
Efficient Runtime Monitoring with Metric
Temporal Logic: A Case Study in the Android

Operating System

Hendra Gunadi1 and Alwen Tiu2

1 Research School of Computer Science, The Australian National University
2 School of Computer Engineering, Nanyang Technological University

Abstract. We present a design and an implementation of a security
policy specification language based on metric linear-time temporal logic
(MTL). MTL features temporal operators that are indexed by time in-
tervals, allowing one to specify timing-dependent security policies. The
design of the language is driven by the problem of runtime monitoring of
applications in mobile devices. A main case of the study is the privilege
escalation attack in the Android operating system, where an app gains
access to certain resource or functionalities that are not explicitly granted
to it by the user, through indirect control flow. To capture these attacks,
we extend MTL with recursive definitions, that are used to express call
chains betwen apps. We then show how the metric operators of MTL,
in combination with recursive definitions, can be used to specify policies
to detect privilege escalation, under various fine grained constraints. We
present a new algorithm, extending that of linear time temporal logic,
for monitoring safety policies written in our specification language. The
monitor does not need to store the entire history of events generated by
the apps, something that is crucial for practical implementations. We
modified the Android OS kernel to allow us to insert our generated mon-
itors modularly. We have tested the modified OS on an actual device,
and show that it is effective in detecting policy violations.

1 Introduction

Android is a popular mobile operating system (OS) that has been used in a range
of mobile devices such as smartphones and tablet computers. It uses Linux as
the kernel, which is extended with an application framework (middleware). Most
applications of Android are written to run on top of this middleware, and most
of Android-specific security mechanisms are enforced at this level.

Android treats each application as a distinct user with a unique user ID.
At the kernel level, access control is enforced via the standard Unix permission
mechanism based on the user id (and group id) of the app. At the middleware
level, each application is sandboxed, i.e., it is running in its own instance of
Dalvik virtual machine, and communication and sharing between apps are al-
lowed only through an inter-process communication (IPC) mechanism. Android
middleware provides a list of resources and services such as sending SMS, access



to contacts, or internet access. Android enforces access control to these services
via its permission mechanism: each service/resource is associated with a certain
unique permission tag, and each app must request permissions to the services
it needs at installation time. Everytime an app requests access to a specific ser-
vice/resource, Android runtime security monitor checks whether the app has the
required permission tags for that particular service/resource. A more detailed
discussion of Android security architecture can be found in [14].

One problem with Android security mechanism is the problem of privilege
escalation, that is, the possibility of an app to gain access to services or resources
that it does not have permissions to access. Obviously privilege escalation is a
common problem of every OS, e.g., when a kernel bug is exploited to gain root
access. However, in Android, privilege escalation is possible even when apps are
running in the confine of Android sandboxes [21, 10, 8]. There are two types of
attacks that can lead to privilege escalation [8]: the confused deputy attack and
the collusion attack. In the confused deputy attack, a legitimate app (the deputy)
has permissions to certain services, e.g., sending SMS, and exposes an interface
to this functionality without any guards. This interface can then be exploited
by a malicious app to send SMS, even though the malicious app does not have
the permission. Recent studies [21, 17, 9] show some system and consumer apps
expose critical functionalities that can be exploited to launch confused deputy
attacks. The collusion attack requires two or more malicious apps to collaborate.
We have yet to encounter such a malware, either in the Google Play market
or in the third party markets, although a proof-of-concept malware with such
properties, called SoundComber [24], has been constructed.

Several security extensions to Android have been proposed to deal with priv-
ilege escalation attacks [12, 15, 8]. Unlike these works, we aim at designing a
high-level policy language that is expressive enough to capture privilege esca-
lation attacks, but is also able to express more refined policies (see Section 4).
Moreover, we aim at designing a lightweight monitoring framework, where policy
specifications can be modified easily and enforced efficiently. Thus we aim at an
automated generation of security monitors that can efficiently enforce policies
written in our specification language.

On the specific problem of detecting privilege escalation, it is essentially a
problem of tracking (runtime) control flow, which is in general a difficult problem
and would require a certain amount of static analysis [11, 13]. So we adopt a
‘lightweight’ heuristic to ascertain causal dependency between IPC calls: we
consider two successive calls, say from A to B, followed by a call from B to
C, as causally dependent if they happen within a certain reasonably short time
frame. This heuristic can be easily circumvented if B is a colluding app. So the
assumption that we make here is that B is honest, i.e., the confused deputy. For
example, a privilege escalation attack mentioned in [21] involves a malicious app,
with no permission to access internet, using the built-in browser (the deputy) to
communicate with a server. In our model, the actual connection (i.e., the network
socket) is treated as virtual app, so the browser here acts as a deputy that calls
(opens) the network socket on behalf of the malicious app. In such a scenario, it

2



is reasonable to expect that the honest deputy would not intentionally delay the
opening of sockets. So our heuristic seems sensible in the presence of confused
deputy attacks, but can be of course circumvented by colluding apps (collusion
attacks). There is probably no general solution to detect collusion attacks that
can be effective in all cases, e.g., when covert channels are involved [24], so we
shall restrict to addressing the confused deputy attacks.

The core of our policy language, called RMTL, is essentially a past-fragment
of metric linear temporal logic (MTL) [1, 26, 2]. We consider only the fragment
of MTL with past-time operators, as this is sufficient for our purpose to enforce
history-sensitive access control. This also means that we can only enforce some,
but not all, safety properties [20], e.g., policies capturing obligations as in, e.g.,
[2], cannot be enforced in our framework. Temporal operators are useful in this
setting to enforce access control on apps based on histories of their executions;
see Section 4. Such a history-dependent policy cannot be expressed in the policy
languages used in [12, 15, 8].

