
Non-Interference Preserving Compilation of
Android Bytecode

Hendra Gunadi1, Alwen Tiu2, and Rajeev Goré1

1 Research School of Computer Science, The Australian National University
2 School of Computer Science and Engineering, Nanyang Technological University

Abstract. We aim to develop a proof-carrying code (PCC) framework
to certify compliance of an Android application with a given information
flow policy, specified via certain non-interference properties. In the PCC
framework, a certified application comes with a statement of an informa-
tion flow policy and a proof that its execution complies with the given
policy. We follow a type-based approach for enforcing non-interference,
in which typeable programs are guaranteed to be non-interferrent and
typing derivations serve as certificates of non-interference. Our eventual
goal is to produce a compiler tool chain that can help developers to
develop Android applications that complies with a given policy, and au-
tomate the process of generating the final non-interference certificates
for Dalvik bytecode. Android apps are typically developed in Java, and
go through two stages of compilation. The first one compiles the Java
code into JVM bytecode, and the second one compiles the JVM bytecode
into the final Android Dalvik bytecode. Non-interference type systems
exist for all three languages (Java, JVM and Dalvik), and Barth et. al.
have shown that typeability is preserved going from Java source to JVM.
To complete the picture, we show here that the compilation from JVM
to Dalvik, as implemented in the official Android dx tool, preserves ty-
peability. We then show how such a type-based certification scheme can
be implemented, and give details of the certificate encodings in Android
apps.

1 Introduction

Android is an operating system that has been used in many mobile devices. Ac-
cording to [2], Android has the largest market share for mobile devices, making it
an attractive target for malware, so verification of the security properties of An-
droid apps is crucial. To install an application, users can download applications
from Google Play or third-party app stores in the form of an Android Applica-
tion Package (APK). Each of these applications runs in an instance of a Dalvik
virtual machine (VM) on top of the Linux operating system. Contained in each
of these APKs is a DEX file containing specific instructions [1] to be executed
by the Dalvik VM, so from here on we will refer to these bytecode instructions
as DEX instructions. The Dalvik VM is a register-based VM, unlike the Java
Virtual Machine (JVM) which is a stack-based VM. Dalvik is now superseded

by a new runtime framework called ART, but this does not affect our analysis
since both Dalvik and ART use the same DEX instructions.

We aim at providing a framework for constructing trustworthy apps, where
developers of apps can provide guarantees that the (sensitive) information the
apps use is not leaked outside the device without the user’s consent. The frame-
work should also provide a mean for the end user to verify that apps con-
structed using the framework adhere to their advertised security policies. This
is, of course, not a new concept, and it is essentially a rehash of the (founda-
tional) proof carrying code (PCC) [24, 3], applied to the Android setting. We
follow a type-based approach for restricting information flow [?] in Android
apps. Semantically, information flow properties of apps are specified via a no-
tion of non-interference [?]. In this setting, typeable programs are guaranteed
to be non-interferrent, with respect to a given policy, and typing derivations
serve as certificates of non-interference. Our eventual goal is to produce a com-
piler tool chain that can help developers to develop Android applications that
complies with a given policy, and automate the process of generating the final
non-interference certificates for DEX bytecode.

An Android application is typically written in Java and compiled to Java
classes (JVM bytecode). Then using tools provided in the Android Software De-
velopment Kit (SDK), these Java classes are further compiled into an Android
application in the form of an APK. One important tool in this compilation chain
is the dx tool, which will aggregate the Java classes and produce a DEX file to
be bundled together with other resource files in the APK. Non-interference type
systems exist for Java source code [?], JVM [5] and (abstracted) DEX byte-
code [22]. To build a framework that allows end-to-end certificate production,
one needs to study certificate translation between these different type systems.
The connection between Java and JVM type systems for non-interference has
been studied in [4]. In this work, we fill the gap by showing that the connection
between JVM and DEX type systems. Our contributions are the following:

– We give a formal account of the compilation process from JVM bytecode
to DEX bytecode as implemented in the official dx tool in Android SDK.
Section 3 details some of the translation processes.

– We provide a proof that the translation from JVM to DEX preserves ty-
peability. That is, JVM programs typeable in the non-interference type sys-
tem for JVM translates into typeable programs in the non-interference type
system for DEX.

– We provide a proof-of-concept implementation of a certification framework
for (non-optimized) Android applications. Our certificate for non-inteference
(in the form of a typing derivation) can be injected into existing application
structure for Android (the apk file) without requiring any changes to the
Android framework or the Android app store. Our typechecker on the client
side is a normal Android app that will run in most Android platforms.

The rest of the paper is organized as follows: In Section 2, we give an overview
of JVM and DEX type systems for enforcing non-interference. Section 3 discusses

the compilation process from JVM bytecode to DEX bytecode. Section 4 dis-
cusses how to translate certificates from JVM to DEX. Section 5 shows a proof-
of-concept implementation of our PCC framework and discusses some details of
the stuctures of the apps and the certificates.

Due to space limit, we discuss only a limited fragment of JVM and DEX
in this paper, but our results extend to a richer fragment of JVM, covering all
fragments considered in [5]. The extended version of this paper containing detail
technical results can be found in [18]. The prototype implementation discussed
in Section 5 is available online.3

Related work. The cloest to our work is the Cassandra project [22, 23], that
aims at developing certified app stores, where apps can be certified, using an
information-flow type system similar to ours, for absence of specific informa-
tion flow. Specifically, the authors of [22, 23] have developed an abstract Dalvik
language (ADL), similar to Dalvik bytecode, and a type system for enforcing
non-interference properties for ADL. Our type system for Dalvik is essentially
that of Cassandra, modulo some minor differences in the language constructs.
We choose to deal directly with Dalvik rather than ADL since we aim to even-
tually integrate our certificate compilation into existing compiler tool chains for
Android apps, without having to modify those tool chains.

