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Abstract

The scalability problem in data mining involves the de-
velopment of methods for handling large databases with
limited computational resources. In this paper, we present
a two-phase scalable model-based clustering framework:
First, a large data set is summed up into sub-clusters; Then,
clusters are directly generated from the summary statis-
tics of sub-clusters by a specifically designed Expectation-
Maximization (EM) algorithm. Taking example for Gaus-
sian mixture models, we establish a provably convergent
EM algorithm, EMADS, which embodies cardinality, mean,
and covariance information of each sub-cluster explic-
itly. Combining with different data summarization proce-
dures, EMADS is used to construct two clustering systems:
gEMADS and bEMADS. The experimental results demon-
strate that they run several orders of magnitude faster than
the classic EM algorithm with little loss of accuracy. They
generate significantly better results than other model-based
clustering systems using similar computational resources.

1. Introduction

With the explosive growth of data amassed from busi-
ness and scientific disciplines, scalable data mining sys-
tems become more and more important. They bridge the
gap between the limited computational resources and large
databases. Their running time grows linearly or sub-linearly
with data size, given computational resources such as main
memory [1, 7]. Model-based clustering techniques can
identify clusters of various shapes and handle complicated
databases with different kinds of attributes [3, 4]. Fur-
thermore, they have solid mathematical foundations from
the statistics community [9]. These techniques have suc-
cessfully been applied to numerous real-life applications
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[2, 3, 6, 9, 14]. Thus, the research on scalable model-based
cluster analysis is significant.

The Expectation-Maximization (EM) algorithm is an it-
erative procedure for finding maximum likelihood estimates
of parameters in a mixture model. EM normally generates
more accurate results than hierarchical model-based clus-
tering [6, 10]. Though some attempts have been made to
speed up EM [9, 11], EM and its extensions are still com-
putationally expensive for large databases. The lazy EM
algorithm [15] evaluates the significance of data items and
then operates only on the significant ones. Comparing with
EM, its speedup factor is less than three. The scalable EM
algorithm [1] uses a heuristically extended EM algorithm to
identify compressible regions of data. Then it retains their
sufficient statistics in order to load another batch of data,
and invokes EM again. Its speedup factor is up to ten [1, 7].

In this paper, we will present our scalable model-based
clustering systems which can run several orders of mag-
nitude faster than the classical EM algorithm on large
databases. Moreover, there is no or little loss of accuracy.
They also can generate much more accurate results than
other scalable model-based clustering systems. The basic
idea is to categorize a data set into sub-clusters first and then
generate a mixture model from their summary statistics di-
rectly by a specifically designed EM algorithm. This new
EM algorithm works on the summary statistics of the sub-
clusters, and it is associated with a pseudo mixture model
that is developed to approximate the aggregate behavior of
each sub-cluster of data items under the original mixture
model. Thus, the new EM algorithm can efficiently generate
a good estimate of the original mixture model. For example,
for the California housing data plotted in a scaled Latitude-
Longitude space in Figure 1(a), our clustering systems gen-
erate two mixtures, respectively, from 551 and 780 data
summaries of 20,640 data items. The two mixture mod-
els clearly describe the housing structure in California, as
illustrated in Figures 1(b) and 1(c), where a data summary
is indicated by ‘*’, and a Gaussian distribution is indicated
by an ‘o’ and its associated ellipse.
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(a) California housing data.
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(b) Clusters generated by gEMADS.
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(c) Clusters generated by bEMADS.

Figure 1. Gaussian mixture models generated
for the California housing data by two model-
based clustering systems.

In the next section, we describe our model-based clus-
tering framework and then apply it to a Gaussian mixture
model. Two possible data summarization procedures are
described in Section 3. A pseudo mixture model and its as-
sociated EM algorithm are developed for the Gaussian mix-
ture model in Section 4. In Section 5, comprehensive exper-
iment results are given on both synthetic and real-life data
sets. The conclusive comments come in the last section.

