
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 6, DECEMBER 2003 877

An Efficient Self-Organizing Map Designed
by Genetic Algorithms for the Traveling

Salesman Problem
Hui-Dong Jin, Member, IEEE, Kwong-Sak Leung, Senior Member, IEEE, Man-Leung Wong, Member, IEEE,

and Zong-Ben Xu

Abstract—As a typical combinatorial optimization problem,
the traveling salesman problem (TSP) has attracted extensive
research interest. In this paper, we develop a self-organizing
map (SOM) with a novel learning rule. It is called the integrated
SOM (ISOM) since its learning rule integrates the three learning
mechanisms in the SOM literature. Within a single learning step,
the excited neuron is first dragged toward the input city, then
pushed to the convex hull of the TSP, and finally drawn toward the
middle point of its two neighboring neurons. A genetic algorithm
is successfully specified to determine the elaborate coordination
among the three learning mechanisms as well as the suitable
parameter setting. The evolved ISOM (eISOM) is examined on
three sets of TSPs to demonstrate its power and efficiency. The
computation complexity of the eISOM is quadratic, which is
comparable to other SOM-like neural networks. Moreover, the
eISOM can generate more accurate solutions than several typical
approaches for TSPs including the SOM developed by Budinich,
the expanding SOM, the convex elastic net, and the FLEXMAP
algorithm. Though its solution accuracy is not yet comparable
to some sophisticated heuristics, the eISOM is one of the most
accurate neural networks for the TSP.

Index Terms—Convex hull, genetic algorithms, neural-evolu-
tionary system, neural networks, self-organizing map, traveling
salesman problem.

I. INTRODUCTION

T HE TRAVELING salesman problem (TSP) is one of the
typical combinatorial optimization problems. It can be

stated as a search for the shortest closed tour that visits each
city once and only once. There are several real-life applications
of the TSP such as, VLSI routing [31], hole punching [29],
and wallpaper cutting [25]. On the other hand, it falls into a

Manuscript received Feb. 19, 2002; revised Aug. 14, 2002. The work of
H. D. Jin and K. S. Leung was supported in part by RGC Grant CUHK
4212/01E of Hong Kong. The work of M. L. Wong was supported in part by
RGC Grant LU 3012/01E of Hong Kong. The work of Z. B. Xu was supported
in part by the Hi-Tech R&D (863) Programm (2001AA113182) and by the
Nature Science Foundation Project (69975016). The overview of the idea of
our approach has been published in the conference paper [16]. This paper was
recommended by Associate Editor M. Dorigo.

H. D. Jin and K. S. Leung is with the Department of Computer Science and
Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong
(e-mail: hdjin@cse.cuhk.edu.hk; ksleung@cse.cuhk.edu.hk).

M. L. Wong is with the Department of Information Systems, Lingnan Uni-
versity, Tuen Mun, Hong Kong (e-mail: mlwong@ln.edu.hk).

Z. B. Xu is affiliated with the Institute for Information and System Sciences,
Faculty of Science, Xi’an Jiaotong University, Xi’an, 710049, China (e-mail:
zbxu@mail.xjtu.edu.cn).

Digital Object Identifier 10.1109/TSMCB.2002.804367

class of the NP-hard or NP-complete problems. Therefore,
the research on the TSP is theoretically important. During the
past decades, the TSP has attracted extensive research and has
been repeatedly used as the basis of comparison for different
optimization algorithms such as genetic algorithms (GAs) [11],
[23], tabu search [20], automata networks [37], local search
[17], ant colony system [7], and neural networks [2], [4].
These diverse approaches have demonstrated various degrees
of strength and success. This paper focuses on an improved
neural network that generates near optimal TSP solutions with
quadratic computation complexity.

There are mainly two types of neural network approaches
for the TSP: the Hopfield-type neural networks [14] and the
Kohonen-type self-organizing map (SOM-like) neural networks
[2]–[4], [21]. The underlying idea of the Hopfield-type networks
is to find solutions by automatically searching for the equilib-
rium states of one dynamic system corresponding to the problem
under consideration. The Hopfield-type networks can be suc-
cessfully applied to solve small or some medium scale TSPs [1].
However, few promising solutions for general medium or large
scale TSPs can be obtained. On the other hand, the SOM-like
neural networks can handle large scale TSPs with low compu-
tation complexity. We will focus on the SOM-like neural net-
works in this paper.

The SOM-like neural networks, originally proposed by Ko-
honen, solve the TSP through unsupervised learning [21]. By
simply inspecting the data values of the input cities for regular-
ities and patterns, and then adjusting itself to fit the input data
through cooperative adaptation of the synaptic weights, such a
SOM brings about the localized response to the input data, and
thus reflects the topological ordering of the input cities. This
neighborhood preserving map then results in a tour of the TSP
under consideration. From each city, the resultant tour tries to
visit its nearest city. The shortest subtour can intuitively lead to
a good tour for the TSP. Such a property learned by the SOM is
referred to asthe local optimalityhereafter.

Due to their low computation complexity and promising
performance, the SOM-like networks have attracted a large
amount of research to explore and enhance the capability of
handling the TSP [3], [5], [9], [10], [15]. The solution accuracy
of the SOM-like networks are still not comparable to some
other state-of-the-art heuristics for the TSP, including ant
colony system [7], local search [18], [35], memetic algorithms
[23] and simulated annealing [17]. It has been argued that the

1083-4419/03$17.00 © 2003 IEEE

878 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 6, DECEMBER 2003

TSP is perhaps not the best benchmark by which to judge the
effectiveness of the neural networks for optimization [30].
However, we do not think that it is a right time to draw this
conclusion. The heuristics usually have a much higher compu-
tation complexity than the SOM-like networks. Furthermore,
improvements of neural networks for the TSP are being made
[2], [4], [13], [26], [37]. Broadly speaking, there are three main
streams to enhance the original SOM.

1) Introducing the variable structure network. Instead of the
static structure, the output neurons may be dynamically
deleted/inserted. Some typical examples are the SOM-like
network with a dynamic structure [3], and the FLEXMAP
algorithm with a growing structure [10].

2) Amending the competition criterion. Burke and Damany
[5] have developed the guilty net by introducing a bias term
into the original competition criterion for inhibiting the too-
often-winning neurons. In the work of Favata and Walker
[9], the competition criterion is based on the inner product,
which is slightly different from the Euclidean distance when
all weights are normalized.

3) Enhancing the learning rule. The learning rule in the elastic
net, proposed by Durbin and Willshaw [8], is often used
to enhance the SOMs [2], [15]. Recently, an expanding
learning rule has been developed [26]. It is designed to
reflect the global optimality,the convex hull propertyof the
TSP, to some degrees. Using this rule, the expanding SOM
(ESOM) may simultaneously achieve the global optimality
and the local optimality. Thus the ESOM can generate
shorter tours than several previous SOMs including the
convex elastic net (CEN) [2], and the SOM developed by
Budinich [4].

