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Abstract. This work presents an unsupervised learning based approach
to the ubiquitous computer vision problem of image matching. We start
from the insight that the problem of frame interpolation implicitly solves
for inter-frame correspondences. This permits the application of analysis-
by-synthesis: we first train and apply a Convolutional Neural Network
for frame interpolation, then obtain correspondences by inverting the
learned CNN. The key benefit behind this strategy is that the CNN for
frame interpolation can be trained in an unsupervised manner by exploit-
ing the temporal coherence that is naturally contained in real-world video
sequences. The present model therefore learns image matching by simply
“watching videos”. Besides a promise to be more generally applicable,
the presented approach achieves surprising performance comparable to
traditional empirically designed methods.

Keywords: Image matching · Unsupervised learning · Analysis by
synthesis · Temporal coherence · Convolutional neural network

1 Introduction

We are experiencing a tremendous success of deep learning in almost all research
areas of computer vision. However, for most of the time, deep models are trained
by relying on man-made supervising signals, which are all too often prepared
through a tedious, expensive manual labeling process. Many researchers there-
fore believe that a more promising paradigm is given by unsupervised learning,
as most of the readily available data simply comes in unlabeled form. This work
contributes to this direction by providing an unsupervised solution to the ubiq-
uitous vision problem of image matching. Specifically, relying on only natural
video sequences, the present model is able to learn the ability of establishing
2D-2D correspondences across consecutive frames.

This work was conducted while G. Long was a visiting student at the ANU, sup-
ported by the China Scholarship Council (CSC), and supervised by L. Kneip.
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Fig. 1. We train a deep convolutional network for frame interpolation, which can be
done without manual supervision by exploiting the temporal coherence that is naturally
contained in real-world video sequences. The learned CNN is then used to compute a
sensitivity map for each output pixel. This sensitivity map, i.e. the gradients w.r.t. the
input, indicates how much each input pixel influences a particular output pixel. The
two input pixels (one per input frame) that have the maximum influence are considered
as an image correspondence (i.e. a match). Though indirect, the resulting model learns
how to perform dense correspondence matching by simply watching video.

Our key insight lies in the understanding that frame interpolation implicitly
solves for dense correspondences between the input image pair. It is well known
that dense matching can be regarded as a sub-problem of frame interpolation,
as the interpolation could be immediately generated by correspondence-based
image warping once dense inter-frame matches are available [3]. It then comes
as no surprise that if we were able to train a deep neural network for frame
interpolation, its application would implicitly also generate knowledge about
dense image correspondences. Retrieving this knowledge is known as analysis
by synthesis [42], a paradigm in which learning is described as the acquisition
of a measurement synthesizing model, and inference of generating parameters
as model inversion once correct synthesis is achieved. In our context, synthe-
sis simply refers to frame interpolation. We then, for the analysis part, show
that the correspondences can be recovered from the network through gradient
back-propagation, which produces sensitivity maps for each interpolated pixel.
The procedure is summarized in Fig. 1, explaining how the reciprocal mapping
between frame interpolation and dense correspondences is encoded in the for-
ward and backward propagation through one and the same network architecture.
We call our approach MIND, which stands for Matching by INverting1 a Deep
neural network.

The key benefit of MIND lies in the fact that the deep convolutional network
for frame interpolation can be trained from ordinary video sequences without
any man-made ground truth signals. The training data in our case is given
by triplets of images, each one consisting of two input images and one output
image that represents the ground-truth interpolated frame. A correct example

1 The term of inverting is read as back-propagation through the given deep neural
network.
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of a ground truth output image is an image that—when inserted in between the
input pair of images—forms a temporally coherent sequence of frames. Such tem-
poral coherence is naturally contained in regular video sequences, which allows
us to simply use triplets of sequential images from almost arbitrary video streams
for training our network. The first and the third frame of each triplet are used
as inputs to the network, and the second frame as the ground truth interpolated
frame. Most importantly, since the inversion of our network returns frame-to-
frame correspondences, it therefore learns how to do image matching without
any requirement for manually designed models or expensive ground truth corre-
spondences. In other words, the presented approach learns image matching by
simply “watching videos”.

