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Abstract—As a typical combinatorial optimization problem, class of the NP-hard or NP-complete problems. Therefore,
the traveling salesman problem (TSP) has attracted extensive the research on the TSP is theoretically important. During the
research interest. In this paper, we develop a self-organizing a5t decades, the TSP has attracted extensive research and has

map (SOM) with a novel learning rule. It is called the integrated . . .
SOM (ISOM) since its learning rule integrates the three learning been repeatedly used as the basis of comparison for different

mechanisms in the SOM literature. Within a single learning step, Optimization algorithms such as genetic algorithms (GAs) [11],
the excited neuron is first dragged toward the input city, then [23], tabu search [20], automata networks [37], local search
pUShed to the convex hull of the TSP, and flnaIIy drawn toward the [17], ant Co|0ny System [7], and neural networks [2], [4]
middle point of its two neighboring neurons. A genetic algorithm . aqq giverse approaches have demonstrated various degrees
is successfully specified to determine the elaborate coordination . .

among the three learning mechanisms as well as the suitable ©f Stréngth and success. This paper focuses on an improved
parameter setting. The evolved ISOM (elSOM) is examined on neural network that generates near optimal TSP solutions with
three sets of TSPs to demonstrate its power and efficiency. The quadratic computation complexity.

Computation Complexﬂiy of the elSOM is quadl’atiC, which is There are malnly two types Of neural network approaches

comparable to other SOM-like neural networks. Moreover, the . - 1A
elSOM can generate more accurate solutions than several typical for the TSP: the Hopfield-type neural networks [14] and the

approaches for TSPs including the SOM developed by Budinich, Kohonen-type self-organizing map (SOM-like) neural networks
the expanding SOM, the convex elastic net, and the FLEXMAP [2]-[4], [21]. The underlying idea of the Hopfield-type networks
algorithm. Though its solution accuracy is not yet comparable s to find solutions by automatically searching for the equilib-
to some sophisticated heuristics, the eISOM is one of the most i, m states of one dynamic system corresponding to the problem
accurate neural networks for the TSP. . . .
under consideration. The Hopfield-type networks can be suc-
Index Terms—Convex hull, genetic algorithms, neural-evolu- cessfully applied to solve small or some medium scale TSPs [1].
tionary system, neural networks, self-organizing map, traveling However, few promising solutions for general medium or large
salesman problem. scale TSPs can be obtained. On the other hand, the SOM-like
neural networks can handle large scale TSPs with low compu-
|. INTRODUCTION tation complexity. We will focus on the SOM-like neural net-

HE TRAVELING salesman problem (TSP) is one of thé(vorks in this paper. .

typical combinatorial optimization problems. It can b The SOM-like neural networks, 0”9'”"’?”3’ propos.ed by Ko-
stated as a search for the shortest closed tour that visits e 8He|n,_solve t_he ThSPdthroug}h unsfu;;erylsed Ig_armfng [21]'| By
city once and only once. There are several real-life applicatio?l'gnp y Inspecting the data val ues o t € Input C|'t|es or regular-
of the TSP such as, VLSI routing [31], hole punching [29 ,tles and patterns., and then gdjustlng itself tq fit thg input data
and wallpaper cutting [25]. On the other hand, it falls into rough cooperative adaptation of the synaptic weights, such a

’ SOM brings about the localized response to the input data, and

thus reflects the topological ordering of the input cities. This
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TSP is perhaps not the best benchmark by which to judge the
effectiveness of the neural networks for optimization [30].
However, we do not think that it is a right time to draw this
conclusion. The heuristics usually have a much higher compu-
tation complexity than the SOM-like networks. Furthermore,
improvements of neural networks for the TSP are being made
[2], [4], [13], [26], [37]. Broadly speaking, there are three main
streams to enhance the original SOM.

1) Introducing the variable structure network. Instead of the
static structure, the output neurons may be dynamically
deleted/inserted. Some typical examples are the SOM-like

network with a dynamic structure [3], and the FLEXMAPFig. 1. Schematic SOM-like network for the TSP/ is the number of

algorithm with a growing structure [10] output neuronsgp is the number of input neurons, say 2, for the 2-dimensional
g . 9 g o ’ Euclidean TSP in this paper.
2) Amending the competition criterion. Burke and Damany

[5] have developed the guilty net by introducing a bias term _ i i i
into the original competition criterion for inhibiting the too-€fficient ISOM in Section Ill. The implementation of a neural-

often-winning neurons. In the work of Favata and Wameqvolqtionary system that evolves a prqmising ISOM is given in
[9], the competition criterion is based on the inner produc%‘,ecnon IV, followed by the elISOM and _|ts performancg onthree
which is slightly different from the Euclidean distance wheetS 0f TSPs. We conclude the paper in the last section.
all weights are normalized.

3) Enhancing the learning rule. The learning rule in the elastic Il. INTEGRATED SOMFOR THETSP

net, proposed by Durbin and Willshaw [8], is often used Firstly, we give a brief description of the SOMs for the TSP
to enhance the SOMs [2], [15]. Recently, an expandinghd outline several typical techniques involved. These pave the

learning rule has been developed [26]. It is designed {gay for our Integrated SOM (ISOM).
reflect the global optimalitythe convex hull propertgf the

TSP, to some degrees. Using this rule, the expanding S8 SOMs for the TSP
(ESOM) may simultaneously achieve the global optimality

L A SOM-like neural network is an unsupervised competitive
and the local optimality. Thus t.he ESOM can ggner"’qgarning scheme which simply inspects input data for regulari-
shorter tours_ than several previous SOMs including tq%s and patterns, and then organizes itself in such a way as to
convex elastic net (CEN) [2], and the SOM developed bf%rm a topologically ordered description. This ordered descrip-
Budinich [4]. tion leads to a solution of the problem under consideration. The

In this paper, we develop a SOM-like neural network calledom-like networks can be applied for many different purposes
the Integrated SOM (ISOM). It uses a new learning rule to intgnd in different ways, such as, cluster analysis [32] and data
grate the above Ieal’ning mechanisms. This Iearning ruleis baﬁﬁq”-]g [22] Through Viewing atourofa TSP as a particu|ar|y
on the observation that all the previous learning rules can irganized, topologically ordered path, SOM-like networks can
prove the performance of the SOMs from different viewpointgso be successfully used to handle the TSP [2], [4], [9], and
and therefore, can supplement one another. In a learning s{gpj.

