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Abstract. Object detection has seen a surge of interest in recent years,
which has lead to increasingly effective techniques. These techniques,
however, still mostly perform detection based on local evidence in the
input image. While some progress has been made towards exploiting
scene context, the resulting methods typically only consider a single im-
age at a time. Intuitively, however, the information contained jointly in
multiple images should help overcoming phenomena such as occlusion
and poor resolution. In this paper, we address the co-detection problem
that aims to leverage this collective power to achieve object detection si-
multaneously in all the images of a set. To this end, we formulate object
co-detection as inference in a fully-connected CRF whose edges model
the similarity between object candidates. We then learn a similarity func-
tion that allows us to efficiently perform inference in this fully-connected
graph, even in the presence of many object candidates. This is in con-
trast with existing co-detection techniques that rely on exhaustive or
greedy search, and thus do not scale well. Our experiments demonstrate
the benefits of our approach on several co-detection datasets.
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1 Introduction

Object detection has been a central problem in modern computer vision, and
much progress has been made in recent years, as demonstrated by the PASCAL
challenge [12] and the ImageNet challenge [7]. Whether working at instance [22]
or category [14] level, most of the research has focused on detecting objects
in a single image and in a sliding window manner. It is widely acknowledged,
however, that such a myopic view is too restrictive as it ignores all contextual in-
formation [15]. On their own, the appearance cues of an object instance are often
ambiguous due to poor resolution, occlusions, or challenging lighting conditions.

Previous work on object detection with context mainly exploits the 2D or 3D
scene context observed in the same image as the detected objects [19, 8]. Recently,
simultaneously exploiting multiple images has been proposed as a means to
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Fig. 1. Overview of our method. Left: Original input images and candidates gener-
ated with a DPM; Middle: Fully-connected CRF on the candidates and corresponding
learned pairwise similarities; Right: Jointly detected objects by efficient inference in
the fully-connected CRF (actual result).

gather broader contextual information for detection. The resulting object co-
detection techniques [3, 18, 24] aim to jointly detect multiple instances of an
object class from a pool of images. Intuitively, object co-detection leverages the
weak appearance cues of object instances seen in multiple images to improve the
robustness of object detection.

A critical challenge in object co-detection is to incorporate many object hy-
potheses from multiple images while keeping the joint classification of those
object hypotheses tractable. Typically, the problem is formulated as that of in-
ferring the (binary) activation labels of object candidates, which is a combinato-
rial search problem. The existing methods rely on either exhaustive search [3], or
ad hoc greedy search [24]. While these strategies are effective for a small num-
ber of images, they are in general suboptimal, and become impractical when
considering large image pools or number of classes.

In this paper, we introduce a principled and efficient inference method for
object co-detection. Given a pool of object candidates obtained by applying a
pre-trained detector with a high recall rate (e.g., the Deformable Part-based
Model (DPM) [14]), we construct a fully-connected Conditional Random Field
(CRF) where the nodes represent the candidate labels, and the edges encode
the appearance similarity between two candidates. Inference in this CRF lets us
predict the labels of all the object candidates simultaneously.

For our formulation to remain tractable, we need to be able to leverage
efficient inference techniques in fully-connected CRFs. To this end, we model the
similarity between two candidates as a linear combination of Gaussian kernels
defined on multiple image features. The weights of this combination can be
efficiently learned from training data. We make use of this similarity in the edge
potentials of our CRF, which encode a data-dependent Potts model. The form of
these potentials lets us utilize the efficient mean field inference algorithm of [21],
which not only yields the candidate labels, but also confidence in our predictions.
Fig. 1 depicts an overview of our framework.
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We evaluate our method on three benchmark co-detection datasets: the
Pedestrian dataset [11], the Ford Car dataset [3] and the Human Co-Detection
dataset [24]. In all three cases, our approach outperforms the state-of-the-art co-
detection methods, thus demonstrating the benefits of adequately modeling the
relations between all object candidates via our fully-connected CRF formulation.

2 Related Work

Object modeling and recognition has been one of the fundamental problems
in computer vision since its early days [9]. In particular, object detection has
evolved into a core challenge in vision research [12, 7], and much progress has
been made recently due to advances in deformable part-based object models,
e.g., DPM [14], as well as in deep network models [16].