The paper is organized as follows. Section 2 reviews relevant prior work.
Section 3 explains the present analysis-by-synthesis approach, including both
the analysis part of how MIND works and the synthesis part of the deep convo-
lutional architecture for frame interpolation. Section 4 demonstrates the surpris-
ing performance for the present purely unsupervised learning approach, which is
comparable to several traditional empirically designed methods. Section 5 finally
discusses our contribution and provides an outlook onto future work.

2 Related Work

Deep learning meets image matching: Image matching is a classical problem
in computer vision. Here we limit the discussion to recent works that address
image matching through learning based approaches. Roughly speaking, there
exist two lines of research for this topic: the first one consists of making use of
features or representations learned by deep neural networks, which are either
originally trained for other tasks such as object recognition [13,26], or specially
designed and trained for the purpose of image matching [1,21,33]. The second
major line of research employs deep neural networks to compute the similarity
between image patches [30,43,44]. In contrast to our work, the cited contri-
butions mainly address sub-modules of image matching (feature extraction or
matching cost computation), rather than providing end-to-end solutions. An
exception is given by FlowNet [14], which presents an interesting deep learning
based approach for dense optical flow computation. It does however depend on
ground truth flow for training the network.

Temporal coherence learning: Unsupervised learning is a broad topic in the
field of machine learning. Our discussion here focuses on works that exploit
temporal coherence in natural videos, sometimes also called temporal coherence
learning [4,29,41]. As a recent representative work, Wang et al. [39] exploit
temporal coherence by visual tracking in videos, and report that the learned
representation achieves competitive performance compared to some supervised
alternatives. While temporal coherence learning mostly aims at learning features
or representations, some recent works on reconstructing and predicting video
frames in an unsupervised setting [31] are closely related to our work as well.
Srivastava et al. [35] use an encoder LSTM to map input sequences into a fixed



Learning Image Matching by Simply Watching Video 437

length representation, and use the latter for reconstructing the input or even pre-
dicting future frames. Goroshin et al. [17] consider videos as one-dimensional,
time-parametrized trajectories embedded in a low dimensional manifold. They
train deep feature hierarchies that linearize the transformations observed in nat-
ural video sequences for the purpose of frame prediction. Though related to our
work, these works are not aiming at image matching. It will be interesting to
apply our concept of matching by inverting to the above models for temporal
coherence learning.

Inversion of artificial neural network: Note that inverting a learned net-
work is traditionally defined as reconstructing the input from the output of an
artificial neural network [22]. Mahendran et al. [27] and Dosovitskiy et al. [10]
apply this concept to understand what information is preserved by a network.
In our context, inverting a network means back-propogation through a learned
network in order to obtain the gradient map with respect to the input signals.
Interestingly, the idea has already been introduced in the work of Simonyan
et al. [34], emphasizing that the retrieved sensitivity maps may serve to identify
image-specific class saliency. Similarly, Bach et al. [2] employ gradient maps as a
measure for the contribution of single pixels to nonlinear classifiers, thus helping
to explain how decisions are made.

3 Methodology

The analysis by synthesis approach for dense image matching is described in this
section: we first explain the analysis part, i.e. how to obtain correspondences
given the trained neural network and the interpolated image. For the synthesis
part, we describe here the detailed architecture of the deep convolutional network
designed for frame interpolation.

3.1 Matching by Inverting a Deep Neural Network

Assuming that we have a well trained deep neural network for frame interpolation
in our hand, the core technical question behind our work is how to recover
the correspondences between the input pair of images from there. As explained
previously, dense correspondence matching may be regarded as a sub-problem of
frame interpolation, which is why we should be able to trace back the matches
starting from the interpolated frame generated during the forward-propagation
through the trained network. Our task then consists of back-tracking each pixel
in the output image to exactly one pixel in each of the two input images. Note
that this back-tracking does not mean reconstructing input images from the
output one. Instead, we only need to find the pixels in each input image which
have the maximum influence to each pixel of the output image.