this new learning rule first follows the traditional SOM learning Fig. 1 shows a schematic view of a SOM-like network for

rule to drag the excited neuron toward the input city [21]. Thighe TSP. A ring of output neurons, denoted hy2, ..., M,

helps the ISOM to learn the neighborhood preserving map. Sggused to characterize a feature map, wheffés the number

ondly, the excited neuron is pushed to the convex hull of thg output neurons. The input neurons, receiving the data of the

TSP. The pushing force, specified according to the convex hidput city (say, coordinate values), are fully connected to every

property, helps the ISOM to find tours with the global propertyutput neuron. The state of input neurons at tinindicated

Finally, the excited neuron is drawn toward the middle point &fy the vectorzy,(t) = [z1x(t), zak(t), ..., Tpe(t)]T € RP,

its two neighboring neurons according to the learning mechaherep is the number of input neurons. In this paper, we mainly

nism in the elastic net. This mechanism aims to prevent toggnsider the Euclidean TSP in a two-dimensional (2—-D) space.

intersections and to keep the length of the ring of the neuromRat is,p is equal to 2. The synaptic weights between fite

as short as possible [8]. However, it is very difficult to desigputput neuron and each of the input neurons form the vector

the ISOM that coordinates the three learning mechanisms @f(t) = [wq;(t), wo;(t), ..., wy;(t)]T € RP (1 < j < M).

fectively with the traditional trial and error approach. Thus, @herefore, these output neurons have two topological spaces.

genetic algorithm (GA) is customized to optimize their elabd@ne lies on the ring of the output neurons to reflect a linear order
rate coordination. The evolved ISOM (elSOM) obtained by thef visiting the cities. The other one lies in thedimensional

GA is then tested on a wide spectrum of TSPs to demonstrafgace where the coordinate of each output neuron is indicated by

its superior performance. its synaptic weight vector. The underlying idea of the SOMs is to

The rest of the paper is organized as follows. We present ttenstruct a topology-preserving map from the high-dimensional

ISOM for the TSP and some possible realizations of its learnisgnaptic weight space onto the one-dimensional ring space and

rule in the next section. We discuss the evolutionary design of tren form a tour.
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(c) The learning rule for the elastic net. (d) The learning rule for the proposed ISOM.

Fig. 2. Schematic view of four different learning rules. A black disc indicates an input city; a gray disc indicates a neuron; a solid line indieaiesrthiag;
a circle indicates the new position of a neuron; a dashed circle indicates a neuron’s interim position; a dashed arrow indicates a movemeatylagetiomy
indicates the elastic force which draws a neuron to the middle point of two neighboring neurons; and “o” indicates the origin, i.e., the centiesof all ci

The overall procedure of applying a SOM-like network to data of cities iteratively. The most commonly used learning rule
TSP can be divided into three steps, namely, the initializatids
step, the feature map formation step, and the solution mapping
step. In the initialization step, the synaptic weightg0) are Wit + 1) = ;(t) + o (t) (Fr(t) — W;(t)) Q)
initialized. Usually, they are initialized with random values. In
the feature map formation step, the synaptic weight vectorswherea;(t) is a learning rateof the network, ranging from 0
the network are modified by unsupervised learning to represéntl [21]. Intuitively, the learning rule means that the excited
the topological properties of all cities. In the solution mappingeurorn; (t) will approach the inpugy (¢) with the movement
step, a tour of the TSP is formed by examining the orderirguantity proportional to the distance between the input city and
of the associated output neurons on the ring. Since the soluttbe excited neuron. Fig. 2(a) illustrates this learning mechanism.
mapping and the initialization steps are performed routinely, titere the black disc indicates the input city, a gray disc indicates
feature map formation step is crucial to the whole proceduam output neuron, the solid line connecting the neurons indicates
[22]. the neuron ring, and the circle represents the new position of the

The feature map formation step aims to construct a perfeptcited neuron. Based on the above learning rule, a SOM-like
neighborhood preserving map in the output neurons. Thagtwork works well on the TSP because it constructs a neigh-
means, the output neurons that are close on the ring spaoehood preserving map. Thus, from each city, the generated
should be closely located on the synaptic weight space. Itt@ur tries to visit its nearest neighbor as far as possible. These
accomplished by performing unsupervised learning on the datsortest subtours hopefully lead to an optimal tour, however, the
values of cities circularly. In other words, the coordinates ¢dcal optimality does not always appear in the optimal tours of
cities are fed into the input neurons iteratively in a randoml TSPs.
fashion. Then the output neurons compete with one another ack order to improve the performance, our recently proposed
cording toa discriminant functionfor example, the Euclidean algorithm, the expanding SOM (ESOM), takes into account
metric. After that, the excited neurons (the winning neuron, g#obal optimality [26]. In contrast with the local optimality,
well as its neighbors) update their synaptic weights accorditige global optimality is valid to the optimal tours of all TSPs.
to a learning rule. The learning process continues until all citi@he convex hull propertis an example. The convex hull for a
are fed into the network for certain times. TSP is the largest convex polygon whose vertices are cities of

Now we are going to discuss different learning rules whicthe TSP. The convex hull property says that, for any optimal
aim to learn the regularities and patterns of the TSP from thaur of the TSP, the cities located on the convex hull must be
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visited in the same sequence as they appear on the convex lotiether and develop a novel integrated SOM (ISOM) to take
The ESOM can generate such tours that visit the cities on thévantage of these three learning mechanisms. For example, the
convex hull in the same sequence as they appear on the convew ISOM can employ the expanding mechanism to achieve the
hull. It achieves this by embodying the convex hull property inonvex hull property, and explore the possible efficient interac-
its learning rule tion between the input city and the excited neuron. It can also
@;(t+1) :Cj(t)ﬂ_;;'(t +1) use the elastic force constraint to inhibit intersections during

2 . . learning. We present the ISOM below.
=c¢;(t) {f;(t) + (1) (Fu(t) —J;(t)}. (2 |SOM for the TSP:

where the interim neuroa@’; (¢ + 1) indicates the position after 1) Transform the coordinatés’;, z5,]7 (i=1, ..., n) of
the excited neurow; (¢) moves toward the input city, (¢) and all cities such that they lie within a circle centered at the
¢;(t) is an expanding coefficiemthich reflects the convex hull, origin with radiusR (< 1). Heren is the number of the
given as cities. Hereafter{z1;, z2;]7 denotes the new coordinate
—1/2 of fL
¢j(t) = [L = 2a;(5)(L = a; () ()] 7Y (3) 2) Sett = 0, p = 2, and the initial weight vectorsy; (0)
and (j =1, ..., n,thusM = n) with random values within

o - the circle above.
i (1) = 1= (B(®), (1)) 3) Select a city at random, say.(t) = [z1x(t), z21(t)]7,

_\/(1 _ |Ifk(t)||2) (1 _ ||u7j(t)||2>. ) an_d feed it tQ th_e input neurons.