Traditionally, object detection methods take a scanning window approach
and exhaustively search for object candidates at every location and scale in an
image [28, 6, 14]. More recently, objectness criteria have been used to propose
potential candidates, which drastically reduces the search space [10, 1, 25]. Ob-
jectness, however, is very challenging to adequately represent, since it has to
account for the huge intra-class variations of the general object category, while
still being able to differentiate it from the background class. As a matter of fact,
these challenges remain unsolved even when detecting specific objects.

A natural perspective to improve the robustness of detectors to phenomena
such as poor resolution, occlusions, and challenging lighting conditions, consists
in putting objects into context. To this end, the scene properties of the target
image are exploited to boost the object detection performance. For instance,
Desai et al. [8] propose to jointly detect multiple object classes by defining a
CRF on top of DPMs. In [4], multiple instances of the same object class are
jointly detected to address the occlusion problem. Hoiem et al. [19] consider
the geometric context of the scene to improve detection by reducing the num-
ber of false positives. While these approaches have proven more effective than
context-free detectors, they focus on exploiting the context from a single im-
age. Intuitively, however, the information available in multiple images should be
helpful to disambiguate detection.

Object co-detection methods [3, 18, 24] were recently introduced to exploit
the collective power of a set of images. In particular, the term co-detection was
coined by Bao et al. [3], who tackle the problem by exhaustively searching for
matching object instances in a set of object candidates. Generally speaking, co-
detection has been considered for both 2D and 3D object models, as well as
at category- and instance-levels. Category-level co-detection involves matching
objects belonging to the same class (e.g., a person with another person) and
appearing either in the same image, or in multiple images. In contrast, instance-
level co-detection compares specific object instances (e.g., a specific person) that
appear simultaneously in a pool of input images (e.g., [24]). While the original
work of Bao et al. [3] could only handle pairs of images, Guo et al. [18] introduced
a robust approach to multi-image co-detection that builds a shared low-rank rep-
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resentation of the object instances in multiple feature spaces. Unlike these works,
our method is based on a principled CRF formulation. Therefore, it enables us
to perform joint inference efficiently for many object instances extracted from
multiple images.

Our work is inspired by the fully-connected CRF model for semantic label-
ing of [21, 27, 30]. By restricting the functional form of the pairwise potentials
to a weighted mixture of Gaussian kernels defined on the input feature space,
inference in this fully-connected CRF can be performed efficiently as a filtering
operation. Here, instead of labeling the pixels in an image, we aim to label object
candidates from multiple images in a principled and yet efficient manner. To the
best of our knowledge, our work is the first attempt to extend the fully-connected
CRF model of [21] to another vision problem domain.

In this context, we propose to learn the pairwise potentials in our CRF by
fitting a linear combination of kernels to a target similarity measure. This bears
some connections with the multiple kernel learning literature [17, 26]. However,
our objective is not to build a kernel-based similarity classifier as in [24], since this
would not yield a mixture of Gaussian kernels adapted to our fully-connected
CRF framework. Instead, our similarity learning approach is closer to metric
learning [29]. In contrast, however, we jointly consider multiple kernels defined
on separate feature spaces, thus yielding more flexibility than the single linear
transformation typically used in metric learning methods.

3 A Fully-Connected CRF for Co-Detection

In this paper, we tackle the object co-detection problem, in which we aim to
detect simultaneously all the instances of an object class in a group of S input
images I = {I1, · · · , IS}. As in [3, 18, 24], when dealing with C > 1 object
classes, we handle each class separately. Note that, while we discuss the case of
category-level detection, our framework also applies to detecting the instances of
specific objects (instance-level). Furthermore, we do not assume that each image
contains only a single instance of an object class.

For each object class, our approach consists of two stages: first we generate
a pool of object candidates in the form of bounding boxes obtained with a pre-
trained object detector; then we formulate co-detection as a two-class labeling
problem, where each candidate must be assigned either to the current object
class of interest, or to a background class. These two steps are described in more
detail in the remainder of this setion.