To deal with information flow properties in Android, there are several works
addressing the problem [7, 17, 9, 12, 26, 20, 16, 19, 15, 13, 14] although some of them
are geared towards the privilege escalation problem. Due to space limitation, we
omit detail comparisons here, but the interested reader may consult the tech-
nical report [18] for further comments. We note only here that none of those
work mentioned above deals with the problem of non-interference preserving
compilation between JVM and DEX bytecode.

2 Information flow type systems for JVM and Android

In this section, we give an overview of Barthe et. al’s type system for JVM [5]
and a type system for Android DEX bytecode similar to that in [23]. Due to
space constraints, and since our main purpose is to prove the non-interference-
preserving compilation of JVM (which is a stack-based machine) to DEX (which
is a register-based machine), we shall only give an overview of the main distin-
guishing features between the two abstract machines in this overview. In par-
ticular, we highlight only the potential information flow induced by the use of
operand stack and how the type system of Barth et al prevents it, and how
this would map to the type system for the register-based Dalvik machine. We
therefore restrict to the simplest fragment of JVM which still exhibits some of
the subtlety in proving non-interference, namely the fragment that covers ba-
sic arithmetic and control operators. We note however, our approach extends
to richer fragments of JVM, including arrays, objects, method invocations and

3 At http://users.cecs.anu.edu.au/~hengunadi/TranslationProof.html.

binop op ∶ binary operation on stack
push c ∶ push value on top of a stack
pop ∶ pop value from top of a stack
swap ∶ swap top two operand stack values
load x ∶ load value of x on stack
store x ∶ store top of stack in variable x
ifeq j ∶ conditional jump
goto j ∶ unconditional jump
return ∶ return the top value of the stack

where op ∈ {+,−,×, /}, c ∈ Z, x ∈ X , j ∈ PP.

Fig. 1: JVM Instruction List

exceptions. The full technical details of these extensions can be found in the
accompanying techical report [18].

2.1 A type system for JVM

A program P is given by its list of instructions. To simplify presentation, we
consider here only instructions within a method, and do not consider explicitly
method fields and objects. We assume the reader is familiar with elements of a
stack frame in JVM, which consists of local variable slots, parameters and an
operand stack (henceforth referred to simply as the stack). We consider here the
following (idealized) instructions of JVM, given in Figure 1. We have abstracted
away from various types of the same instructions (e.g., iload for loading integers,
lload for loading long integers, etc) for simplicity. The actual implementation
(see Section 5) does work directly on JVM instructions.

The set of local variables in a method is denoted by X . The set of values,
denoted by V, is defined as V = Z⋃L⋃{null}, where L is an (infinite) set of
locations and null denotes the null pointer. The set of program points is denoted
by PP. For any set X, we use the notation X∗ to stand for a stack of elements
from X. If st is stack, we write sti to denote the i-th element of st.

The operational semantics of JVM, given in Figure 2, is formalized as a rela-
tion between a JVM state and another JVM state, or a value if the computation
terminates. A JVM state is a tuple ⟨i, ρ, os⟩ where i ∈ PP is the program counter
that points to the next instruction to be executed; ρ ∈ X ⇀ V is a partial function
from local variables to values, and os ∈ V∗ is an operand stack. Given a mapping
ρ, we write ρ⊕{x↦ v} to denote another mapping such that ρ⊕{x↦ v}(x) = v
and ρ(y) = ρ⊕ {x↦ v}(y) for y /= x. The operational semantics is parameterized
by a program P . In the figure, we write P [i] to denote the i-th instruction in pro-
gram P , and op denotes the standard interpretation of the arithmetic operation
op on integers.

The small-step operational semantics induces a successor relation between
program points. Intuitively, one program point is a successor of another if they
can be related by the small-step relation for some states. Given a program P , the
successor relation induced by P , denoted by ↦⊆ PP ×PP, is defined as follows:
for a program points i, its successor is defined based on P [i]:

P [i] = push

⟨i, ρ, os⟩↝ ⟨i + 1, ρ,n ∶∶ os⟩

P [i] = pop

⟨i, ρ, v ∶∶ os⟩↝ ⟨i + 1, ρ, os⟩

P [i] = return

⟨i, ρ, v ∶∶ os⟩↝ v,h

P [i] = goto j

⟨i, ρ, os⟩↝ ⟨j, ρ, os⟩

P [i] = ifeq j n ≠ 0

⟨i, ρ,n ∶∶ os⟩↝ ⟨i + 1, ρ, os⟩

P [i] = ifeq j n = 0

⟨i, ρ,n ∶∶ os⟩↝ ⟨j, ρ, os⟩

P [i] = store x x ∈ dom(ρ)

⟨i, ρ, v ∶∶ os⟩↝ ⟨i + 1, ρ⊕ {x↦ v}, os⟩

P [i] = load x

⟨i, ρ, os⟩↝ ⟨i + 1, ρ, ρ(x) ∶∶ os⟩

P [i] = binop op n2 op n1 = n

⟨i, ρ,n1 ∶∶ n2 ∶∶ os⟩↝ ⟨i + 1, ρ,n ∶∶ os⟩

P [i] = swap

⟨i, ρ, v1 ∶∶ v2 ∶∶ os⟩↝ ⟨i + 1, ρ, v2 ∶∶ v1 ∶∶ os⟩

Fig. 2: The operational semantics of (selected) JVM instructions

P [i] = load x

i ⊢ st⇒ (~ka(x) ⊔ se(i)) ∶∶ st

P [i] = store x se(i) ⊔ k ≤ ~ka(x)

i ⊢ k ∶∶ st⇒ st

P [i] = swap

i ⊢ k1 ∶∶ k2 ∶∶ st⇒ k2 ∶∶ k1 ∶∶ st

P [i] = ifeq j ∀j′ ∈ region(i), k ≤ se(j′)

i ⊢ k ∶∶ st⇒ liftk(st)

