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Abstract. Sturm-Triggs iteration is a standard method for solving the
projective factorization problem. Like other iterative algorithms, this
method suffers from some common drawbacks such as requiring a good
initialization, the iteration may not converge or only converge to a local
minimum, etc. None of the published works can offer any sort of global
optimality guarantee to the problem. In this paper, an optimal solution
to projective factorization for structure and motion is presented, based
on the same principle of low-rank factorization. Instead of formulating
the problem as matrix factorization, we recast it as element-wise fac-
torization, leading to a convenient and efficient semi-definite program
formulation. Our method is thus global, where no initial point is needed,
and a globally-optimal solution can be found (up to some relaxation
gap). Unlike traditional projective factorization, our method can han-
dle real-world difficult cases like missing data or outliers easily, and all
in a unified manner. Extensive experiments on both synthetic and real
image data show comparable or superior results compared with existing
methods.

1 Introduction

Tomasi-Kanade factorization [1] is probably one of the most remarkable works
in multi-view structure-from-motion (SFM) research. This algorithm is not only
of significant theoretical importance, but also of striking elegance and computa-
tional simplicity. Given a multi-view measurement matrix M, it simultaneously
solves for the (stacked) camera projection matrix P and the 3D structure X, via
a simple matrix factorization M = PX through a single Singular Value Decom-
position (SVD). Its elegance also comes from the fact that it treats all points
and all camera frames uniformly, no any “privileged” or “preferred” frames and
points.

Tomasi-Kanade’s factorization algorithm was developed for affine camera
cases. We revisit the projective generalization of the factorization method in this
paper. In particular, we are motivated by the most popular algorithm-of-choice
for projective factorization–the iterative Sturm-Triggs method4 [2][3]. Projective
4 We exclude the non-iterative version of Sturm-Triggs method reported in [2], as it

crucially relies on accurate depth estimation from epipolar geometry.
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imaging process can be compactly written as Λ¯M = PX where Λ matrix is a prop-
erly stacked but unknown projective depth matrix, ¯ denotes the element-wise
(Hadamard) product. Since both the depths Λ and the right-hand factorization
P and X are unknowns, a natural approach to solve this is through iterative al-
ternation till converge. Many other projective generalizations, such as [4] [5] [6]
share a similar computational pattern in terms of iteration.

Like any other iterative algorithm, the Sturm-Triggs iteration and its exten-
sions have some common drawbacks. For example, iterative algorithms all require
a good initial point to start with; the iteration procedure may not converge; even
if it does converge (theoretically or empirically), it may only converge to a local
minimum; global optimality can hardly be guaranteed.

Unfortunately, for the particular method of Sturm-Triggs iteration and the
alikes, all the aforementioned drawbacks did have been observed in all occa-
sions. Indeed, [7] pointed out that the iterative Sturm-Triggs method with row-
and column- normalization is not guaranteed to converge in theory. To salvage
this, they proposed a column-wise only normalization and derived a provably-
convergent iterative algorithm (called column-space method) [7]. Oliensis and
Hartley also observed situations where the iterations fell into a limiting cycle
and never converged [8]. Hartley and Zisserman [9] concluded that the popular
choice of initialization–assuming all depths to be one–works only when the ra-
tios of true depths of the different 3D point Xj remain approximately constant
during a sequence. As a result, to make Sturm-Triggs iteration work, the true
solution has to be rather close to the affine case.

Even worse, a recent complete theoretical analysis delivers even more negative
message [8], which shows that (1) the simplest Sturm-Triggs iteration without
normalization (called SIESTA w.o. balancing) will always converge to the triv-
ial solution; (2) paper [10]’s provably-convergent iteration method will generally
converge to a useless solution; (3) applying both row-wise and column-wise nor-
malization may possibly run into unstable state during iteration. The authors
also provided a remedy, i.e. a regularization-based iterative algorithm (called
CIESTA) that can converge to a stable solution, albeit the solution is biased
(towards all depths being close to one).