We perform back-tracking by applying a technique similar to the one adopted
by Simonyan et al. [34]. For each pixel in the output image, we compute the
gradient of its value with respect to each input pixel, thus telling us how much it
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is under the influence of individual pixels at the input. The gradient is computed
based on back-propagation, and leads to sensitivity or influence maps at the
input of the network.

From a more formal perspective, our approach may be explained as follows.
Let I2 = F(I1, I3) denote a non-linear function (i.e. the trained deep neural
network) that describes the mapping from two input images I1 and I3 to an
interpolated image I2 lying approximately at the “center” of the input frames.
Thinking of F as a vectorial mapping, it can be split up into h × w non-linear
sub-functions, each one producing the corresponding pixel in the output image

F(I1, I3) =

⎛
⎜⎝

f11(I1, I3) . . . f1w(I1, I3)
...

...
fh1(I1, I3) . . . fhw(I1, I3)

⎞
⎟⎠

h×w

. (1)

In order to produce the sensitivity maps, we apply back-propagation to compute
the Jacobian matrix with respect to each input image individually. The Jacobian
with respect to the first image is given by

∂F(I1, I3)
∂I1

=

⎛
⎜⎜⎝

∂f11(I1,I3)
∂I1

. . . ∂f1w(I1,I3)
∂I1

...
...

∂fh1(I1,I3)
∂I1

. . . ∂fhw(I1,I3)
∂I1

⎞
⎟⎟⎠

h×h×w×w

, (2)

illustrating that this derivative results in one h × w matrix for each one of the
h × w pixels at the output. The Jacobian with respect to I3 is given in a similar
way. Let’s define the absolute gradients of the output point (i, j) with respect to
each one of the input images, and evaluated for the concrete inputs Î1 and Î3.
They are given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Gi,j
I1

(̂I1, Î3) = abs

(
∂fij(I1,I3)

∂I1

∣∣∣
I1 = Î1
I3 = Î3

)

Gi,j
I3

(̂I1, Î3) = abs

(
∂fij(I1,I3)

∂I3

∣∣∣
I1 = Î1
I3 = Î3

) , (3)

where abs replaces each entry of a matrix by its absolute value. The gradient
maps produced in this way notably represent the seeked sensitivity or influence
maps that may now serve in order to derive the coordinates of each correspon-
dence. We notably extract the most responsible point in each gradient map, and
connect those two points in order to return the correspondence.

In the spirit of unsupervised learning, we opted for the simplest possible
choice, namely taking the coordinates of the maximum entry in Gi,j

I1
(̂I1, Î3) and

Gi,j
I3

(̂I1, Î3), respectively. Let us denote these points with cij
I1

and cij
I3

. By com-
puting the two gradient maps for each point in the output image and extracting
each time the most responsible point, we thus obtain the following two lists of
points
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⎧⎨
⎩

CI1 =
{

cij
I1

}

CI3 =
{

cij
I3

} , i = 1, . . . , h, j = 1, . . . , w (4)

The set of correspondences S is then given by combining same-index elements
from CI1 and CI3 , eventually resulting in

S =
{
sij

}
, i = 1, . . . , h, j = 1, . . . , w

=
{{

c11I1 , c11I3
}

, . . . ,
{
chw
I1 , chw

I3

}}
. (5)

3.2 Deep Neural Network for Frame Interpolation

The architecture of our frame-interpolation network is inspired by FlowNet-
Simple as presented in Fischer et al. [14]. As illustrated in Fig. 2, it consists
of a Convolutional Part and a Deconvolutional Part. The two parts serve as
“encoder” and “decoder” respectively, similar to the auto-encoder architecture
presented by Hinton and Salakhutdinov [20]. The basic block within the Convo-
lutional Part—denoted Convolution Block—follows the common pattern of the
convolutional neural network architecture:

INPUT –>[CONV –>PRELU] * 3 –>POOL –>OUTPUT.