P [i] = goto j

i ⊢ st⇒ st

P [i] = push n

i ⊢ st⇒ se(i) ∶∶ st

P [i] = binop op

i ⊢ k1 ∶∶ k2 ∶∶ st⇒ (k1 ⊔ k2 ⊔ se(i)) ∶∶ st

P [i] = return se(i) ⊔ k ≤ kr

i ⊢ k ∶∶ st⇒

Fig. 3: Selected JVM Transfer Rules

– If P [i] = goto j then i↦ j.
– If P [i] = ifeq j, then i↦ i + 1 and i↦ j.
– If P [i] = return then i has no successor.
– If P [i] is any instruction other than the above, then i↦ i + 1

We write i↦ when i has no successors.
The purpose of the type system is to make sure that typeable programs

adhere to a given information flow policy, expressed in terms of security levels of
input and output of a method or a program. Security levels are formalized as a
lattice (S,≤), where S is the carrier set and ≤ is the order relation of the lattice.
Given s, t ∈ S, we denote with s⊔ t the least upper bound of s and t. Throughout
this paper, we shall assume implicitly that S is a two-element lattice, designated
with H (high security level) and L (low security level) with the ordering L ≤H.

Program variables, fields and return values will be associated with certain
security levels, and one is interested in showing that information does not flow
from a source to a sink with a lower level security level. Formally the absence
of such flow will be established via a notion of non-interference: one first fixes a
security level of an observer, capable of observing variables or return values with
the same or lower security levels, and shows that varying the values of variables
or fields with higher security levels than the observer security level does not
affect the observable values. Soundness of the type system is then expressed via
the non-interference property, i.e., typeable programs are non-interferent.

In a stack-based machine such as JVM, the operand stack can hold interme-
diate values during computation, and hence to prevent indirect information flow,
the security levels of elements of the operand stack needs to be tracked for each
instruction in a program. The type system for JVM is thus specified as a judg-
ment relating two stack types, one before the execution of an instruction, and
one after. To check for implicit flow via conditional branching, two notions are
introduced into the type system. One is the so-called control dependence region
(CDR), that keeps track of points of programs under the influence of a guard,
and the security environment. A security environment is a function se ∶ PP → S
which maps program points to security levels. A CDR is defined in terms of two
functions: region and jun. The function region ∶ PP → ℘(PP) can be seen
as all the program points executing under the guard of the instruction at the
specified program point, i.e. in the case of region(i) the guard will be program
point i. The function jun(i) can be seen as the nearest program point which all
instructions in region(i) have to execute (junction point). A CDR is safe if it
satisfies the following SOAP (Safe Over APproximation) properties.

Definition 1. A CDR structure (region, jun) satisfies the SOAP properties if
the following properties hold :

SOAP1. ∀i, j, k ∈ PP such that i ↦ j and i ↦ k and j ≠ k (i is hence a
branching point), k ∈ region(i) or k = jun(i).

SOAP2. ∀i, j, k ∈ PP , if j ∈ region(i) and j ↦ k, then either k ∈ region(i)
or k = jun(i).

SOAP3. ∀i, j ∈ PP , if j ∈ region(i) and j is a return point then jun(i) is
undefined.

We assume that every program comes with its security policy, expressing the
security levels of the local variables and the return value of each of its methods
(for simplicity we assume that every method returns a value). Formally, for
each method in the program, its security policy comes in the form of a method
signature: ~ka → kr where ~ka = {x1 ∶ k1, . . . , xn ∶ kn}, ki ∈ S is the security level
of the variable xi, and kr is the security level of the return value. Given such a
method signature, we write ~ka(xi) to denote ki. We assume that every program
P comes with a table Γ of its methods’ signatures. A security stack is a stack
whose elements are security levels.

Formally, given a program P , the typing judgment takes the form:

region, se, sgn, i ⊢ st⇒ st′

where i is the current program point; (region, jun) is a CDR; se is a security
environment; sgn is method signature of the current method; and st and st′

are security stacks. The typing judgment expresses the relation betwen security
stacks, before and after the execution of the instruction P [i]. The typing rules
are sometimes also called transfer rules. Figure 3 shows a selected set of transfer
rules for JVM. In the figure, to simplify presentation, some parameters are left
implicit, i.e., the method signature ~ka → kr, the CDR (region, jun), and the
security environment se.

In the typing rule for ifeq, the stack type liftk(st) denotes a stack type
obtained from st by letting liftk(st)i = sti ⊔ k. Lifting of the stack types is
needed to ensure no information leakage through stack operations such as pop
or swap that do not involve explicit transfer of values. We shall see that this
lifting is not needed in the register-based machine since the side channels via
pop or swap do not exist in the register machine.

We now define what it means for a method to be typeable. In the definition
below, we abbreviate S(i) as Si to simplify presentation.

Definition 2 (Typable method[5]). A method m is typable w.r.t. a policy
sgn and a CDR regionm ∶ PP → ℘(PP) if there exists a security environment
se ∶ PP → S and a function S ∶ PP → S

∗ s.t. S1 = ε and for all i, j ∈ PP:

(a) i↦ j implies there exists st ∈ S∗ such that region, se, sgn, i ⊢ Si ⇒ st and
st ⊑ Sj;

(b) i↦ implies region, se, sgn, i ⊢ Si ⇒

where ⊑ denotes the point-wise partial order on type stack w.r.t. the partial order
taken on security levels.