MTL by itself is, however, insufficient to express transitive closures of rela-
tions, which is needed to specify IPC call chains between apps, among others.
To deal with this, we extend MTL with recursive definitions, e.g., one would be
able to write a definition such as:

trans(x, y) ∶= call(x, y) ∨ ∃z.⟐n trans(x, z) ∧ call(z, y), (1)

where call denotes the IPC event, and x, y, z denote the apps. This equation
defines trans as the transitive closure of call. The metric operator ⟐nφ means
intuitively φ holds within n time units in the past; we shall see a more precise def-
inition of the operators in Section 2. Readers familiar with modal µ-calculus [6]
will note that this is but a syntactic sugar for µ-expressions for (least) fixed
points.

To be practically enforceable in Android, RMTL monitoring algorithm must
satisfy an important constraint, i.e., the algorithm must be trace-length indepen-
dent [5]. This is because the number of events generated by Android can range in
the thousands per hour, so if the monitor must keep all the events generated by
Android, its performance will degrade significantly over time. Another practical
consideration also motivates a restriction to metric operators that we adopt in
RMTL. More specifically, MTL allows a metric version of the ‘since’ operator of
the form φ1 S[m,n) φ2, where [m,n) specifies a half-closed (discrete) time interval
from m to n. The monitoring algorithm for MTL in [26] works by first expanding
this formula into formulas of the form φ1 S[m′,n′) φ2 where [m′, n′) is a moving
window of the interval (with the minimum value of 0). A similar expansion is
also used implicitly in monitoring for first-order MTL in [2], i.e., in their incre-
mental automatic structure extension in their first-order logic encoding for the
‘since’ and ‘until’ operators. In general, if we have k nested occurrences of metric
operators, each with interval [m,n), the number of formulas produced by this
expansion is bounded by O(nk) In Android, event timestamps are in millisec-
onds, so this kind of expansion is not practically feasible. For example, suppose
we have a policy that monitors three successive IPC calls that happen within 10

3



seconds between successive calls. This requires two nested metric operators with
intervals [0,104) to specify. The above naive expansion would produce around
108 formulas, and assuming the truth value of each formula is represented with 1
bit, this would require around 100 MB of storage to store all their truth values,
something which is not preferable in the setting of smartphones where storage
is limited.

An improvement to the expansion mentioned above is proposed in [3, 23],
where one keeps a sequence of timestamps for each metric temporal operator
occuring in the policy. This solution, although avoids the exponential expansion,
is strictly speaking not trace-length independent. This solution seems optimal
so it is hard to improve it without further restriction to the policy language. We
show that, if one restricts the intervals of metric operators to the form [0, n),
one only needs to keep one timestamp for each metric operator in monitoring;
see Section 3.

To summarise, our contributions are as follows:

1. In terms of results in runtime verification, our contribution is in the design
of a new logic-based policy language that extends MTL with recursive defi-
nitions, that avoids exponential expansion of metric operators, and for which
the policy enforcement is trace-length independent. In [5], a policy language
based on first-order LTL and a general monitoring algorithm are given, but
they do not allow recursive definitions nor metric operators. Such definitions
and operators could perhaps be encoded using first-order constructs (e.g.,
encoding recursion via Horn clauses, and define timestamps explicitly as a
predicate), but the resulting monitoring procedure is not guaranteed to be
trace-length independent.

2. In terms of the application domain, ours is the first implementation of a logic-
based runtime security monitor for Android that can enforce history-based
access control policies, including those that concern privilege escalations.
Our monitoring framework can express temporal and metric-based policies
not possible in existing works [12, 15, 8].

The rest of the paper is organized as follows. Section 2 introduces our policy
language RMTL. In Section 3, we present the monitoring algorithm for RMTL
and state its correctness. Some example policies are described in 4. Section 5
discusses our implementation of the monitors for RMTL, and the required mod-
ification of Android OS kernel to integrate our monitor into the OS. In Section 6
we conclude and discuss related and future works. Detailed proofs of the lemmas
and theorems are omitted here but can be found in [18]. Details of the imple-
mentation of the monitor generator and the binaries of the modified Android
OS are available online.3

3 http://users.cecs.anu.edu.au/˜hengunadi/LogicDroid.html.

4



2 The policy specification language RMTL

Our policy specification language, which we call RMTL, is based on an extension
of metric linear-time temporal logic (MTL) [25]. The semantics of LTL [22] is
defined in terms of models which are sequences of states (or worlds). In our case,
we restrict to finite sequences of states. MTL extends LTL models by adding
timestamps to each state, and adding temporal operators that incorporate tim-
ing constraints, e.g., MTL features temporal operators such as ◇[0,3)φ which
expresses that φ holds in some state in the future, and the timestamp of that
world is within 0 to 3 time units from the current timestamp. We restrict to
a model of MTL that uses discrete time, i.e., timestamps in this case are non-
negative integers. We shall also restrict to the past-time fragment of MTL.

We extend MTL with two additional features: first-order quantifiers and re-
cursive definitions. Our first-order language is a multi-sorted one. We consider
only two sorts, which we call prop (for ‘properties’) and app (for denoting appli-
cations). Sorts are ranged over by α. We first fix a signature Σ for our first-order
language, which is used to express terms and predicates of the language. We
consider only constant symbols and predicate symbols, but no function symbols.
We distinguish two types of predicate symbols: defined predicates and undefined
ones. The defined predicate symbols are used to write recursive definitions and
to each of such symbols we associate a formula as its definition.