In this paper, we develop a SOM-like neural network called
the Integrated SOM (ISOM). It uses a new learning rule to inte-
grate the above learning mechanisms. This learning rule is based
on the observation that all the previous learning rules can im-
prove the performance of the SOMs from different viewpoints
and therefore, can supplement one another. In a learning step,
this new learning rule first follows the traditional SOM learning
rule to drag the excited neuron toward the input city [21]. This
helps the ISOM to learn the neighborhood preserving map. Sec-
ondly, the excited neuron is pushed to the convex hull of the
TSP. The pushing force, specified according to the convex hull
property, helps the ISOM to find tours with the global property.
Finally, the excited neuron is drawn toward the middle point of
its two neighboring neurons according to the learning mecha-
nism in the elastic net. This mechanism aims to prevent tour
intersections and to keep the length of the ring of the neurons
as short as possible [8]. However, it is very difficult to design
the ISOM that coordinates the three learning mechanisms ef-
fectively with the traditional trial and error approach. Thus, a
genetic algorithm (GA) is customized to optimize their elabo-
rate coordination. The evolved ISOM (eISOM) obtained by the
GA is then tested on a wide spectrum of TSPs to demonstrate
its superior performance.

The rest of the paper is organized as follows. We present the
ISOM for the TSP and some possible realizations of its learning
rule in the next section. We discuss the evolutionary design of an

Fig. 1. Schematic SOM-like network for the TSP.M is the number of
output neurons.p is the number of input neurons, say 2, for the 2-dimensional
Euclidean TSP in this paper.

efficient ISOM in Section III. The implementation of a neural-
evolutionary system that evolves a promising ISOM is given in
Section IV, followed by the eISOM and its performance on three
sets of TSPs. We conclude the paper in the last section.

II. I NTEGRATED SOM FOR THETSP

Firstly, we give a brief description of the SOMs for the TSP
and outline several typical techniques involved. These pave the
way for our Integrated SOM (ISOM).

A. SOMs for the TSP

A SOM-like neural network is an unsupervised competitive
learning scheme which simply inspects input data for regulari-
ties and patterns, and then organizes itself in such a way as to
form a topologically ordered description. This ordered descrip-
tion leads to a solution of the problem under consideration. The
SOM-like networks can be applied for many different purposes
and in different ways, such as, cluster analysis [32] and data
mining [22]. Through viewing a tour of a TSP as a particularly
organized, topologically ordered path, SOM-like networks can
also be successfully used to handle the TSP [2], [4], [9], and
[31].

Fig. 1 shows a schematic view of a SOM-like network for
the TSP. A ring of output neurons, denoted by ,
is used to characterize a feature map, whereis the number
of output neurons. The input neurons, receiving the data of the
input city (say, coordinate values), are fully connected to every
output neuron. The state of input neurons at timeis indicated
by the vector ,
where is the number of input neurons. In this paper, we mainly
consider the Euclidean TSP in a two-dimensional (2–D) space.
That is, is equal to 2. The synaptic weights between theth
output neuron and each of the input neurons form the vector

.
Therefore, these output neurons have two topological spaces.
One lies on the ring of the output neurons to reflect a linear order
of visiting the cities. The other one lies in the-dimensional
space where the coordinate of each output neuron is indicated by
its synaptic weight vector. The underlying idea of the SOMs is to
construct a topology-preserving map from the high-dimensional
synaptic weight space onto the one-dimensional ring space and
then form a tour.

JIN et al.: AN EFFICIENT SELF-ORGANIZING MAP DESIGNED BY GENETIC ALGORITHMS 879

Fig. 2. Schematic view of four different learning rules. A black disc indicates an input city; a gray disc indicates a neuron; a solid line indicates theneuron ring;
a circle indicates the new position of a neuron; a dashed circle indicates a neuron’s interim position; a dashed arrow indicates a movement direction;a gray arrow
indicates the elastic force which draws a neuron to the middle point of two neighboring neurons; and “o” indicates the origin, i.e., the center of all cities.

The overall procedure of applying a SOM-like network to a
TSP can be divided into three steps, namely, the initialization
step, the feature map formation step, and the solution mapping
step. In the initialization step, the synaptic weights are
initialized. Usually, they are initialized with random values. In
the feature map formation step, the synaptic weight vectors of
the network are modified by unsupervised learning to represent
the topological properties of all cities. In the solution mapping
step, a tour of the TSP is formed by examining the ordering
of the associated output neurons on the ring. Since the solution
mapping and the initialization steps are performed routinely, the
feature map formation step is crucial to the whole procedure
[22].

The feature map formation step aims to construct a perfect
neighborhood preserving map in the output neurons. That
means, the output neurons that are close on the ring space
should be closely located on the synaptic weight space. It is
accomplished by performing unsupervised learning on the data
values of cities circularly. In other words, the coordinates of
cities are fed into the input neurons iteratively in a random
fashion. Then the output neurons compete with one another ac-
cording toa discriminant function,for example, the Euclidean
metric. After that, the excited neurons (the winning neuron, as
well as its neighbors) update their synaptic weights according
to a learning rule. The learning process continues until all cities
are fed into the network for certain times.

Now we are going to discuss different learning rules which
aim to learn the regularities and patterns of the TSP from the

data of cities iteratively. The most commonly used learning rule
is

(1)

where is a learning rateof the network, ranging from 0
to 1 [21]. Intuitively, the learning rule means that the excited
neuron will approach the input with the movement
quantity proportional to the distance between the input city and
the excited neuron. Fig. 2(a) illustrates this learning mechanism.
Here the black disc indicates the input city, a gray disc indicates
an output neuron, the solid line connecting the neurons indicates
the neuron ring, and the circle represents the new position of the
excited neuron. Based on the above learning rule, a SOM-like
network works well on the TSP because it constructs a neigh-
borhood preserving map. Thus, from each city, the generated
tour tries to visit its nearest neighbor as far as possible. These
shortest subtours hopefully lead to an optimal tour, however, the
local optimality does not always appear in the optimal tours of
all TSPs.