2 Scalable Model-based Clustering

Given a data set X � fx�,� � � ,xNg, the model-based
clustering techniques assume that each data item xi � �x�i,
� � � ,xDi�T is drawn from a K-component mixture model

� with probability p�xij�� �
KP

k��

pk��xij�k�. Here pk is

Knowlege
BaseData

Summarization

Model-based Cluster
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Figure 2. A scalable clustering framework.

the mixing proportion for the kth cluster (� � pk � � for

k � �, � � � , K, and
KP

k��

pk � �); ��xij�k� is a component

density function with parameter �k. Given �, one may get
a crisp clustering by assigning the data items xi to cluster k
where k � argmax

l

fpl��xij�l�g. Thus, a mixture model

� can be viewed as a clustering solution. Expectation-
Maximization (EM) is a widely used algorithm for finding
maximum likelihood estimates of � iteratively. In each iter-
ation, EM needs to scan the whole set, which prohibits EM
from large databases.

There are three approaches to scale-up classic clustering
algorithms such as EM. Random sampling is easy to imple-
ment, but often brings about inaccuracy [5]. The weighted
sampling uses a weighted (pseudo) sample to represent a
group of data item [5, 13], and requires slight modification
on the classical clustering techniques. However, as shown
in Section 5, its performance also depends heavily on the
sampling procedures. The third strategy is to construct sum-
mary statistics of the large data set on which to base the
desired analysis [1, 16].

Our scalable model-based clustering framework falls
into the last category. It is motivated by the following obser-
vation. In a scalable system, a group of similar data items
usually needs to be handled as an object in order to save
computational resources. In model-based cluster analysis,
a component density function essentially determines clus-
tering results. Thus, for each group of similar data items,
a new component density function can be defined in order
to remedy the possible loss of clustering accuracy caused
by the trivially homogeneous treatment of these data items.
For example, a pseudo component density function for their
summary statistics can be developed to approximate their
aggregate behavior under the original component density
function. Finally, its associated clustering algorithm, e.g.,
an algorithm derived from the general EM algorithm [9],
can effectively generate a good mixture model from these
summary statistics directly. Thus, as illustrated in Figure 2,
our framework has two phases: data summarization, which
partitions similar data items into exclusive sub-clusters and
generates their summary statistics, and in-memory model-
based clustering analysis, which generates mixture mod-
els using the new EM algorithm associated with the pseudo
mixture model.

In principle, the framework is applicable to many mix-

Proceedings of the Third IEEE International Conference on Data Mining (ICDM’03) 
0-7695-1978-4/03 $ 17.00 © 2003 IEEE 



ture models, but we focus on Gaussian mixture models in
the paper because of their wide applications [1, 3, 6, 14]. In
a Gaussian mixture model, each component is a multivariate
Gaussian distribution:

��xij�k� �
exp

�
��
��xi � �k�T�

��
k �xi � �k�

�
����

D
� j�kj

�
�

� (1)

The parameter �k consists of a mean vector �k and a
covariance matrix �k. The classical EM algorithm esti-
mates the parameters to maximize log-likelihood L��� �

log

�
NQ
i��

p�xij��

�
iteratively. It alternates between the fol-

lowing two steps.

1. E-Step: Given the mixture model parameters, compute

the membership probability t�j�ik �
p
�j�
k

��xiju
�j�
k
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�j�
k
�
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l
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2. M-step: Given t
�j�
ik , update the mixture model parame-

ters from the total N data items for k � �� � � � , K:

p
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(4)

As the summary statistics of sub-clusters are the only in-
formation passed from the first phase onto the second one,
they play an important role in clustering accuracy. They had
better reflect the data distribution within the sub-clusters.
For example, a Gaussian distribution embodies a covari-
ance matrix, thus the covariance information should be in-
cluded in the summary statistics for Gaussian mixture mod-
els. Thus, we define the following data summary as the
summary statistics of a sub-cluster.

Definition 1 For the mth sub-cluster, the data summary
is defined as a triple: DSm � fnm� �m��mg�m � ��
� � � �M , where M is the number of sub-clusters). Here,
nm is the number of data items in the mth sub-cluster;
�m � �

nm

P
the mthsub-cluster

xi is the mean of the data in the

mth sub-cluster; and �m � �
nm

P
the mth sub-cluster

xix
T
i is the

average of the outer products of the nm data items.