Having mentioned the above negative points, we however argue that Sturm-
Triggs algorithm (and its variants) are useful in practice. After a few iterations
they often return a much improved and useful result. In fact, many of the issues
discussed in [8] are theoretically driven. However when the actual camera-point
configuration is far away from affine configuration, Sturm-Triggs algorithm tends
to produce a bad solution. It would be nicer if a projective-factorization algo-
rithm can be made free from these theoretical drawbacks and can at the same
time be useful in practice.

In this paper, we propose a closed-form solution to projective factorization,
which is based on the similar idea of low-rank factorization and stays away from
all the above mentioned theoretical traps. Our algorithm is global; no initial
guess is needed. Given a complete measurement matrix the result will be globally
optimal (at most up to some relaxation gap). Additionally, it deals with missing
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data and outliers all in unified framework. The outlier-extension of our method
has an intimate connection with the recent proposed Compressive Sensing theory
and algorithms. Nevertheless, the main theory and algorithms of our method
stand independently, and do not depend on compressive sensing theory.

2 Element-Wise Factorization

2.1 Preliminaries

Consider n stationary 3D points Xj = [xj , yj , zj , 1]T , j = 1, · · · , n observed by all
m projective cameras Pi, i = 1, · · · ,m. Under projective camera model, the j-th
3D point Xj is projected onto image point mij = [uij , vij , 1]T by mij = 1

λij
PiXj ,

where λij is a scale factor, commonly called “projective depth” [9]. It is easy to
see that λij = 1 when the camera reduces to an affine camera.

Collecting all the image measurements over all frames, we form a measure-
ment matrix M = [mij ] of size (3m×n). Now the above relationship is compactly
written as

M =
[
(

1
λij

)
]

]

¯ (PX), (1)

where P ∈ R3m×4 and X ∈ R4×n are properly stacked projection matrix and
structure matrix. Note that each row of the inverse depth matrix is repeated 3
times. We use a subscript of “]” to denote such a triple copy.

Define W = PX as the rescaled (re-weighted) measurement matrix, we
can equivalently re-write the above equation as:

W = Λ¯ M = PX, (2)

where Λ = [(λij)]] ∈ R3m×n, i.e. a triple copy. As seen from the equation, matrix
W must have a rank at most 4.

The problem of projective factorization seeks to simultaneously solve for
the unknown depths Λ, the unknown cameras P and the unknown structure
X. Compared with affine factorization, this is a much harder problem, mainly
because depths are not known a priori. Of course, one could compute these
projective depths beforehand, by other means, e.g, via fundamental matrices or
trifocal tensors, via a common reference plane, etc. However, such approaches
diminish the elegance of the factorization algorithm, as they no longer treat
points and frames uniformly.

The Sturm-Triggs type iterative algorithms solve the problem through alter-
nation: (1) fix Λ, solve for P and X via SVD factorization; (2) fix P and X, solve
for Λ via least squares; (3) Alternate between the above two steps till conver-
gence. Usually, to avoid possible trivial solutions (e.g., all depths being zero, or
all but 4 columns of the depth matrix are zeros, etc.), some kind of row-wise and
column-wise normalization (a.k.a balancing) is necessary.
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2.2 Element-wise factorization

As we have explained earlier, though many of the existing iterative projective
factorization algorithms do produce sufficiently good results, there is however, no
any theoretic justification. In other words, the optimality of such iteration pro-
cedures is not guaranteed. In this subsection, we present a closed-form solution
to projective factorization.

Our main idea. We repeat the basic equation here: W = Λ ¯ M = PX. Recall
that M is the only input, and the task is to solve for both Λ and W. Note that ¯
denotes element-wise product, therefore we can view the problem as an element-
wise factorization problem, in the following sense:

– Given measurement matrix M, find two matrices Λ and W such that W = Λ¯M.