In order to improve the performance, our recently proposed
algorithm, the expanding SOM (ESOM), takes into account
global optimality [26]. In contrast with the local optimality,
the global optimality is valid to the optimal tours of all TSPs.
The convex hull propertyis an example. The convex hull for a
TSP is the largest convex polygon whose vertices are cities of
the TSP. The convex hull property says that, for any optimal
tour of the TSP, the cities located on the convex hull must be

880 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 6, DECEMBER 2003

visited in the same sequence as they appear on the convex hull.
The ESOM can generate such tours that visit the cities on the
convex hull in the same sequence as they appear on the convex
hull. It achieves this by embodying the convex hull property in
its learning rule

(2)

where the interim neuron indicates the position after
the excited neuron moves toward the input city and

is an expanding coefficientwhich reflects the convex hull,
given as

(3)

and

(4)

The formula in (3) is valid since all cities and output neurons
are restricted within the unit circle in the ESOM. The expanding
coefficient , normally larger than 1, pushes the excited
neuron away from the origin. This functionality is illustrated
in Fig. 2(b). After reaching the interim neuron , the
excited neuron is further pushed away from the origin
“o” and reaches a new position . With repeated input
of cities, the neuron ring expands since the center of all cities
laps over the origin. The expansion can also be viewed as
pushing neurons to the convex hull of the TSP. According to
(3), the expanding coefficient increases with the distance of the
input city from the origin. In other words, the closer the convex
hull to the city, the more expanding force the excited neuron
gets. Together with the neighborhood preserving property, this
expansion helps the ESOM to generate such tours that visit
the cities on the convex hull in the same sequence as the cities
appear. Thus, the ESOM achieves both the convex hull property
and the local optimality [26]. It will be seen in Section IV
that the ESOM generates significantly shorter tours than the
classical SOMs.

Another renowned learning rule which is adopted by the
elastic net [8] is

(5)

where is another learning rate parameter. The last term
in the right-hand side of (5) attracts the excited neuron to the
middle point of its two neighboring neurons on the ring, as il-
lustrated in Fig. 2(c). It reflects the elastic force constraint, as
indicated by the gray arrow in the figure, and reduces the length
of the resultant ring of neurons as far as possible [8]. Moreover,
it has been empirically confirmed that this learning rule can in-
hibit intersections in the resultant tours [15].

B. Integrated SOM for the TSP

The above three learning rules have been used successfully
in handling TSPs. Their underlying ideas emphasize different
aspects of the TSP. Thus, we propose to integrate these ideas

together and develop a novel integrated SOM (ISOM) to take
advantage of these three learning mechanisms. For example, the
new ISOM can employ the expanding mechanism to achieve the
convex hull property, and explore the possible efficient interac-
tion between the input city and the excited neuron. It can also
use the elastic force constraint to inhibit intersections during
learning. We present the ISOM below.

ISOM for the TSP:

1) Transform the coordinates () of
all cities such that they lie within a circle centered at the
origin with radius (). Here is the number of the
cities. Hereafter, denotes the new coordinate
of .

2) Set , , and the initial weight vectors
(, thus) with random values within
the circle above.

3) Select a city at random, say ,
and feed it to the input neurons.

4) Find the winning output neuron, say , nearest to
according to the Euclidean metric

(6)

5) Train neuron and its neighbors withinthe effective
width by using the following:

(7)

where . is the
expanding coefficientwhich will be discussed later.The
learning rates and are specified by

(8)

(9)

and

otherwise.

(10)

Here and are the learning parametersof
the network, is a neighborhood function,and

is the distance between
the neurons and on the ring.

6) Update the effective width , and the learning pa-
rameters and with predetermined decreasing
schemes. If a predetermined number of loops have not
been executed, go to Step 3 with .

7) Calculate the activity value of each city according to

(11)

where is the winning neuron associated with.
8) Order the cities by their activity values, and then form a

tour of the TSP.

JIN et al.: AN EFFICIENT SELF-ORGANIZING MAP DESIGNED BY GENETIC ALGORITHMS 881

Steps 7 and 8 implement the solution mapping procedure of a
SOM-like network for the TSP. They aim to yield a tour from
the topologically ordered neurons. Eq. (11) maps each city to
a floating point number which solves the confusion that mul-
tiple cities are mapped onto the same neuron. Furthermore, the
mapping method exploits the information of the winning neuron
and its nearest neurons. If more than one city excites the same
neuron, the city that is closer to the preceding neuron on the
ring and farther away from the subsequent neuron will be vis-
ited earlier in the tour. It can make the length of the resultant
tour as short as possible.

Step 1 is a linear transformation. It moves the center of all
cities to the origin, and restricts all cities within a circle with
radius . This transformation does not influence the solution
space of the TSP. This step mainly facilitates the implementation
of the expanding coefficient and makes it possible to re-
flect the convex hull based only on the input city and the excited
neuron. After this linear transformation, the distance between
the city and the origin, namely the norm of the input vector, is
proportional to the distance between the original city and the
center of all cities. Thus, the norm of the input city can be used
to reflect the location of the city with respect to all cities. If the
norm is larger, the city is more likely to locate on the convex hull.
We can then formulate the expanding coefficient to reflect
the convex hull property in such a way that increases with
the norms of input city and the excited neuron. Furthermore,
since the input city and the excited neuron are within the unit
circle and they are close to each other, their inner product is
close to their norms. That means, the inner product may also be
used to reflect the relative locations of the input city and the ex-
cited neuron. Thus, using the norms and the inner products, we
can design some reasonable expanding coefficients to reflect the
convex hull.

The learning rule in (7) is the key point of the proposed ISOM.
It also distinguishes the ISOM from all previous SOMs. The
learning rule is illustrated in Fig. 2(d). First, the excited neuron
is dragged toward the input city. This adaptation is indicated
by the terms enclosed in curved brackets. These terms are the
same as those at the right-hand side of (1). In Fig. 2(d), the
neuron reaches , which behaves like the adaptation
in Fig. 2(a). Secondly, the excited neuron is pushed away from
the origin, as specified by the expanding coefficient .
As shown in Fig. 2(d), the neuron moves from to

. This adaptation, similar to that in Fig. 2(b), may be
viewed as pushing the neuron to the convex hull of the TSP since
the convex hull surrounds the origin. Thus, it helps the ISOM
to make tours visit the cities on the convex hull in the same
sequence as these cities appear on the convex hull. Finally, the
excited neuron is drawn by the elastic force as indicated by the
last term in (7). In Fig. 2(d), the neuron moves from
to . This adaptation is similar to the one in Fig. 2(c). It
is clear that the rule embodies the three learning mechanisms.

C. Expanding Coefficient

We turn to formulate the expanding coefficient in detail.
To clarify the procedure, we express the expanding coefficient

with several parts that have respective functionalities. It is
formulated as

(12)

The constant 1.0 ensures that the expanding coefficient is close
to 1.0 so as to make our learning rule harmonize well with the
one in (1). The constant unifies the expanding coefficient

with the one of the ESOM in (3). The term is used to
adjust the relative strength of the expanding force with respect
to the learning rate . In other words, it harmonizes the ex-
panding force and the dragging force. To unify the expanding
coefficient in (12) with the one of the ESOM network in
(3), is formulated as

(13)

where parameters () are positive numbers. The
term in (12) reflects the convex hull in terms of the vector
properties of the input city and the excited neuron. As analyzed
above, the norm of a city (or neuron) in the ISOM can reflect the
location of the city (or neuron) with respect to other cities. The
larger its norm is, the more likely the city (or neuron) locates on
the convex hull. On the other hand, since both the city and the
neuron are restricted within the circle with radius, their inner
product will approach their norms. Thus, the inner product can
be used in the expanding coefficient to differentiate the roles of
different cities, too. Together with the neighborhood preserving
property, this expansion helps the ISOM to generate tours which
visit the cities on the convex hull in the same sequence as the
cities appear on the convex hull. In other words, the ISOM can
reach the global optimality. Consequently, the ISOM may gen-
erate better tours. The norm of city (or neuron) and the inner
product can be used to form a lot of implementations of the term

. We list some implementations used in our experiments.