The data summary DSm comprises the zeroth, first, and
second moments of the mth sub-cluster of data items. It

contains sufficient statistics when the data items within the
sub-cluster follow a Gaussian distribution. Taking the data
summary as summary statistics for a sub-cluster, a new
pseudo mixture model and its associated EM algorithm,
EMADS, will be derived in Section 4. Two scalable cluster-
ing systems can be developed by cooperating with the two
data summarization procedures presented in the next sec-
tion.

3 Data Summarization Procedures

Our data summarization procedures sum up similar data
items into data summaries. The grid-based data summa-
rization procedure partitions a data set by imposing a mul-
tidimensional grid structure in the data space, and then in-
crementally sums up the data items within a cell into its
data summaries. That is, the data items within a cell form a
sub-cluster. For simplicity, each attribute is partitioned into
several equidistant segments by grids. Thus, each cell has
the same width in each attribute and has the same volume.
For example, for the California housing data in Figure 1(a),
we partition each attribute into 40 segments and obtain 551
non-empty sub-clusters, as shown in Figure 1(b). Thus, the
cell widths specify the grid structure and the total number
of sub-clusters.

To operate within the given main memory, we only store
data summaries for the non-empty cells in a data summary
array: DS-array. This DS-array has a fixed number of en-
tries, M , according to the given amount of main memory.
When a new data item is read, we calculate which cell it
is located in. Then we efficiently search for its associated
entry in the DS-array by using a hash function. If a cor-
responding entry is found, its data summary is updated to
absorb the data item. Otherwise, a new entry will be allo-
cated to store the data summary of the cell.

The grid-based data summarization procedure adaptively
determines the cell width to better use the given main mem-
ory. At the beginning, the cell widths are initialized to rea-
sonably small values. If the cell widths are quite small,
then the number of non-empty cells may be greater than
the number of entries in the DS-array. When the entries in
the DS-array are used up, the cell width are increased and
the DS-array is rebuilt. The grid-based data summariza-
tion procedure merges every two adjacent cells into a larger
one along the dimension with the smallest width. Thus, a
new data summary is calculated from two old ones without
rereading the data.

If the Euclidean distance is used to define the similarity
between two data items within sub-clusters, we may em-
ploy existing scalable distance-based clustering techniques
[12, 13], such as BIRCH [16], to generate sub-clusters.
BIRCH scans the data set to build an initial in-memory
CF(Clustering Features)-tree, which can be viewed as a
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multilevel compression of the data set that tries to preserve
its inherent clustering structure. Different from clustering
features, data summaries contain covariance information.
Hence, in our experiments, BIRCH is modified to gener-
ate data summaries. The generated 780 data summaries for
the California housing data are illustrated in Figure 1(c).

Both the BIRCH’s and the grid-based data summariza-
tion procedures attempt to generate data summaries using
restricted computational resources. They both read the data
set only once. However, the former uses a tree indexing,
while the later employs a hash indexing. The former makes
better use of memory, while the later is simpler to imple-
ment and manipulate [8].

4 EMADS

Our in-memory model-based clustering algorithm di-
rectly generates a Gaussian mixture model from data sum-
maries. Our design method is first to introduce a pseudo
component density function on the data summaries. The
pseudo density function can approximate the aggregate be-
havior of each sub-cluster of data items under the Gaussian
distribution. We then define a pseudo mixture model and
derive its associated EM algorithm — EM Algorithm for
Data Summaries (EMADS) — according to the general EM
algorithm [9].

In order to embody the covariance information in our
pseudo component density function to better approximate
the aggregate behavior, we simplify the data summary
DSm � fnm� �m��mg into a simplified data summary
sm � fnm� �m� �mg. �m is the product of the square
root of the largest eigenvalue of the covariance matrix�
�m � �m�

T
m

�
and its corresponding component vector.

According to Theorem 6.1 in [8, p.120], �m is a good
choice because its outer product best approximates the ma-
trix. Now we introduce a new density function based on the
sub-cluster to which a data item xi belongs.

