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Abstract. This paper presents a simple and practical solution to the 6-point 2-
view focal-length estimation problem. Based on thehidden-variabletechnique
we have derived a 15th degree polynomial in the unknown focal-length. During
this course, a simple and constructive algorithm is established. To make use of
multiple redundant measurements and then select the best solution, we suggest a
kernel-voting scheme. The algorithm has been tested on both synthetic data and
real images. Satisfactory results are obtained for both cases. For reference pur-
pose we include our Matlab implementation in the paper, which is quite concise,
consisting of 20 lines of code only. The result of this paper will make a small but
useful module in many computer vision systems.

1 Introduction

This paper considers the problem of estimating a constant unknown focal-length from
six corresponding points of two semi-calibrated views. Bysemi-calibrationwe mean
that all camera intrinsic parameters but a fixed focal-length are known. This scenario
is quite common (not restrictive) in daily camera use. For example, except for the case
where the camera lens is allowed to zoom continuously, it is often practical to assume
that its focal-length is constant across multiple views. In fact, allothercamera intrinsic
parameters (such as principal point and aspect ratio) can be considered fixed and known
for a certain camera. In other words, the only user-adjustable (therefore variable) camera
intrinsic parameter is the focal-length. Yet still, the focal-length is often kept constant
over two successive image shoots [7][8].

It is well known that five points of two fully-calibrated views are possible to recover
the essential matrixE between the two views. Since an essential matrix is a faithful
representation of the camera motion (up to an unknown scale), namely,E = [t]×R, it
therefore has five degrees of freedom. So, from five points it is possible to estimate the
camera motion—this is exactly what the five-point algorithm does [11].

Now consider a semi-calibrated case where only a fixed focal-lengthf is unknown.
For this case, it is shown that six points (in general position) are enough to estimate
the camera motion as well as the unknown focal-length. This can be easily seen by
the following reasoning. Compared to the fully-calibrated five-point case, the one extra
point correspondence will provide one more constraint on the camera intrinsic matrix.
Consequently, a single unknown focal-length, as well as the relative camera motion,
can be computed from it.
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The above conclusion can also be approached from the other direction. If the two
camera views are uncalibrated, then seven points are the minimal requirement to com-
pute a fundamental matrixF. Since a fundamental matrix has seven degrees of freedom,
it provides two more constraints on the camera intrinsics, besides the camera motion en-
coded by an essential matrix. These two extra constraints are essentially the two Kruppa
equations. Therefore, if the two views are only partially calibrated in that all camera in-
trinsics buttwo possibly different focal-lengthsf andf ′ are known, then seven points
are enough to estimate the relative camera motion and the two unknown focal-lengths
[2]. Now, if we have only seven less one points, and the two focal-lengths are assumed
identical, then it is possible to recover the single unknown focal-length as well as the
camera motion from six corresponding points.

For the first time, Steẃenius et al have proposed a concrete algorithm to solve the
6-point focal-length problem [1]. They have utilized a special mathematical tool—the
Gröbner basis technique. The idea behind the Gröbner basis is to construct a complete
and algebraically-closed polynomial system (anideal) by adding in some newlygen-
eratedcompatible equations. By this tool they show that there are at most 15 solutions
to the six-point algorithm. The Gröbner basis is a mathematically elegant technique for
handling polynomial system. However, since it originates from a special mathematical
field (i.e. computational commutative algebra and algebraic geometry), some readers
may find it not fully-comfortable to follow, let alone to actually implement it and use it.