4) Find the winning output neuron, say(t), nearest to

The formula in (3) is valid since all cities and output neurons  Z'x(t) according to the Euclidean metric
are restricted within the unit circle in the ESOM. The expanding
coefficient ¢;(¢), normally larger than 1, pushes the excited
neuron away from the origin. This functionality is illustrated = argmin || (t) — @; ()] (6)
in Fig. 2(b). After reaching the interim neura#’;(¢ + 1), the J
excited neurond;(t) is further pushed away from the origin  5) Train neuronn(t) and its neighbors withithe effective
“0” and reaches a new positial; (¢ + 1). With repeated input width o(¢) by using the following:
of cities, the neuron ring expands since the center of all cities
laps over the origin. The expansion can also be viewed ds(t + 1) = ¢;(t) x {@;(t) + a;(t) [#) () — @ (£)]}

m(t) = argmind (Zx(t), w;(t))

pushing neurons to the convex hull of the TSP. According to Bi(t) . - ) D (£) — 2 (1t 7
(3), the expanding coefficient increases with the distance of the + 2 [ (&) + ja (8) = 2055 (0)] - (7)
input city from the origin. In other words, the closer the convex  wherej = m(t), m(t)+1, ..., m(t)+o(t). ¢;(t) isthe

hull to the city, the more expanding force the excited neuron  expanding coefficienwhich will be discussed lateThe
gets. Together with the neighborhood preserving property, this  |earning ratesa ;(t) andg;(t) are specified by
expansion helps the ESOM to generate such tours that visit

the cities on the convex hull in the same sequence as the cities aj(t) =nu(t) X hj ) (8)
appear. Thus, the ESOM achieves both the convex hull property Bi(t) =na(t) X hj m@) 9)
and the local optimality [26]. It will be seen in Section 1Vgng
that the ESOM generates significantly shorter tours than the [ —
classical SOMs 1— ———=, djmu <o(t)

‘ hi, me) = o(t)+1 (10)

Another renowned learning rule which is adopted by the

: . 0 otherwise.
elastic net [8] is ) wi

Here n;(t) and ny(t) are the learning parametersf

i (t+ 1) = oj;(t) + O(Zj)(t) [Zx(t) — wj(1)] the network,/; ;) is a neighborhood functionand
Bi(t) . - - d; mery = MOD(|j — m(t)], n) is the distance between
+ - (t) + 0 t) — 240 (t 5 7, m(t) J—m , I
2 [Bj-2() + Ty (t) = 28;(0)] - ©6) the neuronsn(t) and;j on the ring.

whereg;(t) is another learning rate parameter. The last term 6) Update the effective widtlr(z), and the learning pa-
in the right-hand side of (5) attracts the excited neuron to the  rameters), (t) andny(¢) with predetermined decreasing
middle point of its two neighboring neurons on the ring, as il- schemes. If a predetermined number of loops have not
lustrated in Fig. 2(c). It reflects the elastic force constraint, as  been executed, go to Step 3 with= ¢ + 1.
indicated by the gray arrow in the figure, and reduces the length7) Calculate the activity value of each city, according to
of the resultant ring of neurons as far as possible [8]. Moreover,
it has been empirically confirmed that this learning rule can im-(Zx) = my — ;’—6 {d(fk, W, )
hibit intersections in the resultant tours [15]. . L.
+ 2 [d (xlﬁ wmk-‘rl) - d(xk w"lk-—l)]} (11)

B. Integrated SOM for the TSP 3

The above three learning rules have been used successfully wherem;, is the winning neuron associated witf.
in handling TSPs. Their underlying ideas emphasize different 8) Order the cities by their activity values, and then form a
aspects of the TSP. Thus, we propose to integrate these ideas tour of the TSP.
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Steps 7 and 8 implement the solution mapping procedure of &¢) with several parts that have respective functionalities. It is

SOM-like network for the TSP. They aim to yield a tour fronformulated as

the topologically ordered neurons. Eq. (11) maps each city to

a floating point number which solves the confusion that mul- cj(t) = [L.0+ b;(t) x ej(t)]*. (12)

tiple cities are mapped onto the same neuron. Furthermore, the

mapping method exploits the information of the winning neurohhe constant 1.0 ensures that the expanding coefficient is close

and its nearest neurons. If more than one city excites the saidd.0 so as to make our learning rule harmonize well with the

neuron, the city that is closer to the preceding neuron on thge in (1). The constant, unifies the expanding coefficient

ring and farther away from the subsequent neuron will be vis;(t) with the one of the ESOM in (3). The terbn(¢) is used to

ited earlier in the tour. It can make the length of the resultafgjust the relative strength of the expanding force with respect

tour as short as possible. to the learning rate(t). In other words, it harmonizes the ex-
Step 1 is a linear transformation. It moves the center of &fnding force and the dragging force. To unify the expanding

cities to the origin, and restricts all cities within a circle witfFoefficientc; (#) in (12) with the one of the ESOM network in

radius k. This transformation does not influence the solutiof): bi(t) is formulated as

space of the TSP. This step mainly facilitates the implementation

of the expanding coefficient;(¢t) and makes it possible to re-

flect the convex hull based only on the input city and the excite

neuron. After this linear transformation, the distance betwe&%]ere parameters; (i = 1, 2, 3) are positive numbers. The

the city and the origin, namely the norm of the input vector, ferme; (_t) in (12) _reflects_ the convex hqll in terms of the vector
proportional to the distance between the original city and gpgoperties of the input city and the excited neuron. As analyzed

center of all cities. Thus, the norm of the input city can be us ove, the norm of a city (or neurpn) in the ISOM can r_e_flect the
to reflect the location of the city with respect to all cities. If the2Cation of the city (or neuron) with respect to other cities. The
normis larger, the city is more likely to locate on the convex hulf2"9er its norm is, the more likely the city (or neuron) locates on