Constant symbols are ranged over by a, b and c, undefined predicate symbols
are ranged over by p, q and r, and defined predicate symbols are ranged over
by P , Q and R. We assume an infinite set of sorted variables V, whose elements
are ranged over by x, y and z. We sometimes write xα to say that α is the sort
of variable x. A Σ-term is either a constant symbol c ∈ Σ or a variable x ∈ V.
We use s, t and u to range over terms. To each symbol in Σ we associate a
sort information. We shall write c ∶ α when c is a constant symbol of sort α. A
predicate symbol of arity n has sort of the form α1×⋯×αn, and such a predicate
can only be applied to terms of sorts α1, . . . , αn.

Constant symbols are used to express permissions in the Android OS, e.g.,
reading contacts, sending SMS, etc., and user ids of apps. Predicate symbols are
used to express events such as IPC calls between apps, and properties of an app,
such as whether it is a system app, a trusted app (as determined by the user). As
standard in first-order logic (see e.g. [16]), the semantics of terms and predicates
are given in terms of a first-order structure, i.e., a set Dα, called a domain, for
each sort α, and an interpretation function I assigning each constant symbol
c ∶ α ∈ Σ an element of cI ∈ Dα and each predicate symbol p ∶ α1 × ⋯ × αn ∈ Σ
an n-ary relation pI ⊆ Dα1 ×⋯×Dαn . We shall assume constant domains in our
model, i.e., every world has the same domain.

The formulas of RMTL is defined via the following grammar:

F ∶= � ∣ p(t1, . . . , tm) ∣ P (t1, . . . , tn) ∣ F ∨ F ∣ ¬F ∣ ●F ∣ F S F ∣ ⧫F ∣⟐F ∣
●nF ∣ F Sn F ∣ ⧫nF ∣⟐nF ∣ ∃αx.F

where m and n are natural numbers. The existential quantifier is annotated with
a sort information α. For most of our examples and applications, we only quan-

5



tify over variables of sort app. The operators indexed by n are metric temporal
operators. The n ≥ 1 here denotes the interval [0, n), so these are special cases
of the more general MTL operators in [25], where intervals can take the form
[m,n), for n ≥ m ≥ 0. We use φ, ϕ and ψ to range over formulas. We assume
that unary operators bind stronger than the binary operators, so ●φ ∨ ψ means
(●φ) ∨ ψ. We write φ(x1, . . . , xn) to denote a formula whose free variables are
among x1, . . . , xn. Given such a formula, we write φ(t1, . . . , tn) to denote the
formula obtained by replacing xi with ti for every i ∈ {1, . . . , n}.

To each defined predicate symbol P ∶ α1 × ⋯ × αn, we associate a formula
φP , which we call the definition of P . Notationally, we write P (x1, . . . , xn) ∶=
φp(x1, . . . , xn). We require that φP is guarded, i.e., every occurrence of any re-
cursive predicate Q in φP is prefixed by either ●, ●m, ⟐ or ⟐n. This guardedness
condition is important to guarantee termination of recursion in model checking.

Given the above logical operators, we can define additional operators via
their negation, e.g., ⊺ is defined as ¬�, φ ∧ ψ is defined as ¬(¬φ ∨ ¬ψ), φ → ψ is
defined as ¬φ ∨ ψ, and ∀αx.φ is defined as ¬(∃αx.¬φ), etc.

Before proceeding to the semantics of RMTL, we first define a well-founded
ordering on formulae of RMTL, which will be used later.

Definition 1. We define a relation ≺S on the set RMTL formulae as the small-
est relation satisfying the following conditions:

1. For any formula φ of the form p(~t), �, ●ψ, ●nψ, ⟐ψ and ⟐nψ, there is no
φ′ such that φ′ ≺S φ.

2. For every recursive definition P (~x) ∶= φP (~x), we have φP (~t) ≺S P (~t) for
every terms ~t.

3. ψ ≺S ψ ∨ ψ′, ψ ≺S ψ′ ∨ ψ, ψ ≺S ¬ψ, and ψ ≺S ∃x.ψ.
4. ψi ≺S ψ1 S ψ2, and ψi ≺S ψ1 Sn ψ2, for i ∈ {1,2}

We denote with ≺ the reflexive and transitive closure of ≺S .

Lemma 1. The relation ≺ on RMTL formulas is a well-founded partial order.

For our application, we shall restrict to finite domains. Moreover, we shall
restrict to an interpretation I which is injective, i.e., mapping every constant c
to a unique element of Dα. In effect we shall be working in the term model, so
elements of Dα are just constant symbols from Σ. So we shall use a constant
symbol, say c ∶ α, to mean both c ∈ Σ and cI ∈ Dα. With this fix interpretation,
the definition of the semantics (i.e., the satisfiability relation) can be much sim-
plified, e.g., we do not need to consider valuations of variables. A state is a set
of undefined atomic formulas of the form p(c1, . . . , cn). Given a sequence σ, we
write ∣σ∣ to denote its length, and we write σi to denote the i-th element of σ
when it is defined, i.e., when 1 ≤ i ≤ ∣σ∣. A model is a pair (π, τ) of a sequence
of states π and a sequence of timestamps, which are natural numbers, such that
∣π∣ = ∣τ ∣ and τi ≤ τj whenever i ≤ j.

Let < denote the total order on natural numbers. Then we can define a
well-order on pairs (i, φ) of natural numbers and formulas by taking the lexico-
graphical ordering (<,≺). The satisfiability relation between a model ρ = (π, τ),

6



a world i ≥ 1 (which is a natural number) and a closed formula φ (i.e., φ contains
no free variables), written (ρ, i) ⊧ φ, is defined by induction on the pair (i, φ) as
follows, where we write (ρ, i) /⊧ φ when (ρ, i) ⊧ φ is false.