The main result to prove w.r.t. the typing system above is its soundness, i.e.,
typeable programs are non-interferring. The definition of non-interference in this
context depends on the notion of indistinguishability, from the view point of an
observer, of various values associated with a program. The observer is associated
with a security level, kobs, denoting the upperbound of the security levels of
objects and values it can observe. For the fragment of JVM we consider here,
we only need to define a notion of variable indistinguishability.

Definition 3 (Local variables indistinguishability [5]). Given the security

levels ~ka of local variables, the security level kobs of observer, and ρ, ρ′ ∶ X ⇀ V,
we have ρ ∼kobs, ~ka

ρ′ if ρ and ρ′ have the same domain and ρ(x) = ρ′(x) for all

x ∈ dom(ρ) such that ~ka(x) ≤ kobs.

Definition 4 (Non-interferent JVM method [5]). A method m is non-

interferent w.r.t. a policy ~ka → kr and an attacker level kobs if either kr /≤ kobs, or
for every ρ1, ρ2, r1, r2 such that ⟨1, ρ1, ε⟩↝

+ r1, ⟨1, ρ2, ε⟩↝
+ r2 and ρ1 ∼kobs, ~ka ρ2,

we have r1 = r2.

Theorem 1. [5] Let P be a JVM typable program w.r.t. a safe CDR (region, jun).
Then P is non-interferent.

2.2 DEX Type System

As is the case with our discussion on JVM in Section 2.1, we consider here only
the set of DEX instructions needed for arithmetic instructions, given in Figure 4.
For the extended set of instructions, please refer to Figure 4 in the section IV of
the extended paper [18]. Unlike JVM, DEX does not use operand stacks, but uses
virtual registers to perform similar roles as the operand stacks. So stack related

binop op r, ra, rb ρ(r) = ρ(ra) op ρ(rb), a binary operation op on the values in ra and rb
const r, v ρ(r) = v, pushing a constant value v on register r
move r, rs ρ(r) = ρ(rs), copy the value of register rs to register r
ifeq r, t conditional jump if ρ(r) = 0
goto t unconditional jump
return rs return the value of ρ(rs)

where op ∈ {+,−,×, /}, v ∈ Z,{r, ra, rb, rs} ∈R, t ∈ PP, c ∈ C, f ∈ F,m ∈M, and ρ ∶R→ Z.

Fig. 4: DEX Instruction List

P [i] = const(r, v) r ∈ dom(ρ)

⟨i, ρ, h⟩ ↝ ⟨i + 1, ρ⊕ {r ↦ v}, h⟩

P [i] = ifeq(r, j) r ∈ dom(ρ) ρ(r) = 0

⟨i, ρ, h⟩ ↝ ⟨t, ρ, h⟩

P [i] = goto(t)

⟨i, ρ, h⟩ ↝ ⟨t, ρ, h⟩

P [i] = ifeq(r, t) r ∈ dom(ρ) ρ(r) ≠ 0

⟨i, ρ, h⟩ ↝ ⟨i + 1, ρ, h⟩

P [i] = return(rs) rs ∈ dom(ρ)

⟨i, ρ, h⟩ ↝ ρ(rs), h

P [i] =move(r, rs) r, rs ∈ dom(ρ)

⟨i, ρ, h⟩ ↝ ⟨i + 1, ρ⊕ {r ↦ ρ(rs)}, h⟩

Fig. 5: DEX Operational Semantic (Selected)

instructions such as pop, push and swap are not present in DEX instructions.
We denote with R the set of DEX virtual registers. In DEX bytecode, local
variables are allocated virtual registers upon initialization of a method. So we
shall not treat variables explicitly and only consider their proxies in the virtual
registers. In the following, we assume that each local variable x is associated
with a unique register rx.

A state in DEX is a pair ⟨i, ρ⟩ consisting of a program counter i and a
function ρ mapping registers to values. Figure 5 shows a selected set of rules of
the operational semantics for DEX instructions. Please refer to [18] for the full
list of DEX operational semantics.

The transfer rules of DEX are defined in terms of registers typing rt ∶ (R ⇀
S) instead of stack typing. Some of the transfer rules for DEX instructions
are contained in Figure 6. Full transfer rules are contained in Figure 12 in the
Appendix D of the extended paper.

The typability of the DEX closely follows that of the JVM, except that the
relation between program points is i ⊢ RTi ⇒ rt, rt ⊑ RTj , where RT ∶ PP → rt.
We shall see later how we can construct a safe CDR for DEX from a safe CDR
in JVM.

Theorem 2. Let P be a DEX typable program w.r.t. a safe CDR (region, jun).
Then P is non-interferent.

3 The translation from JVM to DEX

We now describe the translation process from JVM to DVM. This is an ab-
stracted version of what is implemented in the dx tool of Android. The dx tool

P [i] = const(r, v)

i ⊢ rt⇒ rt⊕ {r ↦ se(i)}

P [i] = binop(op, r, ra, rb)

i ⊢ rt⇒ rt⊕ {r ↦ (rt(ra) ⊔ rt(rb) ⊔ se(i))}

P [i] =move(r, rs)

i ⊢ rt⇒ rt⊕ {r ↦ (rt(rs) ⊔ se(i))}

P [i] = return(rs) se(i) ⊔ rt(rs) ≤ kr

i ⊢ rt⇒

P [i] = ifeq(r, t) ∀j′ ∈ region(i), se(i) ⊔ sec(r) ≤ se(j′)

i ⊢ rt⇒ rt

P [i] = goto(j)

i ⊢ rt⇒ rt

Fig. 6: DEX Transfer Rule (Selected)

push v ↦ const(rts, v)
pop ↦ ∅

swap ↦ move(rts+1, rts−1),move(rts, rts−2),move(rt−1, rts),move(rts−2, rts+1)
load x ↦ move(rts, x)
store x ↦ move(rx, rts−1)
goto l ↦ ∅

ifeq l ↦ ifeq(rts−1, l)
return ↦ move(r0, rts−1) and (return(r0) or goto(ret))

Fig. 7: JVM to DEX instruction translation (selected)

translates JVM in blocks of codes. To formalize this, it is useful to first define
Basic Block, which is a construct containing a group of codes that has one entry
point and one exit point (not necessarily one successor/one parent), has a parent
list, a successor list, a primary succesor, and its order in the output phase.