3.1 Object Candidate Generation

Following [3], given a target object class c, we first apply a pre-trained DPM [14]
to each input image and extract a set of object candidates, denoted by X c =
{Xc

1, · · · ,Xc
Nc
}. To prevent entirely missing some objects in this first stage,

we adjust the threshold of each detector and the non-maximum suppression
parameters so as to achieve a high recall rate for all target classes. Note that,
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Fig. 2. Sample object candidates in three datasets. Left: Pedestrian dataset [11];
Middle: Ford Car dataset [3]; Right: Human Co-detection dataset [24].

while we employ DPMs, any object detector that outputs a bounding box can
be employed in our candidate generation stage. Fig. 2 shows some examples of
object candidates generated for three different object classes.

Given the set of candidates X c for class c, we then adopt a part-based rep-
resentation as in the DPM. An object candidate Xc

i is represented by its root
rci and a set of k parts Pc

i = {pc
i,1, · · · ,pc

i,k}, together with the image window
Wc

i corresponding to the object bounding box. For each candidate Xc
i , we also

compute a set of appearance features from its image window Wc
i . These fea-

tures, denoted by f ci,s for a specific feature type s, capture the color and texture
properties of the candidate.

3.2 CRF Formulation

Given the candidate pool X c, we formulate object co-detection as the problem
of jointly labeling the candidates with the corresponding object or background
class. More specifically, we introduce a label variable yci for each object candidate
Xc

i , which takes either the object class label lc, or the background label l0.
To appropriately capture the dependencies of our object candidates, we

build a fully-connected Conditional Random Field (CRF) on the label variables
Yc = {yc1, · · · , ycNc

}. Each node in the CRF corresponds to the label of one ob-
ject candidate, and any pair of two candidates are connected by an edge that
encodes their relationship. Formally, we define the joint distribution over the
label variables Yc given the observed candidates X c as

P (Yc|X c) =
1

Z(X c)
exp

− Nc∑
i=1

φu(yci |Xc
i )− α

Nc∑
i=1

∑
j>i

ψp(yci , y
c
j |Xc

i ,X
c
j)

 , (1)

where Z(·) is the partition function, α is a weight learned by cross-validation,
and φu and ψp are the unary and pairwise potential functions, respectively. The
unary potential φu encodes how likely a candidate is to be associated with each
class, while the pairwise potential ψp measures the affinity between the different
possible class assignments of two candidates.

Object co-detection then boils down to inferring the optimal label configu-
ration of this CRF model, which jointly labels all the object candidates. In our
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work, we do not put any restriction on the number of input images. Consequently,
we may have a large number of object candidates (nodes) in our CRF. Inference
in such a large, fully-connected CRF is in general intractable and difficult to
approximate. The key challenge therefore lies in finding an efficient inference
procedure in our fully-connected CRF.

To address joint inference in a principled way, we rely on the formulation
of [21] to design our CRF model. The main requirement of this formulation is
that the pairwise potentials must have the form of a mixture of Gaussian kernels.
In the following, we discuss the potential functions employed in our model, and,
in particular, introduce pairwise potentials that meet this mixture-of-Gaussian-
kernels requirement and, as we will show, are effective for co-detection.

Unary Potentials. The unary potentials measure the likelihood that a candi-
date Xc

i belongs to the object class and to the background class. Following [3],
we use a rescaled DPM score as unary potential. This lets us write our unary
term as

φu(yci |Xc
i ) =

Er(rci ,W
c
i ) +

k∑
j=1

(
Ep(pc

i,j ,W
c
i ) + Ed(rci ,p

c
i,j)
)

if yci = lc

0 if yci = l0,

(2)

where Er and Ep are the unary potentials for the root and part filters respec-
tively. Ed encodes the deformation cost between the root rci and each part pc

i,j .
Er, Ep and Ed are directly defined as in the original DPM [14]. Note that, in prin-
ciple, if the candidate was generated by another detector, we could still extract
the DPM model parameters from Wc

i and make use of this unary potential.