Definition 2 For a single data item xi within the mth sub-
cluster, its probability under the pseudo component den-
sity function � is

��xi � the mth sub-clusterj�k�
�
� ��smj�k�

�
expf� �

� ��
T
m�

��
k
�m���m��k�

T���
k

��m��k��g
����

D
� j�kj

�
�

� (5)

where �k � ��k��k� is the parameter for the kth compo-
nent of the pseudo mixture model �.

If �m � �, the density function in Eq.(5) is equivalent
to a Gaussian density function. In general, however, it is
not a genuine density function because its integral over the
whole data space is often less than 1. Roughly speaking, if
the sub-cluster variance nm

�
�m � �m�

T
m

�
is small, say, in

1-D case, then the item �Tm�
��
k �m is also small. In other

words, this density function has a higher probability for a
data item in a dense area, which accords with the Gaussian
density function. Furthermore, its associated EM algorithm,
EMADS, can well approximate the aggregate behavior of
each sub-cluster of data items, as explained in [8]. Hence,
the pseudo component density function is practicable.

With Eq.(5), we get a density function under the
pseudo mixture model � for xi within the mth sub-cluster,

p�xij��
�
� p�smj�� �

KP
k��

pk��smj�k��k�.

The pseudo mixture model � has the same parameters
as the Gaussian mixture model 	. In addition, the pseudo
component density function approximates the aggregate be-
havior of each sub-cluster of data items under the Gaus-
sian distribution. Thus, we can find a good Gaussian mix-
ture model 	 by finding a maximum likelihood estimate of
�. Given the number of clusters K, we derive a new EM
algorithm according to the general EM algorithm [9]. It
efficiently gets an estimate of � by maximizing the log-

likelihood L��� �
MP
m��

nm log

�
KP
k��

pk��smj�k��k�

�
it-

eratively as follows.

Algorithm 3 EMADS

1. Initialization: Set the current iteration j � � and
initialize the parameters, p�j�k � �

�j�
k and ��j�

k , such that
KP
k��

p
�j�
k � 
, and��j�

k is symmetric and positive definite.

2. E-step: Given the mixture model ��j�, compute the
membership probability r�j�mk for all sm,

r
�j�
mk �

p
�j�
k ��smju

�j�
k ��

�j�
k �

KP
i��

p
�j�
i ��smju

�j�
i ���j�

i �

� (6)

3. M-step: Given r�j�mk, update the model parameters using
sm for all k,

p
�j���
k � �

N

MP
m��

nmr
�j�
mk � (7)

�
�j���
k �

MP

m��
nmr

�j�
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��j�m
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m��
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�j�
mk

�
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m��
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��j�m

N�p
�j���
k

� (8)

�
�j���
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MP

m��
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�j�
mk

h
�m�

T
m���m��

�j�
k

���m��
�j�
k

�T
i

N�p
�j���
k

�(9)

4. Termination: If
��L���j����� L���j��

�� � �
��L���j��

��,
set j to j � 
 and go to step 2.
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Different from the Extended EM algorithm in [1] and
the classical EM algorithm for Gaussian mixture models,
EMADS embodies the covariance information explicitly in
both E-step and M-step. Thus, more accurate results can
be expected. EMADS is also easy to implement because it
involves only several equations (Eqs.(6)-(9)). Furthermore,
EMADS can surely terminate according to the following
theorem.

Theorem 4 If the matrix ���� ��� � � � � �M � is full rank, then
the log-likelihood L��� for EMADS converges monotoni-
cally to a log-likelihood value L� � L���� for a stationary
mixture model ���

A proof can be found in [8]. The computational com-
plexity of EMADS is O�MKD�I�, where I is the num-
ber of iterations. It is linear with the number of data
summaries. The total memory requirement of EMADS is
�MD � MK � KD� � KD � K � M floating point
numbers. Thus, given a large data set, we can choose an
appropriate number of sub-clusters, M , to sum up the data
set into the given main memory and then generate Gaussian
mixture models.

EMADS may be simplified into Weighted Expectation
Maximization (WEM) when the component density func-
tion � is replaced by a Gaussian density function �. Thus,
WEM handles each data item in the same way as its corre-
sponding sub-cluster mean vector, and the weights are the
cardinality of the sub-clusters.