The Parametric Rectified Linear Unit [19] is adopted in our work. Following
the suggestions from VGG-Net [9], we set the size of the receptive field of all
convolution filters to three—along with a stride and a padding of one—and
duplicate [CONV –>PRELU] three times to better model the non-linearity.

The Deconvolution Part consists of Deconvolution Blocks, each one including
a convolution transpose layer [38] and two convolution layers. The first one has
a receptive field of four, a stride of two, and a padding of one. The pattern of
the Deconvolution Block follows:

INPUT –>[CONVT –>PRELU] –>[CONV –>PRELU] * 2 –>OUTPUT.

In order to maintain fine-grained image details in the interpolation frame, we
make a copy of the output features produced by Convolution Blocks 2, 3, and 4,
and concat them as an additional input to the Deconvolution Blocks 4, 3, and 2,
respectively. This concept is illustrated by the side arrows in Fig. 2, and similar
ideas have already been used in prior work [11,14]. Recent works [18,36] indicate
that the ‘side arrows’ may also help to better train the deep network.

It is easy to notice that our network is a fully convolutional one, thus allowing
us to feed it with images of different resolutions. This is an important advantage,
as different data-sets may use different height-to-width ratios. The output blob
size for each block in our network is listed in Table 1.

4 Experiments

In this section, we first explain the implementation details behind MIND such
as training data and loss function. The examples as proofs of concept for MIND
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Fig. 2. Architecture of our network. The network takes 2 RGB images as an input to
produce the interpolated RGB image. Please note that Dconv Block 4 takes the outputs
from both Conv Block 2 and Dconv Block 5 as input. Dconv Block 3 and Dconv Block
2 have a similar input configuration. (Color figure online)

are introduced before a discussion on the generalization ability of the trained
CNN. We finally evaluate MIND in terms of quantitative matching performance
and compare it to traditional image matching methods.

4.1 Implementation Details

Training data: Quantity and quality of training data are crucial for training
a deep neural network. However, our case is particularly easy as we can sim-
ply use huge amounts of real-world videos. In this work, we focus on training
with the KITTI RAW videos [15] and Sintel videos2 and show that the result-
ing learned network performs reasonably well. The network is first trained with
the KITTI RAW video sequences which are captured by driving around the
city of Karlsruhe, through rural areas and over highways. The dataset contains
56 image sequences with in total 16,951 frames. For each sequence, we take
every three consecutive frames (both in forward and backward direction) as a
training triplet, where the first and the third image serve as inputs to the net-
work and the second image as the corresponding output. These images are then
augmented by vertical flipping, horizontal flipping and a combination of both.
2 Sintel, the Durian Open Movie Project. https://durian.blender.org/.

https://durian.blender.org/
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Table 1. The table lists the output blob size of each block in our network. Note that
we stack two RGB images into one input blob, and thus the depth is 6. The output of
the network is an RGB image and thus the depth equals to 3. The indicated widths
are for the network trained on KITTI. The ones for the Sintel data are easily obtained,
the only difference being that the input images are scaled to 256× 128 rather than
384× 128.

Input Conv1 Conv2 Conv3 Conv4 Conv5 Dconv5 Dconv4 Dconv3 Dconv2 Dconv1 Output

Depth 6 96 96 128 128 128 128 128 128 96 96 3

Height 128 64 32 16 8 4 8 16 32 64 128 128

Width 384 192 96 48 24 12 24 48 96 192 384 384

The total number of sample triplets is 133,921. We then fine-tune the network
on examples selected from the original Sintel movie. We manually collected 63
video clips with in total 5,670 frames from the movie. After grouping and data
augmentation we finally obtain 44,352 sample triplets. Note that, compared to
the KITTI sequences which are recorded with relatively uniform velocity, the
Sintel sequences represent more difficult training examples in the context of our
work, as they contain a lot of fast and artificially rendered motion captured with
a frame rate of only 24 fps. A significant portion of the Sintel samples therefore
does not contain the required temporal coherence. We will discuss this issue
further in Sect. 4.2.

