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Abstract

The aim of transfer learning is to reduce sample complexity required to solve a

learning task by using information gained from solving related tasks. Transfer

learning has in general been motivated by the observation that when people solve

problems, they almost always use information gained from solving related prob-

lems previously. Indeed, the thought of even children trying to solve problems

tabula rasaseem absurd to us. Despite this fairly obvious observation, typical ma-

chine learning algorithms consider solving one task at a time and so do not take

advantage of information that has become available from solving related tasks pre-

viously. Transfer methods aim to rectify this rather serious oversight andso have

a potential to make a huge impact on how successful and widespread the use of

machine learning is.

Practical methods to transfer information has been developed and applied suc-

cessfully to difficult real life problems. In addition theoretical analysis of these

methods have been developed. However one fundamental problem still remains

unsolved, which is how one measures similarity between tasks. This problem is

obviously quite troubling from a conceptual point of view, as the notion of related-

ness seem central to the objective of transferring information between related tasks.

Furthermore, it has been shown in experiments that transferring from ‘unrelated’

tasks hurts generalization performance of learning algorithms. So an appropriate

notion of similarity between tasks seem necessary to design algorithms that can

determine when to transfer information, when not to and how much information to

transfer. In this dissertation we give a formal solution to the problem of measuring

task relatedness and all its associated problems.

We derive a very general measure of relatedness between tasks. We show that

this measure isuniversal– i.e. no other measure of relatedness can uncover much

more similarity than our measure. We then use this measure to deriveuniversally

optimal transfer learning algorithms in a Bayesian setting. Universal optimality

means that no other transfer learning algorithm can perform much better than ours.

The methods we develop automatically solve the problems of determining when

to transfer information and how much information to transfer. Indeed, we show
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that transferring information is always justified – i.e. it never hurts too much to

transfer information. This latter result is quite surprising indeed as the commonly

held belief in the transfer learning community is that it should hurt to transfer from

unrelated tasks. We also show how our transfer learning methods may be used to do

transfer in Prediction with Expert Advice Systems and in Reinforcement Learning

agents as well.

Our distance measures and learning algorithms are based on powerful, elegant

and beautiful ideas from the field of Algorithmic Information Theory. While devel-

oping our transfer learning mechanisms we also derive results that are interesting

in and of themselves. We also developed practical approximations to our formally

optimal method for Bayesian decision trees, and applied it to transfer informa-

tion between 7 arbitrarily chosen data-sets in the UCI machine learning repository

through a battery of 144 experiments. The arbitrary choice of databasesmakes our

experiments the most general transfer experiments to date. The experimentsalso

bear out our result that transfer should never hurt too much.
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Chapter 1

Introduction

In Transfer Learning (TL) (Pratt, 1992; Singh, 1992; Schmidhuber,1994; Caruana,

1993; Caruana, 1997; Thrun & Mitchell, 1995), we are concerned with reducing

sample complexity required to learn a particular task by using information from

solving related tasks– Fig. 6.8 gives a simple example of this idea (see Thrun &

Pratt, 1998; Vilalta & Drissi, 2002 for reviews).

Figure 1.1: The figure shows three tasks which are related by virtue of theconcepts
to be learned having similar shapes.

Each task in TL corresponds to a particular probability measure generatingthe

data for the task. Transfer learning has in general been inspired by noting that

to solve a problem at hand, people almost always use knowledge from solving

related problems previously. This motivation has been borne out by practical suc-

cesses; TL was used to recognize related parts of a visual scene in robot navigation

tasks (Caruana, 1997), predict rewards in related regions in reinforcement learn-

ing based robot navigation problems (Thrun & Mitchell, 1995), predict results of

related medical tests for the same group of patients (Caruana, 1997), transfer in-

formation across relational/structured data sets (Mihalkova et al., 2007), transfer in

difficult reinforcement learning problems (Taylor & Stone, 2007), and even trans-

fer acrosssuperficiallyunrelated classification tasks (Mahmud & Ray, 2007; Mah-

mud, 2007). A key concept in transfer learning, then, is this notion of relatedness

between tasks. As we will see, in the work preceding the contents of this disserta-
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tion it was not clear what a proper way to define this notion is (see also Caruana,

1997; Ben-David & Schuller, 2003). This problem is conceptually quite troubling

and has also hampered development of even more powerful and principled transfer

algorithms that know how much information to transfer, when to transfer informa-

tion, and when not to.

Many current TL methods are in essence based on the method developed by

Caruana, 1997. The basic idea is to learnm related tasks inparallel using neural

networks, with all the tasks defined on the same input space (Fig. 1.2). Theas-

sumption is that the different tasks are related by virtue of requiring the sameset

of good ‘high level features’ encoded in the hidden units. The goal nowis to try to

learn these high level features quicker by learning all the tasks at the sametime by

alternating the training samples from the different tasks. The same idea has been

used for sequential transfer – i.e. input-to-hidden layer weights from previously

learned related tasks were used to speed up learning of new tasks. So thenotion of

relatedness between tasks is ‘functional’ in nature – tasks are considered related if

they can be learned faster together than individually, or in other words, ifthey have

a common near-optimal inductive biaswith respect to a given hypothesis space

(e.g. the common hidden units in Fig. 1.2).

This case was analyzed extensively in a PAC setting by Baxter, 2000. Here a

probability distributionP was assumed over the space of tasks, and bounds were

derived on the sample complexity required to estimate the expected error (with

respect toP ) of the m tasks when the tasks were learned using a sub-space of

the hypothesis space. That is bounds were derived for sample complexityfor es-

timating fitness of inductive biases. Most work done on TL is subsumed by this

analysis, and they all begin with the assumption that tasks have a common, near

optimal inductive bias. So no actual measure of similarity between tasks is pre-

scribed, and hence it becomes difficult to understand, let alone answer, questions

such as ‘how and when should we transfer information between tasks ?’ and ‘how

much information should we transfer ?’1.

Many attempts have been made to solve this problem in practice and, while

quite effective in application domains considered, they are, unfortunately, ad-hoc

in nature. There has been two major efforts to give a theoretical underpinning to

this problem and we now briefly describe these methods and how they relate toour

theory.

Ben-David & Schuller, 2003 give a more explicit measure of relatedness in

which two tasksP and Q are said to be similar with respect to a given set of

functionsF if ∃f ∈ F such thatP (a) = Q(f(a)) for all events (i.e. measurable

1Indeed, the discussions in the Neural Information Processing Systems2005 Workshop on In-
ductive Transfer (i.e. Transfer Learning) was largely focused ontrying to answer this very question.
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Figure 1.2: A typical Transfer Learning Method.

sets)a. UsingF , the authors derive PAC sample complexity bounds for the error of

each task (as opposed to expected error in Baxter, 2000), which can be smaller than

single task bounds under certain conditions. So the measure of similarity usedis

binary in that the tasks are either related or they are not. So this does not help solve

the problems of measuringhow muchinformation to transfer and so forth. And

while the authors have presented applications where this approach applies(Ben-

David et al., 2002), due to the dependence on an a-priori known spaceF , which

needs to satisfy the stringent constraint, it is unclear just how general thisapproach

is.

More interesting is the work by Juba, 2006 which extends Baxter, 2000. The

paper deals with finite sample spaces, and computable tasks and hypothesis spaces,

and gives PAC bounds, where the sample complexity required to bound the ex-

pected error is proportional to thejoint Kolmogorov complexityof them hypothesis

being considered. The number of tasks required for the bounds to hold is≥ 8192

(Theorem 3). Use of joint Kolmogorov complexity to measure relatedness is a

step in the right direction as it measures how well the tasks compress togetherand

hence thetotal absolute information content of them tasks considered as a whole

(see below). However what we actually want is the amount of information asks

containabouteach other, and for this we need to use theconditional Kolmogorov

complexityand theInformation Distance(see below). Indeed, this is basic idea that

we explore and make concrete in this dissertation.

Let us take a brief look at our approach, which is essentially transfer learning

in the setting of Solomonoff Induction (Solomonoff 1964a; 1964b; 1978) (Hutter,

2003). Recalling that each task corresponds to the probability measure generating

the samples for that task, we assume that each hypothesis/probability measure is

represented by a program – for example a decision tree is represented by a pro-

gram that contains a data structure representing the tree, and the relevant code to

compute the leaf node corresponding to a given input vector. The Kolmogorov

complexity of a hypothesish (or any other bit string) is now defined as the length

of the shortest program that outputsh given no input. This is a measure of absolute

information content of an individual object – in this case the hypothesish. It can be

3



shown that Kolmogorov complexity is a sharper version of Information Theoretic

entropy, which measures the amount of information in anensemble of objectswith

respect to adistribution over the ensemble. The conditional Kolmogorov com-

plexity of hypothesish givenh
′, K(h|h′), is defined as the length of the shortest

program that outputs the programh givenh
′ as input.K(h|h′) measures amount

of constructiveinformationh
′ contains abouth – how much informationh′ con-

tains for the purpose of constructingh. This is precisely what we wish to measure

in transfer learning. Hence this becomes our measure of relatedness forperforming

sequential transfer learning in the Bayesian setting.

In the Bayesian setting, any sequential transfer learning mechanism/algorithm

is ‘just’ a conditional priorW (·|h′) over the hypothesis/probability measure space,

whereh
′ is the task learned previously – i.e. the task we are trying to transfer in-

formation from. In this case, by setting the prior over the hypothesis space to be

P (.|h′) := 2−K(·|h′) we weight each candidate hypothesis by how related it is to

previous task(s), and so we automatically transfer the right amount of information

when learning the new problem. We show that in a certain precise sense this prior is

never much worse than anyreasonabletransfer learning prior, or any non-transfer

prior. So, sequential transfer learning is always justified from a theoretical per-

spective. This result is quite unexpected as the current belief in the transfer learn-

ing community that it should hurt to transfer from unrelated tasks. We show that

similar results hold for thecorrectinterpretation of parallel transfer learning, while

current parallel transfer methods, used in practice, are in fact sequential transfer

methods in disguise.

Kolmogorov complexity is computable only in the limit, that is with infinite

time and resource. Hence our approach gives a transfer method that is only theo-

retically/formally optimal. At first blush, this might seem to reduce its importance

for those who are interested in practical transfer. But this is not true, aswhat this

method actually does is give us a ‘gold standard’ that transfer learning methods

should be trying to achieve. This assertion is borne out by the fact that byapprox-

imating this method we were able to construct the most general possible transfer

experiments to date. See also Cilibrasi & Vitanyi, 2005 for an impressive demon-

stration of the power of Kolmogorov complexity approximation based methods for

difficult clustering problems.

We also note here that since we use a previously learned hypothesis as prior

knowledge, and since we represent each hypothesis as simply a bit stringwithout

looking at its properties as a program, the prior knowledge being used canbe any

arbitrary bit stringb at all. Hence the corresponding set of prior knowledge based

schemes we get areW (.|b) and all the optimality results for our sequential transfer

holds – i.e. 2−K(.|.) is the universally optimal Bayesian prior for arbitrary prior

4



knowledge based methods.

Before proceeding further, let us briefly return to the issue with Juba’sapproach

where the joint Kolmogorov complexity was used to measure task relatedness.In

the example above, this would be given byK(h, h′), which is the length of the

shortest program that outputsh andh
′ in sequence. So in essence this measures

the amount of information contained in both tasksh andh
′ together, whereas, as

explicated above, what we require is the amount of information the tasksh andh
′

contain abouteachother. And for this reason use of jointK() is inappropriate.

Our exposition in this dissertation takes the following course. In Chap. 2

we categorize and discuss various transfer methods that have been developed so

far. We discuss their strengths and weaknesses and contrast it with ourmethod

in general terms. In particular we focus on how these methods measure related-

ness between tasks and transfer information between tasks, and how theymay be

improved upon.

In Chap. 3 we introduce our measure of task relatedness. We start by describ-

ing some fundamental notions we need and learning framework we consider. Then

we introduce notions from Algorithmic Information Theory that we use and extend

to derive our measure of relatedness. We use and extend the theory of Information

Distance (Bennett et al., 1998) to measure relatedness between tasks, transfer the

right amount of information etc. For our task space we restrict ourselvesto prob-

ability measures that are lower semi-computable, which is reasonable as it covers

all situations where we can learn using computers. In this space the Information

Distance is a universally optimal measure of relatedness between tasks. Wegive

a sharp characterization of Information Distance by showing it is, upto a constant,

equal to the Cognitive Distance (Theorems 3.3 and 3.4, which are quite interesting

results in and of themselves).

Based on our transfer learning distance, in Chap. 4 we develop universally op-

timal Bayesian transfer learning methods for doing sequential transfer (Theorem

4.3). We show that sequential transfer is always justified from a formal perspec-

tive (Theorem 4.4). We also investigate parallel or multitask learning and show

that while universally optimal methods exist for currentinterpretationof multitask

learning schemes (Theorem 4.5), which we term joint-parallel transfer, itis just

single task learning in a product space. We also show that transfer algorithms cur-

rently used in practice are just sequential transfer methods in disguise (Sect. 4.3.3).

We also derive a different interpretation of parallel transfer we term online-parallel

transfer and a universally optimal scheme for this interpretation (Theorem4.6). We

show that this scheme can be said to be performing actual transfer and is always

justified like sequential transfer (Theorem 4.7). Finally, we show that ourmethods

are also optimal with respect to other methods in a sense stronger than the classical
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Universal sense. That is, it is a powerful base method (due to its universal optimal-

ity) that can be used any time, and can also be used to improve the performance of

any other transfer method that we may feel more appropriate in a given situation.

We further extend the theory developed in Chaps. 3 and 4 in Chap. 5. We

extend the universal optimality results of the Bayesian transfer methods to thecase

of arbitrary bounded loss function and the artificial agent setting via results in Hut-

ter 2003; 2004. We also show how our universal distance measures maybe used

to construct universally optimal transfer method for the Prediction with Experts

Advice setting (Littlestone & Warmuth, 1987; Vovk, 1990), in particular in the

methods described in Vovk, 2001. Finally we briefly investigate Kolmogorov com-

plexity of functions and show that under certain natural restrictions on thecom-

putability of this quantity it is, upto an additive constant, equal to the Kolmogorov

complexity of bit strings (Lemma 5.2).

Finally, in Chap. 6, we apply an approximation our method to transfer learn-

ing in Bayesian decision trees. We were successfully able to transfer information

between7 databases from the UCI machine learning repository (Newman et al.,

1998). At the time we performed the experiments, our experiments were the most

general transfer experiments, in the sense that we were able to transferinformation

between databases that have little or no semantic relationship to each other. An

equally interesting aspect of our result is that in our experiments transferring never

hurt, which also confirm our theoretical result that sequential transferlearning is

always justified. We performed a total of 144 individual transfer experiments.

For us, a most interesting aspect of this work is how beautifully and naturally

AIT formally solves problems in transfer learning that has been vexing researchers

for a long time. We hope the work done here will encourage machine learningprac-

titioners to look to AIT for inspiration and perhaps for solutions to difficult funda-

mental problems that are unyielding in the face of more traditional approaches.
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Chapter 2

Previous Work

We gave an introduction to transfer learning in the previous chapter and here we

will go into various transfer methods developed so far in greater depth1.

The bulk of transfer methods developed to date can be divided into one of two

distinct categories. The first is intra-domain transfer, where the primary focus is on

transferring information between tasks defined on the same input-output space, and

the second is cross-domain transfer where the focus is on transfer between tasks

defined over different input and output spaces. The latter, very recent in origin, is

in fact the current phase of transfer learning research, and as such, is a continuation

of intra-domain transfer methods. However, to be able to transfer acrossdomains

the cross-domain transfer methods need to explicitly measure and use similarity

between tasks to transfer information. Indeed, this explicit attempt to measure and

exploit task similarity is the key property that distinguishes intra-domain transfer

and cross-domain transfer.

Another strand of transfer learning research is that of programmatic trans-

fer methods, which has been developed largely by Jurgen Schmidhuber and col-

leagues. The main distinguishing feature of these methods is that the hypothesis

space considered are programs, and learning is performed by stochastically search-

ing through program space. When learning a particular task, the searchis biased

by beginning with a program that had solved previous tasks.

Given the above, our work can be seen as a merging of cross-domain trans-

fer and programmatic transfer methods. We provide a theoretical foundation for

cross-domain transfer in the Bayesian setting and we do so by consideringas our

hypothesis space the most general space we will need – the set of computable prob-

ability measures.

In the following we will first discuss in succession intra-domain, cross domain,

and programmatic transfer methods. In each case we will pay particular attention

to exactly how task similarity is measured (implicitly or explicitly) and how this

1It is also interesting to note the review paper Vilalta & Drissi, 2001, where the authors discuss
how transfer learning methods relate to othermeta-learningmethods. The term Meta-learning is
used to refer to any method that dynamically learns the bias space, but not necessarily for multi-task
learning - e.g. boosting (Schapire, 1997).
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Figure 2.1: Schematic Illustration of typical Transfer Learning Methods.

measure is used to perform transfer. We will then end this chapter with a discussion

of the relationship our methods to these methods.

2.1 Intra-Domain Transfer Methods

The fundamental idea behind most current intra-domain methods is exactly the

same, which is that tasks have a near optimal common-inductive bias – i.e. in

the hypothesis space being used by the algorithm there is a subspace that allows

for faster learning of the tasks together. During transfer learning, this subspace is

learned by using the tasks to determine which subspace is best for faster general-

ization for the related tasks. For instance, in the example from Caruana, 1997 in

the Introduction, the learned weights from the input to the hidden layer correspond

to the shared subspace that is learned from the related tasks. This basic idea is

illustrated schematically in Fig. 2.1.

In this section we will look at intra-domain transfer methods developed for

classification and for artificial agent setting. Then we will look at the theoretical

framework for these methods developed so far and end with some final observa-

tions on intra-domain transfer algorithms.

2.1.1 Intra-Domain Transfer in Classification

One of the earliest studies of transfer learning in machine learning was done in

Pratt, 1991. The author showed that, when learning using neural networks, sharing

hidden units across related tasks is likely to improve performance (lower general-

ization error from the same number of training samples). This follows from the
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fact alluded to earlier, that hidden layer units encode high level featuresthat may

be useful across related tasks. The authors demonstrated this by solvinga single

task problem faster by presetting weights in the network learning the task. The

presets to be used were obtained by training smaller networks on the same task.

Interestingly, the total time taken in this combine-smaller-networks approach was

actually smaller than in when a single monolithic network was used.

Pratt, 1992 used a more sophisticated method to actually transfer information

across a set of related tasks – e.g. transfer from detection of vowels uttered by fe-

males to detection of vowels uttered by males, transfer of diagnosis of heartprob-

lems from Californians to Swiss patients etc. The improvement achieved both in

terms of generalization error and training time required were significant. In this

paper, the authors used the Mutual Information between the hyper-surface defined

by hidden units learned in a previous task and samples in the new task (as in deci-

sion tree learning (Breiman et al., 1993)) as a heuristic to determine which hidden

layer weights from the previous task to use in the new task. Thus, this way transfer

is achieved.