Since DEX is register-based whereas JVM is stack-based, to bridge this gap,
DEX uses registers to simulate JVM stacks. This is done as follows:

– We set aside l number of registers to hold local variables (register 0, . . . , l). We
denote these registers with locR. For non-static methods, register r0 always
holds the value of the self-reference for the method (the variable this).

– A stack of size s is simulated by registers l + 1, . . . , l + s.

Note that we assume the JVM bytecode has passed the Java bytecode verifier,
which ensures, among others, that the maximum height of the operand stack in
a method is fixed. Similarly, bytecode verifier guarantees that the (Java) types
of the operand stack (and by implication, also its height) at each program point
is fixed. This makes it possible to statically map each operand stack location to
a register in DEX.

There are several phases to translate JVM bytecode into DEX bytecode
(please refer to Table I the Section VI in [18] for the details of each step):

StartBlock: This phase determines the program point at which the instruction
starts a block, and then creates a new block for each of these program points
and associates it with a new empty block. A program point is a start of a
block if it fulfills one of these conditions:

– It is the first instruction in a method;

– It is an instruction after a branching instruction (ifeq);

– it is a target of a branching instruction (goto and ifeq);

TraceParentChild: This resolves the parent and the successor relationship
between blocks. Implicit in this phase is a step creating a temporary return
block used to hold successors of the block containing return instructions. At
this point, we assume that there is a special label called ret to address this
temporary return block. The creation of a temporary return block depends
on whether the function returns a value. If it is return void, then this block
contains only the instruction return-void. Otherwise depending on the type
returned (integer, wide, object, etc), the instruction is translated into the
corresponding move and return. The move instruction moves the value
from the register simulating the top of the stack to register r0. Then return
will just return the value of register r0.

Translate: This phase translates each JVM instruction into a sequence (possi-
bly zero) of DEX instructions. For the full translation scheme, refer to [18].
We outline some cases in Figure 7. In the figure, we assume that the index
of the top of the operand stack is ts.

The goto instruction in JVM is not translated directly to goto in DEX.
Rather, it is used to compute the relationship between blocks, from which
new goto statements may be added later in the compilation process.

PickOrder: This phase orders blocks according to a “trace analysis” procedure.
The trace analysis itself is quite simple in essence. That is, for each block we
assign an integer denoting the order of appearance of that particular block.
Starting from the initial block, we first assign an order to it. Then we pick
the first unordered successor, giving priority to its primary successor (if any).
The tracing continues until there is no more successor. After we reach one
end, we pick an unordered block and do the trace analysis again. But this
time we trace its source ancestor first, by tracing an unordered parent block
and stop when there is no more unordered parent block or already forming
a loop.

Output: This phase outputs the translated instructions based on the order of
the blocks computed in the previous phase. During this phase, goto will be
added for each block whose next block to output is not its successor. There
is a special case for branching instruction (ifeq). If the next block to output
is in fact the target of branching instead of its primary successor, then the
branching instruction will be replaced by its opposite (ifneq). After the
compiler has output all blocks, it will then read the list of DEX instructions
and fix up the targets of jump instructions.

Definition 5 (Translated JVM Program). The translation of a JVM pro-
gram P into blocks whose JVM instructions are translated into DEX instructions
is denoted by TPU, where

TPU = Translate(TraceParentChild(StartBlock(P))).

Definition 6 (Output Translated Program). The output of the translated
JVM program TPU in which the blocks are ordered and then output into DEX
program is denoted by VTPUW, where VTPUW = Output(PickOrder(TPU)).

Definition 7 (Compiled JVM Program). The compilation of a JVM pro-
gram P is denoted by JP K, where JP K = VTPUW.

4 Proof that Translation Preserves Typability

The first step to translating typing derivations from JVM to DEX is to trans-
late the CDR from JVM to a CDR in DEX. The essential idea to the CDR-
preservation property is the observation that if a program point i is in a region,
then all program points in the basic block containing i belong to the same region.
The only non-trivial property to prove is then to show that the goto statements
between blocks link correct regions together. We state the CDR preservaton
lemma here and defer the details for this translation to [18].

Lemma 1 (SOAP Preservation). The SOAP properties are preserved in the
translation from JVM to DEX, i.e. if the JVM program satisfies the SOAP prop-
erties, so does the translated DEX program.

There are several assumption we make for this compilation. Firstly, the JVM
program will not modify its self reference for an object. Secondly, since now we
are going to work in blocks, the notion of se, S, and RT will also be defined in
term of this addressing. A new scheme for addressing blockAddress is defined
from sets of pairs (bi, j), bi ∈ blockIndex, a set of all block indices (label of the
first instruction in the block), where ∀i ∈ PP.∃bi, j. s.t.bi + j = i. We also add
additional relation ⇒∗ to denote the reflexive and transitive closure of ⇒ to
simplify the typing relation between blocks.

We overload T.U and J.K to also apply to stack type to denote translation
from stack type into typing for registers. This translation basically just maps
each element of the stack to registers at the end of registers containing the local
variables (with the top of the stack with larger index, i.e. stack expanding to the
right).