At a first glance, this seems to be an impossible task, as the system is severely
under-constrained. However, for the particular problem of projective factoriza-
tion, we have extra conditions on the unknown matrices which may sufficiently
constrain the system. Roughly speaking, these extra conditions (to be listed be-
low) are expected to supply the system with sufficient constraints, making the
element-wise factorization problem well-posed and hence solvable. These con-
straints are in fact very mild, reasonable, and not restrictive.

– All visible points’ projective depths must be positive. This is nothing but the well-
known and very common cheirality constraint. In other words, visible point must
lie in front of the camera.

– The re-scaled measurement matrix W has rank at most 4. This is true for noise-free
case (we will further relax this in the actual computation).

– The rank of Λ is also at most 4. This is easy to see, since [λij ] is a sub-matrix of W;
hence, rank(W) ≤ 4 ⇒ rank(Λ) ≤ 4.

– All the rows and columns of Λ have been normalized to have (average) unit sum.
The row-sum and column-sum constraints play two roles: (1) rule out trivial solu-
tions;(2) rule out scale ambiguity in the factorization.

Formulation. Mathematically, the element-wise factorization is formulated as:

Find W, Λ, such that,
W = Λ¯ M,
rank(W) ≤ 4,∑

i λij = m, j = 1, · · · , n,∑
j λij = n, i = 1, · · · ,m,

λij > 0.

(3)

There is one more theoretical issue left, however. One would ask: will the
unit row-sum and column-sum constraints be too restrictive such that no feasible
solution of Λ matrix can be found? This is a reasonable question to ask, because
in the traditional iterative projective factorization scenarios, Mahamud et al [7]
and Oliensis et al [8] both showed that applying the row-wise and column-wise
normalization during the iteration may hinder the convergence.
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However, we show that this is not a problem at all for our algorithm, thank
to Sinkhorn’s famous theorem regarding doubly stochastic matrix [11]. A square
nonnegative matrix is called doubly stochastic if the sum of the entries in each
row and each column is equal to one. Sinkhorn proved the following theorem,
which gives the diagonal equivalence between doubly stochastic matrix and any
arbitrary positive matrix.

Theorem 1. [11] Any strictly positive matrix A of order n can always be normalized
into a doubly stochastic matrix by the following diagonal scaling, D1AD2, where D1 and
D2 are diagonal matrices of order n with strictly positive diagonal entries. Such two
diagonal matrices are unique up to scale for a given positive matrix A.

This theorem can be naturally generalized to non-square positive matrices,
and we have the following result:

Corollary 1. [12] Any strictly positive matrix A of size m× n can always be rescaled
to D1AD2 whose row-sums all equal to n and column-sums all equal to m, where D1 and
D2 are respectively m × m and n × n positive diagonal matrices. Such D1 and D2 are
unique up to scale for any given A.

In our context, this result suggests that the row-wise and column-wise nor-
malization conditions are not restrictive, because the entire set of (positive) pro-
jective depth matrices is reachable from a row- and column-normalized positive
matrix. Furthermore, in Appendix we will show that for general configurations,
the rank = 4 constraint provides sufficient constraints for solving the problem.

3 Implementation

3.1 Rank Minimization

Noise is inevitable in real measurements, which will consequently increase the
actual rank of W. To accommodate noise, we slightly modify the problem formu-
lation, and pose it as a rank minimization problem:

Minimize rank(W), subject to,
W = Λ¯ M,∑

i λij = m, j = 1, · · · , n,∑
j λij = n, i = 1, · · · ,m,

λij > 0.

(4)

Once the problem is solved, we can use Λ as the estimated depth matrix, and W
as the rescaled measurement matrix. Subsequently they can be fed into a single
SVD, or be used to initialize a bundle adjustment process.