Loss function: Several previous works [17,39] mention that minimizing the L2
loss between the output frame and the training example may lead to unrealistic
and blurry predictions. We have not been able to confirm this throughout our
experiments, but found that the Charbonnier loss ρ(x) =

√
(x2 + ε2) commonly

employed for robust optical flow computation [37] leads to an improvement over
the L2 loss. We employ it to train our network, with ε set to 0.1.

Training details: The training is performed using Caffe [23] on a machine with
two K40c GPUs. The weights of the network are initialized by Xavier’s approach
[16] and optimized by the Adam solver [24] with a fixed momentum of 0.9. The
initial learning rate is set to 1e-3 and then manually tuned down once ceasing
of loss reduction sets in. For training on the KITTI RAW data, the images are
scaled to 384 × 128. For training on the Sintel dataset, the images are scaled
to 256 × 128. The batch size is 16. We run the training on KITTI RAW from
scratch for about 20 epochs, and then fine-tuned it on the Sintel movie images
for 15 epochs. We did not observe over-fitting during training, and terminated
the training after 5 days.

Execution time: MIND can be applied to different scenarios (e.g. sparse or
dense matching). We focus here on semi-dense image matching in order to obtain
a result comparable with other methods. We compute the correspondences across
the input images for each corner of a predefined raster grid of 4 pixels width in
the interpolated image. Note that MIND currently depends on a large amount
of computational resources as it performs back-propagation through the entire
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network for every pixel that needs to be matched. For an image of size 384 × 128,
each forward pass through our network takes 40 ms on a PC with K40c GPU,
and each backward pass takes 158 ms. For each image pair, we need to perform
one forward pass to first obtain the interpolation. We then need to perform
384 × 128/4/4 = 3072 backward passes to find the correspondences, resulting in
a total of about 486 s (∼8 min).

4.2 Qualitative Examples for Interpolation and Matching

We demonstrate here the visual examples as proofs of concept for how the present
approach works on both tasks of frame interpolation and image matching.

Fig. 3. Examples of frame interpolation (best viewed in colour). From left to right:
example on KITTI, Sintel, ETH Multi-Person Tracking dataset [12] and Bonn Bench-
mark on Tracking [25], respectively. In each column, the first image is an overlay of the
two input frames. The second one is the interpolated image obtained by our network.
For the first example, we use the network trained on KITTI itself. For all others, we
use the network fine-tuned on Sintel data. (Color figure online)

Examples of frame interpolation: We show the examples of frame interpo-
lation in Fig. 3. The first two columns show the examples on KITTI and Sintel
images which are taken from the validation data-sets originally collected for
the purpose of monitoring the network training process. It can be seen that the
trained CNNs cover the motion correctly for both KITTI and Sintel image pairs.
It can furthermore be noticed that some fine-grained details are not preserved
well in both examples, despite the special considerations in the architecture of
the convolutional network (c.f. Sect. 3.2). Nevertheless, we would like to empha-
size that the goal of the present work is not to provide a state-of-the-art frame-
interpolation algorithm. As we will see, the preservation of fine-grained image
details is in fact not necessarily an indicator for better quality image matching.

And for the goal of image matching, we will see that the preservation of
perfect image details is in fact not necessary.