1) is the difference
between the distance of the interim neuron from
the origin and the absolute value of the inner product of the
input city and the excited neuron .

2) is the sum of
the distance of the interim neuron from the origin
and the distance of the city from the neuron .

3) is the product of the
distance of the city from the origin and the distance of
the city from the neuron .

4) is the difference between
the distance of the neuron from the origin and the
inner product of the city and the neuron .

5) is the difference between
the distance of the city from the origin and the inner
product of the city and the neuron .

Since the proposed ISOM integrates three learning mecha-
nisms together, an efficient ISOM must have good coordina-
tion among the local optimality of the traditional SOM, the
global optimality of the expanding coefficient, and the elastic
force constraint. Moreover, a suitable implementation of the
expanding coefficient and parameter settings should be deter-
mined. It seems very difficult to specify a good ISOM manually.

882 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 6, DECEMBER 2003

Fig. 3. Neural-evolutionary system that evolves learning schemes.

Thus, we employ a genetic algorithm in this paper to design an
efficient ISOM.

III. EVOLUTIONARY DESIGN OF THEISOM

During the past two decades there has been growing interest
in evolutionary algorithms, especially genetic algorithms
(GAs). They are a family of global stochastic search algorithms
based on Darwin’s theory of evolution (survival of the fittest)
[11], [36]. Normally, these algorithms maintain a population
of chromosomes, and manipulate them by using several
genetic operators. A schematic view of a GA is given in the
right-hand side of Fig. 3. The most significant advantages of
using evolutionary algorithms lie in the gain of flexibility and
adaptability to the task on hand, in combination with robust
performance and global search characteristics. Thus they have
been employed to handle many inherently hard problems.
As mentioned in [32], [36], and [38], the search space of
all possible network structures (size and connectivity), and
learning rules is infinitely large, undifferentiable, deceptive,
and multimodal. Evolutionary algorithms provide promising
and automatic alternatives to solve the difficult problem of
designing neural networks. Moreover, the combination of
learning and the evolutionary mechanisms can significantly
improve the trainability, productivity, and problem-solving
capability ofthe neural-evolutionary systems.

In a neural-evolutionary system, evolution and learning are
the two fundamental adaptation mechanisms. Evolution can be
introduced into neural networks on various levels. It can be used
to evolve the termination criteria [32], weights [38], architecture
[6], [24], [28], and learning rules [34]. It is hard to say which one
is on a higher level [38].

Since the architecture of the SOMs for the TSP has been
well-studied, we concentrate on evolving a learning scheme that
consists of a learning rule, the parameter setting of the learning
rule, and the learning parameter setting. Once the architecture of
a network is known, a learning scheme can generate a concrete

neural network algorithm. The algorithm can be used to handle
several TSPs and the evolutionary algorithm will not be exe-
cuted again. Our approach is different from the one that evolves
the architecture and learns the synaptic weights together. In the
latter approach, both evolution and learning are employed for
each target problem.

For the problem of evolving a good learning scheme, the per-
formance of a candidate learning scheme acts as its fitness. The
performance is estimated by considering the speed, the accu-
racy, and the generalization capability of the learning scheme.
In order to obtain an accurate estimation of the fitness value,
a large number of different target problems should be solved
by using the scheme. Obviously, this fitness evaluation proce-
dure will take a long time to evaluate a scheme. Furthermore,
the fitness evaluation procedure must be executed for different
schemes during the evolution process. Thus, it will take ex-
tremely long to evolve a learning scheme if an accurate fitness
evaluation procedure is used.

In order to handle this problem, the fitness value of a learning
scheme may be estimated by applying the learning scheme to
one or a few small-scale target problems. However, this ap-
proach will introduce the noisy fitness evaluation problem be-
cause the fitness value of a scheme relies on the selected target
problems. To alleviate the noisy fitness evaluation problem, a
learning scheme is examined on the target problems for several
runs and our fitness function considers the average performance
and the variance of performance among these runs.

Since we cannot ensure that the learning scheme with the
best fitness value on a few small-scale target problems also per-
forms well on all target problems, we introduce a validation set
of target problems to verify the generalization capability of the
learning scheme. It is expected that a learning scheme with good
performance on the validation set of problems will also perform
well on other problems.

A neural-evolutionary system that evolves a learning scheme
is shown in Fig. 3. After initialization, a genetic algorithm is
used to evolve good learning schemes. A concrete neural net-
work algorithm is obtained from a learning scheme. The neural
network algorithm is then used to solve a number of small-scale
target problems in order to estimate the fitness value of the
corresponding learning scheme. The bestdifferent schemes
during the evolution process are stored. The evolution process
iterates until the termination criterion is satisfied and the stored
learning schemes are verified on a set of large-scale problems.
Finally, the learning scheme with the best fitness on the valida-
tion problems is returned as an evolved ISOM.

IV. I MPLEMENTATION AND RESULTS

We have implemented the above neural-evolutionary system
to evolve an efficient ISOM for the TSP. All algorithms are im-
plemented in C++ and all experiments are performed on a Sun
Ultrasparc 5/270 workstation.

A. Evolving the ISOM

We have used the canonical GA in the neural-evolutionary
system. In our GA, every individual (chromosome) represents a

JIN et al.: AN EFFICIENT SELF-ORGANIZING MAP DESIGNED BY GENETIC ALGORITHMS 883

learning scheme. For each learning scheme, the parameters in-
clude the type of formula to calculate the expanding coefficient
and the parameters (). They also include other
parameters in the ISOM, such as the radius, the total learning
loop , the initial values, and the decreasing schemes of the ef-
fective learning width , and the learning parameters
and . Since these 13 parameters include both integers and
floating point numbers. For simplicity, each allele (gene) repre-
sents a parameter in an individual. Thus, given the ISOM dis-
cussed in Section II, an individual determines a concrete ISOM.
These 13 alleles and their domains are listed in Table I. Our GA
ensures that all alleles stay in their respective domains, thus in-
valid individuals will never be generated.

We use the relative difference between the generated tour
length and the optimal tour length to measuresolution quality,
i.e., (length length)/length . The fitness
function is designed to indicate the average solution quality as
well as its consistency on several runs. It is formulated as

(14)

where and are the average solution
quality and its variance, respectively.