3.2 Trace Minimization

To solve rank minimization problem exactly is intractable in general [13]. To
overcome this, nuclear-norm has been introduced as the tightest convex surro-
gate of rank. The nuclear norm of X ∈ Rm×n is defined as ‖X‖∗ =

∑min(m,n)
i=1 σi,

where σi is the ith singular value of X.
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Recently, using nuclear norm minimization to solve rank minimization prob-
lem has received considerable attention, in particular in the research of compres-
sive sensing. One surprising result is that for a large class of matrices satisfying
some “incoherency” or “restricted isometry” properties, nuclear norm minimiza-
tion actually gives an exact solution. In other words, the relaxation gap is zero.

In this paper, we simply use the nuclear norm only as a convex surrogate
(a relaxation) to the rank function, mainly for the purpose of approximately
solving our projective factorization problem. Our main contribution of this work
lies more in the new element-wise factorization formulation, than the actual
computational implementation. We however appreciate the significance of the
results due to compressive sensing. Thanks to these results, we at least can say,
our algorithm may produce the exact and globally optimal solution, when certain
conditions are satisfied.

Using the nuclear norm, we replace the original objective function rank(W)
with ‖W‖∗. Furthermore, the nuclear norm minimization min ‖W‖∗ can be rewrit-
ten as an equivalent SDP (semi-definite programming) problem:

min
W

1
2
(tr(X) + tr(Y))

s.t.
(

X W
W> Y

)
º 0

Such an equivalence is grounded on the following theorem (ref. [14]).

Theorem 2. Let A ∈ Rm×n be a given matrix, then rank(A) ≤ r if and only if there
exist two symmetric matrices B = B> ∈ Rm×m and C = C> ∈ Rn×n such that rank(B)+

rank(C) ≤ 2r and

[
B A

A> C

]
º 0.

Piecing everything together, we finally reach a trace minimization problem:

min
W

1
2
(tr(X) + tr(Y))

s.t.
(

X W
W> Y

)
º 0

W = Λ¯ M,∑
i λij = m, j = 1, · · · , n,∑
j λij = n, i = 1, · · · ,m,

λij > 0.

(5)

This is a standard semi-definite programming (SDP), thus can be solved effi-
ciently using any off-the-shelf SDP solvers. In all our experiments, we simply
used SeDumi and SDPT3 [15] as the solvers, mainly for theory-validation pur-
pose. Note however that, these state-of-the-art SDP solvers still cannot solve
large scale problems, due to excessive memory and computational requirement.
A better choice is those fast algorithms specially designed for large-scale nu-
clear norm minimization problems, and many of them can be found in recent
compressive sensing literature (see e.g. [16],[17]).
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4 Extensions

4.1 Dealing with missing data

In most real-world structure-from-motion applications, missing data are inevitable,
due to e.g. self-occlusion, points behind cameras (i.e., cheirality) etc. Missing
data lead to an incomplete measurement matrix, but simple SVD cannot di-
rectly perform on an incomplete matrix. This constitutes a major drawback of
factorization-based methods.

For affine (camera) factorization, many missing data handling ideas have
been proposed. Buchanan and Fitzgibbon [18] summarized existing methods,
and classified them into four categories (1) closed form method,(2) imputation
method, (3)alternation method and (4) direct nonlinear minimization.

Unfortunately, relatively less works were reported for projective factorization
with missing data. A few related works are e.g. [19] [20] [21] [22]. Most existing
works either rely on iteration or alternation, or assume the depths are pre-
computed by other means (reducing to affine case).

Our new element-wise factorization, on the other hand, offers a unified treat-
ment to the missing data problem. With little modification, our SDP formulation
can be extended to solve both complete case and missing data case. A similar
work was reported elsewhere but is restricted to affine camera model [23].

Given an incomplete measurement matrix M = [mij ] with missing data, we
define a 0-1 mask matrix Ω as

Ω = [ωij ], where ωij =
{

1 ∈ R3, if mij is available,
0 ∈ R3, if mij is missing. (6)

With these notations, the projective imaging process with missing data can be
written as:

Λ¯ M = Ω¯ W.