– (ρ, i) /⊧ �
– (ρ, i) ⊧ ¬φ iff (ρ, i) /⊧ φ.
– (ρ, i) ⊧ p(c1, . . . , cn) iff p(c1, . . . , cn) ∈ πi.
– (ρ, i) ⊧ P (c1, . . . , cn) iff (ρ, i) ⊧ φ(c1, . . . , cn) where P (~x) ∶= φ(~x).
– (ρ, i) ⊧ φ ∨ ψ iff (ρ, i) ⊧ φ or (ρ, i) ⊧ ψ.
– (ρ, i) ⊧ ●φ iff i > 1 and (ρ, i − 1) ⊧ φ.
– (ρ, i) ⊧ ⧫φ iff there exists j ≤ i s.t. (ρ, j) ⊧ φ.
– (ρ, i) ⊧⟐φ iff i > 1 and there exists j < i s.t. (ρ, j) ⊧ φ.
– (ρ, i) ⊧ φ1 S φ2 iff there exists j ≤ i such that (ρ, j) ⊧ φ2 and (ρ, k) ⊧ φ1 for

every k s.t. j < k ≤ i.
– (ρ, i) ⊧ ●nφ iff i > 1, (ρ, i − 1) ⊧ φ and τi − τi−1 < n.
– (ρ, i) ⊧ ⧫nφ iff there exists j ≤ i s.t. (ρ, j) ⊧ φ and τi − τj < n.
– (ρ, i) ⊧⟐nφ iff i > 1 and there exists j < i s.t. (ρ, j) ⊧ φ and τi − τj < n.
– (ρ, i) ⊧ φ1 Sn φ2 iff there exists j ≤ i such that (ρ, j) ⊧ φ2, (ρ, k) ⊧ φ1 for

every k s.t. j < k ≤ i, and τi − τj < n.
– (ρ, i) ⊧ ∃αx.φ(x) iff there exists c ∈ Dα s.t. (ρ, i) ⊧ φ(c).

Note that due to the guardedness condition in recursive definitions, our semantics
for recursive predicates is much simpler than the usual definition as in µ-calculus,
which typically involves the construction of a (semantic) fixed point operator.
Note also that some operators are redundant, e.g., ⧫φ can be defined as ⊺ S φ,
and ⟐φ can be defined as ●⧫φ. This holds for some metric operators, e.g., ⧫nφ
and ⟐nφ can be defined as, respectively, ⊺ Sn φ and

⟐nφ = ⋁
i+j=n

●i⧫jφ (2)

This operator will be used to specify an active call chain, as we shall see later,
so it is convenient to include it in our policy language.

In the next section, we shall assume that ⧫, ⟐, ⧫n as derived connectives.
Since we consider only finite domains, ∃αx.φ(x) can be reduced to a big dis-
junction ⋁c∈Dα φ(c), so we shall not treat ∃-quantifier explicitly. This can be
problematic if the domain of quantification is big, as it suffers the same kind of
exponential explosion as with the expansion of metric operators in MTL [26].
We shall defer the explicit treatment of quantifiers to future work.

3 Trace-length independent monitoring

The problem of monitoring is essentially a problem of model checking, i.e., to
decide whether (ρ, i) ⊧ φ, for any given ρ = (π, τ), i and φ. In the context of
Android runtime monitoring, a state in π can be any events of interest that one
would like to capture, e.g., the IPC call events, queries related to location infor-
mation or contacts, etc. To simplify discussions, and because our main interest

7



is in privilege escalation through IPC, the only type of event we consider in π is
the IPC event, which we model with the predicate call ∶ app × app.

Given a policy specification φ, a naive monitoring algorithm that enforces
this policy would store the entire event history π and every time a new event
arrives at time t, it would check (([π; e], [τ ; t]), ∣ρ∣ + 1) ⊧ φ. This is easily shown
decidable, but is of course rather inefficient. In general, the model checking
problem for RMTL (with finite domains) can be shown PSPACE hard following
the same argument as in [4]. A design criteria of RMTL is that enforcement of
policies does not depend on the length of history of events, i.e., at any time the
monitor only needs to keep track of a fixed number of states. Following [5], we
call a monitoring algorithm that satisfies this property trace-length independent.

For PTLTL, trace-length independent monitoring algorithm exists, e.g., the
algorithm by Havelund and Rosu [19], which depends only on two states in a
history. That is, satisfiability of (ρ, i+1) ⊧ φ is a boolean function of satisfiability
of (ρ, i+1) ⊧ ψ, for every strict subformula ψ of φ, and satisfiability of (ρ, i) ⊧ ψ′,
for every subformula ψ′ of φ. This works for PTLTL because the semantics
of temporal operators in PTLTL can be expressed in a recursive form, e.g.,
the semantics of S can be equally expressed as [19]: (ρ, i + 1) ⊧ φ1 S φ2 iff
(ρ, i + 1) ⊧ φ2, or (ρ, i + 1) ⊧ φ1 and (ρ, i) ⊧ φ1 S φ2. This is not the case for
MTL. For example, satisfiability of the unrestricted ‘since’ operator S[m,n) can
be equivalently expressed as:

(ρ, i + 1) ⊧ φ1 S[m,n) φ2 iff m = 0, n > 1, and (ρ, i + 1) ⊧ φ2, or
(ρ, i + 1) ⊧ φ1 and (ρ, i) ⊧ φ1 S[m′,n′) φ2

(3)

where m′ = min(0,m − τi+1 + τi) and n′ = min(0, n − τi+1 + τi). Since τi+1 can
vary, the value of m′ and n′ can vary, depending on the history ρ. We avoid
the expansion of metric operators in monitoring by restricting the intervals in
the metric operators to the form [0, n). We show that clause (3) can be brought
back to a purely recursive form. The key to this is the following lemma:

Lemma 2 (Minimality). If (ρ, i) ⊧ φ1 Sn φ2 ((ρ, i) ⊧ ⟐nφ) then there exists
an m ≤ n such that (ρ, i) ⊧ φ1 Sm φ2 (resp. (ρ, i) ⊧ ⟐mφ) and such that for
every k such that 0 < k <m, we have (ρ, i) /⊧ φ1 Sk φ2 (resp., (ρ, i) /⊧⟐kφ).