5 Performance of EMADS

5.1 Methodology and Synthetic Data

Working on the data summaries generated by the grid-
based and the BIRCH’s data summarization procedures,
EMADS is used to construct two clustering systems. We
call them gEMADS and bEMADS, respectively. The
gEMADS system is mainly specified to examine the sensi-
tivity of EMADS to different data summaries. To highlight
their performance, we compare them with several model-
based clustering systems designed according to the other
scaling-up strategies. They are

The EM algorithm: It is the classical EM algorithm for
Gaussian mixture models.

The sampling EM algorithm: It is EM working on 5%
random samples. It is referred to as sampEM hereafter.

The gWEM and the bWEM systems: They are WEM
working on the data summaries generated by two data
summarization procedures, respectively. These two sys-
tems may be viewed as density-biased sampling cluster-
ing techniques [13].
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Figure 3. Data samples of four data sets.

All these systems are coded in MATLAB and exper-
iments are conducted on a Sun Enterprise E4500 server.
EMADS, WEM and EM are initialized with the cluster cen-
ters generated by K-means from M random samples. They
terminate if the successive log-likelihood modification is
within �	�� of current value as used in [10, 15]. All ex-
perimental results reported are averaged on 10 independent
runs. The data summarization procedures are set to generate
at most 4,000 data summaries and use about 8 megabytes
main memory. In contrast, there is no restriction on the
amount of the main memory used for both EM and sam-
pEM in our experiments.

Since all systems finally generate Gaussian mixture
models, the natural evaluation metric is their log-likelihood
value. For convenience, we average the log-likelihood over
the samples. We also use the clustering accuracy to mea-
sure the generated mixture models for the synthetic data
sets. The clustering accuracy is defined as the proportion
of samples which are correctly clustered [10].

We generate three groups of synthetic data sets based on
random mixture models. The first group has three data sets,
and their mean vectors of Gaussian components are located
on 2-D grid, as illustrated in Figures 3(a), 3(b), and 3(c), re-
spectively. In the second group of four data sets, two mean
vectors of a mixture model are generated together to en-
sure that their Euclidean distance is 1.0. Hence, these two
clusters are close and not well separated. A typical data
set is illustrated in Figure 3(d). The parameters of these
seven data set are listed in Table 1, where N , D, K, and
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M indicate the number of data items, the data dimensional-
ity, the number of clusters, and the number of sub-clusters,
respectively. The third group of 8 data sets is generated
according to a 10-component Gaussian mixture model in
4-dimensional space. They differ only in their data sizes,
which increase exponentially from 6,250 to 800,000.

5.2 Sensitivity

The data set (DS1) shown in Figure 3(a) is taken to ex-
amine the sensitivity of gEMADS to different data sum-
maries. Figure 4 summaries the clustering accuracy of three
clustering systems. The data summarization results are de-
termined by different grid structures. For example, for the
first 56*56 grid structure, we partition two attributes into
56 segments respectively and obtain 3,136 cells. These
sub-clusters usually do not follow a Gaussian distribution.
Here, sampEM(M) refers to sampEM working on M ran-
dom samples whereM is the number of sub-clusters.

For the first 7 grid structures, the segment numbers for
each attribute are 56, 48, 40, 32, 24, 16, and 12, respec-
tively. The cell granularity increases gradually. As shown in
Figure 4, although the clustering accuracy of the three sys-
tems decreases, the accuracy of gEMADS decreases slowly
and is normally higher than its two counterparts. Especially,
it ranges from 95.4% to 91.4% for the first five grid struc-
tures, and the generated mixture models are very close to
the original one. The last three grid structures in Figure 4
are used to generate very skew sub-clusters. For example, in
the 12*86 grid structure, the cell width is 7.2 times longer
than the cell height. Although the clustering accuracy of
gEMADS system decreases from 92.0% to 83.6% for the
last three grid structures, the decrease is much slower than
that of gWEM. The one-tailed paired Student’s t-Test for the
10 grid structures indicates that gEMADS significantly out-
performs gWEM and sampEM at the 0.01 level. The perfor-
mance of gEMADS is not so sensitive to the data summa-
rization procedures, and acceptable when the sub-clusters
are not too skew and large.

Table 1. The parameters of seven synthetic
data sets.