Mitchell & Thrun, 1993; Thrun, 1995; Thrun & Mitchell, 1995 developedthe

Explanation Based Neural Network method to transfer information across difficult

real world problems. The idea is again to train a neural network for a particular

task quicker by using information from related tasks. In this case, examplesfrom

the previous tasks are used to construct a function that computes an estimateof

the the derivative of the task/function being learned at each sample point. That is,

using the examples in the previous tasks, a functiong is learned, such that for each

sample pointx, g(x) is an estimate of thedf
dx

, wheref is the function being learned

for the current task. This gradient information is used to speed up convergence by

using the TangentProp algorithm (Simard et al., 1992). The TangentProp algorithm

is an extension of the famous BackProp algorithm for training neural networks that

uses the gradient information at each point to converge faster. The assumption in

EBNN is that the gradient functions of the tasks are close to each other, which is of

course a heuristic. In classification, the EBNN was used to solve object recognition

problems. Here each task corresponded to recognizing a particular object, given

images of the object from various poses and lighting conditions. The EBNN was

able to transfer the information about the transformations necessary to account for

the changes in pose etc. EBNN based classification was also used to predict the

next state for a given action in reinforcement learning problems. In this case each

task corresponded to a particular room/environment.

In Thrun & O’Sullivan, 1996 the authors developed a transfer learningmech-

anism that uses the Nearest Neighbor algorithm as the underlying algorithm.In

this case, task relatedness is identified as the degree to which the Nearest Neighbor
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distance metric learned for one task is useful in another task. The set of tasks seen

so far are clustered into groups where within each group the tasks are optimally re-

lated i.e. the tasks are clustered so that the distance metric learned using examples

from all the tasks has minimal error over all the tasks. Given a new task, thethe

distance metric from the most related cluster is used to perform Nearest Neighbor

classification for the new task.

The papers Caruana 1993; 1997 describe the Multitask Learning method that

we mentioned in the Introduction. Here multiple tasks are learned in parallel and

transfer between tasks occurs by virtue of the tasks having common high level

features, as described in the Introduction.

Silver and Mercer 1996; 2001 described theηMTL method to augment the

MTL system in the previous paragraph. Here, the aim was to learn a particular

task, while using the previous related tasks as ’hint’ tasks (Abu-Mostafa,1995) to

speed up learning. Transfer from the hint tasks to the target task was controlled by

heuristically measuring relatedness between tasks, and then using the measure to

set the learning rate for each hint task. The more related a hint task is to the target

task, the greater its learning rate is and the more influence it has on training the

shared hidden layer units. This way, transfer is accomplished from task totask. The

most interesting heuristic used was of mutual information between hidden layer

units activations and target values for each task for each sample. If the mutual

information was high, then it means that the contribution for a particular task to

learning the shared weights are high and so the task is related.

Silver & McCracken, 2002; Silver & McCracken, 2003 and Silver and Poirier

2004; 2005 developed the same ideas to handle task consolidation via task re-

hearsal for Lifelong Learning. That is, these papers addressed theproblems of

how a lifelong learning/transfer learning agent may consolidate and retain knowl-

edge gathered during its task. The solution the authors proposed was to use the

ηMTL network collect all the knowledge. Problems of catastrophic interference

was avoided by rehearsal using virtual examples generated by the learned network.

When new tasks arrived, the heuristics mentioned above were applied to theηMTL

network to determine which previous tasks are most related to the current task, and

these are used to learn the new task faster.

In Jebara, 2004, the author implemented multi-task learning for Support Vector

Machines. In this case, the kernel function to be used for learning was considered

to be a convex combination of a set of base kernels, where the weights were learned

during training. The author further modified the SVM objective function so that

the subset of features to used were also determined during the learning phase. In

the multi-task learning setting, the subset of features and weights for kernels are

learned so that they are good for all tasks simultaneously. The amount by which
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feature and kernel weight selection in one task is affected by feature and kernel se-

lection in another task is determined by a parameter that measures task relatedness,

and it is set by the user. Hence, the idea was that by using information fromrelated

tasks, one should be able to learn better weights for the base kernels and features.

Multi-task learning was also implemented in Regularized Networks (Evgeniou

et al., 2000) (a generalization of SVMs) by Evgeniou et al., 2005 and Evgeniou

et al., 2004. The idea in these works was to convert the multi-task learning prob-

lem into a single task learning problem by constructing an objective function that

minimizes error over all the tasks simultaneously. Again, while the mathematics is

different from the methods used above, because of the framework being used, the

basic idea is still the assumption that the tasks share a common inductive bias.

Another very interesting work is Ando & Zhang, 2005 where the authors study

multitask learning using linear classifiers. The setup is very similar to the methods

described in the preceding paragraph, and the authors assume that the tasks share a

commonstructural parameterθ that determines their relatedness. A key difference

from regularized network based transfer learning is that the weights foreach task

are partitioned into two disjoint sets. Weights in one partitionv determine contri-

bution of θ to the separating hyperplane, while the weights in the other partition

u are task specific. The authors then propose an iterative algorithm to optimize

(θ, v) andu in alternate steps given the value of the otheru and(θ, v) respectively.

Another interesting contribution of the paper is the heuristic of using of unlabeled

data to generate related tasks. Such tasks are generated by using one feature the

class label to be predicted and the remaining as predictors. The efficacy of this

algorithm was then established via experiments using text databases. This paper

also begin with the same assumption as other intra-domain transfer methods, i.e.

tasks are related via a shared parameterθ. However since the weights are divided

into shared and not-shared portion, one may expect it to prevent unwanted transfer.

However, this is not true as the value ofθ learned is only locally optimal and hence

may not capture the fact that tasks are unrelated. Furthermore, sinceθ is optimized

for all tasks simultaneously, the value ofθ that might be useful for transfer between

certain subsets of tasks is also not learned.

2.1.2 Intra-Domain Transfer in Agents

Most research in transfer learning has been targeted at implementing transfer in

classification algorithms. The reason is partly because solving the transferprob-

lem in agent systems boils down to solving it in classification problems (see, for

example, the EBNN algorithm mentioned above). In both cases the aim is to learn

a distribution faster given other related distributions learned previously. In the case
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of artificial agent systems the distributions are over the next state or observation

the agent makes and the reward it obtains given its history (the sequence of action-

observations that the agent has seen so far).

An example of this is Wilson et al., 2007, where the authors consider Multi-

task Bayesian Reinforcement Learning using a hierarchical Bayesian approach. In

essence, the idea is to assume that the MDPs describing the tasks are generated

according to some generative process (hence the termhierarchical in the name of

the approach). When learning a task, tasks encountered previously are used to in-

duce a prior distribution over the parameters for the generative process, and then

samples from the current task is used to induce a posterior distribution overMDP

parameters for the current task. This posterior is then used in the usual way to

perform Bayesian reinforcement learning (Sterns, 2000). The authors are able to

show improvement of performance in some proof of concept problems.

However, there are some exceptions to the above, and we discuss them now.

The following three agent based transfer methods perform transfer using the notion

of subtasks. Use of this mechanism is missing from the classification based trans-

fer systems discussed above, but it is obviously vitally important to investigateas

people use it to do transfer all the time.

The first method (Singh, 1992; Barto et al., 1995; McGovern, 2002; Singh

et al., 2004a; Singh et al., 2004b), is involved with learning temporally extended

actions (called options) orskills that the agent can reuse across different tasks. For

example,TURN-ON-THE-LIGHT-SWITCH is a skill that a robotic agent may use

across different tasks. Essentially, the agent learns to solve a subtaskwhich is

present in different domains. A major hurdle for this methods is to determine what

exactly constitutes a subtask. The authors suggest using the advent of asalient

event in the world (a light turning on for example) as a way to determine what

subtasks should be.

The second subtask based method we discuss was described in Drummond,

2002. In this method the author considered reinforcement learning agentsin MDPs

and proposed to identify subtasks ‘automatically’. The learning algorithm analyzes

the shape of the value function to determine subtasks. The value function is the

function learned by an artificial agent which is defined on the state space,and for

each state it gives the value of that state. This is all the agent needs to determine

which action take at each state. Image analysis methods are applied the value func-

tion to determine which parts of it stand out visually and these parts are identified

as subtasks. When solving a new task, given a rough shape of the valuefunction

learned after some exploration, the subtasks are searched to see which ones might

apply at a particular part of the value function, and then that subtask is ‘stitched’

into the current estimate of the value function. By composing subtasks like this,a
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solution to the new task is obtained. Hence, by using subtasks, the agent is able

to solve the new task quite well after a little exploration (of course, only if the

visual-based heuristic holds).

In Mehta et al., 2005 the authors also used the notion of subtasks. It was as-

sumed that the policies for the set of related tasks to be solved are combinations of

some base set of policies. The only thing that differs from task to task is the weight

assigned to each base policy. The authors assumed that this weight information

for each task is given to the agent, and it simply learns the base policies during its

exploration. This way, it is able to learn to solve the related tasks faster.

Transfer Learning methods have also been applied extensively in certainCog-

nitive Architectures - that is comprehensive learning systems that are aimedtoward

replicating human level cognitive abilities, either for modeling human behavior or

for controlling robots, intelligent agents etc. Here we consider some representa-

tive set of architectures such as Soar (Newell, 1990), Prodigy (Veloso et al., 1995),

Icarus (Langley & Rogers, 2004) etc. All of these use some type of symbolic lan-

guage (such as FOPL, or the STRIPS language) to encode knowledge of the agent.

This knowledge describes the entities that exist in the world (e.g.DRILL -BITS in a

robot drill press application) and the known effect of the agent’s actions on these

entities (e.g.APPLY-DRILL causesHOLE-IN-METAL -PLATE). In general, these ar-

chitectures implement sophisticated extensions to classical planning, which learn

to improve planning performance from experience. The actual methods employed

vary from architecture to architecture, but they usually take the form of learning

macro-actions (Russell & Norvig, 2003). For example, Prodigy uses Analogical

Learning to determine what sequence of actions will be useful in a particular task,

using knowledge about solutions/sequences of actions used in similar tasks.

2.1.3 Theoretical Framework

We have already discussed existing theoretical frameworks in the Introduction in

all the detail we feel is necessary. So the contents of this section will be somewhat

repetitive, but is included for completeness.

The major theoretical work done for transfer learning are Baxter 1995;1998;

2000 Ben-David & Schuller, 2003; Juba, 2006. Baxter considers the following

transfer learning framework. The fundamental assumption made is that tasks are

drawn from the task space according to some distributionP . Now M different

tasks are drawn from this space according toP and then the problem is to choose

choose a hypothesis space, from a given set of hypothesis spaces,that minimizes

the expected error for new tasks drawn according toP . In this framework the

author derives PAC sample complexity bounds for the expected error of aparticular
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hypothesis space. All the intra-domain transfer methods discussed abovefall under

this framework. For instance, for the neural network learning case in Caruana,

1997, givenn hidden layer units, each possible hypothesis space corresponds to

a particular value for the input-to-hidden layer weights. Given such a hypothesis

space, each possible hypothesis in this space corresponds to a particular assignment

of values to the hidden to output layer weights.

Hence, Baxter 1995; 1998; 2000, and consequently in all the intra-domain

transfer methods, the similarity between tasks is assumed to be in the form of com-

mon inductive bias, that is a subset of the given hypothesis space which ishelpful

in quicker generalization. Therefore this similarity measure is largely dependent

on the algorithm being used. The similarity between hypotheses in a particular sub-

space is measured by the capacity of the subspace. The capacity of the subspace

H for a given realǫ is given by the size of the smallest subsetB of H such that for

eachh ∈ H, there is ab ∈ B with the absolute difference between the expected

loss incurred byh and and the expected loss incurred byb is less thanǫ. This is

a measure of ’richness’ of the subspace, i.e. how many ‘different’ hypotheses are

there in the space.

More interesting is the approach by Juba, 2006 who gives PAC bounds inthe

setting of Baxter, 2000, where the sample complexity is proportional to the joint

Kolmogorov complexity of them hypotheses. The joint Kolmogorov complexity

measures how well the programs computing the hypothesis, when interpretedas bit

strings, compress together than individually. So the Kolmogorov complexity is the

measure of relatedness. However, the bounds hold only for≥ 8192 tasks (Theorem

3), and as we establish in this work, the more appropriate measure of relatedness

is the conditional Kolmogorov complexity and the Information Distance (Bennett

et al., 1998).

In Ben-David & Schuller, 2003 on the other hand, the authors measure similar-

ity in terms of the distributions that correspond to the tasks themselves. The authors

defines two measuresP andQ to beF similar if, in a given set of functionsF ,

there is a functionf that maps between events that have the same probability under

P andQ - that isP (A) = Q(f(A)). Using this measure of similarity, the authors

are able to bound the sample complexity for generalization error of each task as

opposed to expected generalization error.

2.1.4 Intra-Domain Transfer: Coda

We hope what becomes clear from the above discussion is that, as clever and as

practically effective intra-domain transfer methods are, they are heavily reliant on

the assumption that tasks are related functionally. That is, it is better to learn the
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tasks together than separately. However, as pointed out in Caruana, 1997, transfer

methods can significantly degrade classification accuracy if this a-priori assump-

tion does not hold. Therefore, to make transfer algorithms more broadly applica-

ble, it is imperative that we derive a general measure of task relatednessto develop

transfer methods that know how much information to transfer, when to transfer

information and when not to. This has been a major focus of research in transfer

learning, and cross-domain transfer methods try to address this problem ina prin-

cipled way. As we show in the rest of this dissertation, our work in this thesis gives

a constructive theoretical foundation for cross-domain transfer in a Bayesian set-

ting, and hence gives a completion of the programme for transfer learning research

outlined in Caruana, 1997.

2.2 Cross Domain Transfer

A recent strand in transfer learning research is the so-called cross domain trans-

fer method (Swarup & Ray, 2006; Mihalkova et al., 2007; Taylor & Stone,2007).

In this, the goal is to transfer across tasks that are in different domains,defined

over different input, output and hypothesis spaces. Current methods handle these

problems by assuming the existence of some kind of ‘structural similarity’ between

hypothesis from different spaces that measure the amount of transformation neces-

sary to convert a hypothesis in one space to another hypothesis in a different space.

This structural similarity is then used as the measure of similarity between tasks.

We now discuss the exact form this idea takes in the papers mentioned above, and

how this measure is used to effect transfer.

In Swarup & Ray, 2006, the authors consider a proof-of-concept problem do-

main where they learn a sequence of boolean functions using sparse neural net-

works (Utgoff & Stracuzzi, 2002). Information between tasks is transferred by

finding common substructures across neural networks learned in the previous tasks.

These substructures are discovered using standard graph-mining algorithms from

data-mining literature. Each task is learned using a genetic algorithm (Mitchell,

1996), and when learning a new task, these common substructures are used as

primitiveswhen constructing candidates for the new generation. Hence the search

is biased toward networks that contain sub-structures that were found tobe com-

mon across previous tasks. Our practical approximation to our theory in Chap. 6

in fact uses a similar idea, but for decision trees in a Bayesian setting.

In Mihalkova et al., 2007, the authors transfer information between structured

datasets which are learned using Markov logic networks (Richardson & Domingos,

2002). In this case transfer is performed by mapping between compatible predi-

cates learned in one task to a new task. Predicates are compatible if they havethe
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same arity and the types of their argument agree with type-constraints induced by

previous mappings (if any). The authors were successfully able to transfer between

real world databases.

In Taylor & Stone, 2007, the authors transfer information between the com-

plex reinforcement learning problems of Keepaway, Ringworld and Knight Joust.

In this case transfer is achieved by defining transform functions that translates be-

tween source and target states and actions, and hence policies learned inan old

task can be used to speed up learning of policies in the new tasks. These trans-

form functions were constructed via specific, known prior knowledge about the

problems being considered.

The most interesting thing about cross-domain transfer methods is that these

methods actually try to measure the relatedness between tasks in a principled way

and use it to determine how to transfer information. One way to view this thesis

is as an affirmation that this is more or less the correct approach and that theoreti-

cally there is in fact an optimal method for measuring relatedness and transferring

information.

2.3 Programmatic Transfer Methods

In this section we will discuss two other transfer methods that are sufficiently

unique in their approach that we believe they deserve their own section. These

methods are the Optimal Ordered Problem Solver (Schmidhuber, 2004) andthe

Gödel Machine (Schmidhuber, 2006). In both cases the learning algorithmsearches

through program space to find solution to a given task, and uses previously found

programs, that solve previous tasks, to guide the search for the new task. This ap-

proach is interesting because when learning with computers the only hypotheses

we can consider are ones that are computable (i.e. has representation asprograms).

In this respect, these methods are similar to Levin Search (Levin, 1973), and Hutter

Search (Hutter, 2002) – but the key difference is that these methods use previous

tasks to speed up search. We will describe each in turn.

OOPS solves a sequence of problems, where a problem is defined by a recur-

sive functionfr that given a problem instancex and a solution instancey, outputs

1 if y is a solution tox and otherwise outputs0. The goal now is to find a program

that given problem instances outputs solution instances. In OOPS, one assumes a

prior P over the set of all programs. When learning theith task, the learner spends

half the time trying to use the programp<i learned so far, that solvesall thei − 1

previous tasks, to solve theith task and uses the other half of the time trying to con-

struct a new program to solve theith task only. This learning system is bias optimal

– that is OOPS will find the correct programq in time proportional toP (q).
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As an example application of OOPS, when solving classification problems,

the set of allowed programs may be those computing particular type of hypothesis

(such as decision trees). In this case, starting with a null hypothesis that has the

highest possible error on the training sample, each ‘task’ would correspond to find-

ing a hypothesis that is better than the previous one. Sofr in this case would output

1 if a found hypothesis is better than the previous one and output0 otherwise.

In the G̈odel machine, the goal is to construct an optimal reinforcement learn-

ing agent operating in some domain. The machine starts off with some generalized

problem solver (such as OOPS) as the current learner, then at each step it uses the

current learner to learn the value function. What makes the Gödel machine unique

is that it also tries find a modification to the current learner that isprovablyoptimal

modification to the current problem solver (including the prover), where the proof

is in some appropriate formal system. The Gödel machine is optimal in the sense

that it tries to improve itself by finding provably optimal modifications, which is,

of course, any computable learner can do.