Why Six Points? Traditionally, the focal-length problem is solved through the funda-
mental matrix which itself can be computed from seven points. Moving from seven
points to six points provides some benefits. The first benefit lies in its theoretic value.
Compared with its non-minimal counterpart, the minimal algorithm offers a deeper the-
oretical understanding to the problem itself. For example, both the five-point algorithms
[11] and the six point algorithm all better exploit the constraints provided by the epipo-
lar equations and the Kruppa equations (cf. [14][15]); Secondly, effective techniques
developed during the course of deriving the six-point algorithm are very useful for other
similar vision problems too (e.g. [11]); Thirdly, for the task of focal-length estimation
itself, it is demonstrated by experiments that the six-point algorithm sometimes offers
even better performance than the seven-point algorithm; In addition, as shown in [11],
six-point algorithm has less degenerate configurations than the seven-point algorithm;
Moreover, when combine a minimal solver with the RANSAC scheme using six points
(rather than seven) allows significant reduction in computation [5].

1.1 Main Contributions

This paper provides an alternative yet much simpler and practical solution to the 6-point
focal-length problem, compared to the one originally proposed in [1].

We will show that to solve the 6-point problem there isno need to generate new
equations. The original equations system, which includes the six epipolar conditions,
one singularity condition and two Kruppa equations, already provides sufficient and
algebraically-closed constraints to the problem. As a result, in the real domainR it is
already enough to solve the six-point problem using 10rigidity equations—equivalent
to the above equations—without resorting to the Gröbner basis technique. For reference
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purposes we provide our implementation in the appendix of the paper, which is very
concise and consists of 20 lines of general Matlab code only.

Paper [1] tested its algorithm mainly on noise-free simulation data. In this paper, we
go beyond such an idealized scenario. We have tested the performance of our algorithm
on both synthetic and real images (with different levels of noise). We demonstrate our
results by the accuracy of focal-length estimationper se, rather than by the errors in the
reprojected fundamental matrix.

In the root-selection stage (whose purpose is to single-out the best root from multi-
ple solutions), we propose akernel-votingscheme, as an alternative to the convention-
ally adopted RANSAC. We show by experiments that our scheme is suitable for the
particular problem context, and there is no need to wait until the reprojected fundamen-
tal matrix error is obtained.

2 Theoretic Backgrounds

Consider a camera, with constant intrinsic parameters denoted by a matrixK ∈ R3×3,
observing a static scene. Two corresponding image pointsm andm′ are related by a
fundamental matrixF ∈ R3×3:

m′TFm = 0. (1)

A valid fundamental matrix must satisfy the following singularity condition:

det(F) = 0. (2)

This is a cubic equation. Remember that the3 × 3 fundamental matrix is only defined
up to a scale, it therefore has 7 degrees of freedom in total. Consequently, seven corre-
sponding points are sufficient to estimate theF.

If the camera is fully-calibrated, then the fundamental matrix is reduced to anes-
sential matrix, denoted byE, and the relationship between them reads as:

K−TEK−1 = F. (3)

Since an essential matrixE is a faithful representation of the relative camera motion
(translation and rotation, up to a scale), it has only five degrees of freedom. Conse-
quently, to be a valid essential matrixE, it must further satisfy two more constraints,
which are characterized by the following theorem.
Theorem-1 : A real 3 × 3 matrix E is an essential matrixif and only if it satisfies the
following condition

2EETE− tr(EET)E = 0. (4)

This gives 9 equations in the elements ofE, but only two of them are algebraically
independent. The above theorem, owing to many researchers (e.g, Kruppa, Demazure,
Maybank, Huang, Trivedi, Faugeras, etc, just name a few, cf. [6][5][15]), is an important
result in geometric vision.

For the semi-calibrated case considered here, since only one focal-length is un-
known, without loss of generality we can assume the intrinsic camera matrix is:K =
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[
f 0 0

0 f 0

0 0 1

]
, wheref is the focal-length. Define a matrixQ=w−1

 1 0 0

0 1 0

0 0 w

, wherew = f−2.

Write down the epipolar relations Eq. (1) for six pointsmi andm′
i,

m′T
i Fmi = 0, (5)

for i = 1, · · · , 6. Using the six points we get a linear representation of the fundamental
matrix:

F = xF0 + yF1 + zF2, (6)

wherex, y, z are three unknown scalars to be estimated, andF0, F1, F2 are the bases of
the null-space of theepipolar design matrix, which can be readily computed from the
six points (cf. [5]).