More formally, suppose the maximum stack height allowed in a given method
is M , the current program point is i, and suppose there are n local variables,
denoted by x1, . . . , xn, and that the height of the operand stack st at the current
program point is k. We assume that the translated method in DEX has enough
registers to simulate the operand stack. Then

JstK = {r0 ↦ ~ka(x1), . . . , rn−1 ↦ ~ka(xn), rn ↦ st[0], . . . ,
rn+k−1 ↦ st[k − 1], rn+k ↦H, . . . , rn+M ↦H}.

At this point, it is important to note that since the stack height at a given
program point i may be less than the maximum height allowed, we need to also
define the security levels of registers that do not correspond to any variables or

operand stack element at program point i. These unused registers need to be
given security level H (the top element of the security lattice) to ensure that the
correct ordering of register types in the DEX type derivation. Intuitively, a stack
operation such as pop or store consumes the top of the stack, but there is no
corresponding elimination of the register corresponding to that stack element;
registers cannot be ‘popped’ out of existence. By assigning the maximum security
level to the unused registers, one also prevents implicit information flow through
unused (or previously used) registers.

Lastly, the function V.W is also overloaded for addressing (bi, i) to denote
abstract address in the DEX side which will actually be instantiated when pro-
ducing the output DEX program from the blocks.

Definition 8 (Stack Type Translation). ∀i ∈ PP,RTTiU[0] = TSiU.

The idea of the proof that compilation from JVM bytecode to DEX byte-
code preserves typability is that any instruction that does not modify the block
structure can be proved using Lemma 2 and Lemma 3 to prove the typability of
register typing.

Lemma 2 (Typeable Sequence). For any JVM program P with instruction
Ins at address i , let the length of TInsU be n. Let RTTiU[0] = TSiU. If according
to the transfer rule for P [i] = Ins there exists st such that i ⊢ Si ⇒ st then

(∀0 ≤ j < (n − 1).∃rt′.TiU[j] ⊢ RTTiU[j] ⇒ rt′, rt′ ⊑ RTTiU[j+1])

and ∃rt.TiU[n − 1] ⊢ RTTiU[n−1] ⇒ rt, rt ⊑ TstU

according to the typing rule(s) of TInsU.

Lemma 3 (Typeable Translation). Let Ins be an instruction at address i,
i ↦ j, st, Si and Sj are stack types such that i ⊢ Si ⇒ st, st ⊑ Sj. Let n be
the length of TInsU. Let RTTiU[0] = TSiU, let RTTjU[0] = TSjU and rt be registers
typing obtained from the transfer rules involved in TInsU. Then rt ⊑ RTTjU[0].

Lemma 4 (Constraint Satisfaction). Let Ins be an instruction at program
point i, Si its corresponding stack types, and let RTTiU[0] = TSiU. If P [i] satisfy
the typing constraint for Ins with the stack type Si, then ∀(bj, j) ∈ TiU.PDEX[bj, j]
will also satisfy the typing constraints for all instructions in TInsU with the ini-
tial registers typing RTTiU[0].

Using the above lemmas, we can prove that translated blocks are typable.

Lemma 5 (Translation Soundness). Let P be a JVM program, if ∀i, j.i ↦
j.∃st.i ⊢ Si ⇒ st and st ⊑ Sj, then TPU will satisfy

1. for all blocks bi, bj s.t. bi↦ bj, ∃rtb. s.t. RTsbi ⇒
∗ rtb, rtb ⊑ RTsbj; and

2. ∀bi, i, j ∈ bi. s.t. (bi, i)↦ (bi, j).∃rt. s.t. (bi, i) ⊢ RT(bi,i) ⇒ rt, rt ⊑ RT(bi,j)

where RTsbi = TSiU with TiU = (bi,0) , RTsbj = TSjU with TjU = (bj,0),
RT(bi,i) = TSi′U with Ti′U = (bi, i) , RT(bi,j) = TSj′U with Tj′U = (bj, j).

Fig. 8: Overall architecture

After we established that the translation into DEX instructions in the form
of blocks preserves typability, we also need to ensure that the next phases in the
translation process also preserves typability. The next phases are ordering the
blocks, output the DEX code, then fix the branching targets.

Lemma 6 (Order and Output Soundness). Let TPU be typable basic blocks
resulting from translation of JVM instructions still in the block form, i.e.

TPU = Translate(TraceParentChild(StartBlock(P))).

Given the ordering scheme to output the block contained in PickOrder, then
the output JP K is also typable.

Finally, the main result of this paper in that the compilation of typable JVM
bytecode will yield typable DEX bytecode which can be proved from Lemma 5
and Lemma 6. Typable DEX bytecode will also have the non-interferent property
because it is based on a safe CDR (Lemma 1) according to DEX.

Theorem 3 (Compilation Soundness). Let P be a typable JVM bytecode
according to its safe CDR (region, jun), and method policies Γ , then JP K ac-
cording to the translation scheme has the property that ∀i, j ∈ PPDEX. if i ↦
j. then ∃rt.RTi ⇒ rt, rt ⊑ RTj according to a safe CDR (JregionK, JjunK).

5 Implementation

Figure 8 shows the overall architecture of our work. Our contributions are high-
lighted in grey in the figure. As we have mentioned before, the Android com-
pilation process starts from Java source and ends with into one or more DEX
files, usually named “classes.dex”. The rest of the toolchain will also bundle the
manifest file and other resources into an APK. This APK can be installed into
a mobile phone running Android OS as an app.

Our contributions are mainly contained in two components. The first com-
ponent, certificate translation, takes the certificates for the source Java classes
and translate it into a certificate for the corresponding DEX file, independently
of the non-optimizing compilation done by the DX tool. The other component
parse the DEX file, take the certificate, and check whether they match.
Certificate Structure Here we will describe how we structure our certificate,
both for JVM and DEX. They mainly differ in that JVM uses stack type while

DEX uses registers type. Figure 9 shows high level structure of the certificate.
Please refer Section VII.B of the extended paper for the details of how we rep-
resent each of the structure.