Pairwise Potentials. The pairwise potential ψp is a data-dependent smoothing
term that encourages similar hypotheses to share the same object label. As
in [21], we restrict our pairwise potential to take the form of a weighted mixture
of Gaussian kernels, which can be expressed as

ψp(yci , y
c
j |Xc

i ,X
c
j) = µ(yci , y

c
j)

M∑
m=1

wmk(m)(f ci , f
c
j ) , (3)

where {wm} are the weights of the Gaussian kernels {k(m)}, and µ is a label
compatibility function. In particular, we make use of this function to encode a
data-dependent Potts model, i.e., µ(yi, yj) = 1yi 6=yj .

The mixture of Gaussian kernels measures the appearance similarity between
two object candidates. To this end, we use multiple feature types, as well as
multiple kernel parameters. For each feature type fs, we construct a series of
kernel functions of the form

k(f ci,s, f
c
j,s; t, σs) = exp

(
−
‖f ci,s − f cj,s‖2

2tσ2
s

)
, (4)
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where σs is the minimum kernel width and t is an integer. We enumerate the
value of t from 1 to T to define our series of kernels. Using kernels with different
widths provides us with more flexibility in the representation of the similarity.
The mixture of Gaussian kernels in Eq. 3 is then obtained by summing over all
feature types and all values of t in each type. As will be discussed in Section 3.3,
to avoid having to manually tune the weights {wm} of this mixture, we propose
an efficient supervised learning procedure to estimate these weights.

Efficient co-detection Given our fully-connected CRF model, we jointly de-
tect the object instances in the input images by performing maximum posterior
marginal inference. Following [21], we adopt a fast mean field approximation al-
gorithm to compute the marginals. Given the current mean field estimates {Qi}
of the marginals, the update equation can be written as

Qi(y
c
i = l) ∝ exp

−φu(yci )−
∑
l′ 6=l

∑
j 6=i

Qj(y
c
j = l′)ψp(yci , y

c
j)

 . (5)

Due to the mixture of Gaussian kernels form of the pairwise term, the updates
can be computed in parallel by convolution with Gaussian kernels. This can be
achieved efficiently by exploiting fast Gaussian filtering techniques, such as the
permutohedral lattice-based method of [2].

After convergence, we obtain an (approximate) posterior distribution of ob-
ject labels for each node (i.e., object candidate). To obtain the final co-detection
results, we can then compute the most likely label for each object candidate,
ŷci = arg maxyc

i
Qi(y

c
i ). Furthermore, we can also exploit the mean field approx-

imate marginal probability Qi(ŷ
c
i ) as a detection score.

Note that, with our pairwise potential and since we treat each class sepa-
rately, our CRF models a binary problem with a submodular energy function.
As such, it could in principle be solved exactly by the graph-cut algorithm [5,
20]. However, to achieve efficiency, the conventional graph-cut algorithm [5] re-
lies on the sparse connectivity of the graph. As will be shown in Section 4, a
graph-cut solution to our inference problem becomes significantly slower than
our efficient filtering-based mean field solution when dealing with large densely
connected random fields. Furthermore, note also that the MAP estimate from
graph-cut does not provide a confidence score for the detection. Finally, despite
that in this work we focus on a binary labeling problem, our formulation easily
extends to the multi-class scenario.

3.3 Learning Object Similarity

Recall that our pairwise potentials encode the appearance similarity between
two object candidates as a mixture of Gaussian kernels. To suitably adjust the
weights of the mixture to the problem at hand, we can exploit training data
and learn the weights that minimize the deviation from an ideal similarity mea-
sure. Here we formulate kernel weights estimation as a least-squares regression
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problem, where the ground-truth (binary) similarity is directly defined by the
compatibility of the labels of two object instances.

More specifically, we build a training set of object pairs,D = {(Xi,1,Xi,2, si)},
where si is the ground-truth similarity, taking value 1 if Xi,1 and Xi,2 belong
to the same class (excluding background) and 0 otherwise. The weights of the
kernels can then be estimated by solving the optimization problem

ŵ = argmin
w

1

|D|

|D|∑
i=1

(
si −

M∑
m=1

wmk(m)(fi,1, fi,2)

)2

, (6)

where w = {w1, · · · , wM} contains the weights of all kernels for all feature types.
Note that this is a least-squares problem, and that its solution can therefore be
obtained in closed-form.