Substituting thisF into Eq.(3) and Eq.(4), we get the following equations in the
unknown set{w, x, y, z}.

2FQFTQF− tr(FQFTQ)F = 0. (7)

This is a group of nine equations, and they provide sufficient conditions to find the un-
known{w, x, y, z} (up to an unknown scalar). If we somehow solve these equations,
then the task of estimating the focal-length is accomplished. The above reasoning basi-
cally follows [1].

3 Review the Previous Algorithm

Steẃenius et al proposed a clever algorithm based on the Gröbner basis technique [1].
More precisely, it is a variant of the classical Gröbner technique [4]. The key steps of
their algorithm are briefly reviewed below.

Given six corresponding image points in general position, write down Eq.(7) and Eq.(2).
Rearrange them in such a way that a10×33 matrix equationAX = 0 is obtained, where
A is a10× 33 coefficient matrix, andX a vector containing33 terms of monomials of
the unknowns. Now we have a polynomial system of 10 equations. This system is then
ported into a finite fieldZp (p is a largeprime number), and is solved using the Gröbner
basis elimination procedure. This procedure is stopped when the whole system becomes
an algebraically-closedideal generator setof the original system. So far, a minimal
solver (forZp) has been built up.

The next step is to apply the same solver (i.e, the same sequence of elimination) to
the original problem. One then obtains an enlarged polynomial system containingn×33
(n > 10) monomial terms. Finally, a generalized eigen-decomposition is employed to
solve the polynomial system, for which there are 15 solutions. In order to improve
numerical stability, a pivoted Gauss-Jordan elimination is used.

An important detail of the algorithm is that the arbitrary scale factor of the funda-
mental matrix is parameterized by setting one unknown to an arbitrary scalar. Thereby
the number of unknowns is reduced by one, which simplifies the later derivation. By
contrast, in this paper we avoid such scale parametrization in order to keep the homo-
geneity of some unknowns of the equation system. The reason will be explained later.
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Limitations The main mathematical device adopted by [1] is the Gröbner basis tech-
nique. The Gr̈obner basis is an elegant and powerful technique[3] [4]. Many commercial
or free mathematical software packages include it as a standard module (for instance,
in Maple and Mathematica etc). In many cases, to use it the user is not assumed to have
specialized knowledge of it, and thus can simply apply it in a black-box manner, as also
claimed by [1]. However, using a tool in a black-box manner is not always a safe way.
Whenever a program runs into trouble, it would be nicer if the user could understand
its internal mechanism. Moreover, due to its special origin (computational commutative
algebra and algebraic geometry), not every reader finds it easy to follow. Furthermore,
paper [1] did not test its algorithm extensively on more realistic case. It experimented
on perfect simulated data only. No result on real images was given there.

Finally, theroot-selectionprocedure (i.e., single-out the best root from the possibly
multiple solutions) is not addressed by paper [1], because it deals with simulated cases
only, and thereby assumes the ground-truth data is available. However, in a real-world
problem an efficient root-selection mechanism is necessary. It is in fact a common re-
quirement for various minimal solvers (see for example [11] and [8]), where one often
obtains multiple and maybe complex roots. The RANSAC is a good scheme to find the
best solution from multiple candidates. In this paper, we propose an alternativekernel-
votingscheme which is suitable for the particular context.

4 Our New Six-Point Algorithm

In this paper, we propose a new method for solving the six-point focal-length problem,
using thehidden variabletechnique which is probably the best known technique for
algebra elimination.