Fig. 9: Certificate Structure

Naive JVM Type Inference This component takes as an input a file which
contains the certificate without the typing for each instructions (stacktype and
security environment) then reconstruct the certificate for the JVM bytecode.
The inference itself is quite simple: we just repeatedly infer the stack type and
security environment for the successor instruction, starting from label 0, until
they converge (no more change either in stack type or security environment).

For the type inference, we assign the instructions with least restrictive stack
types and security level. Before we invoke the type inference algorithm, we first
do a simple program flow tracing. The purpose of this program flow tracing is
to ease the burden of type inference so that it just need to traverse the order
produced by the flow tracer without having to deal with the case where an
instruction still has not been assigned a stack type and security environment.

We implemented this in OCaml, in conjunction with the component to do a
certificate translation. Our main consideration for doing so is because it is much
easier to transfer the resulting JVM certificate directly to the next component
within the program itself, rather than having a temporary output file.

Non-Optimizing Certificate Translation The translation component imple-
ments the translation process in Section 3. There are some additional complexity
for the details of the implementation itself when we translate the type:

– The translation steps only concerns a specific bytecode under a specific pol-
icy, so we have to extend that to include each security level for the object
that contains this method, the methods in the class, and we also have to
extend the scope to include all the classes to be compiled to DEX bytecode.

– The convention for the class identifier is different between JVM and DEX.
Simply put, a class identifier in DEX is “L” + JVM class identifier + “;”,
e.g. “java/lang/Object” in JVM becomes “Ljava/lang/Object;” in DEX. For
the current implementation we also use the short method descriptor in DEX
as opposed to the full method descriptor.

– The instruction pair of Invoke and MoveResult in DEX use the pseudo-
register ret, which obviously is not captured in JVM. For MoveResult,
firstly we take the stack type of the successor of Invoke then translate it
into the registers type. After that we remove one value from the top of the
stack and put it into ret. Goto instruction is also a tricky bit because it
only ever appear in the translation phase if the next block to output is not a
successor. To handle this, we maintain the registers type for the start of each
block, and assign them to any Goto instruction that points to that block.

– To translate regions and junction we need to know the relation between
the source program points and their translation (one to many mapping).
The simplest part of the region translation is that for a program point i =
source(j), ∀source(k) ∈ region(i), k ∈ region(j). Again, MoveResult and
Goto complicate this process. For MoveResult, because it does not have
its corresponding instruction in JVM we have to fix it so that it has the same
source as the Invoke instruction in JVM. Similar case can be made with
the Goto instruction in that the source instruction for Goto is the same
as the start of the block which becomes the target of this Goto instruction.
This decision of relating the Goto instruction with the target instead of the
previous instruction is mainly to handle the case where the Goto instruction
is generated by a branching instruction, in which case we need to include
Goto in the region of the branching instruction as well.

– the flag that indicates whether register zero has been used or not does not
exist in JVM. The translation itself just assigns the flags of all instructions to
be zero, except the Return instruction and its associated Move and Goto
instructions A difficulty arises in that we also need to take care of the moving
of parameters which occurs in the first few instructions of the bytecode which
also has a Move instruction targetting register zero. Fortunately this always
happens as the first instruction in the bytecode, so we can ignore the rule
about the flag if it is the first instruction in the bytecode .

– In JVM, all Binop instructions are using the values on the stack as the
operands, regardless whether they are constants or not. In DEX, Binop-
Const is dedicated to deal with a binary operation with constant, which
has different size than regular Binop Instruction.

– The DEX translation of Dup is also not straightforward. Instead of copying
the value from top of the stack and push it on top, it copy the value on top
of the stack, create a register containing the copy, and then copy the value
from this register to both the top of the stack and new top of the stack.

DEX Type Checker This last component do a simple type checking on the
Android phone. It takes a DEX file, parse the DEX file, and check it against the
certificate generated by the certificate translator. This means that our system
works independently of the Android OS, and as such there is no modification
at all to the overall Android structure. We implemented this as an Android
application which takes an input string from user indicating the package name
for the application that the user wants to type check. Several notes need to be
made for this component:

– The DEX file in the package is contained in the predefined file name “classes.dex”.
We are aware of the possibility that there are multiple DEX file for a sin-
gle application (e.g. when there are so many methods that it can not be
contained within one DEX file), but it is not the main focus of our work.

– We also take the certificate from a predefined file name “Certificate.cert”
contained in the “assets” directory. The type checker will just check for this
particular file for the certificate.

– There are a lot of generated additional methods and classes for Android
application, e.g. “Build.config” and “R” (and its subclasses). We decided to
ignore them because they are not the focus of this work.

– Similar thing can be said about the methods and classes contained in the
Android library. Although for this particular case, we decided to inject the
certificate with these methods except that they are stripped off their byte-
code instructions. This decision is mainly due to the transfer rule of method
invocation which requires the policy of the target method.

– Parsing the whole DEX file takes a significant amount of time

The details of the algorithms can be seen in the extended version of this paper,
available from the URL mentioned in the introduction.

6 Conclusion and Future Work

We presented the design of a type system for DEX programs and showed that
the non-optimizing compilation done by the dx tool preserves the typability of
JVM bytecode. Furthermore, the typability of the DEX program also implies its
non-interference. We provide a proof-of-concept implementation illustrating the
feasibility of the idea. This opens up the possibility of reusing analysis techniques
applicable to Java bytecode for Android. As an immediate next step for this
research, we plan to also take into account the optimization done in the dx tool
to see whether typability is still preserved by the translation.