The basic ideas and the optimality proofs in each of these methods are quite

straightforward, but nonetheless quite interesting as they try to solve the problems

by searching directly through the space of all programs. However both suffer from

implementational issues. The main challenge in the case of OOPS is that to get it to

work for some problem domain, one needs to spend significant effort constructing

an instruction set that is useful for solving the problem at hand – without such prior

knowledge, the machine may take too long. This is equivalent to selecting features

for a particular problem, however the difference is that features are much easier to

specify in the traditional learning setup as more often than not they are given in

the problem definition itself, while construction of an appropriate instruction set

is likely to be more time consuming and difficult. So this is justifiable for very

difficult problems, as in the tower of Hanoi problem for largen in Schmidhuber,

2004. This is more difficult to justify for general inference problems where learning

algorithms are meant to deal with diverse domains. The problem with the Gödel

machine is that it requires implementation of an automated theorem prover suitable

for the problems that the G̈odel machine is using and it requires constructing the

right proofs to operate successfully. Implementing appropriate theorem provers

may not be that difficult, given that many such softwares already exist, but finding

the right proof quickly requires appropriate heuristics which are likely difficult to

construct for the the problems the Gödel machine is intended for. However, if these

challenges are solved these methods will be quite formidable indeed.
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2.4 Discussion

All current transfer methods begin with a particular assumption of relatedness be-

tween tasks, differing only in how explicitly they try to exploit this assumption.

Intra-domain transfer methods rely on using this assumption implicitly and hence

tend to suffer when this requirement is not met. Programmatic transfer methods

also make a similar assumption, where tasks are related because by virtue of re-

quiring similar subroutines. Cross-domain transfer methods, on the other hand,

actually try to measure this relatedness and so transfers information more intelli-

gently, and are not as susceptible to problems arising from tasks being unrelated.

However, all of the above methods lack a general theory of task relatedness with

which to perform transfer as intelligently as possible. And so there is as yetno

clear theory of transfer algorithms that know how much information to transfer,

when to transfer information, and when not to.

In this thesis, we present such a theory; we present formally optimal methods

of measuring task relatedness and performing transfer in a Bayesian setting. Our

method formally solves the current problems in transfer learning of determining

when to transfer information when not to, and how much information to transfer.

The approach we adopt is a hybrid of cross-domain transfer methods andprogram-

matic transfer methods. We consider Bayesian learning, but the hypothesisspace

consists of programs computing probability measures. The measure of relatedness

we use is the very general Information Distance (Bennett et al., 1998), which, in a

sense, current cross-domain transfer methods approximate. Our learning method is

updates according to Bayes rule in the formal setting, and posterior samplingusing

Markov Chain Monte Carlo methods in the practical setting. Swarup & Ray, 2006,

a cross domain transfer method, also use stochastic learning methods. Among the

programmatic transfer methods OOPS uses a similar stochastic depth first search

through program space, however Gödel machine uses proof search, which may or

may not be stochastic depending on the algorithm used (Fitting, 1996). In further

contrast to the latter two, the practical approximations to our method we construct

are easily able to make use of features provided in the problem description and also

converge within an acceptable period of time by using Markov chain Monte Carlo

methods (Chap 6).

Finally, our transfer method also translates quite readily to the Bayesian Re-

inforcement Learning framework (Dearden et al., 1998) via the results inHutter,

2004. However the optimality results are weaker, and so this will need to be ex-

plored further in future work.
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Chapter 3

Universal Transfer Learning
Distances

In the previous chapter we looked at existing methods for performing transfer and

in the process determined that the key unsolved problem here is that it is notclear

how to measure task relatedness. We also showed that this problem makes it dif-

ficult to design algorithms that know how much information to transfer, when to

transfer information and when not to. In this chapter we give a formally optimal

solution to the problem of measuring task relatedness. Then in the next chapter we

show how this may be used to derive formally optimal Bayesian transfer learning

methods, and solve the problems with actually performing transfer. We proceed as

follows.

First we introduce some basic notation, notions and some concepts from com-

putability of real functions that we use. Then we describe the space of probability

measures that we use as our task space. This space will be shown to be sufficiently

general for the purposes of machine learning. Finally, we describe ouruniversally

optimal measures of transfer learning distance and show the sense in whichthis

measure is optimal. Our goal in this chapter will be to explore how much similar-

ity between tasks we can uncover using computers/Turing machines given infinite

time and memory. We will explore this using tools from Algorithmic Information

Theory.

3.1 Fundamentals

We usea := b to mean expressiona is defined by expressionb. We useINm to

denote the numbers1, 2, · · · , m. For any finite alphabetA, we useA∗, An, A∞

to denote the set of all finite strings, lengthn strings and infinite sequences inA

respectively. Letε be the empty string. Forx, y ∈ A∗, xy denotesy concatenated

to the end ofx. Let l(x) denote the length of a finite stringx. We will usex1:t to

denote the firstt elements of a sequencex andx<t the elementsx1:t−1. We use

xt:t to refer to thetth letter of the sequencex, and reserve single indicesxi to refer

to different sequences. We will usex1,n as a shorthand forx1, x2, · · · , xn.

We use〈·, ·〉 to denote a standard bijective mapping fromA∗ × A∗ → A∗.
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〈〉m denotes them-arity version of this, and〉〈mi denotes theith component of the

inverse of〈〉m. We assume the standard ‘lexicographical’ correspondence between

A∗ andIN – e.g. forA := {0, 1}:

ε ↔ 0

1 ↔ 1

00 ↔ 2

01 ↔ 3

11 ↔ 4

000 ↔ 5

001 ↔ 6

· · ·

Depending on the context, elements of each pair will be used interchangeably (so

01 (and4) may mean either01 or4). A rational numbera/b is represented by〈a, b〉.
We use

+

≤ to denote≤ upto an additive constant independent of the variables in the

relation i.e. f(x)
+

≤ g(x) ≡ f(x) ≤ g(x) + c. We use the same convention

for all the usual binary inequality relations. Let2−∞ := 0, log := log2 andm̄

the self-delimiting encoding ofm ∈ IN using l(m) + 2l(l(m)) + 1 bits where

l(m) = ⌊log(m + 1)⌋ (Li & Vitanyi, 1997). Self-delimiting means that, given̄m

is embedded in some longer bit string, and we are given wherem̄ begins, we can

determine its end point (and hencem) without any further information.

We fix a reference prefix universal Turing machineU : B∗×A∗ → A∗, where

B := {0, 1} is the alphabet for programs, andA, A ⊃ B, is an arbitrary alphabet

for inputs and outputs. ‘Prefix’ means that the valid programs forU form a prefix

free set, that is no program is a prefix of another. Standard programminglanguages

satisfy this property by virtue of the begin and end markers (e.g.{ and} in C,C++

and Java). The prefix property also entails another property which is crucial for us,

which is that the lengths of valid programsp satisfy theKraft inequality (see Li

& Vitanyi, 1997; Cover & Thomas, 1991):

∑

p

2−l(p) ≤ 1

U(p, x) denotes running the programp on inputx. When it is clear from the

context thatp is a program, we will denoteU(p, x) simply byp(x). We need some

notions of computability of real functions.

Definition 3.1. A real functionf : A∗ → IR is upper semicomputableif there is

a programp such that forx, t ∈ IN,
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1. p(〈x, t〉) halts in finite time

2. p(〈x, t〉) ≥ p(〈x, t + 1〉)

3. limt→∞ p(〈x, t〉) = f(x).

A real functionf : A∗ → IR is lower semicomputableif −f is upper semi-

computable.

A functionf : A∗ → IR is computable/recursive if there is ap such that

∀n, x ∈ IN,

1. |p(〈x, n〉)− f(x)| < 2−n

2. p(〈x, n〉) halts in finite time.

We usep(x) ⇑ q(x) to denote that atx p and q lower semicomputes the same

function.�

So functionf is upper semi-computable when there is a program that computes

smaller and smaller approximations tof(x) in finite time, but we never know how

close the approximation is. Functionf is lower semi-computable when there is

a program that computes larger and larger approximations tof(x) in finite time,

but we never know how close the approximation is. And finally, a functionf is

computable when we can computef to any arbitrarily specified precision in finite

time.

As mentioned earlier, in this work we wish to investigate how much similarity

we can uncover and the best transfer method we can derive, given infinite resources.

We achieve this goal by considering only similarity functions and probability mea-

sures that are upper and lower semicomputable respectively. The reason for choos-

ing lower semicomputable probability measures instead of upper semicomputable

ones is given in the next section. The reason for choosing upper semicomputable

similarity functions instead of lower semicomputable ones is because this is the

only way we can use the similarity functions to induce lower semicomputable prob-

ability measures – see Sect. 4.2.

3.2 The Task Space and the Learning Problem

In transfer learning we wish to transfer information between tasks. Each task is a

learning problem and recall that each task is identified with the probability mea-

sure generating the samples for that problem. Now the question becomes, which

class of probability measures should we consider as our task space ? Fora transfer

framework to be reasonably powerful, it seems appropriate to require that any com-

putable probability measure should be included in that class, as any problemthat
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we hope to be able to solve will either itself be computable, or have a reasonable

approximation that is computable. In this section we describe such a class, which

is the set of all lower semicomputablesemimeasures. This space was introduced

for use in inductive inference in Solomonoff, 1978, and discussed previously in

Zvonkin & Levin, 1970 (see below). We also considersequence prediction tasks

instead of typical i.i.d. tasks considered in most machine learning literature. Se-

quence prediction tasks are generalizations of the i.i.d. case and so we do not lose

anything by this choice. We refer the reader to Chap. 6 and Hutter, 2003,Sect. 6.2

for details on this issue.

As mentioned above, our task space is a particular subset of the set of all

semimeasures:

Definition 3.2. A semimeasureis a functionf : A∗ → [0, 1] such that

∀x ∈ A∗, f(x) ≥
∑

a∈A

f(xa).

�

Sof(x1:t) is the ‘defective probability’ that a particular infinite sequence starts

with the prefixx1:t (f is a probability measure iff(ε) = 1 and the inequality is

an equality). Sof is equivalent to a probability measurep defined on[0, 1] such

thatf(x) = p([0.x1:t, 0.x1:t + |A|t)) where0.x1:t is in base|A|. The conditional

probability of the next letter beinga given the stringx1:t observed so far is

f(a|x1:t) :=
f(x1:ta)

f(x1:t)

Zvonkin & Levin, 1970 showed that the set of all lower semicomputable semimea-

sures is recursively enumerable. That is, there is a Turing machineT such that

T (〈i, ·〉) lower semicomputesfi(·), theith semimeasure in this effective enumer-

ation. SinceU is universal, for eachi ∈ IN, there is a programpi such that

pi(x) = T (〈i, x〉). Let V be the enumeration of these programs – i.e.pi ∈ V
lower semicomputesfi, and each lower semicomputable semimeasuref is com-

puted by at least onepj ∈ V. We will consider enumerable subsetsV ′ of V as our

task space, as any probability measure that we may expect to be able to learnmust

either be computable, or have a reasonable approximation (however it may be de-

fined) that is computable.V is the largest superset of this that contains any Bayes

mixture of its own elements, which is important in Chap. 4 (see also Hutter, 2003,

Sect. 2.6 and Li & Vitanyi, 1997). See also Hutter, 2004, Sect. 2.4.3 for more

details on the class of semimeasures that contains mixtures of its own elements.

The learning problem we consider is the online Bayesian sequence prediction
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setting (Fig. 3.1) :

Definition 3.3. (Learning in Bayesian Sequence Prediction)When learning task

µ, at each stept, a ∈ A is generated according toµ(.|x<t), wherex<t was gener-

ated byµ in the previoust − 1 steps. The learning problem is to predict the letter

a at each step�

Figure 3.1: The Sequence Prediction problem whenA ≡ B.

3.3 Distance Function for Tasks

In this section we will define our universally optimal measure of transfer learning

distance. We will start by showing why classical Information Theory is inadequate

for our purposes and through that motivate the use of Algorithmic Information

Theory to measure relatedness between tasks, i.e. transfer learning distance. We

will then define our measure and describe its optimality properties, which will

be used later to derive universally optimal Bayesian transfer learning methods in

Chap. 4.

3.3.1 Kolmogorov Complexity Basics

The main unsolved problem in transfer learning, as discussed in the preceding

chapters, is to measure the amount ofinformationtasks contain about each other.

The traditional and accepted measure of information of a probability measure,

which we have identified as our tasks, is the well known Information Theoretic

Entropy (Cover & Thomas, 1991). For a probability measureP over a countable

setX, this is defined as:

H(X) := −
∑

x∈X

P (x) log P (x) .

So H(X) measures the information content of the ensemble of objectsX with

respect to the measureP . The amount of information that a measureQ contains
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aboutP is given by the relative entropy/KL divergence:

D(P ||Q) := −
∑

x∈X

P (x) log
P (x)

Q(x)
.

Note that bothP andQ need to be defined over the same setX. In transfer learn-

ing, we are interested in how much information measureµ, ϕ ∈ V contain about

each other – and it seems at first blush that KL divergence should be adequate for

this purpose. However, it is often the case that we wish to transfer between mea-

sures defined on different spaces (Swarup & Ray, 2006) i.e. there exists points at

whichQ(x) = 0, butP (x) 6= 0, and in this case KL divergence is undefined. Fur-

thermore, what we are really interested in is not just any type of information,but

amount of constructive information thatP andQ contain about each other – i.e.

amount of informationP contains for the purpose of constructing measureQ and

vice versa. So in this case classical Information Theory does not give us an appro-

priate measure. To solve this problem, we have to turn to Algorithmic Information

Theory (AIT) (see Li & Vitanyi, 1997 for the results below and a comprehensive

introduction to AIT).

AIT remedies the above problem by giving aconstructivemeasure of infor-

mation thatindividual objects contain about each other via the beautiful notion

of (prefix) Kolmogorov complexity of strings (Levin, 1974; Gacs, 1974;Chaitin,

1975):

Definition 3.4. TheKolmogorov Complexity of x ∈ A∗ is given by the length of

the shortest program that on inputε, outputsx:

K(x) := min
p
{l(p) : p(ε) = x} .

�

The intuition is that, the minimum number of bits we would need to communi-

cate to someone so that they can reconstruct the stringx is the length of the shortest

programp the outputsx given no input. Hence the length ofp is a measure of the

amount of absolute information content ofx ∈ A∗. As we shall see, for transfer

learning we will need to measure the amount of information a stringy contains

about another stringx, and this is given by the conditional version ofK:

Definition 3.5. Theconditional Kolmogorov complexity of x giveny, x, y ∈ A∗,

is the length of the shortest program that outputsx giveny :

K(x|y) := min
p
{l(p) : p(y) = x} .

�
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Again, the intuition is that length ofp := arg K(x|y) is the minimum number

of bits we would need to communicate to someone so that they can reconstructx

given that they already have stringy. Hencel(p) is an absolute measure of the

amount of information thaty contains for the purpose of constructingx. Not only

are these quantities intuitively satisfying, as we shall soon show, the Kolmogorov

complexity and conditional Kolmogorov complexity are both sharper versionsof

the entropy and conditional entropy in classical Information Theory.

To define the above quantities form strings we simply use the〈〉m map to en-

code them strings to a single string, and use the definitions on that single string. So

for instanceK(x, y|z, w, v) := K(〈x, y〉|〈z, w, v〉) etc. This does not cause any

problems because〈〉m is computable with a short, constant length program com-

puting it. We also note that fixingU as a reference universal Turing machine does

not cause problem because of the celebratedInvariance Theorem(Kolmogorov,

1965): given any two universal Turing machinesUi andUj

|KUi
(x|y)−KUj

(x|y)| +
= 0

whereKZ is the conditional Kolmogorov complexity where the programs are

for universal Turing machineZ. We list some fundamental properties ofK:

Lemma 3.1. ∀x, y, y1,m ∈ A∗:

1. K(x|y)
+

≤ K(x).

2. K(x)
+

≤ K(〈x, y1,m−1〉m).

3. The functionK(x|y) is upper semicomputable.

4. K(x| arg K(y)) + K(y)
+
= K(x, y) (Gacs, 1974; Chaitin, 1975)

5. K(x, y|z)
+
= K(x| arg K(y|z), z)+K(y|z) = K(x|y, K(y|z), z)+K(y|z)

.

Proof. (Sketch) The first two properties follow from the definition of theK func-

tions and the following. The first property follows from the fact that any pro-

gram that computesx, with a constant length modification to ignore any input,

is also a program to outputx given y. The second property follows because any

program that outputs〈x, y1,m−1〉m, with a constant length modification to output

〉〈x, y1,m−1〉m〈m1 , also outputsx.

For the third property, we note that the following programp upper semicom-

putesK(x|y): p(〈〈x, y〉, t〉) runs all programsq on y with l(q) ≤ 2l(x) (a loose

upper bound onK(x|y)), in parallel by ‘dovetailing’, fort steps each.p then

outputs the length of the shortest program found thus far.

25



The fourth property, discovered first by Gacs, and then independently by Chaitin,

is one of the deepest and fundamental results in Kolmogorov complexity theory.

The proof is quite long and complex, and we refer the reader to Li & Vitanyi,

1997. The fifth property is a conditional version of the the fourth property – note

the lack of a constant of equality in the final equality. This is becausearg K(y|z)

and〈y, K(y|z)〉 contain the same amount of information – given one we can com-

pute the other and vice versa..

The functionK(x|y) is upper semicomputable which is in agreement with our

goal to investigate what type of transfer is possible given infinite resources. We

will also make extensive use of the following minimality property ofK(x|y):

Lemma 3.2. For any partial, non-negative, upper semicomputable functionf :

A∗ ×A∗ → IR, with f(x, y) =∞ when it is undefined, we have:

K(x|y)
+

≤ f(x, y) if
∑

x

2−f(x,y) ≤ 1 .

where the constant in
+

≤ is equal toK(f) + O(1) whereO(1) is quite small (see

Li & Vitanyi, 1997).

In the above lemma the dependence of the constant onK(f) can be ignored

in this work for two reasons. First, in our applicationsf will either be symmetric

distance functions (see Def. 3.8) and Bayesian priors (see Def. 4.4).We assume

that all such distance functions and probability measures arereasonable– i.e. that

they have shortO(1) length. That this is a acceptable assumption to make can

be seen by contemplating the distance functions and priors used in practice.Sec-

ond, should the reader find the first assumption onerous, we refer themto Sect.

4.4, where we dispense with even this very reasonable assumption and induce a

different and arguably more robust interpretation of our optimal methods.

Using the above lemma, we can now show the relationship betweenK andH,

whereH is the classical information theoretic entropy. Sety := ε, and letP ∈ V.

Now f := − log P satisfies the condition for lemma 3.2. Hence we have

K(x)
+

≤ − log P (x) .

Taking expectation with respect toP , we have

EP (K(x))
+

≤ H(x) .

However, sinceK(x) is code word length of a prefix free code, the Noiseless Cod-
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ing Theorem (Cover & Thomas, 1991) states:

H(x) ≤ EP (K(x)) .

And hence, we have that P-expectedK(x) is, upto an additive constant equal to

H(P ). In a similar manner it can be shown thatH(P |Q) is equal to P-expected

K(x|y).