We claim that the recommendedhidden variabletechnique isnot yet-anotherspe-
cialized mathematical technique (which otherwise would be equally unfamiliar and un-
comfortable to readers), but it follows very straightforward principle and procedures.
It is so transparent and simple to the end-user that is almost self-explained. As will be
described later, to better apply this technique to the problem, we introduce a small trick
that is to keep the homogeneity of some unknowns of the equation system.

Hidden Variable TechniqueThe Hidden-Variable technique (also known as theDia-
lytic Elimination) is possibly one of the best knownresultanttechniques in algebraic
geometry [4]. It is used to eliminate variables from a multivariate polynomial equation
system. The basic idea is as follows.

Consider a system ofM homogeneous polynomial equations inN variables, say,
pi(x1, x2, ..., xN ) = 0, for i = 1, 2, ...,M . If we treat one of the unknowns (for ex-
ample,x1) as aparameter(in the conventional terms, wehidethe variablex1), then by
some simple algebra we can re-write the equation system as a matrix equation

C(x1)X = 0,

where the coefficient matrixC will depend on thehidden variablex1, and theX is a
vector space consisting of the homogeneous monomial terms of all otherN -1 variables
(say,x2, x3, · · · , xN ).
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If the number of equations equals the number of monomial terms in the vectorX
(i.e. the matrixC is square), then one will have aresultant equationdefined onx1, say,
det(C(x1)) = 0 if and only if the equation system has non-trivial solutions. By such
procedure, one thus successfully eliminatesN -1 variables from the equation system all
at once. Solving the resulting resultant equation forx1 and back-substituting it, one thus
eventually solves the whole system.

4.1 Algorithm Derivation

Remember that Eq.(2) and Eq.(7) are the main equations we are to use. Notice that they
are ten cubic equations in the four unknowns{w, x, y, z}. A careful analysis will show
that within the real domainR, Eq.(7) already implies Eq.(2). However, we would keep
all these ten equations together in our derivation, and the reason will become clear soon.

Now we treat the unknownw as the hidden variable, and collect a coefficient matrix
(denoted byC(w)) with respect to the other three variables{x, y, z}. Here we do not
replace one variable with an arbitrary scalar. Rather, we keep the homogeneous forms
in the monomials formed by[x, y, z]. These are all cubic monomials which actually
span a vector space:

X = [xyz, x2z, xy2, xz2, y2z, yz2, x3, y3, x2y, z3]T (8)

To give a more close examination of the coefficient matrixC, we list it element-wise:

0 1 2 3 4 5 6 7 8 9
xyz x2z xy2 xz2 y2z yz2 x3 y3 x2y z3

0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

1 [w]10 [w]11 [w]12 [w]13 [w]14 [w]15 [w]16 [w]17 [w]18 [w]19
2 [w]20 [w]21 [w]22 [w]23 [w]24 [w]25 [w]26 [w]27 [w]28 [w]29
3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · [w]i−1,j · · · · · · · · · · · · · · · · · · · · ·
· · · · · · [w]i,j−1 [w]i,j [w]i,j+1 · · · · · · · · · · · · · · · · · ·
· · · · · · · · · [w]i+1,j · · · · · · · · · · · · · · · · · · · · ·
8 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
9 [w]90 [w]91 [w]92 [w]93 [w]94 [w]95 [w]96 [w]97 [w]98 [w]99

Here, elements in the first row are some scalars,C(i, j) = sj , for i = 0, computed
from the singularity constraint Eq.(2). Elements of all other rows are quadratic inw,
computed from the nine rigidity constraints Eq.(4). More precisely, it is in the form of
C(i, j) = [w]ij

.= aijw
2 + bijw + cij , for 1 6 i 6 9.

As the monomial vector has been kept homogenous, the equationC(w)X = 0 will
have non-trivial solutions of{x, y, z} if and only if the determinant of the coefficient
matrix vanishes. That is:

det(C(w)) = 0. (9)

This determinant is better known as ahidden-variable-resultant, which is an univariate
polynomial of the hidden variable,w.