We currently have not modelled the information flow properties of various
Android APIs, which are used pervasively in real-world applications. This is a
subject of our on-going investigations.

References

1. DEX bytecode instructions. http://source.android.com/devices/tech/dalvik/
dalvik-bytecode.html, accessed: 2014-12-31

2. Stat counter global stats. http://gs.statcounter.com/#mobile_

os-ww-monthly-201311-201411, accessed: 2014-12-31
3. Appel, A.W.: Foundational proof-carrying code. In: 16th Annual IEEE Symposium

on Logic in Computer Science, Boston, Massachusetts, USA, June 16-19, 2001,
Proceedings. pp. 247–256. IEEE Computer Society (2001), http://dx.doi.org/
10.1109/LICS.2001.932501

4. Barthe, G., Naumann, D., Rezk, T.: Deriving an information flow checker and
certifying compiler for java. In: Security and Privacy, 2006 IEEE Symposium on.
pp. 13–pp. IEEE (2006)

5. Barthe, G., Pichardie, D., Rezk, T.: A certified lightweight non-interference java
bytecode verifier. Mathematical Structures in Computer Science 23, 1032–1081 (10
2013), http://journals.cambridge.org/article_S0960129512000850

6. Barthe, G., Rezk, T., Saabas, A.: Proof obligations preserving compilation. In:
Formal Aspects in Security and Trust, pp. 112–126. Springer (2006)

7. Bian, G., Nakayama, K., Kobayashi, Y., Maekawa, M.: Java bytecode dependence
analysis for secure information flow. IJ Network Security 4(1), 59–68 (2007)

8. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a c compiler front-end. In:
FM 2006: Formal Methods, pp. 460–475. Springer (2006)

9. Bugliesi, M., Calzavara, S., Spanò, A.: Lintent: towards security type-checking of
android applications. In: Formal Techniques for Distributed Systems, pp. 289–304.
Springer (2013)

10. Chaudhuri, A.: Language-based security on android. In: Proceedings of the ACM
SIGPLAN fourth workshop on programming languages and analysis for security.
pp. 1–7. ACM (2009)

11. Davis, B., Beatty, A., Casey, K., Gregg, D., Waldron, J.: The case for virtual
register machines. In: Proceedings of the 2003 Workshop on Interpreters, Virtual
Machines and Emulators. pp. 41–49. IVME ’03, ACM, New York, NY, USA (2003),
http://doi.acm.org/10.1145/858570.858575

12. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: an information flow tracking system for real-time privacy monitoring
on smartphones. Communications of the ACM 57(3), 99–106 (2014)

13. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of the 16th ACM conference on Computer and com-
munications security. pp. 235–245. ACM (2009)

14. Enck, W., Ongtang, M., McDaniel, P.D., et al.: Understanding android security.
IEEE security & privacy 7(1), 50–57 (2009)

15. Felt, A.P., Wang, H., Moschuk, A., Hanna, S., Chin, E.: Permission re-delegation:
Attacks and defenses. In: 20th USENIX Security Symposium (2011)

16. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and enhancing Android’s
permission system. In: Computer Security—ESORICS 2012: 17th European Sym-
posium on Research in Computer Security. Lecture Notes in Computer Science,
vol. 7459, pp. 1–18 (Sep 2012), http://www.ece.cmu.edu/~lbauer/papers/2012/
esorics2012-android.pdf

17. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certifi-
cation of android applications. Manuscript, Univ. of Maryland, http://www. cs.
umd. edu/˜ avik/projects/scandroidascaa (2009)

18. Gunadi, H., Tiu, A., Gore, R.: Formal certification of android bytecode. arXiv
preprint arXiv:1504.01842 (2015)

19. Jia, L., Aljuraidan, J., Fragkaki, E., Bauer, L., Stroucken, M., Fukushima, K., Kiy-
omoto, S., Miyake, Y.: Run-time enforcement of information-flow properties on An-
droid (extended abstract). In: Computer Security—ESORICS 2013: 18th European
Symposium on Research in Computer Security. pp. 775–792. Springer (Sep 2013),
http://www.ece.cmu.edu/\~lbauer/papers/2013/esorics2013-android.pdf

20. Kim, J., Yoon, Y., Yi, K., Shin, J., Center, S.: Scandal: Static analyzer for detecting
privacy leaks in android applications. MoST (2012)

21. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. ACM SIGPLAN Notices 41(1), 42–54 (2006)

22. Lortz, S., Mantel, H., Starostin, A., Bähr, T., Schneider, D., Weber, A.: Cassandra:
Towards a certifying app store for android. In: Proceedings of the 4th ACM Work-
shop on Security and Privacy in Smartphones & Mobile Devices, SPSM@CCS

2014, Scottsdale, AZ, USA, November 03 - 07, 2014. pp. 93–104. ACM (2014),
http://doi.acm.org/10.1145/2666620.2666631

23. Lortz, S., Mantel, H., Starostin, A., Weber, A.: A sound information-flow analysis
for Cassandra. Tech. rep., TU Darmstadt (2014), technical Report TUD-CS-2014-
0064

24. Necula, G.C.: Proof-carrying code. In: Conference Record of POPL’97: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Papers Presented at the Symposium, Paris, France, 15-17 January 1997. pp. 106–
119. ACM Press (1997), http://doi.acm.org/10.1145/263699.263712

25. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer
security via binary analysis. In: Information systems security, pp. 1–25. Springer
(2008)

26. Zhao, Z., Osono, F.C.C.: TrustDroid: Preventing the use of smartphones for in-
formation leaking in corporate networks through the used of static analysis taint
tracking. In: Malicious and Unwanted Software (MALWARE), 2012 7th Interna-
tional Conference on. pp. 135–143. IEEE (2012)