Examples for image matching: Here we present examples to demonstrate
how MIND obtains correspondences given the trained CNNs for frame interpo-
lation. The examples taken from KITTI and Sintel videos are shown in Fig. 4.
By computing the gradient of manually marked pixels in the interpolated image,
MIND successfully obtains correct correspondences between the 2 input images.
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It can be seen that the correct correspondences are obtained even in some fast
motion areas where fine-grained image details are missed, e.g. the area of the
character’s shaking hand in the Sintel example.

We further show one failure example taken from Sintel images. In Fig. 5, it
can be observed that the interpolation fails as the motion of the small dragon
and the character’s hand have not been recovered correctly. It then comes as no
surprise that MIND fails to extract correct matches for almost all of the selected
points. However, it is worth to note that the No.4 match has better quality
than others for which the corresponding gradient maps are less distinctive. The
matching score/confidence returned by MIND is inspired by this behavior and
defined as the ratio between the maximum gradient intensity and the mean
gradient intensity within a small area around the maximal gradient location.

As illustrated in Sect. 4.4, the general performance of MIND, especially on
KITTI images, is good. The failure example in Fig. 5 indicates an extreme case
in the Sintel sequences dominated by fast and highly non-rigid motion in the
scene.

Fig. 4. Two matching examples for image pairs taken from the KITTI RAW video and
the Sintel movie clip (best viewed in colour). For each example, the corresponding row
of images shows input image 1, the interpolated image, and then input image 2 (from
left to right). The red points mark five sample correspondences. The two rows below
each example show the gradient/saliency maps for each match (from left to right) in
each input image (maps for input image 1 on top, and maps for input image 2 in the
bottom). The figures also indicate the coordinates of the maximal gradient location
(P) along with the corresponding matching score (S). The matching score is defined
as the ratio between the maximum gradient intensity and the mean gradient intensity
within a 20× 20 area around P. (Color figure online)
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4.3 Generalization Ability of the Trained CNN

We first demonstrate the generalization ability of the trained CNN by applying
it to images taken from the ETH Multi-Person Tracking dataset [12] and the
Bonn Benchmark on Tracking [25], which have not been used for either training
or fine-tuning. The results are shown in Fig. 3, from which we can see that the
trained CNN again covers the motion correctly. It provides evidence that, by
“watching videos”, the present CNN is indeed learning the ability to interpolate
frames and match images, rather than only “remember” the KITTI or Sintel-like
images.

Fig. 5. Failure example of MIND for image pair taken from the Sintel movie clip (best
viewed in colour). The gradient/saliency maps (from left to right) are for matches
labelled as 1, 2, . . . , 5, respectively. (Color figure online)

Fig. 6. Examples of MIND on DICOM images. There are two examples shown in
different rows. For each example, the columns from left to right show the overlay of
the input image-pair, the 1st input image, the interpolation returned by the CNN, and
the 2nd input image, respectively. The red points in columns 2, 3 and 4 indicate the
matches obtained by MIND. (Color figure online)
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The generalization ability is further illustrated by applying MIND to DICOM
images of coronary angiogram3. As a numerical evaluation of the generalization
ability, we compare the CNN based interpolation results to traditional warp
based interpolation method [3] using state-of-the-art optical flow, i.e. DeepFlow
[40] and a recently proposed phase-based interpolation method [28]. The compar-
ison is similar to the “Ground truth comparisons” outlined in [28]. The averaged
SSD (sum of squared distances) for each method is 6.00, 6.23 and 5.55 respec-
tively, suggesting that the trained CNN performs frame interpolation quantita-
tively well. Two examples are shown in Fig. 6. It can be seen that these images
are substantially different from natural ones. Though failing to preserve perfect
image details, the CNN, which is trained on natural images, performs impres-
sively well on the DICOM images. The nice generalization ability of the CNN is
underlined by results on both frame interpolation and image matching.