By observing the elements ofC, one would expect that its determinant is an 18th
degree polynomial. However, a more close inspection reveals that: it is actually a 15th
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degree polynomial, because terms of degree greater than 15 precisely cancel out. As
a result, from a group of six points we will eventually obtain a15th degree polyno-
mial in the single unknownw. More importantly, since the vectorX is homogenous in
{x, y, z}, and during the above construction we did notgenerateany extra equations be-
sides the original ten, we are therefore safe to conclude that there are indeed at most 15
solutions to the six-point two-view focal-length problem. This result accords precisely
with [1], but we achieve this via a different and more transparent approach.

Another benefit of keeping the homogeneity ofX is that: estimating the fundamen-
tal matrix corresponding to the computedw is also made much easier than by [1]. Notice
that the null-spaceX = null(C(w)) is homogenous in{x, y, z}. Therefore, computing
x, y, z is also made simple, thanks to the symmetric structure of the vectorX. As a
result, the fundamental matrixF can be directly found using Eq. (6). By contrast, the
back-substitution sequences used in [1] is moread hocand heuristic.

5 Implementation
5.1 Minimal Solver

Using the above construction, one can compute a hidden-variable resultant (i.e. a uni-
variate polynomial equation) from every six points. Solving the hidden-variable resul-
tant for the unknownw, one then finds the focal-lengthf . In general there are multiple
candidatesolutions. Bycandidatewe mean that they have real positive values. To give
a flavor we show below an example of such a 15th degree resultant polynomial and the
corresponding real positive roots off :

poly = −9.3992319e−14w15 − 4.7922208e−17w14 + 8.7010404e−22w13

+7.4700030e−25w12 + 4.5342426e−29w11 + 1.1095702e−33w10

+9.3596284e−39w9 − 9.8528519e−44w8 − 1.3185972e−48w7

+1.3420899e−53w6 − 2.6216189e−59w5 − 1.0514824e−64w4

+5.5394855e−70w3 − 9.1789042e−76w2 + 6.0294511e−82w − 1.2914421e−88

fcand = 1/
√

w = [1536.38, 1104.52, 600.01, 593.99, 521.99, 83.74].

For this example we knew the ground-truth solution isftrue = 600 pixels.
There exist many (global) approaches to solving a univariate polynomial equation.

Popular options include thecompanion matrixtechnique, or Sturm sequence bi-section
technique [4]. The former can findall rootsof a univariate polynomial, and the later can
find all real roots. After solving the resultant equation, we only keep the real positive
ones as thecandidate roots, and then feed them into a second stage—root-selection.

5.2 Root Selection

From six point correspondences, one may get multiple candidate focal-lengths. There-
fore a root-selection stage is required to single out a unique best root. In general, this
stage is possible if only we have more than six points. In other words, it is the redundant
measurements that provides extra information to resolve the multi-root ambiguity.

Paper [1] did not address the issue of root-selection, because it only deals with
synthetic data with known ground-truth. RANSAC scheme is a good choice to fulfil
such root-selection task. In the following we propose a kernel-voting scheme, which
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can be used as an alternative to the RANSAC, and which we think is suitable for the
underlying problem.

6 Kernel Voting: Combining Multiple Measurements

To resolve the multiple roots ambiguity, the classical way is to use multiple measure-
ments to eliminate those inconsistent solutions.

GivenN (N � 1) groups of data, we will have a system ofN simultaneous polyno-
mial equations in one unknown. Any attempt to solve such an over-determined equation
system strictly (exactly) is doomed to fail, because the inevitable noise in input will al-
most always make the equation system inconsistent (i.e,co-prime).

Alternatively, one could exploit theleast squareidea. For example, one might think
of using a global cost function by summing up the square of each individual resultant
equations Eq.(9) and then apply the bundle adjustment. However, experiments show
that this simple idea does not work, because the summation has cancelled many of the
convexities of the individual polynomials, leading to a cost function which is less likely
to converge to global minima [13] [9].