Now our task becomes:

– Given an incomplete M, find a completed low-rank W such that Λ¯M = Ω¯W.

Note that at those missing positions, we do not need to estimate the correspond-
ing depths, so we set λij = 1 whenever ωij = 0.

Applying the nuclear norm heuristics, our SDP formulation for projective
factorization with missing data is:

min
W

1
2
(tr(X) + tr(Y))

s.t.
(

X W
W> Y

)
º 0,

Λ¯ M = Ω¯ W,
λij > 0, if ωij = 1,
λij = 1, if ωij = 0,∑

i λij = m, j = 1, · · · , n,∑
j λij = n, i = 1, · · · ,m.

(7)
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Once this SDP converges, the resultant W is a completed 3m× n full matrix
with no entries missing. Moreover, we can even read out a completed projective
depth matrix just as the sub-matrix of W formed by every the third rows of W.

4.2 Dealing with pure outliers

Another recurring practical issue in real SFM applications is the outlier problem.
Different from the missing data case, for the outlier case, we know that some of
the entries of the given measurement matrix M are contaminated by gross errors
(i.e., wrong matches), but we do not know where they are. We assume there are
only a small portion of outliers and they are randomly distributed in M, in other
words, the outliers are sparse.

By conventional factorization methods, there is no easy and unified way to
deal with outliers. Most published works are based on some pre-processing using
RANSAC [19]. However, we show how our element-wise factorization formulation
can handle this problem nicely and uniformly, if certain compressive sensing
conditions are satisfied ([24],[25]).

Denote the actual measurement matrix as M, which contains some outliers at
unknown positions. Denote the underlying outlier-free measurement matrix as
M̂. Then we have M = M̂+E, where E gives the outlier pattern. Now, list the basic
projective imaging equation as W = Λ¯ (M−E), the task is to simultaneously find
the optimal W,Λ and the outlier pattern E, such that W has the lowest rank and
E is as sparse as possible. To quantify the sparseness of E, we use its element
L1-norm ‖E‖1 =

∑
i,j |Ei,j | as a relaxation of its L0-norm5. Combined with the

nuclear-norm heuristics for W, the objective function is chosen as ‖W‖∗ + µ‖E‖1,
where µ is a trade-off parameter (we used 0.4 in our experiments).

The final minimization formulation for factorization with outliers becomes:

min
W,E

1
2
(tr(X) + tr(Y)) + µ‖E‖1

s.t.
(

X W
W> Y

)
º 0

W = Λ¯ (M− E)∑
i λij = m, j = 1, · · · , n∑
j λij = n, i = 1, · · · ,m

λij > 0,∀i, j.

(8)

It is worth noting that, in the presence of missing data or outliers, the per-
formance of our algorithm is problem-dependent. The ratio and the (spatial)
distribution of outliers or missing data all affect the final result. But this is also
true for most other algorithms.

5 Experimental Results

To evaluate the performance of the proposed method, we conducted extensive
experiments on both synthetic data and real image data. We tested complete
5 We use the fact that ‖E‖0 = ‖Λ¯ E‖0, since λij > 0.
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measurement case, as well as missing data case and outlier case. Reprojection
error in the image plane and relative projective depth error (if the ground-truth
is known) are used to evaluate the algorithm performance.

Relative depth error is defined as follows

ε =
‖Λ̂GT − Λ̂Recover‖

‖Λ̂GT ‖
, (9)

where Λ̂GT is the ground truth projective depth matrix after column-sum and
row-sum balancing and Λ̂Recover is the projective depth matrix recovered after
balancing.