Given ρ, i and φ, we define a function m as follows:

m(ρ, i, φ) = {m, if φ is either φ1 Sn φ2 or ⟐nφ
′ and (ρ, i) ⊧ φ,

0, otherwise.

where m is as given in Lemma 2; we shall see how its value is calculated in
Algorithm 3. The following theorem follows from Lemma 2.

Theorem 1 (Recursive forms). For every model ρ, every n ≥ 1, φ, φ1 and
φ2, and every 1 < i ≤ ∣ρ∣, the following hold:

1. (ρ, i) ⊧ φ1 Sn φ2 iff (ρ, i) ⊧ φ2, or (ρ, i) ⊧ φ1 and (ρ, i − 1) ⊧ φ1 Sn φ2 and
n − (τi − τi−1) ≥ m(ρ, i − 1, φ1 Sn φ2).

8



Algorithm 1 Monitor(ρ, i, φ)
Init(ρ,φ, prev, cur,mprev,mcur)
for j = 1 to i do
Iter(ρ, j, φ, prev, cur,mprev,mcur);

end for
return cur[idx(φ)];

Algorithm 2 Init(ρ,φ, prev, cur,mprev,mcur)
for k = 1, . . . ,m do
prev[k] ∶= false, mprev[k] ∶= 0 and mcur[k] ∶= 0;

end for
for k = 1, . . . ,m do

switch (φk = �)
case (�): cur[k] ∶= false;
case (p(~c)): cur[k] ∶= p(~c) ∈ π1;
case (P (~c)): cur[k] ∶= cur[idx(φP (~c))]; {Suppose P (~x) ∶= φP (~x).}
case (¬ψ): cur[k] ∶= ¬cur[idx(ψ)];
case (ψ1 ∨ ψ2): cur[k] ∶= cur[idx(ψ1)] ∨ cur[idx(ψ2)];
case (●ψ): cur[k] ∶= false;
case (⟐ψ): cur[k] ∶= false;
case (ψ1 S ψ2): cur[k] ∶= cur[idx(ψ2)];
case (●nψ): cur[k] ∶= false;
case (⟐nψ): cur[k] ∶= false;mcur[k] ∶= 0;
case (φk = ψ1 Sn ψ2):
cur[k] ∶= cur[idx(ψ2)];
if cur[k] = true then mcur[k] ∶= 1;
else mcur[k] ∶= 0;
end if

end switch
end for
return cur[idx(φ)];

2. (ρ, i) ⊧ ⟐nφ iff (ρ, i − 1) ⊧ φ and τi − τi−1 < n, or (ρ, i − 1) ⊧ ⟐nφ and
n − (τi − τi−1) ≥ m(ρ, i − 1,⟐nφ).

Given Theorem 1, the monitoring algorithm for PTLTL in [19] can be adapted,
but with an added data structure to keep track of the function m. In the follow-
ing, given a formula φ, we assume that ∃, ⧫ and ⟐ have been replaced with its
equivalent form as mentioned in Section 2.

Given a formula φ, let Sub(φ) be the set of subformulas of φ. We define a
closure set S∗(φ) of φ as follows: Let Sub0(φ) = Sub(φ), and let

Subn+1(φ) = Subn(φ) ∪ {Sub(φP (~c)) ∣ P (~c) ∈ Subn(φ), and P (~x) ∶= φP (~x)}

and define Sub∗(φ) = ⋃n≥0 Subn(φ). Since Dα is finite, Sub∗(φ) is finite, al-
though its size is exponential in the arities of recursive predicates. For our specific
applications, the predicates used in our sample policies have at most arity of two

9



Algorithm 3 Iter(ρ, i, φ, prev, cur,mprev,mcur)
Require: i > 1.
prev ∶= cur; mprev ∶=mcur;
for k = 1 to m do mcur[k] ∶= 0; end for
for k = 1 to m do

switch (φk)
case (�): cur[k] ∶= false;
case (p(~c)): cur[k] ∶= p(~c) ∈ πi;
case (¬ψ): cur[k] ∶= ¬cur[idx(ψ)];
case (P (~c)): cur[k] ∶= cur[idx(φP (~c))]; {Suppose P (~x) ∶= φP (~x).}
case (ψ1 ∨ ψ2): cur[k] ∶= cur[idx(ψ1)] ∨ cur[idx(ψ2)];
case (●ψ): cur[k] ∶= prev[idx(ψ)];
case (⟐ψ): curr[k] ∶= prev[idx(ψ)] ∨ prev[⟐ψ];
case (ψ1 S ψ2): cur[k] ∶= cur[idx(ψ2)] ∨ (cur[idx(ψ1)] ∧ prev[idx(ψ2)]);
case (●nψ): cur[k] ∶= prev[ψ] ∧ (τi − τi−1 < n);
case (⟐nψ):
l ∶= prev[idx(ψ)] ∧ (τi − τi−1 < n);
r ∶= prev[idx(⟐nψ)] ∧ (n − (τi − τi−1) ≥mprev[k]));
cur[k] ∶= l ∨ r;
if l then mcur[k] ∶= τi − τi−1 + 1;
else if r then mcur[k] ∶=mprev[k] + τi − τi−1;
else mcur[k] ∶= 0;
end if

case (ψ1 Sn ψ2):
l ∶= cur[idx(ψ2)];
r ∶= cur[idx(ψ1)] ∧ prev[k] ∧ (n − (τi − τi−1) ≥mprev[k]);
cur[k] ∶= l ∨ r;
if l then mcur[k] ∶= 1;
else if r then mcur[k] ∶=mprev[k] + τi − τi−1;
else mcur[k] ∶= 0;
end if

end switch
end for
return cur[idx(φ)];

(for tracking transitive calls), so this is still tractable. In future work, we plan
to investigate ways of avoiding this explicit expansion of recursive predicates.