RANSAC has been proposed as a successful approach to disambiguate the multiple
roots problem, e.g, infive-point relative-orientationproblem [11]. It is a good option
here to resolve the ambiguity. However, in this paper, we suggest an alternative scheme
based on the kernel-voting idea [10], which we believe is quite useful for certain situa-
tions.

The basic strategy is to keep the form ofminimal solverfor each individual data
group (of six points), and use avotingscheme to choose thebest rootafterward. By the
best rootwe mean that it is agreed by the majority of the the input measurements. This
technique is therefore also immune to outliers.

6.1 Kernel Voting

The purpose of kernel-voting ([10]) is to single out the best real root from multiple
candidate solutions. We fulfil this by a ”soft” voting scheme, where thevotesare the
candidate roots that each polynomial Eq.(9) produces.

Because Eq.(9) is a high-degree polynomial, it is very sensitive to noise. A small
perturbation in the input point coordinates may cause large changes in the polynomial
coefficients. And this may significantly distort the resultant equation, as well as its
roots. However, By experimentations we found: although noise affects the high-order
basic equationsindividually, the obtained roots mostly surround the genuine root (this
is also because a polynomial is a continuous function). The statistical distribution of
all roots computed from the multiple measurements displays a peak shape. So long
as a sufficiently large number of measurements, an asymptotically correct root will be
eventually found. That is, the position that receives the maximal numbers of votes will
eventually win.

In spirit, our voting scheme is similar to the Hough transform. However, their opera-
tions are differences. In the Hough transform the voting space is tessellated into discrete
cells, while the voting space of ours is the continuous real axis. In addition, since we
only receive votes at rather sparse and isolated positions (of the real roots), our search
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can be performed more efficiently. In order to smooth the voting space, we introduce a
kernel density estimator (KDE) to estimate the distribution of the candidate roots. Then
the peak position, corresponding to the (globally) maximal (peak) probability, is iden-
tified as the output of the best root. In this sense, it works like a Maximal-Likelihood
Decision-Maker. Compared with the RANSAC, our kernel-voting scheme turns to make
acollectivedecision, rather than depending on oneindividualdecision.

Given multiple independent observations of a random variable, the KDE at pointx
is defined as

f̂h(x) =

n∑
i=1

K(xi − x)

h
(10)

whereK() denotes the kernel function, andh the bandwidth. Here we choose a Gaussian
Kernel with fixed bandwidth, and simply set the bandwidth as the estimation precision
that we expect (e.g, 0.5%–1% of the focal-length).

7 Experiments

Thanks to the simplicity of thehidden variabletechnique, we implemented our six-
point algorithm economically. The program language used is Matlab (with Symbolic-
Math toolbox, which is essentially a subset of Maple). For reference purposes we in-
clude our Matlab program in the appendix of the paper. The central part of the program
consists of 20 lines of code only, most being general (Matlab and Maple) functions.
No hidden code is used. Only for demonstration purpose, a Maple functionsolve is
applied in one step, which itself is indeed a long implementation. However, since that
step is only used to solve a univariate equation, the reader can change it to any suitable
solver.

We test our algorithm on both synthetic data (with various levels of noise and out-
liers) and real images. Some results are reported below.

7.1 Test on Synthetic Data

To resemble the real case, the size of synthetic image is512× 512. We tested different
values forf , but found that they do not affect the final accuracy. So, in what follows we
always use a ground-truth focal-length of 600 pixels. The camera motions between two
views are drawn randomly. No special attention has been paid to avoid thedegenerate
motions (for focal-length estimation [7]). Gaussian noise was introduced to the raw
image coordinates. It is noteworthy that the Hartley’s normalization ([5]) isnotessential
for our six-point algorithm.