3.3.2 Universal Transfer Learning Distance for Tasks

K(x|y) measures the amount of information stringy contains aboutx. Now, to

measure the amount of information stringx contains about stringy and string y

contains about stringx, Bennett et al., 1998 defined the following function:

Definition 3.6. TheInformation Distance betweenx, y ∈ A∗ is the length of the

shortest program that givenx outputsy, and vice versa:

E0(x, y) := min
p
{l(p) : p(x) = y, p(y) = x} .

�

The punchline is as now this. Forµ, ϕ ∈ V, µ andϕ are also strings (in-

terpreted as programs). HenceK(µ|ϕ) measures the amount of informationϕ

contains for the purpose of constructingµ, which is exactly the type of information

we want to measure for transfer learning. Similarly,E0(µ, ϕ) measures the amount

of constructive informationµ andϕ contain about each other, which is exactly the

measure of distance that we have been looking for when trying to measure task re-

latedness. Furthermore, bothK andE0 are upper semicomputable, which is again

in agreement with our desire to investigate transfer in the limit. Upper semicom-

putability of K was established in Lemma 3.1. To do the same forE0, consider

the following programp that upper semicomputesE0(x, y). p(〈〈x, y〉, t〉) runs all

programsq on y andx, with l(q) ≤ 2 max{l(x), l(y)} (a loose upper bound on

E0(x, y)), in parallel by ‘dovetailing’, fort steps each.p then outputs the length of

the shortest program found thus far.

HenceE0 is the natural candidate for a transfer learning distance. We will

however use a sharper characterization ofE0:

Definition 3.7. TheCognitive Distancebetweenx, y ∈ A∗ is given by

E1(x, y) := max{K(x|y), K(y|x)} .

�
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E1 is upper semicomputable - we simply upper semicompute in ‘parallel’ (by

dovetailing) each term in the definition ofE1. Bennett et al., 1998 proved:

Theorem 3.1.

E0(x, y) = E1(x, y) + O[log(E1(x, y))] .

The above has been termed theconversion theorem. Hence,E1 is considered a

sharper version ofE0 because it is expressed in terms of the more well understood

and investigated functionK and is also equal toE0 upto a logarithmic term. In

fact, we will enhance the status ofE0 by proving an improved version of Theorem

3.1 where thelog term is replaced by a constant.

The reasonE1 is particularly interesting is because it uncovers, in a very formal

and precise sense, more information than any otheradmissible distancefunction,

which is a class of distances that we define below. The reason it is sufficient to

consider only admissible distances in this dissertation is because, as we showSect.

4.2, any transfer learning distance function that can be used to construct a transfer

learning algorithm in a Bayesian setting must be an admissible distance. So without

further ado, we define:

Definition 3.8. An admissible distanceD is a partial, upper semicomputable,

non–negative, symmetric function onA∗ ×A∗ with ∀y
∑

x

2−D(x,y) ≤ 1 .

(we will assumeD(x, y) =∞ when it is undefined). LetD be the set of admissible

distances. AD ∈ D is universal in D if ∀D′ ∈ D,∀x, y ∈ A∗, D(x, y)
+

≤
D′(x, y). �

Bennett et al., 1998 also showed that

Theorem 3.2. ∀D ∈ D,∀x, y ∈ A∗

E1(x, y)
+

≤ D(x, y) . (3.1)

That is,E1 is universal inD (this was proved via Lemma 3.2 withf = D, as

D satisfies the requisite conditions due to its admissibility).

So what the inequality in Theorem 3.2 translates to is thatE1 uncovers more

similarity than any other admissible distance function. In the paper Bennett et al.,

1998 itself the authors showed that the above holds for admissiblemetrics, but as

pointed out in Li et al., 2004 this holds for admissible distances as well. Admissible

distances include admissible versions of Hamming, Edit, Euclidean, Lempel-Ziv

etc. distances (Bennett et al., 1998; Li et al., 2004; Cilibrasi & Vitanyi, 2005).
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See Bennett et al., 1998 for an eloquent account of why admissible distances (and

distances satisfying the Kraft Inequality) are interesting for strings. Normalized,

practical versions ofE1 has been applied very successfully in various clustering

tasks (Li et al., 2004; Cilibrasi & Vitanyi, 2005).

We now state our improvement of the conversion theorem, (proof in Sect. ).

Theorem 3.3.

E0(x, y)
+
= E1(x, y) .

Given Theorem 3.3, we now define:

Definition 3.9. The transfer learning distance between two tasksµ, ϕ ∈ V is

defined asE1(µ, ϕ). �

So from the above, we immediately get that transfer learning distance is uni-

versal in the class of admissible distances that may be used for measuring task

similarity. This formally solves the conceptual problem of how one measures task

similarity. We will use this distance function in Chap. 4 to formally solve other

problems in transfer learning mentioned in the Introduction and give more reasons

why it is sufficient to consider only admissible distances (see discussion following

the proof of Theorem 4.3).

3.3.3 Proof of Theorem 3.3

Proof. Let p be a program such thatp(x) = y and p(y) = x. So by defini-

tion E1(x, y) ≤ l(p) for all suchp. Sincearg E0(x, y) is a such ap, we have

E1(x, y)
+

≤ E0(x, y).Now we prove the inequality in the other direction. Fix any

two stringsα, β and setE1(α, β) = E1. Now we will derive a programqE1 with

l(qE1)
+
= E1 which givenα outputsβ and givenβ outputsα. We will do so by

constructing a graphG that assigns a unique color/code of length≤ E1 + 1 to

each pair of stringsx, y with E1(x, y) ≤ E1, and the code will turn out to be more

or less the programqE1 we need to convertα to β and vice versa. We note that

the proof of Theorem (3.1) also uses a similar graph construction method. Define

G := (V, E) with verticesV and undirected edgesE:

V := {x : x ∈ A} andE := {{x, y} : x ∈ A, y ∈ Ax}, where,

A := {x : ∃y, E1(x, y) ≤ E1} and∀x ∈ A, Ax := {y : E1(x, y) ≤ E1} .
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The degree ofx ∈ V is |Ax| by construction. Hence the maximum degree ofG is

∆G = maxx∈A |Ax|. We define the set of colors/codeCE1 as:

CE1 := {p0 : p ∈ B} ∪ {p1 : p ∈ B}, where,

B := {p : p(x) = y, x ∈ A, y ∈ Ax, l(p) ≤ E1} .

qE1 will need to dynamically constructG andCE1, and assign avalid coloring to

the edges inG usingCE1. For this, all we need isE1. We run all programsp with

l(p) ≤ E1 on all x ∈ A∗ in ‘parallel’ by dovetailing and record triples(p, x, y)

such thatp(x) = y. Whenever we record(p, x, y) we check to see if we have

previously recorded(q, y, x). If so, we addp0, p1, q0, q1 to CE1, x, y to V and

{x, y} to E. Of course, if any of these already exist in the respective sets, we do

not add it again. We color a newly added edge{x, y} using a color fromCE1 using

the First-Fit algorithm - i.e. the first color that has not been assigned to anyother

{x, w} or {y, z}. So, by dynamically reconstructingG, givenx (y) and the color

for {x, y}, qE1 can use the color to recognize and outputy (x).

ThatCE1 has sufficient colors to allow valid coloring can be seen as follows.

p ∈ B iff l(p) ≤ E1 and for someAx, y ∈ Ax, p(x) = y. So for eachAx, for

eachy ∈ Ax, ∃py ∈ B, andpy 6= py′ ∀y′ ∈ Ax, y′ 6= y sincepy(x) 6= y′. This

means, for eachAx, |CE1| ≥ 2|Ax|, or |CE1| ≥ 2∆G. By the same reasoning

and the construction procedure above, as we dynamically constructG andCE1, the

estimatesCt
E1 and∆t

G at stept of the construction process also satisfies|Ct
E1| ≥

2∆t
G. Now at stept First-Fit requires at most2∆t

G − 1 colors to assign a valid

color, as two vertices could have exhausted at most2∆t
G− 2 colors between them.

Therefore First-Fit always has sufficient colors to assign a valid coloring.

Each color/code inCE1 is at mostE1 + 1 in length by construction. So, as we

constructG, α andβ shows up in the graph at some point with code/color (say)

γ, andl(γ) ≤ E1 + 1. From construction ofCE1, γ is a self-delimiting stringp,

followed by0 or 1. γ andE1 can be encoded by a stringpa0E1−l(p)1, wherea is

0 if γ = p0, or 1 if γ = p1, and0E1−l(p) is 0 repeatedE1− l(p) times.

The desired programqE1 has encoded in it the stringpa0E1−l(p)1 at some fixed

position, andqE1(z) works as follows.qE1 decodesp (which is possible as it is

self-delimiting) and then reads the next bit, which isa, to getγ. It computesE1

from counting the number of0s aftera andl(p). Whena = 0, it is not confused

with the0s following it because it is the bit that appears immediately afterp, and

p can be decoded by itself.qE1 then reconstructsG usingE1, and finds the edge

{z, w} with color γ, and outputsw. By construction, ifz = α thenw = β and

if z = β then w = α. Sincel(qE1)
+
= E1 (the constant being for the extra

bits in pa0E1−l(p)1 and other program code inq), we haveE0(α, β) ≤ l(qE1)
+
=
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E1(α, β), and thereforeE0(α, β)
+
= E1(α, β).

3.3.4 Universal Transfer Learning Distance form Tasks

In this section we will extend the definition of transfer learning distance tom task

case. The material in this section may be skipped as it is not used below, but we

include it here for completeness and because the results are interesting in and of

themselves. We also hope that the functions here will find application in task clus-

tering problems which are important for designing ‘Long Lived’ transferlearning

agents (Thrun & Pratt, 1998), and in clustering problems in general, as in Cilibrasi

& Vitanyi, 2005. The distance functions in this section apply to arbitrary strings in

addition to elements ofV.

LetX := {x1,m}, xj ∈ A∗, Xm1
i theith subset ofX of sizem1, 0 < m1 < m,

0 < i <
(

m
m1

)
. Let σ(Xm1

i ) be the set of permutations of elements ofXm1
i . Then,

to generalizeE0 to measure how much each group ofm1 xjs, 0 < m1 < m,

contain about the otherm−m1 xjs, we define:

Definition 3.10. Them fold information distance Em
0 (x1,m) betweenx1,m ∈

A∗, is the length of the shortest program that given any permutation ofm1 xjs,

1 < m1 < m, outputs a permutation of the otherm−m1 xjs. That is:

Em
0 (x1,m) := min

p
{l(p) : ∀m1, i, x, 0 < m1 < m, 1 ≤ i ≤

(
m

m1

)
,

x ∈ σ(Xm1
i ), p(〈〈x〉m1 , m1〉) = 〈y〉m−m1 , wherey ∈ σ(X\Xm1

i )} .

�

In contrast toE0 the additional informationm1 is included in the definition for

Em
0 to determine how to interpret the input, – i.e. which〉〈m1 to use to decode the

input. Em
0 is upper semicomputable by the same reasoningE0 is (Bennett et al.,

1998). To give a sharper characterization ofEm
0 , we define:

Definition 3.11. Them fold Cognitive Distancefor x1,m ∈ A∗ is:

Em
1 (x1,m) := max

xi

max
y∈σ(X\{xi})

E1(xi, 〈y〉m−1) .

�

Em
1 is upper semicomputable by the same reasoningE1 is. We can now state

the analogue of Theorem 3.3 form strings (the proof is given below):

Theorem 3.4.

Em
0 (x1,m)

+
= Em

1 (x1,m) .
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Definition 3.12. Them-fold transfer learning distancebetweenm tasksµ1,m ∈
V is defined asEm

1 (µ1,m). �

We can also define admissible distances:

Definition 3.13. Them fold admissible distancesbetweenm tasksµ1,m ∈ V
are defined as functionsDm : ×mA∗ → IR that are non-negative, upper semi-

computable,m-wise symmetric, and satisfies the following version of the Kraft

inequality:∀x, y1,m−1 ∈ A∗

∑

z1,m−1∈A∗

2−Dm(x,z1,m−1) ≤ 1 and
∑

w∈A∗

2−Dm(w,y1,m−1) ≤ 1 .

LetDm be the set ofm fold admissible distances. AD ∈ D is universal in D if

∀D′ ∈ D,∀x1,m ∈ A∗, D(x1,m)
+

≤ D′(x1,m). �

Theorem 3.5. Em
1 has the following properties:

1. Em
1 satisfies the above version of the Kraft inequality.

2. Em
1 is universal in the class of admissible distances form strings.

Proof. Let x, y1,m−1 ∈ A∗. Part 1 follows because by definition

E1(x, 〈y1,m−1〉m−1) ≤ Em
1 (x, y1,m−1) .

andE1(x, 〈y1,m−1〉m−1) satisfies the Kraft inequality. For part 2, by Lemma 3.2

and admissibility ofDm:

K(x|y1,m−1), K(y1,m−1|x)
+

≤ Dm(x, y1,m−1) .

The desired result now follows because by definition,

Em
1 (x, y1,m−1) ≤ K(x|y1,m−1), K(y1,m−1|x) .

3.3.5 Proof of Theorem 3.4

Proof. The proof is similar to the proof of Theorem 3.3 - we assumem is fixed and

treat it as a constant. Otherwise the theorem holds upto additivem log m terms.

Fix Λ := {λ1,m}. We will first show

Em
1 (λ1,m)

+

≤ Em
0 (λ1,m) .
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Let p be a program such that∀m1, i, λ, 0 < m1 < m, 1 ≤ i ≤
(

m
m1

)
, λ ∈

σ(Λm1
i ), p(〈〈λ〉m1 , m1〉) = 〈y〉m−m1 , wherey ∈ σ(Λ\Λm1

i ). Fix andi ∈ INm

andη ∈ σ(Λ\Λm1
i ). Then we can construct 1) a programq that given anyλi

outputsη and 2) a programq′ that givenη outputsλi and l(p)
+
= l(q)

+
= l(q′).

The programq operates as follows. Given inputx, it runsp(〈x, 1〉) and ifx = λi,

gets ay ∈ σ(Λ\Λm−1
i ). q also has encoded in it as2mm̄ in < 4m log m bits

the order in whichλj , j 6= i appears iny, and in which they should appear inη

as (for definition ofm̄ see Sect. 3.1). It then uses that to decodey, and output

η. The programq′ operates as follows - given inputx, it runs p(〈x, m − 1〉),
needing< 2 log m bits to encodem − 1 as m− 1. If x := η q′ getsλi and

just outputs it. By constructionl(p)
+
= l(q)

+
= l(q′); furthermorearg Em

0 (λ1,m)

is a program satisfying the properties ofp, while, sinceλi and η were chosen

arbitrarily, arg Em
1 (λ1,m) is a program satisfying either the properties ofq or q′.

Hencel(arg Em
1 (λ1,m)) is at mostl(arg Em

0 (λ1,m)) and so we have the above

inequality.

Now we prove

Em
0 (λ1,m)

+

≤ Em
1 (λ1,m) .

Let E1m = Em
1 (λ1,m). We will construct a programqE1m with l(qE1m)

+
= E1m

that will have the same outputs asarg Em
0 (λ1,m) on〈〈y〉m1 , m1〉, y ∈ σ(Λm1

i ), 0 <

m1 < m, 1 ≤ i ≤
(

m
m1

)
. For this, we need the setL the setsAx

L := {{x1,m} : Em
1 (x1,m) ≤ E1m}

Ax := {{z1,m−1} : {x, z1,m−1} ∈ L} .

and colorsCE1m, defined using the setB.

CE1m := {pj : p ∈ B, j ≤ m}, where,

B := {p : p(x) = 〈y1,m−1〉m−1, {y1,m−1} ∈ Ax, l(p) ≤ E1m} .

By usingE1m andm, qE1m will constructL dynamically and color each element

of L using colors fromCE1m, so that if a stringxi appears in multiplem tuples in

L, then eachm tuple will have a different color from them tuples - this is stated

more precisely below.

To perform the coloring as above, we run all programsp with l(p) ≤ E1m on

all x ∈ A∗ in parallel. If we findp(x) = y, we record the tuples(p, (w1,m−1), y)

and (p, x, (z1,m−1)), wherex = 〈w1,m−1〉m−1 and y = 〈z1,m−1〉m−1. If we

find ax1,m such that we have recorded(pxi,y, xi, y) and(py,xi
, y, xi) for eachxi

and∀y ∈ σ({x1,m}\{xi}), then we add each of thepxi,y, py,xi
s to B and add

the corresponding colors toCE1m. We addX := {x1,m} to L and color it using a
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variation of First-Fit in Theorem 3.3 as follows. Denote byC(X) the color assigned

to X. ThenC(X) is set to the firstγ ∈ CE1m such that∀x ∈ X, if x ∈ X ′, X ′ ∈ L,

thenγ 6= C(X ′). So given anyx ∈ X, andC(X), qE1m can reconstruct and color

L as above and hence findX.

To see thatCE1m has enough colors: Let∆L := maxx |Ax|. For eachκ ∈ Ax,

∃pκ ∈ B, pκ(x) = 〈y〉m−1, y ∈ σ(κ) andpκ′ 6= pκ ∀κ′ ∈ Ax, κ′ 6= κ. Therefore

|CE1m| ≥ m∆L. Also, from the construction method forL above,|Ct
E1m| ≥ m∆t

L

for the estimates at each stept of the construction process. When coloringX at

stept, eachx ∈ X has used≤ ∆t
L−1 colors previously. So, as|X| = m, First-Fit

will require at mostm(∆t
L − 1) + 1 colors to assign a valid color toX.

Now maxγ∈CE1m
l(γ) ≤ E1m + l(m) (l(m) = ⌊log(m + 1)⌋ Li & Vitanyi,

1997), and withm as a constant, this becomesE1m + c. Like qE1 from The-

orem 3.3,qE1m can encodeE1m, m, and the colorγΛ = pj for Λ in itself as

pj̄m̄0E1m−l(p)1. Using this,qE1m can dynamically constructL, CE1m and colorL.

For input〈x, m1〉, 0 < m1 < m, qE1m decodesx with βj :=〉x〈m1
j , 0 < j < m1.

By construction ofL, using anyβj andγΛ, qE1m can findΛ in L, and output

〈y〉m−m1 , y ∈ σ(Λ\{β1,m1}), which is what is required. This proves, withm

as a constantEm
0 (λ1,m)

+

≤ Em
1 (λ1,m) andEm

0 (λ1,m)
+

≤ Em
1 (λ1,m) + 3⌈log m⌉

otherwise. This and the first inequality completes the proof.