To compute ground-truth similarities for category-level co-detection, we em-
ploy the following procedure. For each object class c, we first apply the same
pre-trained object detector with high recall on the training images, and compute
the intersection-over-union (IOU) of each detected bounding box with respect
to the ground-truth bounding boxes. A detected bounding box is said to be-
long to class c if its maximum IOU w.r.t. ground-truth bounding boxes is larger
than 50%. Otherwise, it is labeled as background. The training set D can then
be constructed by collecting all possible pairs of detected bounding boxes and
setting their similarity to 1 if they were both found to belong to class c, and 0
otherwise. In practice, the number of such pairs grows quickly, and we therefore
randomly subsample the dissimilar pairs to build a balanced training set. Note
that, as will be shown in our experiments, this procedure can also make use of
instance-level labels when available, even if the final task remains category-level
co-detection. In this scenario, two bounding boxes are considered similar only if
they depict the same instance from the general category c.

4 Experiments

In this section, we study the effectiveness of our approach and compare it against
state-of-the-art co-detection baselines.

4.1 Datasets and Setup

We evaluate our framework on several standard object co-detection datasets.
These datasets include the Ford Car dataset of [3] and the Pedestrian dataset
of [11], which provide category-level labels for the bounding boxes. Furthermore,
we also employ the Human Co-detection (HCD) dataset of [24], which provides
instance-level annotations of the bounding boxes. Note, however, that the task
for HCD remains that of category-level co-detection, but, as suggested in [24], the
instance-level annotations can be employed to better model object similarities.

In our experiments, we used the version 4 of DPMs [13], since it was also
employed in [18, 24]. This version provides one root and eight parts for each
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object. For each object candidate, we computed a 59 dimensional Local Binary
Patterns (LBP) feature and a 32 dimensional color histogram feature on the H
channel of the HSV color-space. Note that the dimensionality of these features
can be reduced using PCA to speed up inference. Our method has three hyper-
parameters: the number of kernels, the widths σs and the pairwise weight α.
These parameters were obtained by two-fold cross validation.

In our results, each bounding box is labeled based on the mean field approx-
imate marginal probability of the object class. This lets us compute precision-
recall curves, as opposed to a single point on these curves if we used the MAP
estimate. We report average precision (AP) at category level following the eval-
uation metric in the PASCAL VOC challenge. For a bounding box to be con-
sidered correct, it must have at least 50% overlap with one of the ground truth
bounding boxes in that image. This also has the advantage of making our results
directly comparable to previously-reported ones. Therefore, for the baselines, we
directly quote results reported in [3, 18, 24]. Our results for all experiments were
averaged over 10 random training/test partitions.

We compare our method with the DPM baseline [14] and the following state-
of-the-art co-detection approaches: 1) Object Co-detection [3]; 2) Multi-feature
Joint Low-Rank Reconstruction [18]; 3) Human Co-detection and Labeling [24].
To study the effect of using different image features in our similarity kernels, we
also consider two simpler versions of our approach, each of which uses only one
feature type (either LBP [23] or color histograms). We refer to these two systems
as LBP-CRF and Color-CRF, respectively, and to our full system as Joint-CRF.

4.2 Results and Discussion

Pedestrian Dataset. The Pedestrian dataset consists of 476 training images
and 374 test images from two video sequences of street scenes acquired with a
stereo setup. Each image has a resolution of 640 × 480 and contains multiple
people. To evaluate our co-detection framework, we follow the same scenario as
other co-detection work, which address the problem of jointly detecting people in
a pair of images. Note that this dataset provides ground truth labels only for the
left images in the stereo pairs. To mimic the stereo scenario, we therefore follow
the same strategy as [18] and generate pseudo-stereo pairs by randomly drawing
pairs of images that are no more than 3 frames apart in the left sequences. We
generate 476 training pairs from the left training sequence and 300 test pairs
from the left test sequence in this manner.