Our first experiment aimed at testing the focal-length estimation accuracy versus
different image noises. From six points our algorithm is already able to output real focal
length. However, in order to obtain a statistically robust estimation, fifty feature points
were used to extract three 9-dimensional null-space vectors. After applying the proce-
dures, we choose the best root as the nearest one to the ground-truth, and repeat this pro-
cedure 100 times. The following curves (fig-1) show the distribution of relative errors
(percentage) in focal-length under different levels of noise. Our second experiment was
used to test the performance of the root-selection based on the proposed kernel-voting
scheme. From 50 point correspondences, we randomly drew 50 six-point data-groups,
and apply our six-point algorithm to them. After performing a kernel-voting on all the
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Fig. 1. Distribution of relative errors in focal-length estimation, for noise levels at (a) 0.0001
pixels, (b) 0.1 pixels and(c) 0.5 pixels (d) 1.0 pixels in a 512 size synthetic image. Note that even
when the noise level is at 1.0 pixels, the relative errors are mainly less than 5%.
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Fig. 2.Kernel-voting results, for noise level at (a)0.0001 pixels, (b)0.1 pixels and (c)1.0 pixels in
a 512 size image. From the peak position we get the focal-length estimationf ≈600.
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obtained candidate focal-lengths, we plot the curves of root distribution and pick up the
peak position. Some example curves are shown in figure-2. These curves show that the
estimated focal-lengths are quite accurate.

We also test the cases where there are outliers in inputs and where there are errors
in some of the camera intrinsics. From the voting curves shown in fig-3 we see that the
proposed method is robust to outliers, and not sensitive to the errors in some intrinsics.

100 200 300 400 500 600 700 800 900 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Real roots distribution within range [0, +2000.0] using KDE estimation

Real axis

R
oo

t d
is

tr
ib

ut
io

n 
fu

nc
tio

n

Gaussian Kernel Width = 2.5

with 10% outliers
and 1.0 pixel
noise

100 200 300 400 500 600 700 800 900 1000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Real roots distribution within range [0, +2000.0] using KDE estimation

Real axis

R
oo

t d
is

tr
ib

ut
io

n 
fu

nc
tio

n

Gaussian Kernel Width = 2.5

Test result when the aspect
ratio is 0.95

Fig. 3. (a)With 10% outliers (b)With some errors in the aspect ratio estimation: the true aspect-
ratio is 0.95 but mis-use 1.00.

0 0.5 1 1.5 2 2.5 3
550

560

570

580

590

600

610

620

630

640

650
Accuracy in focal−length estimation vs. noise

Noise level (pixels in a 512 size image)

F
oc

al
−l

en
gt

h

Ground−truth
foc

Fig. 4.Error bars (mean value and standard deviations) of focal-length estimation under different
levels of noise.

To quantitatively evaluate the estimation accuracy, we repeat the experiment 100 times,
and plot the error-bar curve (mean value and standard deviation versus noise) in fig-4.
Remember that the camera motions are drawn randomly (i.e. we did not intentionally
avoid the degenerate motion). We also conducted experiments for comparing the nu-
merical performances between our algorithm and ([1]), but no significant difference
was found. This makes sense as both algorithms use essentially the same formulation.
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(a) Two Valbonne images and some cor-
responding points.
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7.2 Test on Real Images

We have tested our new six-point algorithm on some real images. For example, we
test the Valbonne sequences shown in fig-5(a). The two input images are partially cal-
ibrated using the calibration information provided by other authors[9]:[α, u0, v0] =
[1.0, 258.8, 383.2]. Then apply our algorithm, we get the following root distribution
curve shown in figure-5(b), from which we can read the focal-length is about 670 pix-
els, which is close to the estimation of 699 pixels given by [9]. We also test some other
standard image sequences. We find that as long as the two cameras are not in degen-
erate configurations ([8]) the estimated focal-length is close to the ground-truth data
(obtained from other calibration procedure).