We can then formulate the expanding coefficieyit) to reflect the convex hull. On the other hand, since both the city and the
the convex hull property in such a way thatt) increases with neuron are restricted within the circle with radiistheir inner

the norms of input city and the excited neuron. Furthermor@r,OdUCt Wi" approach f[heir norms. Thus,_ the inr_wer product can
since the input city and the excited neuron are within the urjf USed in the expanding coefficient to differentiate the roles of
circle and they are close to each other, their inner product erent cities, too. Together with the neighborhood preserving

close to their norms. That means, the inner product may alsorﬁgperty’ this expansion helps the ISOM to generate tours which

used to reflect the relative locations of the input city and the e%'—Sit the cities on the convex hull in the same sequence as the
es appear on the convex hull. In other words, the ISOM can

cited neuron. Thus, using the norms and the inner products, G

can desigh some reasonable expanding coefficients to reflectrtﬁ%Ch the global optimality. Conse_quently, the ISOM may gen-
convex hull. erate better tours. The norm of city (or neuron) and the inner
The learning rule in (7) is the key point of the proposed |Sowroduct can be useq toforma Iot. of implem.entations of_the term

It also distinguishes the ISOM from all previous SOMs. Th&i (!)- We list some implementations used in our experiments.

learning rule is illustrated in Fig. 2(d). First, the excited neuro) ¢;(t) = [[@’(t + 1)|I> — [(Zx(t), @;(t))| is the difference

is dragged toward the input city. This adaptation is indicated between the distance of the interim neudfy(¢ + 1) from

by the terms enclosed in curved brackets. These terms are thethe origin and the absolute value of the inner product of the

same as those at the right-hand side of (1). In Fig. 2(d), the input city 7;(¢) and the excited neuro, ().

neuron reached’;(t + 1), which behaves like the adaptation?) €;(t) = [[@5(t + DII* + [|#k(t) — @;(#)|]* is the sum of

in Fig. 2(a). Secondly, the excited neuron is pushed away from the distance of the interim neurai; (¢ + 1) from the origin

the origin, as specified by the expanding coefficieft)(>1). and the distance of the ciffj.(¢) from the neuronij; (t).

As shown in Fig. 2(d), the neuron moves fraff,(t + 1) to  3) ¢;(t) = [lZx(t) — @;(1)[|* x [|#(#)]|* is the product of the

@"(t + 1). This adaptation, similar to that in Fig. 2(b), may be distance of the city’,(¢) from the origin and the distance of

viewed as pushing the neuron to the convex hull of the TSP since the city i (t) from the neuroni, ().

the convex hull surrounds the origin. Thus, it helps the ISOM) €;(t) = [|;(t)||>—(Zx(t), ;(t)) is the difference between

to make tours visit the cities on the convex hull in the same the distance of the neurod;(¢) from the origin and the

sequence as these cities appear on the convex hull. Finally, theinner product of the city’ (£) and the neuromj; (#).

excited neuron is drawn by the elastic force as indicated by t8& ¢;(t) = [|Z5(t)||> = (7 (1), T4 (t)) is the difference between

last term in (7). In Fig. 2(d), the neuron moves frai (¢ + 1) the distance of 'Fhe Cit¥x(¢) from the origin and the inner

to;(t + 1). This adaptation is similar to the one in Fig. 2(c). It ~ Product of the cityz (¢) and the neurom; (t).

is clear that the rule embodies the three learning mechanisms. Since the proposed ISOM integrates three learning mecha-
nisms together, an efficient ISOM must have good coordina-
tion among the local optimality of the traditional SOM, the

C. Expanding Coefficient global optimality of the expanding coefficient, and the elastic
force constraint. Moreover, a suitable implementation of the

We turn to formulate the expanding coefficientt) in detail. expanding coefficient and parameter settings should be deter-
To clarify the procedure, we express the expanding coefficiemined. It seems very difficult to specify a good ISOM manually.

bj(t) = a1 x a;(t)" x (1 — a;(t))* (13)
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neural network algorithm. The algorithm can be used to handle
Initialization Selection | ] several TSPs and the evoI_utiqnary algorithm will not be exe-
cuted again. Our approach is different from the one that evolves
l the architecture and learns the synaptic weights together. In the
Crossover latter approach, both evolution and learning are employed for
Genetic Algorithm & Mutation each target problem. - .
(an individual is a l For the problem qf evolving f';\good learning schv_ame_, the per-
concrete ISOM) formance of a candidate learning scheme acts as its fitness. The
<: Fitness Evaluation performance is estimated by considering the speed, the accu-
(Jnhgnieo'ffgjgg racy, and the generalization capability of the learning scheme.
Tested on a training TSPs) In order to obtain an accurate estimation of the fitness value,
validation set of a large number of different target problems should be solved
target TSPs l by using the scheme. Obviously, this fitness evaluation proce-
Recording the | | dure will take a long time to evaluate a scheme. Furthermore,
best Q individuals the fitness evaluation procedure must be executed for different
Finally evolved schemes during the evolution process. Thus, it will take ex-
ISOM tremely long to evolve a learning scheme if an accurate fitness

evaluation procedure is used.