In Table 1, we report the results of our approach and the baselines on this
dataset. Note that our approach significantly improves the results of the DPMs.
More importantly, we also outperform all the baselines, even [24] that is specif-
ically dedicated to the human co-detection case. This is also true for the single-
feature versions of our model (LBP-CRF and Color-CRF). Combining these
two features in our Joint-CRF model nonetheless lets us further improve per-
formance. Sample co-detection results are given in Fig. 3. We also evaluate our
method with random pairs as in [3] and achieve a similar performance, as shown
in Table 1.
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Stereo Pairs Random Pairs

Methods Ped(all) Ped(h>120) Ped(all) Ped(h>120)

DPM [13] 59.7 55.4 59.7 55.4
Obj. Co-detection [3] 62.7 63.4 58.1 58.1

Robust Obj. Co-detection [18] 67.8 70.1 67.7 70.3
Human CoDeL [24] 74.4 73.8 - -

LBP-CRF 77.04 79.43 - -
Color-CRF 77.99 79.70 - -
Joint-CRF 78.73 81.25 77.7 80.43

Table 1. Pedestrian co-detection: Comparison of our approach with state-of-the-
art co-detection methods on the Pedestrian dataset.

Fig. 3. Sample Results: Examples of our co-detection results on test pairs of the
Pedestrian dataset. Top two rows: Input image pairs (Green dash: our results, Red
solid: DPM results); Bottom row: Precision-recall curves of our method and DPM for
the three image pairs. The precision-recall curves over all pairs are shown on the right.

We then study the quality of the similarity function learned from the training
pairs using the method described in Section 3.3. To this end, in Fig. 4, we
compare the similarity matrix obtained by applying the learned function to
the candidates in one test pair with the corresponding ground-truth similarity
computed from the correct labels (pedestrian vs background). Note that the
predicted similarity depicts a similar pattern to the ground-truth one. This is
further evidenced by the histogram that shows that pedestrian candidates have
a high similarity score.

Ford Car Dataset. The Ford Car dataset consists of five scenes, each of which
contains 86 stereo images. Each image has a resolution of 781× 601 and depicts
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Fig. 4. Predicting similarity: Sample similarity matrix obtained by applying our
learned similarity function to one test pair of the Pedestrian dataset. Left: Input image
pair; Middle: (Top) target (ground truth) similarity matrix, (Bottom) learned similarity
matrix (brighter means more similar); Right: Normalized histograms of similarity scores
for matched and non-matched candidate pairs.

Stereo Pairs Random Pairs

Method Ford(all) Ford(h>80) Ford(all) Ford(h>80)

DPM [13] 49.8 47.1 49.8 47.1
Obj. Co-detection [3] 53.5 55.5 50.0 49.1

Robust Obj. Co-detection [18] 55 57.5 55.1 57.5

LBP-CRF 60.13 61.67 - -
Color-CRF 59.44 60.45 - -
Joint-CRF 60.77 61.45 62.49 59.13

Table 2. Car co-detection: Comparison of our approach with state-of-the-art co-
detection methods on the Ford Car dataset

multiple instances of cars at different scales and orientations. We made use of
the 300 pseudo-stereo pairs provided by [3], which were generated in the same
manner as described above for the Pedestrian dataset. Since no training pairs
are provided, we extracted them in the same fashion, while ensuring no overlap
with the test pairs. This resulted in a total of 410 training pairs.

The results of our approach and the baselines on this dataset are reported
in Table 2. Note that, since it is dedicated to human co-detection, the method
of [24] does not apply to this dataset. As in the Pedestrian case, our approach
yields a significant performance improvement over the baselines. This is the case
both with the single-feature models and with our Joint-CRF model. Sample co-
detections are provided in Fig. 5. In addition, we also use random pairs, as in [3],
for evaluation and obtain similar results. This shows that our method does not
rely on the temporal information in the dataset.

Similarly to the Pedestrian case, in Fig. 6, we illustrate the quality of the
learned similarity function by depicting the similarity matrix obtained when
applying this function to one test pair. We can again see that the predicted
similarity correctly reflects the ground-truth one.
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Fig. 5. Sample Results: Examples of our co-detection results on test pairs of the
Ford Car dataset. Top two rows: Input image pairs (Green dash: our results, Red solid:
DPM results); Bottom row: Precision-recall curves of our method and DPM for the
three image pairs. The precision-recall curves over all pairs are shown on the right.