8 Discussion

Even when there are more than six points available in image, there are still advantages
of using thesix-point algorithm. Indeed, it is a good strategy of keep using such a
minimal-solvereven when extra data are available. The reason is explained in [11] and
[1], showing that minimal-solver often offers better performance than the non-minimal
ones. At first sight this is a bit surprise. However, a careful analysis will reveal the
reason. That is, the minimal solver has better exploited all available inherent constraints
of the problem (both linear and nonlinear), while many other conventional algorithms
(e.g, 8pt algorithm) only use the extra measurements to get a better linear null-space
estimation [5].

Our algorithm will fail when thedegenerate cases(for focal-length estimation, cf.
[8]) is met, for example, when the two optical axes intersect at equal distances, or when
the camera underwent a pure translation. As this is a general difficulty for any focal-
length algorithm, we do not intend to overcome it here. However, it is our conjecture that
because the six-point algorithm has better exploited the nonlinear constraints it might
have better conditioning near some degenerate configurations (including the critical
surfaces and singular motions). To justify this, more critical experiments and theoretical
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analysis are yet to be done. The author believes that how to mitigate the degenerate
surfaces problem in motion-and-structure computation is a topic worth researching.

9 Conclusions
We have provided a practical algorithm to solve the six-point focal-length problem. The
most appealing feature is its simplicity and transparency. Besides its theoretical contri-
bution, we hope the six-point algorithm will make a small and useful module in many
vision systems.
We believe that the proposed algorithm is not an individual success of the powerful
hidden-variable technique. It can have wider applications in similar problems, for ex-
ample, five-point relative-orientation and three-point absolute-orientation etc. These can
be future work.
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Program 1 : The six-point focal-length algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This is a simple 6-pt focal-length algorithm. %%%
%% Use Matlab-7.0(6.5)with SymbolicMath Toolbox. %%%
%% The "Matches" is a 6x4 matrix containing six points. %%%
%% For example, %%%
Matches = [ 93.3053, 59.9312, -420.3770, -773.9141;

-141.9589, -50.1980, -386.7602, -471.0662;
-174.0883, -157.0080, -489.9528, -259.9091;
-57.6271 , -12.2055 , -394.5345, -466.4747;
-115.7769, 154.4320, -172.2640, -461.6882;

134.6858, -4.0822, -575.1835, -855.5145]
%% For this example the ground truth is foc = 600. %%%%%%%%%
%% Output: all computed focal-lengths in foc. %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function foc = SixPtFocal(Matches)

syms F f x y z w equ Res Q C
Q = [1, 0 ,0 ; 0 ,1 ,0; 0, 0, w];
q = [ Matches(:,1), Matches(:,2)] ;
qp = [ Matches(:,3), Matches(:,4)] ;
M = [qp(:,1).*q(:,1), qp(:,1).*q(:,2), qp(:,1), ...

qp(:,2).*q(:,1), qp(:,2).*q(:,2), qp(:,2), ...
q(:,1), q(:,2), ones(6,1)] ;

N = null(M) %%% compute the null-space
f = x*N(:,1) + y*N(:,2) + z*N(:,3); %% form the FM
F = transpose(reshape(f,3,3));
FT =transpose(F);
equ(1) = det(F);
equ(2:10) = expand(2*F*Q*FT*Q*F-trace(F*Q*FT*Q)*F);

for i =1:10
%Note:Be careful with MATLAB delimiter for string, ’or‘?

equ(i) = maple(‘collect‘,equ(i),‘[x,y,z]‘,‘distributed‘);
for j =1:10

oper = maple(‘op‘, j, equ(i)) ;
C(i,j) = maple(‘op‘,1,oper);

end
end
disp(‘Compute Det(C),need a while,please wait,,,‘);
Res = maple(‘evalf‘, det(C))%%Hidden-variable resultant
foc = 1.0./sqrt(double([solve( Res)]))
disp(‘Ground-truth focal-length = 600.0000‘);
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