In order to handle this problem, the fithess value of a learning
Fig. 3. Neural-evolutionary system that evolves learning schemes. scheme may be estimated by applying the learning scheme to

one or a few small-scale target problems. However, this ap-

Thus, we employ a genetic algorithm in this paper to design BfPach will introduce the noisy fitness evaluation problem be-
efficient ISOM. cause the fitness value of a scheme relies on the selected target
problems. To alleviate the noisy fitness evaluation problem, a
learning scheme is examined on the target problems for several
runs and our fitness function considers the average performance

During the past two decades there has been growing inter@ad the variance of performance among these runs.
in evolutionary algorithms, especially genetic algorithms Since we cannot ensure that the learning scheme with the
(GAs). They are a family of global stochastic search algorithnixest fitness value on a few small-scale target problems also per-
based on Darwin’s theory of evolution (survival of the fittestjorms well on all target problems, we introduce a validation set
[11], [36]. Normally, these algorithms maintain a populationf target problems to verify the generalization capability of the
of chromosomes, and manipulate them by using sevele#rning scheme. Itis expected that a learning scheme with good
genetic operators. A schematic view of a GA is given in theerformance on the validation set of problems will also perform
right-hand side of Fig. 3. The most significant advantages wofll on other problems.
using evolutionary algorithms lie in the gain of flexibility and A neural-evolutionary system that evolves a learning scheme
adaptability to the task on hand, in combination with robust shown in Fig. 3. After initialization, a genetic algorithm is
performance and global search characteristics. Thus they haged to evolve good learning schemes. A concrete neural net-
been employed to handle many inherently hard problemgork algorithm is obtained from a learning scheme. The neural
As mentioned in [32], [36], and [38], the search space ofetwork algorithm is then used to solve a number of small-scale
all possible network structures (size and connectivity), ari@rget problems in order to estimate the fitness value of the
learning rules is infinitely large, undifferentiable, deceptivegorresponding learning scheme. The b@ddifferent schemes
and multimodal. Evolutionary algorithms provide promisingluring the evolution process are stored. The evolution process
and automatic alternatives to solve the difficult problem oferates until the termination criterion is satisfied and the stored
designing neural networks. Moreover, the combination ¢farning schemes are verified on a set of large-scale problems.
learning and the evolutionary mechanisms can significantfynally, the learning scheme with the best fitness on the valida-
improve the trainability, productivity, and problem-solvindion problems is returned as an evolved ISOM.
capability ofthe neural-evolutionary systems.

In a neural-evolutionary system, evolution and learning are
the two fundamental adaptation mechanisms. Evolution can be IV. IMPLEMENTATION AND RESULTS

introduced into neural networks on various levels. It can be usequ have implemented the above neural-evolutionary system
to evolve the termination criteria [32], weights [38], architecturg) o\ olve an efficient ISOM for the TSP. All algorithms are im-

[6], [24], [28], and learning rules [34]. Itis hard to say which ON@|emented in C++ and all experiments are performed on a Sun

is on a higher Ievgl [38]. Ultrasparc 5/270 workstation.
Since the architecture of the SOMs for the TSP has been

well-studied, we concentrate on evolving a learning scheme that .
consists of a learning rule, the parameter setting of the learning Evolving the ISOM

rule, and the learning parameter setting. Once the architecture oiVe have used the canonical GA in the neural-evolutionary
a network is known, a learning scheme can generate a concgtstem. In our GA, every individual (chromosome) represents a

I1l. EVOLUTIONARY DESIGN OF THEISOM
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learning scheme. For each learning scheme, the parameters in- TABLE |

clude the type of formula to calculate the expanding coefficie ALLELES OF AN INDIVIDUAL (CHROMOSOME AND THEIR DOMAINS IN THE
EURAL-EVOLUTIONARY SYSTEM, AND THE PARAMETER SETTING IN THE

and the parameters (i = 1, ..., 4). They also include other EISOM. THE LEARNING PARAMETERS 77:(t), 172(¢), AND o(t) ARE
parameters in the ISOM, such as the radjshe total learning DECREASEDLINEARLY AFTER EACH LEARNING ITERATION. 71 (t) REACHES

loop L, the initial values, and the decreasing schemes of the ef- ZERO AT THELAST LOOP
fective learning widths (), and the learning parameteys(¢) ; . ;
andn, (). Since these 13 parameters include both integers and Alleles in an individual | Domains eISOM
floating point numbers. For simplicity, each allele (gene) repre-
sents a parameter in an individual. Thus, given the ISOM dis-
cussed in Section I, an individual determines a concrete ISOM.  Parameters for e;(t):
These 13 alleles and their domains are listed in Table I. Our GA

Formula for e;(t) {1,2,---,20} 1

ensures that all alleles stay in their respective domains, thus in- @ 92 and as {0,0.25,---, 5} | 1,3,0.25
valid individuals wiII_neve_r be generated. a4 {0.2,04,---,5} | 1.0
We use the relative difference between the generated tour
length and the optimal tour length to meassoéution quality, Radius B (0.001,1.0) 0.61
€., (Iengthencrated —1€NGN,ptimar)/l€NGthprimar. The fitness Learning loop L (50,65, - -, 200} | 160
function is designed to indicate the average solution quality as
well as its consistency on several runs. It is formulated as Learning parameter 7;(0) | (0.001,1.0) 0.95
fitness = 3 — ave(quality) — var(quality) (14) Learning parameter 12(0) | (0.001,1.0) 0.12
72(t) decreasing mode (be | py: (0,100) 48

whereave(quality) andvar(quality) are the average solution
quality and its variance, respectively. 0 after p; percent iterations)
In the fitness function, 3 is a constant used to keep the fit-

ness value positive. Thus, the roulette wheel selection method The effective width R
can directly be applied based on these fitness values forthe GA  ¢(0)=a+b-7n b: [0.001,0.6) 0.01
maximization. If the optimal tour length is unknown, we use a

theoretical lower bound in place of the optimal tour length. The ¢ () decreasing mode (be | p2: (0,100) 62

theoretical lower bound says that the shortest tour length for a
random TSP with, cities within the unit square is close to 0.765
xy/n [12].

The roulette wheel selection method is used to select parent§ The expanding coefficient (¢) is
in each generation [11]. The mutation operator modifies the old
allele value to a random value in the domain. Two crossover op- {

1 after p, percent iterations)

> lj()win(t)
1=1
> @i (t)wii(t)

i=1

erators are applied alternatively. The first one is the widely usée(t) = 1 + a;(1)*(1 — a;(1))"*
one-point crossover operator that exchanges the alleles after a

randomly selected crossover point in the two parents [11]. The

second considers each allele in turn and generates a random + (1= (0w (O] = } - (15
value that is close to the two corresponding allele values in the

parents. For example, if the allele values of the parents, respg@hat meansg;(t) in (12) is calculated using the first formula
tively, arez; andz», the allele value,, of the offspring will be listed.