3.4 Discussion

In this chapter we defined our universal measures of task relatednessand set the

stage for use of these for developing formally optimal Bayesian transfer learning

scheme in the next chapter. The capability of AIT theoretic distance measures to

measure amount of constructive information that individual objects containabout

each other made it possible for us to solve one of the long standing problems in

transfer of how to measure relatedness between tasks. By proving the Conver-

sion Theorem for both the2 andm string case (very interesting results in and of

themselves) we were able to give a simple to understand characterization of task

relatedness. Future work for this should involve developing finitely computable

versions of these distance functions. A first, and seemingly effective, attempt at

such a distance is presented in Chap. 6. We believe more sophisticated distance

functions can be constructed by restricting ourselves to group of specific machine

learning domains and then deriving compression based distance functionssuitable

for measuring relatedness between hypothesis that are suitable for the group. For

an impressive example of such an approach, we refer the reader to Cilibrasi &

Vitanyi, 2005.
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Chapter 4

Universal Bayesian Transfer
Learning

In Chapter 3 we defined our transfer learning distance and established that it is

formally optimal in the sense that in the limit of infinite resources, no other rea-

sonable distance function can uncover more similarity. While this is a significant

result from a conceptual point of view, we did not describe how it may beused

for performing actual transfer learning. In this section we focus on this issue and

present Bayesian transfer learning schemes that areuniversally optimal. We as-

sume notation and results described in the preceding chapter and then proceed as

follows.

First we describe a very general Bayesian framework and associatedpowerful

convergence results, which together constitute Solomonoff Induction (Solomonoff,

1978; Hutter, 2003). We then use results from the previous chapter to define uni-

versally optimal transfer learning schemes for this setting. We consider two types

of transfer learning frameworks, sequential and parallel transfer, and show that

our methods for each framework are universally optimal. We also show thatthese

methods are always justified from a formal perspective – i.e. our transfer method

never performs much worse than a non-transfer method. An interesting result that

falls out of this work is that while current practical transfer learning methods are

considered to be parallel transfer methods, they are in fact sequential transfer meth-

ods in disguise. Finally, we further strengthen the classical universal optimality of

our priors by showing that they are also optimal in a competitive setting. All the

results and discussion in this chapter are for the squared loss function, and the case

for arbitrary bounded loss function is handled in Sect. 5.1.

4.1 Solomonoff Induction and Bayesian Convergence

Results

We first recall from Sect. 3.2 the setV of lower semi-computable semimeasures

and the learning problem defined on this space. We consider as our task spaces

enumerable subsetsV ′ ⊂ V; and without loss of generality, we fix someV ′ for the

sequel. Given somex1:t, generated by some taskµ ∈ V ′, the prediction problem
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is to predict the next lettera. Whenµ is known, the prediction is made according

to µ(a|x1:t) (see Sect.5.1). Whenµ is not known, in the Bayesian setting, this

prediction is made using a conditional Bayes MixtureMW (a|x1:t) for a priorW

overV ′:

Definition 4.1. For anyx ∈ A∗ the Bayes mixture overV ′ is defined as follows:

MW (x) :=
∑

µ∈V ′

µi(x)W (µ) where∀µ, W (µ) ≥ 0 and
∑

µ∈V ′

W (µi) ≤ 1 . (4.1)

The conditional probability, according toMW , of the next letter beinga is now

given by:

MW (a|x1:t) :=
MW (x1:ta)

MW (x1:t)
. (4.2)

�

For our purposes it is sufficient that the priorW satisfy the density inequality

rather than the equality. SoMW is a weighted sum of the elements ofV ′. As

mentioned in Chap. 3, we wish to investigate transfer in the limit, and sowe will

only consider lower semicomputable priors – and in the sequel all priors will

be assumed to be such. In this case, asV ′ is enumerable and eachµ ∈ V ′ is lower

semicomputable, we can lower semicomputeMW by enumeratingV and lower

semicomputingµs in parallel. Hence,MW ∈ V.

We will now state a well-known extraordinary convergence result forMW (.|.)
(Solomonoff, 1978; Hutter, 2003):

Theorem 4.1(Solomonoff, Hutter). ∀µ ∈ V ′:

∞∑

t=0

∑

x1:t

µ(x1:t)

(
∑

a∈A

[MW (a|x1:t)− µ(a|x1:t)]
2

)
≤ − lnW (µ) . (4.3)

That is, for any target probability measureµ, theµ expected error ofMW goes

to zero very rapidly as long as− lnW (µ) finite. That is, as long as the targetµ is

not assigned0 probability byW , we have:

• the expected number of timest that|MW (a|x)−µ(a|x)| > ǫ is≤ − lnW (µ)/ǫ2,

and

• the probability that the number ofǫ deviations> − lnW (µ)/ǫ2δ is < δ.

Hence by predicting using the conditionalMW (.|.), we are guaranteed rapid con-

vergence to the target probability measure. Theorem 4.1 was first proved in Solomonoff,

1978 forV ′ = V andA = B, and was then extended to arbitrary finite alphabets,

V ′s and bounded loss functions (Hutter 2003; 2004). In Hutter, 2003 it was also
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shown that Bayes mixtures are Pareto optimal, and that ifµ 6∈ V ′, but there is a

ρ ∈ V ′ such that∀t ∈ IN, thetth order KL divergence betweenρ andµ ≤ k, i.e.

∀t ∈ IN,
∑

x1:t

µ(x1:t) ln

(
µ(x1:t)

ρ(x1:t)

)
≤ k .

then

EbW (µ) = − lnW (ρ) + k .

That is,MW will still converge toµ even ifµ itself 6∈ V ′, but has an acceptable

approximation in terms of the KL divergence.

For all the above reasons, we use Theorem 4.1 as the main tool to establish our

own optimality results. To that end we define:

Definition 4.2. For a prior W , theerror bound under Theorem 4.1 is defined as

EbW (µ) := − lnW (µ) .

A prior W is said to beuniversally optimal in some classC if for all priors

W ′ ∈ C, ∀µ ∈ V ′:
EbW (µ)

+

≤ EbW ′(µ) . (4.4)

�

We end this section by looking at the Solomonoff-Levin prior :

Definition 4.3. TheSolomonoff-Levin prior is defined by:

ξSL(µ) := 2−K(µ) .

�

ξSL is lower semicomputable asK is upper semicomputable. For this prior

we haveEbξSL
(µ) = K(µ) ln 2. This is intuitively appealing because it shows the

smaller the code forµ, the smaller the bound, which is a instantiation of Occam’s

razor. In addition, for any other lower semicomputable priorW , the error bound

− lnW (µ) is upper semicomputable, and− lnW/ ln 2 satisfies the conditions for

Lemma 3.2 (withy = ε andW (x) undefined ifx 6∈ V ′), so:

K(µ) ln 2
+

≤ − lnW (µ) . (4.5)

and therefore we have:

Theorem 4.2. The Solomonoff-Levin prior is universally optimal in the class of

lower semicomputable priors.
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Indeed, our universally optimal transfer learning priors will be transfer learning

versions ofξSL, and furthermore, we will use Theorem 4.2 to show that our transfer

learning methods are always justified.

4.2 Universal Sequential Transfer Learning

In this section we will look at sequential transfer learning in the setting of Solomonoff

Induction and derive transfer learning methods that are universally optimal and are,

in a formal sense, always justified. We assume that we are given tasksϕ1, ϕ2, · · · ,
ϕm−1 ∈ V, as previously learned tasks. We should stress here that the transfer

method we present here is representation agnostic – that is, we do not care about

how these were learned and our method will simply try to do the best it can given

these previous tasks. For instance eachϕi may be a weighted sum of elements of

V ′ after having observed a finite sequencex(i) (Hutter, 2003, Sect. 2.4) or eachϕi

may be given by the user. Letϕ := 〈ϕ1, ϕ2, . . . , ϕm−1〉m−1. The aim of transfer

learning is to useϕ as prior knowledge when predicting for themth task with some

unknown generating semimeasureµ ∈ V ′. Given this, a transfer learning scheme

is just a conditional prior overV ′, and it may or may not be based on a distance

function. So,

Definition 4.4. A transfer learning scheme is a lower semicomputable prior

W (µi|ϕ) with ∑

µi∈V ′

W (µi|ϕ) ≤ 1 .

and W (x|ϕ) undefined forx 6∈ V ′. A symmetric distanceD based transfer

learning schemeis a transfer learning schemeWD(µi|ϕ) with

WD(µi|ϕ) := g(D(µi, ϕ)) .

for a symmetric functionD : A∗ × A∗ → IR and an arbitrary functiong : IR →
[0, 1]. �

WD is defined in terms ofg because we do not want to put restrictions on how

the distance functionD may be used to induce a prior, or even what constraintsD

must satisfy other than being symmetric.

Definition 4.5. Our universal transfer learning schemeis the prior

ξTL(µi|ϕ) := 2−K(µi|ϕ) .

Our TL distance based universal transfer learning schemefor Bayes mixtures
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overV ′ is the prior

ξDTL(µi|ϕ) := 2−E1(µi,ϕ) .

�

For ξDTL we useE1 instead ofEm
1 becauseE1 measures amount of infor-

mation between themth task and previousm − 1 tasks, which is what we want,

whereasEm
1 measures amount of information between all possible disjoint group-

ings of tasks, and hence it measures more information than we are interestedin.

ξDTL is a prior since

∑

µi∈V ′

2−E1(µi,ϕ) ≤
∑

µi∈V ′

2−K(µi|ϕ) ≤ 1 .

where the inequality holds for2−K(µi|ϕ) becauseK(µi|ϕ), being lengths of pro-

grams, satisfies the Kraft inequality. AsE1(·, ϕ) andK(·|ϕ) are upper semicom-

putable,ξDTL andξTL are lower semicomputable.

So in the Bayesian frameworkξDTL automatically transfers the right amount of

information from previous tasks to a potential new task by weighing it according to

how related it is to older tasks.ξTL is less conceptually pleasing asK(µi|ϕ) is not

a distance, and a goal of TL has been to define transfer learning schemeusing TL

distance functions. But as we see below,ξTL is actually more generally applicable

for sequential transfer.

Theorem 4.3. ξTL andξDTL are universally optimal in the class of transfer learn-

ing schemes and distance based transfer learning schemes respectively.

Proof. Let W be a transfer learning scheme, then

EbξTL
(µ) = K(µ|ϕ) ln 2 andEbW (µ) = − lnW (µ|ϕ) .

W is lower semicomputable, which implies− lnW is upper semicomputable;

− lnW/ ln 2, restricted toV ′, satisfies the requisite conditions for Lemma 3.2 with

y = ϕ, and so

EbξTL
(µ)

+

≤ EbW (µ) .

Let WD be a distance based transfer learning scheme. Then:

EbξDTL
(µ) = E1(µ, ϕ) ln 2 andEbWD

(µ) = − lnWD(µ|ϕ) .

− lnWD is upper semicomputable asWD is lower semicomputable;− lnWD is

symmetric, and restricted toV ′,− lnWD/ ln 2 satisfies the Kraft inequality condi-
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tion in Def. 3.8; therefore− lnWD/ ln 2 ∈ D. Now by Theorem 3.2

EbξDTL
(µ)

+

≤ EbWD
(µ) .

Note that forWD the error bound is given by− lnWD / ln 2 which is∈ D,

and so whetherD itself is admissible or not is irrelevant. This further justifies

considering only admissible distances. So from the theorem and discussionabove,

our method formally solves the problem of sequential transfer. It is universally

optimal, and it automatically determines how much information to transfer. Ad-

ditionally, ξTL does not transfer information when the tasks are not related in the

following sense. By (4.5), the non-transfer universally optimal prior is2−K(.), with

error boundK(µ) ln 2. As K(µ|ϕ)
+

≤ K(µ) by Lemma 3.1, we have

Theorem 4.4. ξTL is universally optimal in the class of non-transfer priors.

The above implies, that, from aformal perspective, sequential transfer is al-

ways justified - i.e. it never hurts to transfer (see Sect. 4.3.3).

4.3 Universal Parallel Transfer Learning

Multitask learning methods used in practice are considered to be ‘parallel trans-

fer’ methods where we learnm different tasks simultaneously and transfer across

all the tasks as we learn them. In the following two sections, we will explore this

type of transfer. There are two different possible interpretations of parallel transfer,

which we term joint-parallel transfer and online-parallel transfer respectively. We

will show that although current transfer methods are conceived of as implement-

ing joint-parallel transfer is not really a transfer method, while the online-parallel

transfer is a genuine transfer method. We also show in Sect. 4.3.3, that current

transfer methods are in fact just sequential transfer methods, but in disguise.

4.3.1 Joint-parallel Transfer

In joint-parallel transfer we learnm related tasks in parallel. There arem generat-

ing semimeasuresµ1, µ2, · · · , µm ∈ V generating sequencesx(1), x(2), · · · , x(m)

respectively. At stept, µi generates thetth bit of sequencex(i) in the usual way. To

apply Theorem 4.1 in this scenario, we assume that our semimeasures are defined

over an alphabetAm of size|A|m, i.e. we use anm vector ofA to represent each

element ofAm. So given a sequencex of elements ofAm, i.e. x ∈ A∗
m, x(i) will

be theith components of vectors inx, for 1 ≤ i ≤ m. A semimeasure overAm is

now defined as in Definition 3.2.
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Definition 4.6. Themeasure spaceVm for joint-parallel transfer is now defined

by:

Vm := {ρ : ∀t ∈ IN, ∀x1:t, ρ(x1:t) =
∏

i

ρm
i (x

(i)
1:t) whereρm

i ∈ V} .

We denote them different components ofρ ∈ Vm byρm
i . �

It is easy to see thatVm is enumerable: as we enumerateV, we use the〈〉m map

to determine the elements ofV that will be the components of a particularρ ∈ Vm.

We will consider as our task spaces enumerable subsetsV ′m of Vm. As before we

define:

Definition 4.7. A joint-parallel transfer learning scheme Wm is a lower semi-

computable prior overV ′m (Wm(x) undefined forx 6∈ V ′m):

Wm(ρ) := Wm(ρm
1,m) with

∑

ρi∈V ′
m

Wm(ρi) ≤ 1 .

A Bayes mixture is now given by:

M
m
W (x) :=

∑

ρi∈V ′
m

ρi(x)W (ρi) .

�

Definition 4.8. Theuniversal joint-parallel transfer learning scheme is defined

as the prior:

ξJPTL(ρ) := ξJPTL(ρm
1,m) := 2−K(ρm

1,m) .

�

Theorem 4.5. ξJPTL is universally optimal in the class of joint-parallel transfer

learning schemes.

Proof. Let the generating semimeasure beµ = µm
1,m andWm be any joint-parallel

transfer scheme. Then,

EbξJPTL
(µ) = K(µm

1,m) ln 2 andEbWm(µ) = − lnWm(µm
1,m) .

By Lemma 3.2, and reasoning similar to the first part in the proof of Theorem 4.3,

K(µm
1,m) ln 2

+

≤ − lnWm(µm
1,m) .

Hence the priorξJPTL is universally optimal.
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Indeed,K(ρm
1,m) is the measure of similarity that was used in Juba, 2006 to

analyze multitask learning in a PAC setting (as mentioned in the Chaps. 1 and 2).

However,ξJPTL is also the non-transfer Solomonoff-Levin prior for the spaceVm.

Therefore, it seems that in this interpretation of multitask transfer, in contrast to

sequential transfer, no actual transfer of information is occurring. Plain single task

learning is taking place, but in a product space. The benefit of this is notclear from

a formal perspective asK(x)
+

≤ K(x, y1,m−1), and so this type of ‘transfer’, in

general, should not help learning.

4.3.2 Online-parallel Transfer

In this section, we consider an ‘online’ version of parallel transfer learning, where

we havem different target tasks,µak
, 1 ≤ k ≤ m with each taskµak

∈ V ′ as

in sequential transfer learning. However, unlike in sequential transfer, we assume

that at each stept thetth letter of each sequence is generated simultaneously, and

so we predict these sequences in parallel. When learning theith task, the idea now

will now be to use a prior that is conditioned on the sequences generated byother

m − 1 tasks, and hence in this way we effect parallel transfer. Note that, since

the information that the prior is being conditioned on is changing at each step,we

will have asequence of time-varying priorsinstead of a single static prior. At first

glance this seems like quite a novel setup, that would require a tool more powerful

than Theorem 4.1 to handle. But one key interesting result we uncover is that it is

quite easy to show that in the general case Theorem 4.1 suffice. We will begin the

analysis by defining the time-varying priors.

Definition 4.9. For target taskµai
, let x(−i)

t := 〈x(j)
<t : j ∈ INm, j 6= i〉 wherex

(j)
<t

is the sequence generated by target taskµaj
in the previoust− 1 steps1. We define

a online-parallel transfer learning schemefor taskµai
as the sequence of lower

semicomputable conditional priors{W i
t } overV ′, t ∈ IN such that for eacht:

∑

µ∈V ′

W i
t (µ|x

(−i)
t ) ≤ 1 .

We define the corresponding sequence of mixtures as{Mi
t} where for eacht, t ∈

IN:

M
i
t(x) :=

∑

µ∈V ′

µ(x)W i
t (µ|x

(−i)
t ) .

�

1It is not necessary for what follows that each target measureµaj
emit their letters simultaneously.

Indeed, we can definex(−i)
t := x

(j)
<tj

wheretj is the number of letters of thejth sequence seen at

the time of seeingtth letter ofµai
; now everything in the sequel will still hold.
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These TL schemes are different from typical priors in that they are allowed to

change at each step. It is straightforward to show that these priors canbehave in a

way so that the mixture never converges.

Lemma 4.1. There existsA, V ′, µ′ ∈ V ′ and{W i
t } such thatW 1

t (µ′) > 0 for all

finite t but:

∞∑

t=0

∑

x1:t

µ′(x1:t)

(
∑

a∈A

[Mi
t(a|x1:t)− µ′(a|x1:t)]

2

)
=∞ .

Proof. LetA = B and setV ′ := {µ′, µ′′} such thatµ′(01:t) = 1 andµ′′(x1:t) =

2−t for all t (i.e. µ′ always predicts0, i.e. corresponds to the the sequence0000...).

Let W 1
t (µ′) = 2−t and so theµ′-expected squared error at stept is given by:

→
∑

x1:t−1

µ′(x1:t−1)




∑

a∈{0,1}

[Mi
t(a|x1:t−1)− µ′(a|x1:t−1)]

2





= µ′(01:t−1)




∑

a∈{0,1}

[Mi
t(a|01:t−1)− µ′(a|01:t−1)]

2





= [Mi
t(0|01:t−1)− µ′(0|01:t−1)]

2 + [Mi
t(1|01:t−1)− µ′(1|01:t−1)]

2

> [Mi
t(1|01:t−1)− µ′(1|01:t−1)]

2 = [Mi
t(1|01:t−1)]

2 =

[
M

i
t(101:t−1)

Mi
t(01:t−1)

]2

=

[
2−tµ′(101:t−1) + (1− 2−t)µ′′(101:t−1)

2−tµ′(01:t−1) + (1− 2−t)µ′′(01:t−1)

]2

=

[
(1− 2−t)2−t

2−t + (1− 2−t)2−t+1

]2

=

[
1− 2−t

2 + 2(1− 2−t)

]2

The last term→ 1/16 for t→∞. So for the total expected squared error upto

stepT we have:

>

T∑

t=1

[
1− 2−t

1 + (1− 2−t)

]2

which goes to∞ for T →∞, from which the claim follows immediately.