Fig. 6. Predicting similarity: Sample similarity matrix obtained by applying our
learned similarity function to one test pair of the Ford Car dataset. Left: Input image
pair; Middle: (Top) target (ground truth) similarity matrix, (Bottom) learned similarity
matrix (brighter means more similar); Right: Normalized histograms of similarity scores
for matched and non-matched candidate pairs.

Human Co-Detection Dataset. The HCD [24] comprises 387 images sepa-
rated into 26 sets. Each image may contain multiple people, and the appearance
of these people is consistent within one set. As opposed to the Ford Car and
Pedestrian datasets where only two images with relatively small viewpoint dif-
ference are employed for co-detection, all the images in one set of HCD are
considered simultaneously and typically depict large viewpoint changes. For our
experiments, we followed a leave-five-sets-out strategy, which amounts to using
roughly 80% of the images as training data and the remaining 20% (coming from
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HCD Dataset

DPM 69.64
Human CoDeL [24] 74.94

LBP-CRF 78.81
Color-CRF 79.19
Joint-CRF 79.41

Table 3. Human co-detection: Comparison of our approach with state-of-the-art
co-detection methods on the HCD dataset

Fig. 7. Sample Results: Examples of our co-detection results on two sets from the
Human Co-detection dataset. Top: Input image set overlaid with detection output
(Green dash: our results, Red solid: DPM results); Bottom: Precision-recall curves of
our method and DPM for the two sets.

five independent sets) as test images. For this dataset, we employed the provided
instance-level labels to learn our similarity function. Note however that the main
task remains category-level (human) co-detection.

We report our results on this dataset in Table 3. Note that the only reported
results on HCD are those of [24]. As for the other datasets, we outperform the
baselines, whether using a single feature type or multiple ones. Fig. 7 depicts
some of our co-detection results on HCD. For this dataset, we also compare our
results with those of a sparse CRF constructed by connecting only the first k
nearest neighbors (based on our similarity) of each node, with k ranging from
1 to 50. The best F1 score of this sparse CRF (over all values of k) is 80.45%.
This is clearly outperformed by our F1 score of 85.3%.

In Fig. 8, we also show the predicted similarity function for one of the sets in
the dataset. Note that, because of the instance-level annotations, the similarity
matrix is more complex than before. Nonetheless, our predicted similarity matrix
still yields a good approximation of the ground-truth one.
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Fig. 8. Predicting similarity: Sample similarity matrix obtained by applying our
learned similarity function to one test set in the Human Co-Detection dataset. Left:
Input images (three examples); Middle: (Top) target (ground truth) similarity matrix,
(Bottom) learned similarity matrix (brighter means more similar); Right: Normalized
histograms of similarity scores for matched and non-matched candidate pairs.

Scaling up. As mentioned earlier, inference in our model could in principle also
be performed using the Graph-cut algorithm [5]. Here, we study the scalability
of both inference strategies with respect to the number of images considered
jointly at test time. To this end, we build two fully-connected CRF models with
different numbers of test images from the HCD dataset. The first CRF has 330
nodes. In this case, our mean field filtering inference takes 6.5 seconds and the
Graph-cut only takes 0.6 second (this includes the time to compute the potential
functions). However, when the size of the CRF increases by a factor 10, our
method takes 8.5 seconds, which is only mildly slower compared to the previous
setting. In contrast, the Graph-cut spends 30 seconds in potential calculation
and 60 seconds in inference. This shows that the Graph-cut algorithm does not
scale up to larger test sets for fully connected graphs, and thus confirms our
choice of inference strategy.

5 Conclusion

In this paper, we have introduced a formulation of object co-detection from a
pool of images that expresses the problem as inference in a fully-connected CRF
whose nodes represent object candidates. We have then shown that modeling the
similarity between pairs of candidates as a weighted mixture of Gaussian kernels
allowed us to efficiently perform inference in our graph, while yielding an effective
representation for co-detection. Our experimental evaluation has demonstrated
that our approach could effectively leverage the information in multiple images to
improve detection accuracy, thus outperforming existing co-detection techniques
on benchmark datasets. In the future, we intend to study how our framework
can be applied to jointly co-detecting different object categories, thus leveraging
the collective power not only of multiple images, but also of multiple classes.
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