DataSet N (1000) D K M
DS 1 108 2 9 2986

DS2 500 2 12 2499
DS3 1100 2 20 3818

DS4 200 2 10 2279
DS5 200 3 10 3227
DS6 240 4 12 3982

DS7 280 5 14 2391
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Figure 4. The clustering accuracy of three
clustering systems for different data summa-
rization or sampling procedures.

5.3 Scalability and Accuracy

The second set of experiments is conducted on the third
group of data sets in order to analyze the scalability of bE-
MADS. Figure 5(a) illustrates the execution time of bE-
MADS, EM, bWEM, and sampEM.

It can be observed from Figure 5(a) that the execution
time of bEMADS increases very slowly with the number
of data items. It takes 673.8 seconds for the data set with
6,250 data items, and takes 1,106.2 seconds for the data set
with 800,000 data items. The execution time of bEMADS
mainly spends on the mixture model generation. For ex-
ample, the data summarization procedure takes about 255.2
seconds and EMADS takes 851.0 seconds for the largest
data set.

The execution time of EM increases from 2,344.4 sec-
onds for the data set with 6,250 data items to 359,966.7
seconds for the largest data set. It increases almost linearly
with the data size, as plotted in Figure 5(a). This is because
that the amount of main memory used is not restricted dur-
ing the execution. For the 8 data sets, the speedup factors of
bEMADS to EM range from 3.5 to 339.0. Thus, bEMADS
can run several orders of magnitude faster than EM. In ad-
dition, as indicated in Figure 5(b), bEMADS can generate
slightly more accurate clustering results than EM on four
data sets. The average clustering accuracy of bEMADS is
93.5%. This is a little bit higher than the value of 92.7%
for EM. The execution time of sampEM ranges from 125.2
seconds to 12,071.0 seconds. The ratio of the execution
time of sampEM to bEMADS is 10.9:1 for the largest data
sets. Although bEMADS does not run as fast as sampEM
for those small data sets, it generates much better results
than sampEM. As plotted in Figure 5(b), the average clus-
tering accuracy of bEMADS is 5.5% higher than the value
of 88.0% for sampEM, which is statistically significant at
the 0.05 level.

The bWEM system, similar to bEMADS, is scalable too.
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Figure 5. Performance of four clustering sys-
tems for eight 4-dimensional data sets.

As plotted in Figure 5(b), bEMADS generates more accu-
rate results than bWEM for almost all eight data sets. The
average clustering accuracy of bWEM is 89.2%, which is
significantly lower than that of bEMADS at the 0.05 level.

Similar comparison results can be found in the third set
of experiments for different mixture models. Figure 6 il-
lustrates the clustering accuracy of bEMADS, EM, bWEM,
and sampEM for the seven data sets in Table 1. For the
seven data sets, bEMADS generates the most accurate re-
sults on the second and the third data sets. On average,
the clustering accuracy values of bEMADS, EM, bWEM,
and sampEM are 89.6%, 90.6%, 84.7%, and 86.3%, re-
spectively. Though EM generates slightly more accurate
clustering results than bEMADS does, the one-tailed paired
t-Test does not indicate that it is significantly different at
the 0.05 level. However, the average clustering accuracy
of bEMADS is significantly better than that of bWEM and
sampEM at the 0.05 level.

5.4 Application on Two Real-life Data Sets

For the two real-life data sets, the average log-likelihood
serves as the accuracy metric of the generated mixture mod-
els. The larger the average log-likelihood is, the better a
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Figure 6. Clustering accuracy for the seven
synthetic data sets.

mixture model matches a data set. Table 2 summarizes the
experimental results, including the standard deviations of
log-likelihood and execution time.

The first real-life data set is the California housing data,
downloaded from www.spatial-statistics.com. It has 20,640
data items. We use a 7-component Gaussian mixture model
to describe the data set. The data summarization proce-
dure of BIRCH generates 2,907 data summaries. Figure
1(a) illustrates the data set in the scaled Latitude-Longitude
space. For this 8-dimensional data set, bEMADS takes
about 3,232.4 seconds to generate the mixture models with
the average log-likelihood of 7.517. EM spends about 5.1
times longer. Though the accuracy of bEMADS is slightly
lower than the value of 7.682 for EM, the one-tailed t-Test
indicate that the difference is not statistically significant at
the 0.05 level. For this moderate data set, sampEM runs
faster than bEMADS. However, the average log-likelihood
of sampEM is as low as 6.776, significantly lower than that
of bEMADS. The log-likelihood of bWEM is also signifi-
cantly lower than that of bEMADS, though both spend sim-
ilar execution time.