5.1 Synthetic experiments

In all the synthetic experiments, we randomly generated 50 points within a cube
of [−30, 30]3 in space, while 10 perspective cameras were simulated. The image
size is set as 800 × 800. The camera parameters are set as follows: the focal
lengths are set randomly between 900 and 1100, the principal point is set at
the image center, and the skew is zero. We added realistic Gaussian noise to all
simulated measurements.

We first tested for the complete measurement case, i.e., the input measure-
ment matrix M is complete. In all of our experiments, the SDP solver output
results in less than 20 iterations (even including the experiments for missing
data and outlier cases), and cost less than 0.5 seconds per iteration on a modest
1.6GHz Core-Duo laptop with memory 2GB using SDPT3 as solver.

Synthetic images: large depth variations. We simulated cases where the
true depths are widely distributed and not close to one, which are commonly
encountered in real world applications of structure from motion especially in
large scale reconstructions.

We defined the depth variation as r = maxij(λij)/ minij(λij), i.e. the ratio
between the maximal depth and the minimal depth. We tested two cases, one
is that all the depth variations are within [1,5), the other is that all the depth
variations are within [5,20]. As we expect, our method outperforms all state-
of-the-art iterative methods by a significant margin. Figure 1 illustrates error
histograms for the two cases. From Fig. 1(a) and Fig. 1(c), we observe that our
algorithm produces reprojection error less than 2 pixels while SIESTA (with
balancing) outputs reprojection error up to 100 pixels for small and modest
depth variations. From Fig. 1(b) and Fig. 1(d), we observe that our algorithm
produces reprojection error less than 14 pixels while SIESTA outputs error up
to 250 pixels for large depth variation. This can be explained that our method is
a closed-form solution and does not depend on initialization. However all other
algorithms highly depend on initialization, where affine camera model is widely
used as initialization which is not the case for large depth variation.
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Fig. 1. Performance comparison between SIESTA and proposed method under various
level of depth variations. Clearly, our method is much more superior. (a) Histogram of
reprojection error by the normalized SIESTA (r < 5); (b) Histogram of reprojection
error by the normalized SIESTA (5 ≤ r < 20); (c) Histogram of reprojection error by
our method (r < 5); (d) Histogram of reprojection error by our method (5 ≤ r < 20).

Synthetic images: missing data. To evaluate the performance of our al-
gorithm on measurements with missing data, we generated synthetic data sets
with dimension 20 × 50 as before followed by removing 20% of 2D points in
the measurement matrix randomly to simulate missing data case. The relative
depth error and reprojection error for both visible points and missing points are
plotted against different Gaussian noise levels in Fig. 2.

Synthetic images: outliers. To illustrate the performance of our algorithm
for projective factorization with outliers, we generated the following illustrative
example. The configuration is 10 cameras observing 20 points leading to mea-
surement matrix of 20×20. The outlier pattern is generated according to uniform
distribution with 5% positions are outliers. The results are shown in Fig. 3. From
the figure, we conclude that our method recovers the outlier pattern successfully.

5.2 Real image experiments

Real images: complete data. We first tested our method on real images with
complete measurement. Some of the real images used in our experiments are
shown in Fig. 4. Reprojection errors for these images are shown in Table 1.
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Fig. 2. Performance of the proposed method for missing data case. (a) Relative error
in depth estimation under various level of Gaussian noise. (b) Reprojection error on
visible points; (c) Reprojection error on all points.

Fig. 3. Performance of the proposed method dealing with outliers in measurement ma-
trix. (a) Input Measurement Matrix. (b) Recovered Measurement Matrix. (c) Recovered
Outlier Pattern. (d) Ground Truth Outlier Pattern where white denotes outlier.

Real images: missing data. We tested our method on real images with miss-
ing data. A small portion of the Dinosaur data with dimension 18× 20 is used,
as our current SDP solver can only solve toy-size problems.

The Dinosaur sequence [18] is conventionally used as an example for affine
factorization. Here we however solve it as a projective factorization with missing
data problem. Our experiment is mainly for theory validation purpose. Fig. 5
illustrates the effect of our projective depth estimation at a 4× 4 image patch.