In the fitness function, 3 is a constant used to keep the fit-
ness value positive. Thus, the roulette wheel selection method
can directly be applied based on these fitness values for the GA
maximization. If the optimal tour length is unknown, we use a
theoretical lower bound in place of the optimal tour length. The
theoretical lower bound says that the shortest tour length for a
random TSP with cities within the unit square is close to 0.765

[12].
The roulette wheel selection method is used to select parents

in each generation [11]. The mutation operator modifies the old
allele value to a random value in the domain. Two crossover op-
erators are applied alternatively. The first one is the widely used
one-point crossover operator that exchanges the alleles after a
randomly selected crossover point in the two parents [11]. The
second considers each allele in turn and generates a random
value that is close to the two corresponding allele values in the
parents. For example, if the allele values of the parents, respec-
tively, are and , the allele value of the offspring will be

, where is a random value in [0, 1]. This oper-
ator is commonly used in evolution strategies. If the valueis
out of the domain, it will be changed to its closest valid value.

In our neural-evolutionary system, the crossover and the mu-
tation probabilities are 0.99 and 0.01, respectively. The popu-
lation size is 100, and the maximum number of generations is
6000. The fitness value is evaluated on three runs of two random
TSPs with 30 and 50 cities, respectively. During the evolution
process, the best 30 individuals are stored. The stored individ-
uals are then evaluated on three runs of three random TSPs with
200, 800, 1800 cities, respectively. All random TSPs used in this
paper can be found at http://www.cse.cuhk.edu.hk/~hdjin/som/.

The learning scheme evolved is listed in the last column of
Table I. The executable program and the source codes of the
evolved ISOM (eISOM) can also be downloaded at the above
web site. The explanation of the evolved learning scheme is
given as follows:

TABLE I
13 ALLELES OF AN INDIVIDUAL (CHROMOSOME) AND THEIR DOMAINS IN THE

NEURAL-EVOLUTIONARY SYSTEM, AND THE PARAMETER SETTING IN THE

EISOM. THE LEARNING PARAMETERS � (t), � (t), AND �(t) ARE

DECREASEDLINEARLY AFTER EACH LEARNING ITERATION. � (t) REACHES

ZERO AT THE LAST LOOP

The expanding coefficient is

(15)

That means, in (12) is calculated using the first formula
listed.

Radius is 0.61.
Learning loop is set to be 160. Thus, each city is circularly

fed into the ISOM 160 times. Namely, there are totally
learning iterations.

The learning parameter is initialized to 0.95 and is
decreased linearly for each learning loop until it reaches zero at
the last loop.

The learning parameter is initialized to 0.12 and is
decreased linearly to 0 in the first 48% learning iterations.

The effective width is initialized to , and is
decreased linearly to 1 in the first 62% iterations. It keeps 1 in
the remaining 38% iterations.

The expanding coefficient in (15) only con-
sists of the learning rate , the input city
and the excited neuron . The expanding term

is used to re-
flect the convex hull. Roughly, the closer to the convex hull the

884 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 6, DECEMBER 2003

input city (or the excited neuron) is, the larger the expanding
term is. That means, the cities on the convex hull have more
influence during learning. So, together with the neighborhood
preserving property, the expanding coefficient can help the
ISOM to generate shorter tours. On the other hand, the ex-
panding coefficient equals 1.0, either when the excited
neuron is identical to the input city, or when the learning rate

reaches 0. Thus, when the learning rate approaches
zero, the expanding coefficient has no influence on learning.
In other words, the eISOM has similar asymptotic behavior to
the SOM because the learning rates , and finally
approach zero. Therefore, the evolved expanding coefficient is
reasonable.

B. Performance of the eISOM

The computation complexity of the eISOM is , which
is the same as the ESOM [26] and the SOM developed by Bu-
dinich [4]. It is worth noting that almost all nonneural network
methods, such as simulated annealing (SA) [19], GAs [23], [33]
and ant colony systems [7], have much higher complexity. Thus,
they take longer time to find tours comparable to those gener-
ated by the SOMs.

To evaluate the performance of the eISOM, we have com-
pared it with several typical algorithms, including the SA
approach [4], the SOM developed by Budinich [4], the ESOM
[26], the convex elastic net (CEN) [2], and the FLEXMAP
algorithm [10] on three sets of TSPs. We have chosen these
SOM-like algorithms since they are state-of-the-art and have
similar computation complexity with the eISOM. For the
SA approach, the annealing factor 0.95 is used as in [4].
The exchange method, known as2-opt inspired by Lin and
Kernigham [27], is adopted. The SA approach allows
trials at each temperature level. It usually generates better tours
than the heuristic2-opt [4]. It is worth pointing out that the
performance of the SA approach depends on the exchange
method used [17], [35]. It can generate shorter tours than our
implementation in this paper if3-opt, or Lin–Kernigham [27]
heuristics are used. However, much more execution time is
required. The Budinich’s SOM, an effective implementation of
the traditional SOM, maps each city onto a linear order without
ambiguity. We set all parameters according to Budinich [4],
which can generate tours comparable to the SA approach. The
ESOM network uses the learning rule in (2), and we implement
it using the parameter setting in [26]. The CEN algorithm has
to form the convex hull of the given cities explicitly. It then
takes the initial tour on the convex hull and trains the network
in a similar way as the elastic net, yielding shorter tours of
TSPs than the elastic net [2]. We have not implemented CEN
due to the lack of its implementation details. The experiment
results of CEN below are quoted from [2]. The FLEXMAP
algorithm inserts a new neuron in the ring of the neurons every
several learning loops. We take its performance results directly
from the paper [10].

The first set of experiments were conducted on a set of 18
TSPs with 50 to 2400 cities. These TSPs are all generated ran-
domly within the unit square. Fig. 4(a) shows the experiment
results of the eISOM, the ESOM, the Budinich’s SOM, and the

Fig. 4. Performance on 18 random TSPs.

SA approach. The solution quality is represented in terms of the
relative difference between the average tour length and the the-
oretical lower bound. The results are based on 10 runs.

From Fig. 4(a), it can be observed that the tours generated by
the eISOM are much nearer to the theoretical bounds than those
by the SA approach and Budinich’s SOM. Except for the tours
of the TSP with 400 cities, those generated by the eISOM are
shorter than those generated by the ESOM on average. The so-
lution quality of the eISOM varies slightly with the sizes of the
TSPs. For example, its tours for the TSP with 2400 cities is about
1.59% longer than the theoretical bound. The ESOM network
generates tours 3.50% longer than the theoretical bound, the Bu-
dinich’s SOM generates tours 5.99% longer than the theoretical
bound, and the SA approach generates tours 5.24% longer than
the theoretical bound. The eISOM performs substantially better
than its three counterparts. Fig. 5 depicts the typical tours gen-
erated by these four algorithms. It is interesting to point out that
the tour generated by the ESOM in Fig. 5(c) visits the cities
on the convex hull in sequence as specified by the convex hull
property of an optimal tour of the TSP. The tour generated by
the eISOM also has such property, moreover, the tour has no in-
tersections, as illustrated in Fig. 5(d). However, the three tours,
generated by its counterparts, all intersect themselves.