We now describe how monitoring can be done for φ, given ρ and 1 ≤ i ≤ ∣ρ∣.
We assume implicitly a preprocessing step where we compute Sub∗(φ); we do
not describe this step here but it is quite straightforward. Let φ1, φ2, . . . , φm
be an enumeration of Sub∗(φ) respecting the partial order ≺, i.e., if φi ≺ φj
then i ≤ j. Then we can assign to each ψ ∈ Sub∗(φ) an index i, s.t., ψ = φi in
this enumeration. We refer to this index as idx(ψ). We maintain two boolean
arrays prev[1, . . . ,m] and cur[1, . . . ,m]. The intention is that given ρ and i >
1, the value of prev[k] corresponds to the truth value of the judgment (ρ, i −
1) ⊧ φk and the truth value of cur[k] corresponds to the truth value of the
judgment (ρ, i) ⊧ φk. We also maintain two integer arrays mprev[1, . . . ,m] and

10



mcur[1, . . . ,m] to store the value of the function m. The value of mprev[k]
corresponds to m(ρ, i−1, φk), and mcur[k] corresponds to m(ρ, i, φk). Note that
this preprocessing step only needs to be done once, i.e., when generating the
monitor codes for a particular policy, which is done offline, prior to inserting the
monitor into the operating system kernel.

The main monitoring algorithm is divided into two subprocedures: the ini-
tialisation procedure (Algorithm 2) and the iterative procedure (Algorithm 3).
The monitoring procedure (Algorithm 1) is then a simple combination of these
two. We overload some logical symbols to denote operators on boolean values.
In the actual implementation, we do not actually implement the loop in Algo-
rithm 1; rather it is implemented as an event-triggered procedure, to process
each event as they arrive using Iter.

Theorem 2. (ρ, i) ⊧ φ iff Monitor(ρ, i, φ) returns true.

The Iter function only depends on two worlds: ρi and ρi−1, so the algorithm
is trace-length independent. In principle there is no upperbound to its space
complexity, as the timestamp τi can grow arbitrarily large, as is the case in [3].
Practically, however, the timestamps in Android are stored in a fixed size data
structure, so in such a case, when the policy is fixed, the space complexity is
constant (i.e., independent of the length of history ρ).

4 Examples

We provide some basic policies as an example of how we can use this logic to
specify security policies. From now on, we shall only quantify over the domain
app, so in the following we shall omit the sort annotation in the existential
quantifier. The predicate trans is the recursive predicate defined in Equation (1)
in the introduction. The constant sink denotes a service or resource that an
unprivileged application tries to access via privilege escalation e.g. send SMS,
or access to internet. The constant contact denotes the Contact provider app
in Android. We also assume the following “static” predicates (i.e., their truth
values do not vary over time):

– system(x): x is a system app or process. By system app here we mean any
app that is provided and certified by google (such as Google Maps, Google
Play, etc) or an app that comes preinstalled to the phone.

– hasPermissionToSink(y): y has permission to access the sink.
– trusted(x): x is an app that the user trusts. This is not a feature of Android,

rather, it is a specific feature of our implementation. We build into our
implementation a ‘trust’ management app to allow the user a limited control
over apps that he/she trusts.

The following policies refer to access patterns that are forbidden. So given a
policy φ, the monitor at each state i make sure that (ρ, i) /⊧ φ holds. Assuming
that (ρ, i) /⊧ φ, where i = ∣ρ∣, holds, then whenever a new event (i.e., the IPC call)
e is registered at time t, the monitor checks that (([π; e], [τ ; t]), i+ 1) /⊧ φ holds.
If it does, then the call is allowed to proceed. Otherwise, it will be terminated.

11



Table 1: Performance Table (ms)

Policy Uncached Cached

1 76.64 14.36
2 93.65 42.36
3 94.68 41.83
4 92.43 42.75

No Monitor 75.8 16.9

Table 2: Memory Overhead Table

Policy Size(kB) Overhead(%)

1 372 0.05
2 916 0.11
3 916 0.11
4 916 0.11

Note: on emulator with 49 apps and
overall memory of around 800 mB

1. ∃x.(call(x, sink) ∧ ¬system(x) ∧ ¬trusted(x)).
This is a simple policy where we block a direct call from any untrusted
application to the sink. This policy can serve as a privilege manager where we
dynamically revoke permission for application to access the sink regardless
of the static permission it asked during installation.

2. ∃x(trans(x, sink) ∧ ¬system(x) ∧ ¬hasPermissionToSink(x)).
This policy says that transitive calls to a sink from non-system apps are
forbidden, unless the source of the calls already has permission to the sink.
This is then a simple privilege escalation detection (for non-system apps).

3. ∃x(trans(x, sink) ∧ ¬system(x) ∧ ¬trusted(x)).
This is further refinement to the policy in that we also give the user privilege
to decide for themselves dynamically whether or not to trust an application.
Untrusted apps can not make transitive call to the sink, but trusted apps
are allowed, regardless of their permissions.