4.4 Quantitative Performance of Image Matching

We compare the matches produced by MIND against those of several empirically
designed methods: the classical Kanade–Lucas–Tomasi feature tracker [5], HoG
descriptor matching [7] (which is widely employed to boost dense optical flow
computation), and the more recent DeepMatching approach [40] which relies
on a multilayer convolutional architecture and achieves state-of-the-art perfor-
mance. As observed in [40], comparing different matching algorithms is delicate
because they usually produce different numbers of matches for different parts of
the image. For the sake of a fair comparison, we adjust the parameters of each
algorithm to make them produce as many as possible matches with an as homo-
geneous as possible distribution across the input images. For DeepMatching, we
use the default parameters. For MIND, we extract correspondences for each cor-
ner of a uniform grid of 4 pixels width. For KLT, we set the minEigThreshold
to 1e-9 to generate as many matches as possible. For HoG, we again set the
pixel sampling grid width to 4. We then sort the matches according to suitable
metrics4 and select the same amount of “best” matches for each algorithm. In
this way, the 4 algorithms produce the same numbers of matches with similar
coverage over each input image.

The comparisons are performed on both KITTI [15] and MPI-Sintel [8] train-
ing sets where ground truth correspondences can be extracted from the available
ground truth flow fields. We perform all of our experiments on the same image
resolution than the one used by our network. On KITTI, the images are scaled
to 384 × 128, and for MPI-Sintel, 256× 128. We use the network trained on the
3 The images are taken from a DICOM sample image set: http://www.osirix-viewer.

com/datasets/. Alias Name: GRUSELAMBIX.
4 For DeepMatching, we sort the matches according to the matching score given by

the open source code [40]. For KLT, the metric is the error returned by the OpenCV
implementation [6]. For HoG, we use the matching score defined in [7]. For MIND,
the matching score is defined as the ratio between the maximum gradient intensity
and the mean gradient intensity within a 20× 20 area around the maximal gradient
location.

http://www.osirix-viewer.com/datasets/
http://www.osirix-viewer.com/datasets/
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Table 2. Matching performance on the
KITTI 2012 flow training set. DeepM
denotes DeepMatching. Metrics: Aver-
age Point Error (APE) (the lower the
better), and Accuracy@T (the higher
the better). Bold numbers indicate best
performance, underlined numbers 2nd
best.

MIND DeepM HoG KLT

APE 4.695 3.442 9.680 8.157

Accuracy@5 0.716 0.835 0.455 0.702

Accuracy@10 0.915 0.953 0.805 0.826

Accuracy@20 0.981 0.987 0.929 0.903

Accuracy@30 0.993 0.993 0.959 0.938

Table 3. Matching performance on the
MPI-Sintel training set (Final pass).
DeepM denotes DeepMatching. Met-
rics: Average Point Error (APE) (the
lower the better), and Accuracy@T
(the higher the better). Bold numbers
indicate best performance, underlined
numbers 2nd best.

MIND DeepM HoG KLT

APE 5.838 3.240 7.856 8.836

Accuracy@5 0.719 0.875 0.688 0.808

Accuracy@10 0.876 0.951 0.875 0.864

Accuracy@20 0.948 0.977 0.947 0.906

Accuracy@30 0.967 0.986 0.964 0.927

KITTI RAW sequences for the matching experiment on the KITTI Flow 2012
training set. We then use the network fine-tuned on Sintel movie clips for the
experiments on the MPI-Sintel Flow training set. The 4 algorithms are evaluated
in terms of the Average Point Error (APE) and the Accuracy@T. The latter is
defined as the proportion of “correct” matches from the first image with respect
to the total number of matches [32]. A match is considered correct if its pixel
match in the second image is closer than T pixels to ground-truth.

As can be observed in Tables 2 and 3, DeepMatching produces matches with
the highest quality in terms of all metrics and on both MPI-Sintel and KITTI
sets. Notably, MIND performs very close to DeepMatching on KITTI and out-
performs KLT tracking and HoG matching by a considerable amount in terms
of Accuracy@10 and Accuracy@20. It is surprising to see that MIND—an unsu-
pervised learning based approach—works so well. The performance on MPI-
Sintel however drops a bit due to the difficulty of the contained artificial motion.
Though the APE measure indicates better performance than HoG and KLT,
it is only safe to conclude that MIND remains competitive in terms of overall
performance on MPI-Sintel, which can be seen further in the next section.