22+ A(21 — 22), where) is arandom value in [0, 1]. This oper- e RadiusR is 0.61.

ator is commonly used in evolution strategies. If the values e Learning loopL is setto be 160. Thus, each city is circularly
out of the domain, it will be changed to its closest valid valuefed into the ISOM 160 times. Namely, there are totalhp x n

In our neural-evolutionary system, the crossover and the mearning iterations.
tation probabilities are 0.99 and 0.01, respectively. The popu-e The learning parametes; (¢) is initialized to 0.95 and is
lation size is 100, and the maximum number of generationsdecreased linearly for each learning loop until it reaches zero at
6000. The fitness value is evaluated on three runs of two randdme last loop.

TSPs with 30 and 50 cities, respectively. During the evolution e The learning parameten(t) is initialized to 0.12 and is
process, the best 30 individuals are stored. The stored indivittcreased linearly to 0 in the first 48% learning iterations.
uals are then evaluated on three runs of three random TSPs with The effective width (¢) is initialized t010 + 0.01n, and is
200, 800, 1800 cities, respectively. Allrandom TSPs used in thdecreased linearly to 1 in the first 62% iterations. It keeps 1 in
paper can be found at http://www.cse.cuhk.edu.hk/~hdjin/sorttie remaining 38% iterations.

The learning scheme evolved is listed in the last column of The expanding coefficientc;(t) in (15) only con-
Table I. The executable program and the source codes of #igts of the learning ratex;(¢), the input city Zx(¢)
evolved ISOM (elSOM) can also be downloaded at the aboged the excited neuron@;(t). The expanding term
web site. The explanation of the evolved learning schemedg(t) = [lw’(t + 1)[|* — [(@;(t), Zx(t))] is used to re-
given as follows: flect the convex hull. Roughly, the closer to the convex hull the
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input city (or the excited neuron) is, the larger the expanding 2 oSA

term is. That means, the cities on the convex hull have mor%m‘ o N +Et§cg&ch‘s SOM
influence during learning. So, together with the neighborhooc ¢ 8 NELTN /0’/3\1\ S Evolved ISOM, £ ~
preserving property, the expanding coefficient can help theg Vg & "*‘ "‘\3-;&,,-6'”

8
4
kel &
ISOM to generate shorter tours. On the other hand, the e> 2 4}
2
0

/O\\ -
S\ﬂ,,g

panding coefficient;(t) equals 1.0, either when the excited

Relati

\ -,
neuron is identical to the input city, or when the learning rate . foad .
«;(t) reaches 0. Thus, when the learning rajét) approaches 0 500 1O ber of it 2000 2500
zero, the expanding coefficient has no influence on learning ‘ .
. . . (a) Comparison of the solution quality of the evolved ISOM, the ESOM, the Budinich’s
In other words, the elSOM has similar asymptotic behavior 1€ oy ua the sa approach.
the SOM because the learning rategt), and 3;(t) finally

approach zero. Therefore, the evolved expanding coefficient i ;490

: : : : o)
reasonable. | o
. 800 /
é 00l 3 Eyolved 1SOM L@
B. Performance of the eISOM 3 + Budinich's SOM
o 400
The computation complexity of the elISOMd¥n?), which £ 200
is the same as the ESOM [26] and the SOM developed by Bt L ee®
dinich [4]. It is worth noting that almost all nonneural network %™~ " s00 1000 1500 2000 2500
methods, such as simulated annealing (SA) [19], GAs [23], [33 The number of cities

and ant colony systems [7], have much higher complexity. Thus (b) The average execution time comparison among the three SOMs.
they take longer time to find tours comparable to those genel . g
ated by the SOMs. g. 4. Performance on 18 random TSPs.

To evaluate the performance of the elISOM, we have com-
pared it with several typical algorithms, including the SASA approach. The solution quality is represented in terms of the
approach [4], the SOM developed by Budinich [4], the ESONelative difference between the average tour length and the the-
[26], the convex elastic net (CEN) [2], and the FLEXMAPoretical lower bound. The results are based on 10 runs.
algorithm [10] on three sets of TSPs. We have chosen thesd-rom Fig. 4(a), it can be observed that the tours generated by
SOM-like algorithms since they are state-of-the-art and hatlee elSOM are much nearer to the theoretical bounds than those
similar computation complexity with the elSOM. For theby the SA approach and Budinich’s SOM. Except for the tours
SA approach, the annealing factor 0.95 is used as in [4f the TSP with 400 cities, those generated by the elISOM are
The exchange method, known @sopt inspired by Lin and shorter than those generated by the ESOM on average. The so-
Kernigham [27], is adopted. The SA approach all®sx n lution quality of the elISOM varies slightly with the sizes of the
trials at each temperature level. It usually generates better toli8Ps. For example, its tours for the TSP with 2400 cities is about
than the heuristiQ-opt [4]. It is worth pointing out that the 1.59% longer than the theoretical bound. The ESOM network
performance of the SA approach depends on the exchamgmerates tours 3.50% longer than the theoretical bound, the Bu-
method used [17], [35]. It can generate shorter tours than alinich’s SOM generates tours 5.99% longer than the theoretical
implementation in this paper B-opt or Lin—Kernigham [27] bound, and the SA approach generates tours 5.24% longer than
heuristics are used. However, much more execution timetig theoretical bound. The eISOM performs substantially better
required. The Budinich’s SOM, an effective implementation dhan its three counterparts. Fig. 5 depicts the typical tours gen-
the traditional SOM, maps each city onto a linear order withoetated by these four algorithms. It is interesting to point out that
ambiguity. We set all parameters according to Budinich [4fhe tour generated by the ESOM in Fig. 5(c) visits the cities
which can generate tours comparable to the SA approach. Tmethe convex hull in sequence as specified by the convex hull
ESOM network uses the learning rule in (2), and we implemeptoperty of an optimal tour of the TSP. The tour generated by
it using the parameter setting in [26]. The CEN algorithm hake elISOM also has such property, moreover, the tour has no in-
to form the convex hull of the given cities explicitly. It thentersections, as illustrated in Fig. 5(d). However, the three tours,
takes the initial tour on the convex hull and trains the netwodenerated by its counterparts, all intersect themselves.
in a similar way as the elastic net, yielding shorter tours of We have averaged all the experiment results on these 18
TSPs than the elastic net [2]. We have not implemented CENSPs. The average relative difference is 2.63% for the elSOM.
due to the lack of its implementation details. The experimeht other words, the tours obtained are 2.63% longer than the
results of CEN below are quoted from [2]. The FLEXMARheoretic lower bounds on average. The average relative differ-
algorithm inserts a new neuron in the ring of the neurons evesyices are 3.93% for the ESOM, 6.65% for the Budinich’s SOM,
several learning loops. We take its performance results direciliyd 6.83% for the SA approach respectively. Consequently, the
from the paper [10]. ISOM makes 1.30% improvement over the ESOM, and makes