Hence we can have online-transfer schemes that never converge, while never

assigning0 prior to the target measure in any finite stept. To fix this problem we

need to restrict the types of sequences of priors that we should consider. For this

purpose, we define the type of online-parallel transfer priors that areallowed:

Definition 4.10. We define aadmissible online-parallel (AOP) transfer learning

schemefor taskµai
as the sequence of lower semicomputable conditional priors

43



{W i
t } overV ′, such that for eacht ∈ IN:

∑

µ∈V ′

W i
t (µ|x

(−i)
t ) ≤ 1 such that

if W i
1(µ|x

(−i)
t ) > 0, then inf

t
W i

t (µ|x
(−i)
t ) > 0} .

We define the correspondingonline-parallel admissible mixturesas in Definition

4.9.�

That is, a sequence of priors is admissible if it does not assign0 probability to

any measure in the limit, a restriction which is eminently reasonable given Lemma

4.1. We can now define the the error bound of such schemes and a universal mem-

ber as follows:

Definition 4.11. We define the error bound for the sequence{W i
t } as:

Eb{W i
t }

(µ) := sup
t

EbW i
t
(µ) = sup

t
− lnW i

t (µ|x
(−i)
t ) .

An admissible online-parallel transfer scheme{P i
t } is said to beuniversally opti-

mal in some classC of AOP transfer schemes if∀{W i
t } ∈ C, ∀µ ∈ V ′,

Eb{P i
t }

(µ)
+

≤ Eb{W i
t }

(µ) .

�

That the error bound definition is tight in a certain sense can also be shown

quite easily:

Lemma 4.2. There existsV ′ ⊂ V, µ ∈ V ′ andW , such that theµ-expected squared

error obtained in the first step is(− lnW (µ))/1.3.

Proof. SetA := B andV ′ = {µ1, µ2} such thatµ1 always predicts0 andµ2

always predicts1. Let α = µ1(0) = 1, β = µ2(0) = 0 and letW (µ1) = w = 0.3

andW (µ2) = v = 1 − w. Then, assumingµ1 is the target measure, the expected

squared error att = 1 becomes

→ [α− (w.α + vβ)]2 + [1− α− (w(1− α) + v(1− β))]2

= [α− w.α + (1− w)β)]2 + [1− α− w + wα + v − vβ]2

= [(1− w)(α− β)]2 + [v − α + wα + v − vβ]2

= [(1− w)(α− β)]2 + [(1− w)(α− β)]2

= 2(α− β)2(1− w)2 = 2(1− w)2 = 0.98 .
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while− lnw = 1.204 and1.204/0.98 = 1.3.

Hence, for theV ′ andW in the statement of the theorem, withW i
1(µ|x

(−i)
t ) =

W , and thenW i
t (µ1|x(−i)

t ) = 1 for all t > 1 (i.e. all the prior is put on the

target measure), the final total expected squared error cannot be much better than

the Theorem 4.1 error boundsup EbW i
t
(µ) = − lnW i

1(µ|x
(−i)
t ). So this shows

that the definition ofEb{W i
t }

is not unreasonable. So now, as before we can define

universal AOP transfer learning method:

Definition 4.12. Our universal online-parallel transfer learning schemeis the

sequence of priors{ξOPTL
i
t} where

ξOPTL
i
t(µ|x

(−i)
t ) := 2−K(µ|x

(−i)
t ) .

�

Theorem 4.6. {ξOPTL
i
t} is universally optimal in the class of AOP transfer learn-

ing schemes.

Proof. Let {W i
t } be a AOP transfer learning scheme. Now,

EbξOPTL
i
t
(µ) = K(µ|x(−i)

t ) ln 2

and for eacht by Lemma 3.2, and reasoning similar to the first part in the proof of

Theorem 4.3,

EbξOPTL
i
t
(µ)

+

≤ − lnW i
t (µ|x

(−i)
t ) = EbW i

t
(µ) .

and hence

Eb{ξOPTL
i
t}

(µ) = sup
t

EbξOPTL
i
t
(µ)

+

≤ sup
t
− lnW i

t (µ|x
(−i)
t ) = Eb{W i

t }
(µ) .

Since any non-transfer priorW corresponds to the AOP{W i
t }, with W i

t = W

for all t, we have (unlike the joint-parallel universal transfer prior):

Theorem 4.7. ξOPTL is universally optimal in the class of non-transfer priors.

Finally, just as in Sect. 4.2, we can also define distance based AOP transfer

schemes and its universal element:
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Definition 4.13. We define asequence of symmetric distances{Di
t} based AOP

transfer learning schemefor taskµai
as the sequence of conditional priors{WD

i
t}

overV ′ such that for eacht ∈ IN:

∑

µ∈V ′

WD
i
t(µ|x

(−i)
t ) ≤ 1 such that

if WD
i
1(µ|x

(−i)
t ) > 0, then inf

t
WD

i
t(µ|x

(−i)
t ) > 0 .

whereWD
i
t(µ|x

(−i)
t ) := g(Di

t(µ, x
(−i)
t )) for a symmetric functionDi

t : A∗×A∗ →
IR andg : IR→ [0, 1]. We define the correspondingTL distance based universal

AOP transfer learning schemeby the sequence of priors{ξOPDTL
i
t} where

ξOPDTL
i
t(µ|x

(−i)
t ) := 2−E1(µ,x

(−i)
t ) . (4.6)

�

Theorem 4.8.{ξOPDTL
i
t} is universally optimal in the class of symmetric distance

based AOP transfer learning schemes.

Proof. Let {WD
i
t} be a symmetric distance based AOP transfer learning scheme.

Then:

EbWD
i
t
(µ) := − lnWD

i
t(µ) .

− lnWD
i
t(µ)/ ln 2 is upper semicomputable asWD

i
t is lower semicomputable;

− lnWD
i
t is symmetric, and restricted toV ′, − lnWD

i
t/ ln 2 satisfies the Kraft in-

equality condition in Definition 3.8; therefore− lnWD
i
t/ ln 2 ∈ D. Now:

EbξOPDTL
i
t
(µ) = E1(µ, x

(−i)
t ) ln 2 .

and for eacht by Theorem 3.2:

EbξOPDTL
i
t
(µ)

+

≤ EbWD
i
t
(µ) .

and so:

Eb{ξOPDTL
i
t}

(µ) = sup
t

EbξOPDTL
i
t
(µ) ≤ sup

t
− lnWD

i
t(µ|x

(−i)
t ) = Eb{WD

i
t}

(µ)

4.3.3 Parallel Transfer in Practice

In the majority of multitask learning methods used in practice, givenm tasks, each

x(i) corresponds to training samples for taski. In a Bayesian setting, for each
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task i, x(j), j 6= i now function as prior knowledge, and we have priors of the

form : W (µ|x(j), 1 ≤ j ≤ m, j 6= i). So current multitask learning methods

seem to be performingm sequential transfers in parallel. Note that this is different

from online-parallel transfer because thex(i) are static rather than being generated

online in parallel. It has been observed that transferring from unrelated tasks hurts

generalization (Caruana, 1997), which, given Theorem 4.4, seems to contradict the

above conclusion. Nonetheless, our own empirical investigations in Chap.6 and in

Mahmud & Ray, 2007 lead us to believe that this is not because of parallel transfer

but use of improper algorithms.

4.4 Competitive Optimality of the Universal Priors

In the universal optimality results of the Kolmogorov complexity based transfer and

non-transfer based schemes described above, the inequalities hold uptoa constant

that depends on the complexityK(W ) of the priorW that the universal priors are

competing against. In this competitive instance, we can actually define a modified

version of our universal priors such that this constant is now independent ofW

and depends only onU , the reference universal Turing machine. First, we need the

following extension of Lemma 3.2:

Lemma 4.3. For any partial, non-negative, upper semicomputable functionf :

A∗ ×A∗ → IR andy ∈ A∗, if

∑

x

2−f(x,y) ≤ 1(takingf(x, y) =∞ when it is undefined)

then we have,

K(x|y, f)
+

≤ f(x, y) .

where the constant in
+

≤ depends only on the reference universal Turing ma-

chineU and is small (Li & Vitanyi, 1997, Chap. 4).

Proof. (Sketch)Define:

mf (x|y) :=
∑

g∈VD

g(x|y)2−K(g|f) .

whereVD is the enumerable set of conditionaldiscretelower semicomputable

semi-measures – that is eachg ∈ VD, for eachy ∈ A∗, satisfies:

∑

x∈A∗

g(x|y) ≤ 1 .
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Note that sincef is upper semicomputable, and the elements ofVD are lower

semicomputable, there is a functiongf ∈ VD such thatgf (x|y) = 2−f(x,y) . Now

we have, by definition ofmf :

− log mf (x|y) ≤ − log gf (x|y) + K(gf |f) = − log gf (x|y) + O(1) .

then by using essentially the same proof as in Li & Vitanyi, 1997, Lemma

4.3.3., we have

K(x|y, f)
+
= − log mf (x|y) ≤ − log gf (x|y) + O(1) = f(x, y) + O(1) .

We also need the definition of a conditional version ofE1:

Definition 4.14. Define theCognitive Distance conditioned onz ∈ A∗ for all

x, y ∈ A∗ to be:

E1(x, y|z) := max{K(x|y, z), K(y|x, z)}

�

We can now prove the following conditional version of Theorem 3.2:

Lemma 4.4. ∀D ∈ D,∀x, y ∈ A∗

E1(x, y|D)
+

≤ D(x, y) . (4.7)

where the constant in the inequality depends only on the reference Universal Turing

machineU .

Proof. Use definition ofE1(., .|D) and Lemma 4.3 withf = D (D satisfies the

requisite conditions due to its admissibility).

Now we define competitively optimal (CO) version of each of the universally

optimal prior we have defined, which are same as before but now conditioned on

the priorW it is competing against:

Definition 4.15. Fix any prior W . Then theCO non-transfer universal prior

overV ′ is now defined by:

ξ(µ|W ) := 2−K(µ|W ) .

Given any sequential transfer schemeW and distance based sequential transfer

schemeWD and previous tasksϕ, the CO sequential transfer and symmetric
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distance based sequential universal transfer schemesoverV are now defined,

respectively, by:

ξTL(µ|ϕ, W ) := 2−K(µ|ϕ,W ), ξDTL(µ|ϕ, WD) := 2−E1(µ,ϕ|WD) .

Given any AOP transfer scheme{W i
t } and distance based sequential transfer

scheme{WD
i
t} and sequencesx(−i)

t , theCO AOP and AOP symmetric distance-

based universal transfer schemesoverV are now defined, respectively, by{ξOPTL
i
t(.|W i

t )}
and{ξOPDTL

i
t(.|WD

i
t)} where:

ξOPTL
i
t(µ|x

(−i)
t , W i

t ) := 2−K(µ|x
(−i)
t ,W i

t )

ξOPDTL
i
t(µ|x

(−i)
t , WD

i
t) := 2−E1(µ,x

(−i)
t |WD

i
t) .

�

We now have the following:

Theorem 4.9. 1. For any priorW andµ ∈ V, the following holds

Ebξ(.|W )(µ)
+

≤ EbW (µ) .

where the constant in the inequality depends only on the fixed universal Tur-

ing machineU .

2. Given any sequential transfer schemeW and distance based sequential trans-

fer schemeWD and previous tasksϕ, the following holds

EbξTL(.|W )(µ)
+

≤ EbW (µ), EbξDTL(.|WD)(µ)
+

≤ EbWD
(µ) .

where the constants in the inequalities depend only on the fixed universal

Turing machineU .

3. Given any AOP transfer scheme{W i
t } and distance based sequential trans-

fer scheme{WD
i
t} and sequencesx(−i)

t , the following holds

Eb{ξOPTL
i
t(.|W

i
t )}(µ)

+

≤ Eb{W i
t }

(µ), Eb{ξOPDTL
i
t(.|WD

i
t)}

(µ)
+

≤ Eb{WD
i
t}

(µ) .

where the constants in the inequalities depend only on the fixed universal

Turing machineU .

Proof. The theorem follows from the same methods as Theorems 4.2, 4.3, 4.4, 4.6,

4.8 but using Lemma 4.3 instead of Lemma 3.2 and Lemma 4.4 instead of Theorem

3.2.
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Note. This actually induces a different interpretation of exactly what the uni-

versal methods are achieving. Now instead of being optimal, these methods are

viewed as ones that are powerful ‘base’ methods that may be used any time, and

are also ways to enhance any other high complexity methodW that we may choose

to use for a particular problem. So even if our prior knowledgeW is wrong, the

universal priors are guaranteed to not do too badly.

4.5 Discussion

In this chapter we defined our Bayesian transfer learning methods and established

their universal optimality. We analyzed both sequential and parallel transfer learn-

ing, and showed that practical transfer learning methods are in fact sequential trans-

fer learning methods. The methods we derived automatically transfer the right

amount of information and are never much worse than any non-transfer learning

scheme. So our optimal Bayesian priorsformally solves the problem of when to

transfer information, when not to, and how much information to transfer. Wealso

introduced a different notion of optimality in the competitive setting wherein our

methods are powerful ’base’ transfer algorithms that can be used in applications

where we do not know which transfer method to use; and at the same time can also

be used to improve any high complexity transfer method that we suspect is useful

in the given application.

Future work will involve deriving practical versions of these methods using

approximations to the distance functions (as mentioned at the end of Chap. 3)

and Markov Chain Monte Carlo methods to sample from the Bayes mixtures. We

have already done a battery of successful experiments in this setting in Chap. 6,

but we believe it is possible to construct much more sophisticated and powerful

approximations by constraining ourselves to specific groups of machine learning

domains. In this case we attain tractability by exploiting the peculiarities unique to

the specific group of domains.
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Chapter 5

Universal Transfer Learning:
Extensions

In this chapter we will extend the transfer paradigm developed in the previous two

chapters. We will first extend the results in Chap. 4 to arbitrary bounded loss

functions. Then we will look at how the transfer methods may be applied in the

Prediction with Expert Advice setting. We will extend our result to the reinforce-

ment learning setting. We will then end this chapter with a look at Kolmogorov

complexity of functions to head off one possible objection to the theoretical frame-

work developed in the previous two chapters.

5.1 Transfer Convergence Rates for Arbitrary Bounded

Loss

We now use the convergence results in Hutter, 2003 to extend the Bayesiantransfer

learning results to arbitrary bounded loss functions.

Definition 5.1. A bounded loss functionℓ : A×A → IR is a function such that

if the observed letter isa and the letter predicted by some predictor isb, then the

loss suffered by the predictor is given byℓ(a, b). �

Definition 5.2. Theprediction schemeΛπ defined by a measureπ ∈ V at stept

is given by:

Λ(x<t) := arg min
y∈B

∑

a∈A

l(a, y)π(a|x<t) .

For target measureµ ∈ V, for Λπ the µ-expected loss at stept is given by:

ℓΛπ
t (x<t) :=

∑

a∈A

l(a,Λπ(x<t))µ(a|x<t) .

Andfor Λπ the total µ expected loss inn stepsis given by:

ℓΛπ

1:n :=
n∑

t=1

∑

x<t

µ(x<t)ℓ
Λπ
t (x<t) .

�
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The above is a fairly standard definition of loss functionals in a Bayesian setup.

The equivalent of Theorem 4.1 in this setup is as follows.

Theorem 5.1(Hutter). For any mixtureMW , the following holds true for the loss

bound:

0 ≤ ℓ
ΛMW

1:n − ℓ
Λµ

1:n ≤ − lnW (µ) + 2

√
ℓ
Λµ

1:n(− lnW (µ)) .

So we may define the loss bounds and universally optimal prior for each ofthe

transfer learning priors we considered in chapter 4.

Definition 5.3. Theℓ-loss boundfor the mixtureMW corresponding to the se-

quential transfer learning schemeW (of any type) is defined as:

LbW (µ) := − lnW (µ) + 2

√
ℓ
Λµ

1:n(− lnW (µ)) .

A prior W in any classC of sequential transfer learning scheme is said to be

ℓ-universally optimal if for all P ∈ C

LbW (µ)
+

≤ LbP (µ) + 2

√
cℓ

Λµ

1:n . (5.1)

where the constantc is equal to the constant in
+

≤.

Theℓ-loss boundfor the mixtureM{W i
t }

corresponding to the AOP transfer

learning scheme{W i
t } (of any type) is defined as:

Lb{W i
t }

(µ) := sup
t

[
− lnW i

t (µ|x
(−i)
t ) + 2

√
ℓ
Λµ

1:n(− lnW (µ|x(−i)
t ))

]
.

A prior {W i
t } in any classC of AOP transfer learning scheme is said to beℓ-

universally optimal if for all {P i
t } ∈ C

Lb{W i
t }

(µ)
+

≤ Lb{P i
t }

(µ) + 2

√
cℓ

Λµ

1:n . (5.2)

where the constantc is equal to the constant in
+

≤. �

And now we get:

Theorem 5.2. We have the following:

1. ξ is ℓ-universally optimal in the class of all lower semicomputable priorsW .

2. ξTL andξDTL areℓ-universally optimal in the class of sequential and symmetric-

distance based sequential transfer learning schemes.

3. ξOPTL and ξOPDTL are ℓ-universally optimal in the class of lower semi-

computable AOP transfer and and symmetric-distance based AOP transfer

schemes.
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The above also holds in the competitive setting of Sect. 4.4 where the constant

in (5.2) now depend only on the reference universal Turing machineU .

Proof. In the non-competitive setting, the theorem follows from the same methods

as Theorems 4.2, 4.3, 4.4, 4.6, 4.8. In the competitive setting the theorem also

holds with constant of inequality depending onU by using Lemma 4.3 instead of

Lemma 3.2 in the theorems just listed.

5.2 Transfer in the PEA Setting

A very interesting class of learning algorithms are called the Prediction with Expert

Advice (PEA) algorithms which are a generalization of the Bayesian setting (see

Cesa-Bianchi & Lugosi, 2006 for a comprehensive introduction). In this section

we briefly describe a prominent algorithm, the Aggregating Algorithm (AA) (Vovk,

2001), give its convergence bound and then show how easily our transfer priorξTL

applies here. In future work we will look at if and how the idea in this section may

be applied in other PEA algorithms and in transfer settings other than the sequential

transfer case.