4. ∃x(trans(x, internet) ∧ ¬system(x) ∧ ¬trusted(x) ∧⟐(call(x, contact))).
This policy allows privilege escalation by non-trusted apps as long as there
is no potential for data leakage through the sink. That is, as soon as a non-
system and untrusted app accesses contact, it will be barred from accessing
the internet. Note that the use of non-metric operator ⟐ ensures that the
information that a particular app has accessed contact is persistent. This
policy resembles the well-known Chinese Wall policy [7] that is often used to
manage conflict of interests. Here accessing contacts and connecting to the
internet are considered as different conflict-of-interests classes.

5 Implementation

We have implemented the monitoring algorithm presented in the previous sec-
tion in Android 4.1. Some modifications to the application framework and the
underlying Linux kernel are neccessary to ensure our monitor can effectively
monitor and stop unwanted behaviours. We have tested our implementation in
both Android emulator and an actual device (Samsung Galaxy Nexus phone).

Our implementation consists of two parts: the codes that generate a monitor
given a policy specification, and the modifications of Android framework and its
Linux kernel to hook our monitor and to intercept IPCs and access to Android
resources. The modification on Android framework mainly revolves around Ac-
tivity Manager Service, a system component which deals with processing intent.

12



(a) (b)

Fig. 1: Timing of Calls

We add a hook in the framework to redirect permission checking (either starting
activity, service, or broadcasting intent) to pass through our monitor first before
going to the usual Android permission checking. The modification to the kernel
consists mainly of additional system calls to interact with the framework, and
a monitor stub which will be activated when the monitor module is loaded. To
improve runtime performance, the monitor generation is done outside Android;
it produces C codes that are then compiled into a kernel module, and inserted
into Android boot image.

The monitor generator takes an input policy, encoded in an XML format
extending that of RuleML. The monitor generator works by following the logic
of the monitoring algorithm presented in Section 3. It takes a policy formula φ,
and generates the required data structures and determines an ordering between
elements of Sub∗(φ) as described earlier, and produces the codes illustrated in
Algorithm 2, 3 and 1. The main body of our monitor lies in the Linux kernel space
as a kernel module. The reason for this is that there are some cases where Android
leaves the permission checking to the Linux kernel layer e.g., for opening network
socket. However, to monitor the IPC events between Android components and
apps, we need to place a hook inside the application framework. The IPC between
apps is done through passing a data structure called Intent, which gets broken
down into parcels before they are passed down to the kernel level to be delivered.
So intercepting these parcels and reconstructing the original Intent object in the
kernel space would be more difficult and error prone. The events generated by
apps or components will be passed down to the monitor in the kernel, along with
the application’s user id. If the event is a call to the sink, then depending on
the policy that is implemented in the monitor, it will decide to whether block
or allow the call to proceed. We do this through our custom additional system
calls to the Linux kernel which go to this monitor.

Our implementation places hooks in four services, namely accessing inter-
net (opening network sockets), sending SMS, accessing location, and accessing
contact database. For each of this sink, we add a virtual UID in the monitor
and treat it as a component of Android. We currently track only IPC calls

13



through the Intent passing mechanism. This is obviously not enough to detect
all possible communications between apps, e.g., those that are done through
file systems, or side channels, such as vibration setting (e.g., as implemented in
SoundComber [24]), so our implementation is currently more of a proof of con-
cept. In the case of SoundComber, our monitor can actually intercepts the calls
between colluding apps, due to the fact that the sender app broadcasts an intent
to signal receiver app to start listenting for messages from the covert channels.

We have implemented some apps to test policies we mentioned in Section 4.
In Table 1 and Figure 1, we provide some measurement of the timing of the
calls between applications. The policy numbers in Table 1 refer to the policies
in Section 4. To measure the average time for each IPC call, we construct a
chain of ten apps, making successive calls between them, and measure the time
needed for one end to reach the other. We measure two different average timings
in miliseconds (ms) for different scenarios, based on whether the apps are in the
background cache (i.e., suspended) or not. We also measure the time spent on
the monitor actually processing the event, which is around 1 ms for policy 1,
and around 10 ms for the other three policies. This shows that the time spent
in processing the event is quite low, but more overhead comes from the space
required to process the event (there is a big jump in overall timing from simple
rules with at most 2 free variables to the one with 3 free variables). Figure 1
shows that the timing of calls over time for each policy are roughly the same.
This backs our claim that even though our monitor implements history-based
access control, its performance does not depend on the size of the history. Table 2
shows the memory footprints of the security monitors. The first column in the
table shows the actual size of the memory required by each monitor, and the
second column shows the percentage of the memory of each monitor relative
to the overall available memory. As can be seen from the table, the memory
overhead of the monitors is negligible.

6 Conclusion, related and future work

We have shown a policy language design based on MTL that can effectively de-
scribe various scenarios of privilege escalation in Android. Moreover, any policy
written in our language can be effectively enforced. The key to the latter is the
fact that our enforcement procedure is trace-length independent. We have also
given a proof-of-concept implementation on actual Android devices and show
that our implementation can effectively enforce RMTL policies.