The first set of experiments were conducted on a set of #8und 4% improvement over the Budinich’s SOM and the SA
TSPs with 50 to 2400 cities. These TSPs are all generated rapproach.
domly within the unit square. Fig. 4(a) shows the experiment The execution time of the three SOMs is illustrated in
results of the elSOM, the ESOM, the Budinich’s SOM, and tHeig. 4(b). The execution time increases similarly with the sizes
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elSOM generates tours 1.20% longer than the optima. The
enhanced CEN algorithm generates tours 2.95% longer than
the optima. The enhanced ESOM, and the Budinich’'s SOM
generate tours 1.50% and 2.07% longer than the optima respec-
tively. The enhanced elSOM performs better than three other
algorithms. Since the computation complexity of CEN is also
O(n?), we conclude that the enhanced elSOM substantially

Q A 0 outperforms the enhanced CEN algorithm.

0 0.5 1 0 05 1 The third set of experiments were performed to compare the
(a) The SA approach (length=39.43).  (b) The Budinich’s SOM (length=39.48) elSOM with the FLEXMAP algorithm [10]. The experiment re-
sults are listed in Table 18. All 10 TSPs can be found in the

0.8
0.6
0.4

0.2

1 1 -
) iﬁ% TSPLIB [29]. The listed results for each TSP are the relative
0.8 08 differences between the best tour length and the corresponding
0.6 ; 0.6 optimum. They are based on 20 runs for each problem. The re-
sults of the FLEXMAP algorithm is quoted from [10]. An en-
°'4 04 hanced version means that the algorithm is improved by the
0.2 0.2 local improvement heuristic used by the FLEXMAP algorithm
L S [10]. This heuristic computes all 24 permutations of every sub-
% 0.5 1 % 05 1 tour with four cities and employs the shortest permutation in
(c) ESOM (length=38.28). (d) The evolved ISOM (length=37.81).  order to get a better tour. The experiment results for four en-

o5 Four tvoical t i dom TSP with 2400 cifies obtained bhanced algorithms are listed in the last four columns of Table I11.
1g. o. our typical tours O e ranaom wi clties optaine Yy
(a) the SA approach. (b) Budinich’s SOM. (c) ESOM. (d) Evolved ISOM. It can be observed from Table Il that the enhar_1ced elSOM
generates shorter tours than the FLEXMAP algorithm, the en-
) ) ) . hanced ESOM, and the Budinich’s SOM for all TSPs except
of TSPs. The execution time of the elISOM is about 1.6 tiMgg. E(.51 the EIL101. and the PCB442 problems. The av-
that of the ESOM and the Budinich’s SOM for each TSP. Thig g6 relative difference for the enhanced elSOM is 2.72%. The
is mainly due to the fact that the elISOM has more leamning,q aqe relative differences are 4.37%, 3.17%, and 4.41% for
loops to execute. It should be emphasized that three SOMS enhanced versions of the FLEXMAP algorithm, the ESOM,
are much faster than the SA approach. For example, the 3y the Budinich's SOM respectively. The enhanced elSOM
approach spends about 5400 s to generate a solution of the T3fgas 1 659 improvement over the FLEXMAP algorithm. Fur-
with 2400 cities. However, the elSOM spends about 1oootﬁermore, the elSOM performs very well even without being
and the other networks spends about 600 s. _ enhanced by the local improvement heuristic. Observed from
The second set of experiments were mainly designed gy e i, the average relative difference for the eISOM is close
compare the eISOM with the convex elastic net (CEN) Gf that for the enhanced ESOM network. It is smaller than that
Al-Mulhem and Al-Maghrabi [2]. We also present the expefr; the FLEXMAP algorithm. The elSOM makes 1.13% im-
iment results of the SA approach, the Budinich’s SOM, &,y ement over the FLEXMAP algorithm. The improvement is

ESOM, and their enhanced versions. An enhanced Versignmising because the tours obtained by the FLEXMAP algo-
is that a network is improved by thlIl heuristic. TheNIl iy are very near to the optima.

heuristic, used in [2], improves tours by using a rearrangement;, summary, for these three comprehensive sets of experi-
heuristic derived from2-opt. Since the experiment results Ofants the eISOM can generate about 3% shorter tours than the
the CEN algorithm quoted from [2] have been enhanced Yy approach with respect to the optima using less execution
the NIl heuristic, the other SOMs have also been enhancediQe "For the average relative differences, it makes at least 1%
make a fair comparison. We tested the algorithms on five T%ﬁprovement over the other four SOMs on a wide spectrum of
benchmarks examined by the CEN algorithm. The five TSR&pg 1o the best of our knowledge, it is one of the most ac-
can be taken from the TSPLIB, collected by Reinelt [29]. ¢ rate SOMS for the TSP. With the same quadratic computa-
Table 11 lists the experiment results of the original angy, complexity, the eISOM substantially outperforms the Bu-
enhanced SOMs. The results are based on 10 independent iR s SOM, the ESOM, and the CEN. The latter three SOMs
and are presented in terms of the relative differences betwegp e special cases of the ISOM. They are designed manually
the average tour lengths and the optimal tour lengths. It can Bfile the elSOM are designed by the GA. This point also indi-

observed from Table H.that the eISOM always yields better;,eq that the GA helps the elSOM to reach a good coordination
solutions than the SA approach, the Budinich’s SOM, and “&?nong three learning mechanisms.

ESOM. On average, the eISOM makes 0.77% improvement
over the ESOM, and makes about 3.5% improvement over the
Budinich’s SOM and the SA approach. These results accord
with the first set of experiments. The enhanced elSOM obtainsln this paper, we have developed the integrated self-orga-
shorter tours than other enhanced neural networks for aizing map (ISOM), a new self-organizing map (SOM) for the

problems except the GR96 problem. On average, the enhanced
2The optimal tour length of HT30 is 415 according to [9] and our experiments.
1The optimal tour of GR96 cited by [2] is as long as 55 209. And the optimal tour of ATT532 cited by [10] is as long as 27 686.