The basic setup in which AA/Learner operates is defined using the following

elements:

Definition 5.4. PEA SetupLet Θ be a set of experts,Γ a set of decisions, and

a loss functionℓ : Γ × Γ → IR+. Let Lea be the learner and letEnv be the

Environment with whichLea plays the game in algorithm 5.1 forT steps.�

Algorithm 5.1 The PEA Setting
1: for t = 1 to Tdo
2: Env chooses a decisionγt

Env ∈ Γ.
3: Eachθ ∈ Θ chooses a decisionγt

θ ∈ Γ.
4: Lea chooses a decisionγt

Lea ∈ Γ without knowingγEnv.
5: Eachθ ∈ Θ suffers lossℓ(γt

Env, γ
t
θ) .

6: Lea suffers lossℓ(γt
Env, γ

t
Lea) .

7: end for

The aim of the Learner is to suffer loss as close as possible to

min
θ∈Θ

LT (θ) whereLT (θ) :=
T∑

t=1

ℓ(γt
Env, γ

t
θ) .

i.e. do as well as the best expert. Given priorP0 := W , β = e−η, η > 1 where

η is the learning rate, the learner Aggregating Algorithm operates as in algorithm
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Algorithm 5.2 The Aggregating Algorithm
1: for t = 1 to Tdo
2: AA chooses decision:

γt
AA := arg min

γb∈Γ
logβ

∫

Θ
βℓ(γb,γ

t
θ
)Pt−1(dθ)

3: Receive all losses for both itself andΘ.
4: Set the weights for thet + 1th step as:

Pt(dθ) = βℓ(γt
Env ,γt

θ
)Pt−1(dθ)

5: end for

5.2 (we are ignoring some subtelties, that are not relevant to us, regarding how the

decision is chosen by AA – see Vovk, 2001 for details).

Now we state the convergence bound

Theorem 5.3(Vovk). The following holds true:

LT (AA(η, P0)) ≤ logβ

∫

Θ
βLT (θ)P0(dθ) .

for countable set of experts, the following is true:

LT (AA(η, P0)) ≤ logβ

∑

i

βLT (θ)P0(θi) .

Theorem 5.4. Let ϕ := {ϕ1, ϕ2, · · · , ϕm} be a set ofm previously learned tasks

(as long asϕi are strings, we do not care how they represent previously learned

tasks – e.g. eachϕi may be a program computing measurePTi
over Θ, learned

from m previous games ofTi steps each). ThenξTL(·|ϕ) is universally optimal –

i.e. for any transfer learning priorW (·|ϕ), the following holds:

logβ

∑

i

βLT (θi)ξTL(θi|ϕ)
+

≤ logβ

∑

i

βLT (θi)W (θi|ϕ) .

The competitively optimal version of the above, where the constant depends on

reference universal Turing machineU also holds.

Proof. Recall thatξTL(·|ϕ) := 2−K(·|ϕ) and note thatlogβ x = log(x)
log β

= − log(x)
η log e

.
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Settingk := 1
η log(e) we get,

⇒ logβ

∑

i

βLT (θi)2−K(θi|ϕ)

= −k log
∑

i

βLT (θi)2−K(θi|ϕ)

≤ −k log
∑

i

βLT (θi)e−cW (θi|ϕ)

= kc log(e)− k log
∑

i

βLT (θi)W (θi|ϕ)

=
c

η
+ logβ

∑

i

βLT (θi)W (θi|ϕ)

Wherec is the constant from the
+

≤ inequality in Lemma 3.2. The competitively

optimal version of the above, where the constant depends on reference universal

Turing machineU also holds by using Lemma 4.3 instead of Lemma 3.2. So this

proves the theorem.

5.3 Transfer in Bayesian Reinforcement Learning Agents

In the previous sections we have primarily considered transfer learning insequence

prediction problems. However transfer learning can also be applied in artificial

agents interacting with an environment – see Sect. 2.1.2 for a discussion of such

methods. In this section, we apply the ideas of task similarity and optimal transfer

learning prior to solve transfer problems in a very general model of Bayesian re-

inforcement learning agent developed in Hutter, 2004. In the following, we do not

consider discounted version of reinforcement learning as the development is quite

similar and does not add anything from the transfer learning perspectivewe are

pursuing. We refer the reader to Hutter, 2004 for the full details. In what follows,

for reasons of clarity we will usext etc. to denote thetth letter in some sequence

instead of a string.

5.3.1 The AI Agent Model

The AI agent model we consider consists of a set of (agent, environment) pairs

{p, q} where eachp andq are partially recursivechronological Turing machines.

That is,p : Y∗ → X ∗ andq : X ∗ → Y∗. The model runs from stept = 1 to some

stepT ∈ IN ∪ {∞} starting from some initial inputx0. Afterward, at each step

t (discrete time) the agent generates outputp(yx<t) := yt and the environment

generates inputq(yx<tyt) := xt (whereyx<t := x0y1x1y2x2 · · · yt−1xt−1).
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We assume thatX ⊂ S × IR – i.e. each outputxt is broken up into two

parts thestatest at time t, and thereward rt at time t. The aim of the agent is

to, at each point in timet, generate the outputyt such that thevalue functionis

maximized. Before defining the value function we will weaken our assumption

about the environment: we will assume that instead of a single functionq, it is

described by a lower semicomputable chronological semimeasureµ:

Definition 5.5. A chronological semimeasureµ is defined as a function that sat-

isfies∀y1:t ∈ Yt :

∑

a∈X

µ(yx<tyta) ≤ µ(yx<t) andµ(ε) ≤ 1

�

That is, we assume that at each stept, the next output is drawn according to

µ(xt|yx<tyt) where, as usual,

µ(xt|yx<tyt) :=
µ(yx1:t)

µ(yx<t)

We set as our task space enumerable subsetsM′ of the set of chronological

semimeasuresM will be our task space in the reinforcement learning setting. It

can be shown thatM is enumerable by using a method very similar to the one used

in Zvonkin & Levin, 1970 to show thatV is enumerable (Hutter, 2004, Sect. 5.10).

Without loss of generality we set aM′ as our task space.

Definition 5.6. Thevalue function for environmentµ ∈ M′ for policy/agentp is

now defined as :

V pµ
km(yx<k) = pyk

∑

xk

pyk+1

∑

xk+1

· · · pym

∑

xm

(rk + rk+1 + · · ·+ rm)

µ(xk:m|yx<kpyk:ym) .

wherepyk
is the action chosen by the agent on thekth step based on the output-

input sequenceyx<k seen so far.

We also usepµ to denote the optimal policy with respect to enviornmentµ.

�

HenceV pµ
km(yx<k) is the expected value w.r.t. probability distributionµ of the

actions of the agent when the environment isµ. The subscriptkm in V pµ
km(yx<k)

is the expectation for stepsk to m, wherem is the lifetime of the agent.

The agent would like to select a policy that maximizes the expected reward or

value function. This maximum value is:
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V ∗µ
km(yx<k) = max

yk

∑

xk

max
yk+1

∑

xk+1

· · ·max
ym

∑

xm

[(rk + rk+1 + · · ·+ rm)

µ(xk:m|yx<kyk:m)] .

and the corresponding optimal action is:

yµ
k = arg max

yk

∑

xk

max
yk+1

∑

xk+1

· · ·max
ym

∑

xm

[(rk + rk+1 + · · ·+ rm)

µ(xk:m|yx<kyk:m)]

Sinceµ is unknown, the idea behind Hutter’suniversal AI agentHutter, 2004

is to use a mixtureMW to approximateµ and hence get the AI-M agent:

MW (yx<t) :=
∑

µ∈M′

µ(yx<t)W (µ) and
∑

µ∈M′

W (µ) ≤ 1

whereW is a lower semicomputable prior. Please note that the AI-M is actu-

ally called the AIξ agent in Hutter’s work, but as a we useξ to denote priors, we

use AI-M to avoid confusion. This agent which chooses the following actionyMW

k

at stepk:

V ∗MW

km (yx<k) = max
yk

∑

xk

max
yk+1

∑

xk+1

· · ·max
ym

∑

xm

[(rk + rk+1 + · · ·+ rm)

MW (yx<kyxk:m)]

yMW

k = arg max
yk

∑

xk

max
yk+1

∑

xk+1

· · ·max
ym

∑

xm

[(rk + rk+1 + · · ·+ rm)

MW (yx<kyxk:m)]

5.3.2 Convergence Bounds for the AI Agent Model

The first convergence result is given below; this result parallels Theorem 4.1 and

has similar implications:
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Theorem 5.5(Hutter). ∀µ ∈ V ′, y1:t ∈ Yt, t ∈ IN:

∞∑

t=0

∑

yx1:t

µ(yx1:t)

(
∑

a∈X

[MW (a|yx1:t)− µ(a|yx1:t)]
2

)
≤ − lnW (µ) . (5.1)

And the following now holds trivially:

Theorem 5.6. Theorems 4.2, 4.3, 4.4, 4.6, 4.8 and 4.9 now hold but with lower

semicomputable semimeasure replaced by lower semicomputable chronological

semimeasure.

So this may suggest that the agent usingV ∗MW should converge to theV ∗µ as

k →∞ whereµ is the chronological semimeasure defining the environment. This

is correct but only in the following sense:

Theorem 5.7(Hutter). If ∀µ ∈ M′ there exists a sequence of policiespm such

that

V ∗µ
1m(yx<k)− V pmµ

1m (yx<k) < ∆(m)

then

V ∗µ
1m(yx<k)− V p

MW
m µ

1m (yx<k) <
∆(m)

W (µ)

So the above theorem shows that if there exists a policypm, for each lifetime

m, whose value function comes to within∆(m) of the optimal policy, then there

is a universalpolicy pMW
m that comes to within∆(m)/W (m). Using the above

result we can now derive:

Theorem 5.8(Hutter). If ∀µ ∈ M′ there exists a sequence of policiespm such

that
1

m
V pmµ

1m (yx<k)
m→∞−→ 1

m
V ∗µ

1m(yx<k)

then,
1

m
V p

MW
m µ

1m (yx<k)
m→∞−→ 1

m
V ∗µ

1m(yx<k)

The above shows that if the average value of a sequence of policies, withthe

average taken over the lifetimem of the agent, converges to the optimal, then so

does the value of the sequence of universal policies. The speed of convergence is

at most1/W (µ) slower.

The transfer learning setup described in Chaps. 3 and 4 can easily be extended

to cover the AI agent setting. This is done by defining our task space to beM
instead ofV, and then we obtain the same optimality results for both non-transfer

and transfer learning case for learning a target chronological semimeasure (The-

orem 5.6). Unfortunately, as we have seen above, these convergence ratesdo not

translate to convergence rate of the value function which is what we are interested
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in. The convergence results are in fact much weaker. So for instance,in the se-

quential transfer learning setting, we assume we have seen a sequence of tasks

ϕ := ϕ1,m−1 ∈ M. When learning themth task, we use the conditional prior

W (µ|ϕ) and hence from Theorem 5.7 we get the ‘convergence rate’ forMW of

∆(m)/W (µ|ϕ). If we use the transfer prior2−K(µ|ϕ), the convergence rate is

∆(m)2K(µ|ϕ). From Lemma 3.2, we have

2K(µ|ϕ)
×

≤W (µ|ϕ)

Hence for the artificial intelligent agent case, our transfer learning priors are

better only upto a multiplicative constant. So optimality conditions are not as in-

teresting. This requires further study and will be done so in future work.

5.4 Kolmogorov Complexity of Functions

One natural definition of Kolmogorov complexity of a functionf given stringq

is K ′(f |q), the length of the shortest program that computesf given q as extra

information (Hutter, 2002, Sect. 7), (Grunwald & Vitanyi, 2004, Sect 2.2.3) . So

one objection to the definitions in chapter 3 may be that, since we are interested in

µ ∈ V as semimeasures (i.e. functions), perhaps we should define the complexity

of µ ∈ V asK ′(µ|q). HoweverK ′ is not computable in the limit, so to address this

concern, we establish another reasonable definition of complexity of elements of

V, KP . We then deflate this possible objection by showing thatKP is in fact, upto

a constant, equal toK. To motivate the definition ofKP , we will begin by looking

at a slight adaptation of a definition of Kolmogorov complexity of functions,K ′′.

This was introduced and used in Hutter, 2002, and was defined primarily to counter

the noncomputability in the limit ofK ′.

To defineK ′′, we need a formal systemF (Shoenfield, 1967) with axioms and

inference rules in which we can formalize the notions of provability and Turing

machines. We enclose formulas inF in § § and the proof of a formulas is a

sequence of formulas such that, each formula in the sequence is either an axiom

or derived from a previous formula in the sequence via the inference rules, and the

last formula in sequence is§ s §. The properties ofF we use are:

• The set of correct proofs inF is enumerable.

• We can formulate the formula§ ∀x : µ(x) ⇑ α(x) § which is true if and only

if ∀x, U(µ, x) ⇑ U(α, x).

Now we defineK ′′(µ|q)
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Definition 5.7. For µ ∈ V, q ∈ A∗,

K ′′(µ|q) := min
r
{l(r) : r(q) = α and∃ proof § ∀x : µ(x) ⇑ α(x) §} .

�

The above definition meansK ′′(µ|q) is the length of the shortest program that

givenq as input, outputs a programα thatprovablylower semicomputes (denoted

by ⇑) the same semimeasure asµ. This definition is slightly different from the one

used in Hutter, 2002, which is:

K ′′
H(µ) := min

r
{l(r) : ∃ proof § ∀x : µ(x) ⇑ r(x) §} .

This is the length of the shortest program that provably lower semicomputesµ.

However, now it is not entirely clear how the conditional should be defined. Intu-

ition suggests we define it as

K ′′
H(µ|q) := min

r
{l(r) : ∃ proof § ∀x : µ(x) ⇑ r(〈x, q〉) §} .

which is a little awkward. Hence, we adapt Hutter’s definition to ourK ′′ given

above. It is easy to show, using standard methods, thatK ′′
H

+
= K ′′ for a small

constant of equality. That is: Givenr that is a witness in Def. 5.7 we can construct

r′(x) := (r(q))(x) to getK ′′
H(µ|q)

+

≤ K ′′(µ|q). Similarly, givenr that is a witness

in the definition ofK ′′
H , we can definer′(q) := r(〈q, ·〉) to showK ′′(µ|q)

+

≤
K ′′

H(µ|q), which proves the equality. The constant of equality is small because the

definition ofr′ in each case requires just a little bit of extra code.

Note that bothK ′′ and K ′′
H are upper semicomputable becauseK is upper

semicomputable and the set of correct proofs is enumerable. Now we have:

Lemma 5.1. Let arg K ′′(µ|q) denote theα that is the witness in Definition 5.7.

Then,

1) ∀µ ∈ V, q ∈ A∗, K ′′(µ|q) ≤ K(µ|q)

2) ∀n ∈ IN, q ∈ A∗∃µ ∈ V such thatK(µ|q)−K ′′(µ|q)
+

≥ n

3) ∀µ ∈ V, q ∈ A∗, K(arg K ′′(µ|q)) +
= K ′′(arg K ′′(µ|q))

4) ∀q ∈ A∗,
∑

µ∈V

2−K′′(µ|q) =∞ .

Proof. The results are mostly self-evident.

Part 1. This follows from definition since eachµ ∈ V provably computes the same
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function as itself.

Part 2. Fix q ∈ A∗, ϕ ∈ V, andn ∈ IN. Now by the theory of random strings

(see Li & Vitanyi, 1997), there exists infinitely many incompressible strings - i.e.

stringss such thatK(s|ϕ, K(ϕ|q), q) ≥ l(s). Let l(s) = n, and construct aµ ∈ V
which is justϕ with s encoded in it at a fixed positiont. NowK(µ|q) +

= K(s, ϕ|q),
since, usingt, given a program to generateµ givenq, we can recoverϕ ands from

it, and given a program to generate〈s, ϕ〉 givenq, we can constructµ. By Lemma

3.1 part 5, we get

K(s, ϕ|q) +
= K(s|ϕ, K(ϕ|q), q) + K(ϕ|q) .

By definitionK ′′(µ|q) ≤ K(ϕ|q), so we get:

K(µ|q)−K ′′(µ|q) +
= K(ϕ, s|q)−K ′′(µ|q) +

= K(s|ϕ, K(ϕ|q), q) + K(ϕ|q)−
K ′′(µ|q) ≥ n + K(ϕ|q)−K ′′(µ|q) ≥ n + K(ϕ|q)−K(ϕ|q) = n .

Part 3. Follows from definition.

Part 4. for eachϕ ∈ V, by the method in part2, there are infinitely manyµ ∈ V
such that∀x, ϕ(x) ⇑ µ(x) provably . So

∑
µi∈V

2−K′′(µi|q) = ∞, as infinitely

manyµis have the sameK ′′(µi|q) value.

Parts1 and2 in the lemma show that theK ′′s can uncover much more similar-

ity between tasks thanK. However, there is no advantage to usingK ′′ for Bayesian

transfer learning, as for any enumerable setV ′, the set of programsV ′proof that are

provably equal to the elements ofV ′ is also enumerable (because the set of correct

proofs inF are enumerable). Therefore we get that for anyµ ∈ V ′, arg K ′′(µ|q)
is in V ′proof . Since the error bound in Bayes mixtures depends only on the weight

assigned to the generating semimeasure , from part 3 of the above lemma, sub-

stitutingV ′ with V ′proof counteracts the benefit of usingK ′′. Part 2 in the lemma

seems to suggest thatK ′′ deserves further study and this will be done in future.

However for now, we note that in the definition ofK ′′ we require the witness

to output a program that provably lower semicomputes the target function, but we

do not require it to actually output the proof. To keep the witness honest, we will

now look at a slightly altered version ofK ′′ where the witness is also required to

output this proof. It will then turn out that this new function andK are in fact equal

upto a constant. We first define this altered version ofK ′′:

Definition 5.8. Theprovable Kolmogorov complexityKP of µ ∈ V is defined as
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follows:

KP(µ) := min
p
{l(p) : p(ε) = 〈γ, π〉 whereπ is a proof for§ ∀x : γ(x) ⇑ µ(x) §} .

�

So now, in addition toγ that provably computesµ, we also require that the

program output the corresponding proof. We can now define the conditional KP

and the information distances. But first we need:

Definition 5.9. LetJµ be the enumerable set of all〈γ, π〉 such thatπ is a proof of

§ ∀x : γ(x) ⇑ µ(x) § (Jµ is enumerable because the set of all correct proofs inF
is enumerable).�

Now define:

Definition 5.10. Theconditional KP is defined as:

KP(µ|µ′) := min
p
{l(p) : ∀τ ′ ∈ Jµ′ , p(τ ′) ∈ Jµ} .

theInformation Distance EP0 is defined as:

EP0(µ, µ′) := min
p
{l(p) : ∀τ ∈ Jµ,∀τ ′ ∈ Jµ′ , p(τ) ∈ Jµ′ , p(τ ′) ∈ Jµ} .

andCognitive DistanceEP1 is now defined as:

EP1(µ, µ′) := max{KP(µ|µ′), KP(µ′|µ)} .