We have averaged all the experiment results on these 18
TSPs. The average relative difference is 2.63% for the eISOM.
In other words, the tours obtained are 2.63% longer than the
theoretic lower bounds on average. The average relative differ-
ences are 3.93% for the ESOM, 6.65% for the Budinich’s SOM,
and 6.83% for the SA approach respectively. Consequently, the
ISOM makes 1.30% improvement over the ESOM, and makes
around 4% improvement over the Budinich’s SOM and the SA
approach.

The execution time of the three SOMs is illustrated in
Fig. 4(b). The execution time increases similarly with the sizes

JIN et al.: AN EFFICIENT SELF-ORGANIZING MAP DESIGNED BY GENETIC ALGORITHMS 885

Fig. 5. Four typical tours of the random TSP with 2400 cities obtained by
(a) the SA approach. (b) Budinich’s SOM. (c) ESOM. (d) Evolved ISOM.

of TSPs. The execution time of the eISOM is about 1.6 times
that of the ESOM and the Budinich’s SOM for each TSP. This
is mainly due to the fact that the eISOM has more learning
loops to execute. It should be emphasized that three SOMs
are much faster than the SA approach. For example, the SA
approach spends about 5400 s to generate a solution of the TSP
with 2400 cities. However, the eISOM spends about 1000 s,
and the other networks spends about 600 s.

The second set of experiments were mainly designed to
compare the eISOM with the convex elastic net (CEN) of
Al-Mulhem and Al-Maghrabi [2]. We also present the exper-
iment results of the SA approach, the Budinich’s SOM, the
ESOM, and their enhanced versions. An enhanced version
is that a network is improved by theNII heuristic. TheNII
heuristic, used in [2], improves tours by using a rearrangement
heuristic derived from2-opt. Since the experiment results of
the CEN algorithm quoted from [2] have been enhanced by
the NII heuristic, the other SOMs have also been enhanced to
make a fair comparison. We tested the algorithms on five TSP
benchmarks examined by the CEN algorithm. The five TSPs
can be taken from the TSPLIB, collected by Reinelt [29].

Table II lists the experiment results of the original and
enhanced SOMs. The results are based on 10 independent runs
and are presented in terms of the relative differences between
the average tour lengths and the optimal tour lengths. It can be
observed from Table II.1 that the eISOM always yields better
solutions than the SA approach, the Budinich’s SOM, and the
ESOM. On average, the eISOM makes 0.77% improvement
over the ESOM, and makes about 3.5% improvement over the
Budinich’s SOM and the SA approach. These results accord
with the first set of experiments. The enhanced eISOM obtains
shorter tours than other enhanced neural networks for all
problems except the GR96 problem. On average, the enhanced

1The optimal tour of GR96 cited by [2] is as long as 55 209.

eISOM generates tours 1.20% longer than the optima. The
enhanced CEN algorithm generates tours 2.95% longer than
the optima. The enhanced ESOM, and the Budinich’s SOM
generate tours 1.50% and 2.07% longer than the optima respec-
tively. The enhanced eISOM performs better than three other
algorithms. Since the computation complexity of CEN is also

, we conclude that the enhanced eISOM substantially
outperforms the enhanced CEN algorithm.

The third set of experiments were performed to compare the
eISOM with the FLEXMAP algorithm [10]. The experiment re-
sults are listed in Table III.2 All 10 TSPs can be found in the
TSPLIB [29]. The listed results for each TSP are the relative
differences between the best tour length and the corresponding
optimum. They are based on 20 runs for each problem. The re-
sults of the FLEXMAP algorithm is quoted from [10]. An en-
hanced version means that the algorithm is improved by the
local improvement heuristic used by the FLEXMAP algorithm
[10]. This heuristic computes all 24 permutations of every sub-
tour with four cities and employs the shortest permutation in
order to get a better tour. The experiment results for four en-
hanced algorithms are listed in the last four columns of Table III.

It can be observed from Table III that the enhanced eISOM
generates shorter tours than the FLEXMAP algorithm, the en-
hanced ESOM, and the Budinich’s SOM for all TSPs except
the EIL51, the EIL101, and the PCB442 problems. The av-
erage relative difference for the enhanced eISOM is 2.72%. The
average relative differences are 4.37%, 3.17%, and 4.41% for
the enhanced versions of the FLEXMAP algorithm, the ESOM,
and the Budinich’s SOM respectively. The enhanced eISOM
makes 1.65% improvement over the FLEXMAP algorithm. Fur-
thermore, the eISOM performs very well even without being
enhanced by the local improvement heuristic. Observed from
Table III, the average relative difference for the eISOM is close
to that for the enhanced ESOM network. It is smaller than that
for the FLEXMAP algorithm. The eISOM makes 1.13% im-
provement over the FLEXMAP algorithm. The improvement is
promising because the tours obtained by the FLEXMAP algo-
rithm are very near to the optima.

In summary, for these three comprehensive sets of experi-
ments, the eISOM can generate about 3% shorter tours than the
SA approach with respect to the optima using less execution
time. For the average relative differences, it makes at least 1%
improvement over the other four SOMs on a wide spectrum of
TSPs. To the best of our knowledge, it is one of the most ac-
curate SOMs for the TSP. With the same quadratic computa-
tion complexity, the eISOM substantially outperforms the Bu-
dinich’s SOM, the ESOM, and the CEN. The latter three SOMs
are the special cases of the ISOM. They are designed manually
while the eISOM are designed by the GA. This point also indi-
cates that the GA helps the eISOM to reach a good coordination
among three learning mechanisms.

V. CONCLUSION

In this paper, we have developed the integrated self-orga-
nizing map (ISOM), a new self-organizing map (SOM) for the

2The optimal tour length of HT30 is 415 according to [9] and our experiments.
And the optimal tour of ATT532 cited by [10] is as long as 27 686.

886 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 6, DECEMBER 2003

TABLE II
EXPERIMENT RESULTS OF THESA APPROACH, THE BUDINICH’S SOM, THE ESOM,AND THE EISOM, AND THE ENHANCED CEN ALGORITHM WHEN

APPLIED TO 5 TSP BENCHMARKS. THE BOLD-FACED TEXT INDICATES THE BEST ONEAMONG 4 DIFFERENT ALGORITHMS FOR A

TSP. THE ENHANCED ALGORITHMS ARE IMPROVED BY THE NII HEURISTIC

TABLE III
EXPERIMENT RESULTS OF THESA APPROACH, THE FLEXMAP ALGORITHM, THE BUDINICH’S SOM,THE ESOM,AND THE EISOM WHEN APPLIED TO THETHIRD

SET OFTSPS. THE BOLD-FACED TEXT INDICATES THE BEST SOLUTION AMONG 4 DIFFERENT ALGORITHMS FOR A TSP. THE ENHANCED

ALGORITHMS ARE IMPROVED BY THE LOCAL IMPROVEMENT HEURISTIC

TSP. Its learning rule has embodied three effective learning
mechanisms of different SOM-like neural networks. It simulta-
neously takes account of the local optimality of the traditional
SOM, the global optimality of the expanding SOM (ESOM),
and the elastic force constraint in the elastic net. This learning
rule enables the ISOM to generate near optimal solutions.