4.5 Ability to Initialize Optical Flow Computation

To further understand the matching quality produced by MIND, we replace the
DeepMatching part of DeepFlow [40] with MIND to see whether MIND matches
are able to boost optical flow performance in a similar way than DeepMatching
and HoG or KLT matches. Similar to the evaluation in [40], we feed DeepFlow
with matches obtained by each matching method in the previous section. The
parameters (e.g. the matching weight) of DeepFlow are tuned accordingly to
make best use of the pre-obtained matches. Note that we scale down the input
images to 384 × 128 for KITTI and 256 × 128 for MPI-Sintel. We then up-size
the obtained flow field to the original resolution by bi-linear interpolation, to the
end of comparing results in full resolution.
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Table 4. Flow performance on KITTI
2012 flow training set (non-occluded
areas). out-x refers to the percentage
of pixels where flow estimation has an
error above x pixels.

MIND DeepM HoG KLT No match

APE 2.89 2.63 3.06 3.40 3.55
out-2 17.70% 17.09 % 17.89% 18.34% 18.49%
out-5 9.86% 9.18 % 10.05% 10.58% 10.77%
out-10 6.45% 5.84 % 6.66% 7.20% 7.40%

Table 5. Flow performance on MPI-
Sintel flow training set. s0-10 is the
APE for pixels with motions between 0
and 10 pixels. Similarly for s10-40 and
s40+.

MIND DeepM HoG KLT No match

APE 5.78 4.80 5.46 5.42 6.63
s0-10 2.25 2.84 3.65 3.22 2.47
s10-40 6.26 6.08 6.52 6.48 6.18
s40+ 19.03 18.79 17.38 17.44 23.16

The results on the KITTI Flow 2012 training set are indicated in Table 4. It
can be seen that using the matches obtained by any of the 4 algorithms improves
the flow performance compared to the case where we use no matches for initial-
ization. Notably, MIND again reaches closest performance to DeepMatching in
terms of all metrics, thus underlining the good matching quality obtained by
MIND (better than KLT and HoG and comparable to DeepMatching). Table 5
shows the results obtained on the MPI-Sintel training dataset. As in KITTI, the
pre-obtained matches indeed help to improve the optical flow results especially
in terms of the APE and s40+ metrics, while flow initialized by DeepMatch-
ing remains best overall. The results initialized from MIND matches however
rank behind those initialized by HoG or KLT matches, which again suggests the
importance of temporal coherence for training our network. The reason why KLT
works better than in the evaluation presented in [40] is because we run KLT in
the downscaled images rather than the full resolution ones, and this helps KLT
to better deal with large displacements.

From the quantitative evaluations of matching and flow performance, it
should be concluded that MIND works well on the KITTI Flow training set
and achieves comparable performance to the state-of-the-art defined by Deep-
Matching. In the MPI-Sintel Flow training set, MIND still obtains comparable
performance to the traditional HoG and KLT methods. The latter should still
be interpreted as a good result especially considering that the quality of train-
ing data for the artificial and perhaps unrealistic Sintel images is insufficient. A
closer look into the training data collected from Sintel video suggests that the
assumption of temporal coherence does not hold well.

5 Conclusions

We have shown that the present work enables artificial neural networks to learn
accurate image matching from only ordinary videos. Though MIND currently
does not provide the required computational efficiency for applications in real-
world scenarios, it promises a great potential for more natural solutions to further
related problems. It is also our hope that the present work helps to promote the
concept of analysis by synthesis towards a broad acceptance. Our future work
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focuses on making the present approach more applicable in real-world scenarios,
in terms of both computational efficiency and reliability.
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