7 row-2 and -3. We implement and test two existing al-
gorithms, the ICP and SoftAssign. We find that on the same
simulated data sets both of them workonly when the initial
rotation is within an angular distance of less than 50 de-
grees, i.e. a reasonably good initialization, while our algo-
rithm always produces the right answer without any initial-
ization. It is worth mentioning that, if a good initialization
is available then our algorithm works much faster, as the
good initial rotation already provides a near-optimal bound.

7. Discussion and conclusion

The novelty of the work lies in the Lipschitz framework
and in the efficient implementation of the octree box-and-
ball algorithm. The advantage of our method is that it reli-
ably produces estimation with a certificated global optimal-
ity within reasonable time.

The effectiveness of searching over all possible rotations
makes our method appealing to many other applications too.
Particularly, the method can be extended to solve the mo-
tion estimation problem—to infer motion information from



num points(n) 10 20 40 60 80 100 150 200
angle err (deg) 0.21 0.15 0.16 0.32 0.51 0.83 0.72 0.30
axis err (deg) 0.47 0.89 0.91 0.62 1.20 0.46 0.26 0.73
num func evals 19509 23007 28328 28328 70312 118656 256320 255767
time spent (sec) 0.2 1.9 10.2 48.6 107.5 156.2 722.1 1103.2

Table 1. Algorithm performance

2D images—one of the central topics in multiview geome-
try [17][23]. The potential of applying our method there is
clear.

There are areas for further improvements:(1) whilst the
running time is acceptable, it is still very slow for large point
sets. The ICP is much superior in this aspect. In future
work we plan to explore alternative tree-searching strate-
gies [8] [4]; (2) the inner loop of the algorithm can be eas-
ily augmented by more powerful matching algorithms using
richer domain-dependent features such as mutual informa-
tion [31], shape context [5], SIFT, EGI etc.; (3) although
we argued that our framework could be adapted for dealing
with outliers, at the moment how to achieve that goal is not
all that apparent. The problem of outlier is however, in its
own right, an interesting topic deserving specific research
effort [24].

The main idea and the general framework of the paper
will illuminate many other different problems in vision and
beyond vision.
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