Since an efficient ISOM must have good coordination among
the three learning mechanisms and use a suitable implemen-
tation of the expanding coefficient and parameter setting, it is
very difficult to design a good ISOM manually. We have used a
genetic algorithm (GA) to evolve an efficient ISOM automati-
cally. The evolved ISOM (eISOM) has been examined on a wide
spectrum of TSPs. Compared with the simulated annealing ap-
proach, it can generate tours about 3% shorter using less execu-
tion time. It has made at least 1% improvement over the SOM
developed by Budinich, the ESOM, the convex elastic net, and
the FLEXMAP algorithm. Though its solution accuracy is not
yet comparable to some sophisticated heuristics, the eISOM is
one of the most accurate SOMs for the TSP with the quadratic
computation complexity. This point also indicates the GA has
successfully found a good coordination of the three learning
mechanisms of the ISOM.

This research not only supports that GAs can be used to solve
complicated problems effectively, but also substantiates the idea

of the ISOM to integrate strengths of different learning mecha-
nisms. We expect to use this methodology to handle other prob-
lems such as cluster analysis. We also expect to enhance the
performance of the SOM-like neural networks by embodying
another global property in the learning rules.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for
their careful reading of this paper and for their valuable and con-
structive comments, which have helped to improve the quality
of the paper.

REFERENCES

[1] S. Abe, “Convergence acceleration of the Hopfield neural network by
optimization integration step sizes,”IEEE Trans. Syst., Man, Cybern. B,
vol. 26, pp. 194–201, 1996.

[2] H. Al-Mulhem and T. Al-Maghrabi, “Efficient convex-elastic net algo-
rithm to solve the Euclidean traveling salesman problem,”IEEE Trans.
Syst., Man, Cybern. B, vol. 28, pp. 618–620, Aug. 1998.

[3] B. Angèniol, G. D. L. C. Vaubois, and J. Y. L. Texier, “Self-organizing
feature maps and the travelling salesman problem,”Neural Netw., vol.
4, no. 1, pp. 289–293, 1988.

[4] M. Budinich, “A self-organizing neural network for the traveling
salesman problem that is competitive with simulated annealing,”
Neural Comput., vol. 8, pp. 416–424, 1996.

JIN et al.: AN EFFICIENT SELF-ORGANIZING MAP DESIGNED BY GENETIC ALGORITHMS 887

[5] L. I. Burke and P. Damany, “The guilty net for the traveling salesman
problem,”Comput. Opt., vol. 19, pp. 255–265, 1992.

[6] M. Chang, H. Yu, and J. Heh, “Evolutionary self-organizing map,” in
Proc. 1998 IEEE Int. Joint Conf. Neural Networks, vol. 1, 1998, pp.
680–685.

[7] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,”IEEE Trans. Evol.
Comput., vol. 1, pp. 53–66, Apr. 1997.

[8] R. Durbin and D. Willshaw, “An analogue approach to the traveling
salesman problem,”Nature (London), vol. 326, pp. 689–691, Apr. 1987.

[9] F. Favata and R. Walker, “A study of the applicationof Kohonen-type
neural networks to the traveling salesman problem,”Biol. Cybern., vol.
64, pp. 463–468, 1991.

[10] B. Fritzke and P. Wilke, “FLEXMAP—A neural network with linear
time and space complexity for the traveling salesman problem,” inProc.
IJCNN-90 Int. Joint Conf. Neural Networks, 1991, pp. 929–934.

[11] D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[12] B. Golden and W. Stewartet al., “Empirical analysis of heuristics,” in
The Travelling Salesman Problem, E. Lawleret al., Eds. New York:
Wiley, 1985.

[13] F. Guerrero, S. Lozano, D. Canca, J. M. Garcia, and K. A. Smith, “A
new self-organizing neural network for solving the travelling salesman
problem,” inEng. Syst. Design: Neural Networks, Fuzzy Logic, Evolu-
tionary Programming, Data Mining, ComplexSystems, C. Dagli et al.,
Eds., 2001, vol. 11, pp. 865–870.

[14] J. J. Hopfield and D. W. Tank, “’Neural’ computation of decisions in
optimization problems,”Biol. Cybern., vol. 52, pp. 141–152, 1985.

[15] D. S. Hwang and M. S. Han, “Two phase SOFM,” inProc. IEEE Int.
Conf. Neural Networks, vol. 2, 1994, pp. 742–745.

[16] H. D. Jin, K. S. Leung, and M. L. Wong, “An integrated self-organizing
map for the traveling salesman problem,” inAdvances in Neural Net-
works and Applications, N. Mastorakis, Ed, Singapore: World Scientific,
Feb. 2001, pp. 235–240.

[17] D. S. Johnson and L. A. McGeoch, “The travelling salesman problem:
A case study,” inLocal Search in Combinatorial Optimization, E. Aarts
and J. Karel, Eds. New York: Wiley, 1997, pp. 215–310.

[18] K. Katayama and H. Narihisaet al., “Iterated local search approach using
genetic Transformation to the traveling salesman problem,” inProc. Ge-
netic Evolutionary Computation Conf., vol. 1, W. Banzhafet al., Eds.,
1999, pp. 321–328.

[19] S. G. Kirkpatrick, Jr., C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,”Science, vol. 220, pp. 671–680, 1983.

[20] J. Knox, “Tabu search performance on the symmetric traveling salesman
problem,”Comput. Oper. Res., vol. 21, pp. 867–876, 1994.

[21] T. Kohonen, “Self-organized formation of topologically correct feature
maps,”Biol. Cybern., vol. 43, no. 2, pp. 59–69, 1982.

[22] T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, V. Paatero, and A. Saarela,
“Organization of a massive document collection,”IEEE Trans. Neural
Networks, vol. 11, pp. 574–585, May 2000.

[23] N. Krasnogor and J. Smithet al., “A memetic algorithm with self-adap-
tive local search: TSP as a case study,” inProc. Genetic Evolutionary
Computation Conf., D. Whitley et al., Eds., 2000, pp. 987–994.

[24] S. Kwong, C. W. Chau, K. F. Man, and K. S. Tang, “Optimization of
HMM topology and its model parameters by genetic algorithms,”Pat-
tern Recognit., vol. 34, no. 2, pp. 509–522, Feb. 2001.