6 Conclusion

In this paper, we have proposed a new element-wise factorization framework for
non-iterative projective reconstruction. We formulate the problem as an SDP
and solve it efficiently and (approximately) globally. Our results are comparable
or superior to other iterative methods when these methods work. When they no
longer work, ours still works.

Future work will address drawbacks of the current implementation, in partic-
ular the scalability issue of the standard SDP solver. We will also consider non-
rigid deformable motion, degenerate cases, and cases combining missing data
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(a) (b) (c)

Fig. 4. Real image sequences used in experiments. (a) Corridor, (b) Teabox, (c) Chair.

Table 1. Performance Evaluation for Real Images with Complete Measurements

Dataset / Method SIESTA[8] CIESTA[8] Col-space[7] Our method

Corridor 0.3961 0.3955 0.3973 0.3961
Teabox 4.4819e-4 4.4872e-4 4.8359e-4 4.4819e-4
Chair 1.3575 1.3723 1.3441 1.3385

Fig. 5. Depth estimation from affine factorization and projective factorization. (a)
Affine camera sets all the depths to be 1s (b) Depths estimated by our method.

and outliers. Theoretical analysis about our missing-data and outlier-handling
procedure is also planned.
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Appendix:

In this appendix, we will show that our formulation (i.e., (5)) is well-posed,
meaning that any true solution is indeed the exact unique solution of the for-
mulation. We assume the cameras and points are generically configured, image
measurements are complete and noise-free—hence the rank is identically 4.

In the main body of our paper (subsection-2.2), we have already shown that
applying the row- and column- normalization places no restriction to the solution
space, given that all (visible) projective depths are positive.

Next, we need to show that enforcing the two rank conditions on both W
and Λ provides sufficient constraints for solving the element-wise factorization
problem.

Denote the image coordinate as mij = [uij , vij , 1]T , the projective depth as
λij , according to the rank-4 constraint on projective depth matrix Λ, the jth
column of Λ is expressed as

Λj = a1jΛ1 + a2jΛ2 + a3jΛ3 + a4jΛ4.

Since W is expected to have rank 4 in general case, we have

Wj = b1jW1 + b2jW2 + b3jW3 + b4jW4, (10)

where Wj , j = 5, · · · , n denotes the jthe column of W.
Substitute the image coordinates into the above equations, we have

uij(a1jλi1 + a2jλi2 + a3jλi3 + a4jλi4) = b1jui1λi1 + b2jui2λi2 + b3jui3λi3 + b4jui4λi4

vij(a1jλi1 + a2jλi2 + a3jλi3 + a4jλi4) = b1jvi1λi1 + b2jvi2λi2 + b3jvi3λi3 + b4jvi4λi4

a1jλi1 + a2jλi2 + a3jλi3 + a4jλi4 = b1jλi1 + b2jλi2 + b3jλi3 + b4jλi4,

which implies that a1j = b1j , a2j = b2j , a3j = b3j , a4j = b4j . This can be ex-
plained as the rank-4 constraint on Λ is included under the rank-4 constraint on
W.

Then we have

uij

vij
=

b1jλi1ui1 + b2jλi2ui2 + b3jλi3ui3 + b4jλi4ui4

b1jλi1vi1 + b2jλi2vi2 + b3jλi3vi3 + b4jλi4vi4

Let ηij = uij

vij
, we obtain

λi1b1j(ui1−ηijvi1)+λi2b2j(ui2−ηijvi2)+λi3b3j(ui3−ηijvi3)+λi4b4j(ui4−ηijvi4) = 0

There are m(n−4) equations while the number of variables is 4m+4(n−4), thus
the problem is well-posed. In our SDP implementation, we use “min (rank)” (as
opposed to enforcing a hard constraint of “rank=4” ) to solve a relaxed version.