The second real-life data set, the Forest CoverType Data,
is from the UCI KDD Archive (kdd.ics.uci.edu). The data
set has 581,012 data items and five attributes are used in
our experiments. We use a Gaussian mixture model with
15 components to describe the data set. The BIRCH’s data

Table 2. The performance of bEMADS on the
two real-life data sets.

Housing bEMADS bWEM EM sampEM

log-likelihood 7.517 ± 0.191  6.882 ± 0.153 7.682 ± 0. 159 6.776 ± 0.239

time(Sec.) 3232.4 ± 525.8 3488.6 ± 317.7 16405.5 ± 2906.2 1433.9 ± 514.7
Forest bEMADS bWEM sampEM(15%) sampEM

log-likelihood  -3.083 ± 0.011  -3.278 ± 0.053  -3.078 ± 0.017  -3.086 ± 0.018

time(Sec.) 7985.5 ± 3635.2 6039.7 ± 1313.5 173672.5 ± 80054.2 49745.8 ± 10328.9
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summarization procedure generates 3,186 sub-clusters.
Because EM cannot generate a mixture model after run-

ning for 200 hours, we use sampEM(15%) for comparison.
In fact, even it takes about 173,672.5 seconds. On aver-
age, bEMADS takes about 7,985.5 seconds. It runs 21.7
times faster than sampEM(15%), and 6.2 times faster than
sampEM. The average log-likelihood value of bEMADS is
-3.083. It is slightly larger than the value of -3.086 for sam-
pEM, and slightly smaller than the value of -3.078 for sam-
pEM(15%). However, the one-tailed t-Test indicate that no
significant difference exists among them. The bWEM sys-
tem runs a bit faster than bEMADS. However, it generates
the worst mixture models among the four systems with the
average log-likelihood value of -3.278. The one-tailed t-
Test indicates that the log-likelihood value of bWEM is sig-
nificantly worse than its three counterparts at the 0.05 level.

6 Conclusion

Through working on summary statistics, we have given
a two-phase scalable model-based clustering framework:
First, a large data set is categorized into mutually exclusive
sub-clusters; Second, a new model-based clustering algo-
rithm is used to directly generate clusters from the summary
statistics of the sub-clusters. The new algorithm is designed
for a pseudo mixture model that approximates the aggregate
behavior of each sub-cluster of data items under the original
mixture model.

To exemplify this framework, we have established two
model-based clustering systems for the Gaussian mixture
model. The main novelties are the pseudo component den-
sity function for data summaries and its associated iterative
algorithm — EMADS (Expectation-Maximization Algo-
rithm for Data Summaries). EMADS, derived from the gen-
eral EM algorithm, can embody the cardinality, mean, and
covariance information of each sub-cluster into both E-step
and M-step to generate accurate Gaussian mixtures. We
have also shown that EMADS converges to local maxima,
which renders it the first mathematically sound algorithm
to generate mixture models directly from data summaries.
We have illustrated the insensitivity of EMADS to differ-
ent data summary granularities by combining EMADS with
the grid-based data summarization procedure. By combin-
ing EMADS with the BIRCH’s data summarization proce-
dures, we have established the scalable clustering system,
bEMADS. The comprehensive experimental results on both
the synthetic and real-life data sets have shown that bE-
MADS can run several orders of magnitude faster than the
classical EM algorithm with little or no loss of accuracy. It
runs faster and generates higher quality results than the ran-
dom sampling EM algorithm for large data sets. It, using
comparable computational resources, has generated statis-
tically significantly more accurate results than the density-

biased-sampling clustering system.
For future work, we will apply the scalable model-based

clustering framework to heterogeneous, or other more com-
plicated, data sets. We will also develop some effective ap-
proaches to automatically determine the number of clusters
for large databases.
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