[25] G. Laporte, “The vehicle routing problem: An overview of exact and
approximate algorithms,”Eur. J. Oper. Res., vol. 59, pp. 345–358, 1992.

[26] K. S. Leung, H. D. Jin, and Z. B. Xu, “An expanding self-organizing
neural network for the traveling salesman problem,”Neural Netw., Aug.
2002, submitted for publication.

[27] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling salesman problem,”Oper. Res., vol. 21, pp. 498–516, 1973.

[28] A. S. Nissinen and H. Hyotyniemi, “Evolutionary training of behavior-
based self-organizing map,” inProc. 1998 IEEE Int. Joint Conf. Neural
Networks, vol. 1, 1998, pp. 660–665.

[29] G. Reinelt, “TSPLIB—A traveling salesman problem library,”ORSA J.
Computing, vol. 3, no. 4, pp. 376–384, 1991.

[30] K. A. Smith, “An argument for abandoning the travelling salesman
problem as a neural network benchmark,”IEEE Trans. Neural Net-
works, vol. 7, pp. 1542–1544, 1996.

[31] K. A. Smith, “Neural networks for combinatorial optimization: A review
of more than a decade of research,”INFORMS J. Comput., vol. 11, no.
1, pp. 15–34, 1999.

[32] M. C. Su and H. T. Chang, “Genetic-algorithms-based approach to self-
organizing feature map and its application in cluster analysis,” inInt.
Joint Conf. Neural Networks Proc. IEEE World Congr. Computational
Intelligence, vol. 1, 1998, pp. 735–740.

[33] A. Y. C. Tang and K. S. Leung, “A modified edge recombination operator
for the travelling salesman problem,”Lecture Notes Computer Science,
vol. 866, pp. 180–188, 1994.

[34] S. Viswanathan, I. Ersoy, F. Bunyak, and C. Dagli, “Evolving neural
networks applied to predator-evader problem,” inInt. Joint Conf. Neural
Networks, IJCNN’99, vol. 4, 1999, pp. 2394–2397.

[35] C. Voudouris and E. Tsang, “Guided local search and its application to
the traveling salesman problem,”Eur. J. Oper. Res., vol. 113, no. 2, pp.
469–499, 1999.

[36] G. Weiß, “Neural networks and evolutionary computation. Part I: Hybrid
approaches in artificial intelligence,” inProc. First IEEE Conf. Evolu-
tionary Computation, vol. 1, 1994, pp. 268–272.

[37] Z. B. Xu, H. D. Jin, K. S. Leung, L. Leung, and C. K. Wong, “An au-
tomata network for performing combinatorial optimization,”Neurocom-
puting, vol. 47, pp. 59–83, Aug. 2002.

[38] X. Yao and Y. Liu, “Toward designing artificial neural networks by evo-
lution,” Appl. Math. Comput., vol. 91, no. 1, pp. 83–90, Apr. 1998.

Hui-Dong Jin (S’02–M’03) received the B.Sc. de-
gree in applied mathematics in 1995, and the M.Sc.
degree in applied mathematics from the Institute of
Information and System Sciences in 1998, both from
Xi’an Jiaotong University, China. He is currently pur-
suing the Ph.D. degree in computer science and en-
gineering at the Chinese University of Hong Kong,
Hong Kong.

His research interests include data mining, evolu-
tionary computation, and neural networks. He is a
Student Member of ACM and ISGEC.

Kwong-Sak Leung (M’77–SM’89) received the
B.Sc. degree and Ph.D. degree in engineering,
1977 and 1980, respectively, from the University of
London, Queen Mary College.

He worked as a Senior Engineer on contract R&D
at ERA Technology and later joined the Central
Electricity Generating Board to work on nuclear
power station simulators in England. He joined the
Computer Science and Engineering Department at
the Chinese University of Hong Kong in 1985, where
he is currently Professor and Chairman of the De-

partment. His research interests are in soft computing, including evolutionary
computation, neural computation, probabilistic search, information fusion, and
data mining, fuzzy data and knowledge engineering. He has published over
170 papers and two books in fuzzy logic and evolutionary computation.

Dr. Leung has been chair and member of many program and organizing com-
mittees of international conferences. He is in the Editorial Board of Fuzzy Sets
and Systems and an Associate Editor of International Journal of Intelligent Au-
tomation and Soft Computing. He is a chartered engineer, a member of lEE and
ACM and a fellow of HKCS and HKIE.

Man-Leung Wong (M’96) received the B.Sc.,
M.Phil., and Ph.D. degrees in computer science from
the Chinese University of Hong Kong in 1988, 1990,
and 1995, respectively.

He is an Assistant Professor at the Department of
Information Systems of Lingnan University, Tuen
Mun, Hong Kong. Before joining the university, he
worked as an Assistant Professor at the Department
of Systems Engineering and Engineering Manage-
ment, the Chinese University of Hong Kong, and
the Department of Computing Science, Hong Kong

Baptist University. He worked as a Research Engineer at the Hypercom Asia
Ltd. in 1997. His research interests are evolutionary computation, data mining,
machine learning, electronic commerce, knowledge acquisition, fuzzy logic,
and approximate reasoning.

Dr. Wong is a member of the ACM.

888 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 6, DECEMBER 2003

Zong-Ben Xu received the M.S. degree in math-
ematics in 1981, and the Ph.D. degree in applied
mathematics in 1987 from Xi’an Jiaotong University,
China.

In 1988, he was a Postdoctoral Researcher in
the Department of Mathematics, the University of
Strathclyde, UK. He worked as a research fellow
in the Information Engineering Department from
February 1992 to March 1994, the Center for Envi-
ronment Studies from April 1995 to August 1995,
and the Mechanical Engineering and Automation

Department from September 1996 to October 1996, at the Chinese University
of Hong Kong. From January 1995 to April 1995, he was a research fellow
in the Department of Computing at the Hong Kong Polytechnic University.
He has been with the faculty of Science and Research Center for Applied
Mathematics at Xi’an Jiaotong University since 1982, where he was promoted
to Associate Professor in 1987 and Full Professor in 1991, and now serves
as an authorized Ph.D. Supervisor in mathematics, Dean of the Faculty of
Science, and Director of the Institute for Information and System Sciences.
He has published two monographs and more than 80 academic papers on
nonlinear functional analysis, numerical analysis, optimization techniques,
neural networks, and genetic algorithms, most of which are in international
journals. His current research interests include neural networks, evolutionary
computation, and multiple objective decision making theory.

Dr. Xu holds the title “Owner of Chinese Ph.D. Degree Having Outstanding
Achievements” awarded by the Chinese State Education Commission and the
Academic Degree Commission of the Chinese Council in 1991. He is a member
of the New York Academy of Sciences and International Mathematicians Union
(IMU).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