We have already discussed related work in runtime monitoring based on LTL
in the introduction. We now discuss briefly related work in Android security.
There is a large body of works in this area, more than what can be reasonably
surveyed here, so we shall focus on the most relevant ones to our work, i.e., those
that deal with privilege escalation. For a more comprehensive survey on other
security extensions or analysis, the interested reader can consult [8]. QUIRE [12]
is an application centric approach to privilege escalation, done by tagging the
intent objects with the caller’s UID. Thus, the recipient application can check

14



the permission of the source of the call chain. IPC Inspection [15] is another
application centric solution that works by reducing the privilege of the recipient
application when it receives a communication from a less privileged application.
XManDroid [8] is a system centric solution, just like ours. Its security monitor
maintains a call graph between apps. It is the closest to our solution, except that
we are using temporal logic to specify a policy, and our policy can be modified
modularly. This way, a system administrator can have flexibility in designing a
policy that is suited to the system in question. Moreover, should an attacker find
a way to circumvent the current monitor, we can easily modify the monitor to
enforce a different policy that addresses the security hole.

Our policy language is also more expressive as we can specify both temporal
and metric properties. As a result, XManDroid will have better performance in
general (exploiting the persistent link in the graph by using cache), yet there
are policies that our monitor can enforce but XManDroid cannot. For exam-
ple, consider Policy 4 in Section 4. XManDroid can only express whether an
application has the permission to access contact, but not the fact that contact
was accessed in the past. So in this case XManDroid would forbid an app with
permission to access contact to connect to the internet, whereas in our case, we
prevent the connection to the internet only after contact was actually accessed.
TaintDroid [13] is another system-centric solution, but it is designed to track
data flow, rather than control flow, via taint analysis, so privilege escalation can
be inferred from leakage of data.

We currently do not deal with quantifiers directly in our algorithm. Such
quantifiers are expanded into purely propositional connectives (when the do-
main is finite), which is exponential in the number of variables in the policy.
As an immediate future work, we plan to investigate whether techniques using
spawning automata [5] can be adapted to our setting to allow a “lazy” expansion
of quantifiers as needed. It is not possible to design trace-length-independent
monitoring algorithms in the unrestricted first-order LTL [5], so the challenge
here is to find a suitable restriction that can be enforced efficiently.

Acknowledgment. This work is partly supported by the Australian Research
Council Discovery Grant DP110103173.

References

1. Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expres-
siveness. In LICS, pages 390–401. IEEE Computer Society, 1990.

2. David A. Basin, Felix Klaedtke, Samuel Müller, and Birgit Pfitzmann. Runtime
monitoring of metric first-order temporal properties. In FSTTCS, volume 2 of
LIPIcs, pages 49–60. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

3. David A. Basin, Felix Klaedtke, and Eugen Zalinescu. Algorithms for monitoring
real-time properties. In RV, volume 7186 of LNCS, pages 260–275. Springer, 2012.

4. Andreas Bauer, Rajeev Gore, and Alwen Tiu. A first-order policy language for
history-based transaction monitoring. In Proc. 6th Intl. Colloq. Theoretical Aspects
of Computing (ICTAC), volume 5684 of LNCS, pages 96–111. Springer, 2009.

5. Andreas Bauer, Jan-Christoph Küster, and Gil Vegliach. From propositional to
first-order monitoring. In RV, volume 8174 of LNCS, pages 59–75, 2013.

15



6. Julian Bradfield and Colin Stirling. Modal mu-calculi. In HANDBOOK OF
MODAL LOGIC, pages 721–756. Elsevier, 2007.

7. D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In IEEE
Symposium on Security and Privacy. IEEE, 1989.

8. S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and B. Shastry.
Towards taming privilege-escalation attacks on android. In NDSS12, 2012.

9. Patrick P. F. Chan, Lucas Chi Kwong Hui, and Siu-Ming Yiu. Droidchecker:
analyzing android applications for capability leak. In WISEC, pages 125–136.
ACM, 2012.

10. Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
Privilege escalation attacks on android. In ISC 2010, volume 6531 of LNCS, pages
346–360, 2011.

11. Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, July 1977.

12. M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire: Lightweight
provenance for smartphone operating systems. In 20th USENIX Security Sympo-
sium, 2011.

13. W. Enck, P. Gillbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In OSDI, 2010.

14. William Enck, Machigar Ongtang, and Patrick Drew McDaniel. Understanding
android security. IEEE Security & Privacy, 7(1):50–57, 2009.

15. A. P. Felt, H. Wang, A. Moschuk, S. Hanna, and E. Chin. Permission re-delegation:
Attacks and defenses. In 20th USENIX Security Symposium, 2011.

16. Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer,
1996.

17. Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic detection of
capability leaks in stock android smartphones. In NDSS12, 2012.

18. Hendra Gunadi and Alwen Tiu. Efficient runtime monitoring with metric temporal
logic: A case study in the android operating system. CoRR, abs/1311.2362, 2013.

19. Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties. In
TACAS, volume 2280 of LNCS, pages 342–356. Springer, 2002.

20. Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past. In
Logic of Programs, volume 193 of LNCS, pages 196–218. Springer, 1985.

21. Anthony Lineberry, David Luke Richardson, and Tim Wyatt. These aren’t the
permissions you’re looking for. In DefCon 18, 2010.

22. Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE
Computer Society, 1977.

23. Thomas Reinbacher, Matthias Függer, and Jörg Brauer. Real-time runtime verifi-
cation on chip. In RV, volume 7687 of LNCS, pages 110–125. Springer, 2013.

24. R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapadia, and X. Wang. Sound-
comber: A stealthy and context-aware sound trojan for smartphones. In 18th
Annual Network and Distributed System Security Symposium (NDSS), 2011.

25. P. Thati and G. Rosu. Monitoring algorithms for metric temporal logic specifica-
tions. In Proc. of RV04, 2004.

26. Prasanna Thati and Grigore Rosu. Monitoring algorithms for metric temporal
logic specifications. Electr. Notes Theor. Comput. Sci., 113:145–162, 2005.

16