V. CONCLUSION
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TABLE I
EXPERIMENT RESULTS OF THESA APPROACH THE BUDINICH’S SOM, THE ESOM, AND THE EISOM, AND THE ENHANCED CEN ALGORITHM WHEN
APPLIED TO5 TSP BENCHMARKS. THE BOLD-FACED TEXT INDICATES THE BEST ONEAMONG 4 DIFFERENT ALGORITHMS FOR A
TSP. THE ENHANCED ALGORITHMS ARE IMPROVED BY THE NIl HEURISTIC

number Solution' quality of 4 Solution quality of enhanced
TSP name of Cities Optimum algorithms (%) SOMs (%)
SA | Budinich| ESOM| eISOM | CEN| Budinich| ESOM | eISOM
GR96 96 51231 [4.12] 2.09 1.03 | 0.81 |4.39| 0.46 0.46 | 0.53
GRID100 100 100 2.07] 2.17 0.83 | 0.83 |0.80| 1.63 0.80 | 0.80
KROA100| 100 21282 |5.94| 3.68 1.01 0.57 |1.60| 0.93 0.81 0.54
GR137 137 69853 |8.45| 8.61 427 | 3.16 |3.29| 4.51 252 | 2.18
LIN318 318 44169 |7.56| 8.19 4.11 2.05 |4.67| 2.81 2.89 | 1.96
Average 5.:63| 4.95 225 | 1.48 |2.95| 2.07 1.50 | 1.20

TABLE Il
EXPERIMENT RESULTS OF THESA APPROACH THE FLEXMAP ALGORITHM, THE BUDINICH'S SOM, THE ESOM,AND THE EISOM WHEN APPLIED TO THETHIRD
SET OF TSPs. THE BOLD-FACED TEXT INDICATES THE BEST SOLUTION AMONG 4 DIFFERENT ALGORITHMS FOR ATSP. THE ENHANCED
ALGORITHMS ARE IMPROVED BY THE LOCAL IMPROVEMENT HEURISTIC

Solution quality of 4 algorithms | Solution quality of 4 enhanced SOMs
Number . o o
TSP name [ . .. |Optimum (%) (%)
SA | Budinich | ESOM |elSOM| FLEXMAP | Budinich | ESOM|elSOM
HT30 30 415 0 1.51 0 0 217 0 0 0
EIL51 51 426 2.33 3.10 2.10 2.56 1.88 2.48 0.93 | 1.97
EIL101 101 629 5.74 5.24 3.43 3.59 2.07 4.31 272 | 2.92
KROA150 | 150 26524 |4.31 4.36 2.04 | 1.83 2.90 2.23 1.69 | 1.26
KROA200 | 200 29368 | 5.61 6.13 2.91 1.64 3.22 2.67 1.96 | 1.21
LK318 318 42029 |7.56 8.19 411 | 2.05 4.55 5.34 3.48 | 1.93
PCB442 442 50779 |9.15 8.43 7.43 | 6.11 5.31 6.88 5.11 | 567
ATT532 532 87550 |5.38 5.67 495 | 3.35 5.81 4.76 3.54 | 2.39
TK1002 1002 | 259045 | 7.32 8.75 6.37 | 4.82 6.99 7.44 5.07 | 4.01
TK2393 | 2392 | 378032 |8.18| 10.26 8.49 | 6.44 8.76 8.03 7.21 | 5.83
Average 5.56| 6.16 418 | 3.24 4.37 4.41 3.17 | 2.72

TSP. Its learning rule has embodied three effective learninfthe ISOM to integrate strengths of different learning mecha-
mechanisms of different SOM-like neural networks. It simultanisms. We expect to use this methodology to handle other prob-
neously takes account of the local optimality of the traditioné&ms such as cluster analysis. We also expect to enhance the
SOM, the global optimality of the expanding SOM (ESOM)performance of the SOM-like neural networks by embodying
and the elastic force constraint in the elastic net. This learniagother global property in the learning rules.
rule enables the ISOM to generate near optimal solutions.
Since an efficient ISOM must have good coordination among
the three learning mechanisms and use a suitable implemen-
tation of the expanding coefficient and parameter setting, it isThe authors would like to thank the anonymous referees for
very difficult to design a good ISOM manually. We have usedtaeir careful reading of this paper and for their valuable and con-
genetic algorithm (GA) to evolve an efficient ISOM automatistructive comments, which have helped to improve the quality
cally. The evolved ISOM (elSOM) has been examined on a widé the paper.
spectrum of TSPs. Compared with the simulated annealing ap-
proach, it can generate tours about 3% shorter using less execu-
tion time. It has made at least 1% improvement over the SOM
developed by Budinich, the ESOM, the convex elastic net, andll S. _Ab_e, “Con_vergen_ce accele!'ation of the Hopfield neural network by
the FLEXMAP algorithm. Thogg_h its solutio_n accuracy is not. Sglt_ m;g a;g”{gf;gg??;é%? sizedEEE Trans. Syst. Man, Cybern, B
yet comparable to some sophisticated heuristics, the eISOM i$2] H. Al-Mulhem and T. Al-Maghrabi, “Efficient convex-elastic net algo-
one of the most accurate SOMs for the TSP with the quadratic rithm to solve the Euclidean traveling salesman probld@EE Trans.

. . . . - Syst., Man, Cybern.,Rol. 28, pp. 618-620, Aug. 1998.
computation compIeX|ty. This p0|r_1t aI.so indicates the GA h_as [3] B. Angeniol, G. D. L. C. Vaubois, and J. Y. L. Texier, “Self-organizing
successfully found a good coordination of the three learning  feature maps and the travelling salesman problévegiral Netw. vol.
mechanisms of the ISOM, 4 I\4/inghé’inegﬁ2§§_22ﬁloﬁgiﬁizin neural network for the travelin

This research not only supports that GAs can be used to solvé I M. : Lorg g g

> 8 . A salesman problem that is competitive with simulated annealing,”
complicated problems effectively, but also substantiates theidea Neural Comput.vol. 8, pp. 416-424, 1996.
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