�

KP is upper semicomputable by the same reasoningK ′′ is. However, our

definition ofKP(.|.) is a lot stronger than definition ofK ′′(.|.) as we require that

the arg KP(µ|µ′) output an element inJµ given any element ofJµ′ . Because

of this last conditionKP (and by similar reasoningEP1 andEP0) is not upper

semicomputable. However, we can show the following:

Lemma 5.2. The following equalities now hold:

1. KP(µ)
+
= K(µ).

2. KP(µ1,n)
+
= K(µ1,n).

3. KP(µ|µ′)
+
= K(µ|µ′).

4. E1(µ, µ′)
+
= EP1(µ, µ′).
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5. E0(µ, µ′)
+
= EP0(µ, µ′).

6. EP0(µ, µ′)
+
= EP1(µ, µ′).

7. KP(µ| arg KP(ρ))
+
= K(µ| arg KP(ρ)).

8. KP(µ| arg KP(ρ)) + KP(ρ)
+
= KP(µ, ρ)

+
= KP(ρ| arg KP(µ)) + KP(µ).

That is theKP andK etc. are equal upto a constant, and henceKP satisfies

some of the most interesting inequalities in Kolmogorov complexity theory. Hence

this shows that there exists a reasonable definition of Kolmogorov complexity of

elements ofV for which it is equivalent to the Kolmogorov complexity of strings.

That is, the objection stated in the beginning of the section, that since we are in-

terested inµ ∈ V as semimeasures (i.e. functions), perhaps we should define the

complexity ofµ ∈ V asK ′(µ|q), is not justified.

Now we prove Lemma 5.2, and we will do so using the following technical

lemma:

Lemma 5.3. Letµi ∈ V, i ∈ INN andρj ∈ V, j ∈ INM for finiteN andM . Then,

1. For all programp such that

∀X, X := 〈τ1,N : τi ∈ Jµi
}〉, p(X) = Y whereY = 〈κ1,M : κi ∈ Jρi

}〉 .

there exists a programq with l(p)
+
= l(q) such that

q(〈µ1,M 〉) = 〈ρ1,N 〉 .

2. Similarly given any programq′ such that,

q′(〈µ1,M 〉) = 〈ρ1,N 〉 .

there exists a programp′ with l(p′)
+
= l(q′) such that

∀X, X := 〈τ1,N : τi ∈ Jµi
}〉, p′(X) = Y whereY = 〈κ1,M : κi ∈ Jρi

}〉 .

Proof. Let p be a program as above. Then we can construct the requisite program

q as follows. Programq given any〈µ1,N 〉, constructsX := 〈τ1,N : τi ∈ Jµi
}〉 by

settingτi := 〈µi, πi〉 whereπi is simply the statement§ ∀x : µi(x) ⇑ µi(x) §. q

then runsp(X) to getY := 〈κ1,M : κi ∈ Jρi
〉. We extractρi from κi := 〈γ, π〉

decodingρi in π as the last statement isπ is of the form§ ∀x : γ(x) ⇑ ρi(x) §.
Then programq outputs〈ρ1,M 〉. As q has only constant amount of additional code,

l(q)
+
= l(p).
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Let q′ be a program as above. Then we can construct the requisite program

p′ as follows. Programp′ given anyX := 〈τ1,N : τi ∈ Jµi
}〉 extractsµi from

τi = 〈γ, π〉 usingπ andγ. It then runsq(〈µ1,N 〉) to get〈ρ1,M 〉. p′ then outputs

Y whereY := 〈κ1,M 〉 whereκi := 〈ρi, π〉 andπ is simply the statement§ ∀x :

ρi(x) ⇑ ρi(x) §.

Proof of Lemma 5.2.We prove each part in turn.

Part 1. With µi set toε in Lemma 5.3 part 1 we getK(µ)
+

≤ KP(µ); by part 2 of

Lemma 5.3 we getKP(µ)
+

≤ K(µ). Hence this proves part 1 of this lemma.

Part 2. This follows from Lemma 5.3 withµi := ǫ via similar reasoning as part 1.

Part 3. This follows from Lemma 5.3 withµi := µ′ via similar reasoning as part

1.

Part 4. This follows from part 3 and definitions ofE1 andEP1.

Part 5. This can be easily proved using the method in Lemma 5.3.

Part 6. This follows from parts 4, 5 and theorem 3.3.

Part 7. This follows from Lemma 5.3 withµi := arg KP(ρ) via similar reasoning

to parts 1 and 3.

Part 8. This now follows by Lemma 3.1 part 4, and parts 1, 2 and 3.

So, in our definition ofK ′′, if we include the additional information required

in the form of the proof, we immediately get the equivalence between Kolmogorov

complexity of functions and bit strings. We should also note that the above applies

for µ 6∈ V and notions of computability other than lower semicomputability.

5.5 Discussion

In this chapter we introduced some miscellaneous extensions to the Kolmogorov

complexity based transfer learning paradigm. First we rederived our results for

arbitrary bounded loss functions using Hutter’s result. Then we extended our sys-

tem to the Prediction with Expert Advice algorithms. Then we extended our result

to the reinforcement learning setting. Finally we allayed some possible concerns

about our definition of Kolmogorov complexity of functions by showing that other

related and reasonable measures of function complexity also reduce to the regular

Kolmogorov complexity case.
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Chapter 6

Practical Approximations

In this chapter we develop practical approximations to the universally optimalse-

quential transfer priorξTL developed in chapter 4. We consider Bayesian binary

decision trees (Breiman et al., 1993) and in this setting develop approximationsto

our distance measures and universal transfer learning priors. We then apply our

approximations in144 individual transfer experiments using7 arbitrarily chosen

data-sets from the UCI machine learning repository (Newman et al., 1998).The

arbitrary choice of data-sets make our experiments are the most general transfer

experiments to date.

6.1 Bayesian Setting for Finite Spaces

We consider Bayesian transfer learning for input spacesIi (possibly infinite) and

finite output spacesOi. We assume finite hypothesis spacesHi, where eachh ∈ Hi

is a computable conditional probability measure onOi, conditioned on elements

of Ii. So fory ∈ Oi andx ∈ Ii, h(y|x) gives the probability of output beingy

given inputx. GivenDn = ((x1, y1), (x2, y2), · · · , (xn, yn)) from Ii × Oi, the

probability ofDn according toh ∈ Hi is given by:

h(Dn) :=
n∏

k=1

h(yk|xk) .

The conditional probability of a new sample(xnew, ynew) ∈ Ii × Oi for any

conditional probability measureµ is given, as usual, by:

µ(ynew|xnew, Dn) :=
µ((xnew, ynew), Dn)

µ(Dn)
. (6.1)

So the learning problem is: given a training sampleDn, where for each(xk, yk) ∈
Dn yk is assumed to have been chosen according ah ∈ Hi, learnh. The predic-

tion problem is to predict the label of new samplexnew using (6.1). We ignore the

probability of the inputsP (xi) because in the conditional, they cancel out. That is,

assuming that the thexis are generated according to some measureP , and denot-

65



ing by µP := µ · P , we have the conditional probability of the new sample given

sample(xnew, ynew) is given by definition to be:

→ µP ((ynew, xnew)|Dn)

=
µP (Dn, (xnew, ynew))

µP (Dn)

=
µ(y1, · · · , yn, ynew|x1, · · · , xn, xnew)P (x1, x2, · · · , xn, xnew)

µ(y1, · · · , yn|x1, · · · , xn)P (x1, x2, · · · , xn)

=
µ(y1, · · · , yn, ynew|x1, · · · , xn, xnew)P (xnew|x1, x2, · · · , xn)

µ(y1, · · · , yn|x1, · · · , xn)

Finally we have, again, by definition :

µ(ynew|xnew, Dn)P (xnew|x1, x2, · · · , xn) = µP ((ynew, xnew)|Dn)

⇒ µ(ynew|xnew, Dn) =
µP ((ynew, xnew)|Dn)

P (xnew|x1, x2, · · · , xn)

=
µ(ynew, y1, · · · , yn|xnew, x1, · · · , xn)P (xnew|x1, x2, · · · , xn)

µ(y1, · · · , yn|x1, · · · , xn)P (xnew|x1, x2, · · · , xn)

=
µ(ynew, y1, · · · , yn|xnew, x1, · · · , xn)

µ(y1, · · · , yn|x1, · · · , xn)

=
µ((xnew, ynew), Dn)

µ(Dn)

Turning our attention back to the prediction problem, in this setting the se-

quence of predictions made over the sequence of outputs to be observed. As before,

this is done using a Bayes mixtureMW overHi:

MW (Dn) :=
∑

h∈Hi

h(Dn)W (h) with
∑

h∈Hi

W (h) ≤ 1 (6.2)

and hence the convergence bound Theorem 4.1 is now expressed as,∀x ∈ Ii:

∞∑

n=1

∑

Dn

hj(Dn)
∑

y∈Oi

(
[MW (y|x, Dn)− hj(y|x, Dn)]2

)
≤ − lnW (hj). (6.3)

We seek to perform sequential transfer using decision trees. Since the Kol-

mogorov complexityK is computable only in the limit, to apply the methods and

results in Chap. 3 in transferring using Bayesian decision trees, we needto approx-

imateK and henceξTL. Furthermore we also need to specify the spacesHi,Oi, Ii
and how to sample from the approximation ofξTL. We address each issue in turn.
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6.2 Brief Primer on Practical Bayesian Learning

In chapter 4 and even in the preceding section we took a somewhat formal view of

Bayesian learning where we did not consider whether it is computationally feasible

to predict using the Bayes mixture in practice. In this section we address this issue.

In majority of cases of interest in practice, it is intractable to compute the mixture

MW because of difficult summations or integrals involved, and so it is impractical

to predict the label of a new sample usingMW (ynew|xnew, Dn) directly. So the

posterioris used to approximate the mixture as described below. Before proceed-

ing, we note that to avoid confusion, we useP andW to denote measures that are

given by our assumed model, andPr to denote densities that arise from thePs via

probability theory.

The posterior ofµ ∈ Hi givenDn is given according to Bayes’ rule by:

Pr(µ|Dn) :=
µ(Dn)W (µ)

Pr(Dn)
=

µ(Dn)W (µ)∑
µ∈Hi

µ(Dn)W (µ)
.

We can now rewrite the mixtureMW by:

MW (ynew|xnew, Dn) :=
MW [(xnew, ynew), Dn]

MW (Dn)

=

∑
µ∈Hi

µ[(xnew, ynew), Dn]W (µ)
∑

µ∈Hi
µ(Dn)W (µ)

=

∑
µ∈Hi

µ(ynew|xnew, Dn)µ(Dn)W (µ)
∑

µ∈Hi
µ(Dn)W (µ)

=
∑

µ∈Hi

µ(ynew|xnew, Dn)Pr(µ|Dn) .

Therefore, the posterior is the weight that is assigned to eachµ ∈ Hi because of

the evidenceDn. The mixtureMW is now approximated as an averaging ofN

measuresρi that were sampled fromHi according to the posteriorPr(µ|Dn):

M̂W (xnew|ynew, Dn) :=
1

N

N∑

i=1

ρi(ynew|xnew) .

Unfortunately, even the posterior is usually difficult to sample from directly.

However, if we can computeµ(Dn) andW (µ) upto a normalization term, then

we can useMarkov Chain Monte Carlomethods to sample from it. The literature

on Markov Chain Monte Carlo is vast, so here we will content ourself with giving

the briefest of description. Essentially, the idea is to construct anirreducible and

aperiodicMarkov chain withHi as its state space, and that has the posterior as its

stationary distribution. There are standard ways of constructing such chains, and
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one popular method, the Metropolis-Hastings chain that we use in our experiments,

is described in Sect. 6.4 and algorithm 6.2. Given this, the chain is simulated using

a random number generator, and eventually it is guaranteed to convergeto the

stationary distribution – i.e. after a certain number of steps, as we simulate the

chain we start sampling from the posterior. The issue of determining when a chain

converges is an highly active research area. There are methods known as exact-

sampling methods, that guarantee that if the algorithm halts, then the samples are

generated from the stationary distribution. However, these require that the Markov

chain state space satisfy certain special criteria and so we do not use themin our

experiments.

For an introduction to the Bayesian approach to machine learning, please see

Andrieu et al., 2003; Neal, 2004; Mackay, 2003. For full details on the Bayesian

approach to statistics see Bernardo & Smith, 1994, and for more details on Markov

chain Monte Carlo please see Gilks et al., 1996; Robert & Casella, 2005. For an

introduction Markov chains and fast mixing/convergence to stationary distribution

(and additional references), please see Behrends, 2000; Häggstr̈om, 2002. For

more on exact sampling, please see Propp & Wilson, 1996; Fill, 1998; Häggstr̈om,

2002.

6.3 The Bayesian Decision Tree Model

We will consider transfer learning with Bayesian binary decision trees as our hy-

pothesis spaceHis. Of course, decision trees (Breiman et al., 1993) are well known

models for classification and regression, but when used in a Bayesian setting, they

need some additional explanation. In particular, Bayesian decision trees,whether

used for classification or regression, are parameterized by continuous parameters

and hence we need to describe how they fit into the finite hypothesis-spacecase we

described above.

We use the standard Bayesian decision tree setting as described in Denison

et al., 2005. We assume thatIi := [0, 1]|fi|, wherefi is a finite set of features, and

finite Oi := INo for someo ∈ IN. As is well known, decision trees partition the

input spaceIi into a finite set of hypercubes, defined by axis parallel hyperplanes.

In the Bayesian setting, we assume that within each such hypercubehk, the dis-

tribution overo classes is given by a multinomial distribution with parameter~θk,

a vector ofo elements such that
∑o

j=1
~θk(j) = 1. So for any sampleDn, the

likelihood ofhk is given by:

P (Dn|~θk, hk) :=
o∏

j=1

~θk(j)
mkj
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wheremkj is the number of pairs in(x, y) ∈ Dn with x ∈ hk and y =

j. We do not include the n!∏
j mkj !

term above because we considerDn to be a

sequence of pairs, rather than a representative of any sample withmkj elements of

classj. We assume a Dirichlet prior over the parameters~θk(j) (for details see for

instance, Friedman & Singer, 1998), for which the density function is given using

hyperparametersαkj as follows:

P (~θk|hk) :=
Γ(
∑

j αkj)∏
j Γ(αkj)

∏

j

~θk(j)
αkj−1

where the normalization term consists of the well known gamma function,

Γ(x) :=
∫∞
0 tx−1e−tdt, with the property that forΓ(x) = (x − 1)Γ(x − 1). We

set eachαkj = 1, which corresponds to the uniform prior over the value of~θk(j).

Now, we have

Pr(Dn|hk) :=

∫ o∏

j=1

~θk(j)
mkjP (~θk)d~θk

=

∫ o∏

j=1

~θk(j)
mkj

Γ(
∑

j αkj)∏
j Γ(αkj)

∏

j

~θk(j)
αkj−1d~θk

=
Γ(
∑

j αkj)∏
j Γ(αkj)

∫ o∏

j=1

~θk(j)
mkj+αkj−1d~θk

=
Γ(
∑

j αkj)∏
j Γ(αkj)

∏
j Γ(mkj + αkj)

Γ(
∑

j mkj + αkj)

= Γ(o)

∏
j Γ(mkj + 1)

Γ(
∑

j mkj + 1)
. (6.4)

Therefore, the probability of theynew = i for inputxnew ∈ hk is now simply given

by,

Pr(ynew = a|xnew ∈ hk, Dn) :=
P ((ynew = a, xnew), Dn)

P (Dn)

=
mka + αka∑
j mkj + αkj

=
mka + 1∑
j mkj + 1

. (6.5)

Hence, givenhk, the predictive distribution is determined solely by the sampleDn.

And so we are left with the task of choosing the partitionshk – i.e. thestructureof

the tree. And in Bayesian decision tree learning for classification, this is whatwe

learn and restrict our attention to. So from now on, ah will refer to the structure

of the tree that consists ofMh partitionshk.
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The likelihood of a treeh is now given by

h(Dn) := P (Dn|h) :=
Mh∏

k=1

P (Dn|hk)

The posterior for the tree is now given by:

Pr(h|Dn) := Pr(h1,Mh |Dn) (6.6)

=
Pr(Dn|h1,Mh)P (h1,Mh)

Pr(Dn)

=
P (h1,Mh)

∏Mh

k=1 Pr(Dn|hk)

Pr(Dn)

whereP (h1,Mh) is the prior over the structure. To complete the definition of any

Bayesian decision tree learning algorithm, transfer or otherwise, all we need to do

is specify the prior over the structures. In the following, we define the structure

more formally and set the ground for describing our approximation to the theoreti-

cally optimal Bayesian transfer learning algorithm discussed so far.

A treeh ∈ Hi is defined recursively (see Figure 6.1):

h := nroot

nj := rj Cj ∅ ∅ | rj Cj n
j
L ∅ | rj Cj ∅ n

j
R | rj Cj n

j
L n

j
R

Figure 6.1: Schematic illustration of recursive tree definition.

So each decision tree is defined by its root nodenroot. Each node is either∅,
or consists of a rule ar and a vectorC and two sub-decision trees (each of which

are defined the same way). Each ruler is of the formf < v, wheref ∈ fi andv is

a value forf . Categorical features are converted to integer valued features for this

purpose.C is a vector of sizeo, with componenti corresponding to theith class.

The vectorC is used during classification only when the corresponding node has

one or more∅ children, andni.C(j) contains the value ofmkj for all the inputs in

Dn that belong to the partition defined by the nodeni and its parents. We restrict

the possible values ofv for each feature to the the values observed in the sample

Dn, and so this makes the space of possible trees finite andbrings the Bayesian

decision tree framework discussed so far in the framework of finite space discussed
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in Sect. 6.1. Classification is performed using algorithm 6.1. So all we need to do

now is define the priors.

Algorithm 6.1 Method for classifying inputx using decision treeh
1: Let ncur ← h.noderoot

2: while Probability is not Outputdo
3: if x satisfiesncur.r then
4: nnext ← ncur.nL

5: else
6: nnext ← ncur.nR

7: end if
8: if thennnext 6= ∅
9: ncur ← nnext

10: else
11: Output probability of class via (6.5) using valuesmkj stored inncur.C.
12: end if
13: end while

6.4 Transfer Learning in Bayesian Decision Trees

Before beginning this section we draw attention to the fact thath now refers only

to the structure. To be able to use approximation of our transfer method in this

case, we need to define the approximation to Kolmogorov complexity of each tree.

Now, the size of each tree isSc0 whereS is the number of nodes, andc0 is a

constant, denoting the size of each rule entry, the outgoing pointers, andC. Since

c0 and the length of the program codep0 for computing the tree output are constants

independent of the tree, we define the length/complexity of a tree asKxt(h) :=

S. So the approximation of Kolmogorov complexityK(h) of treeh is given by

Kxt(h). Hence, in the single task case, the prior we use is the approximation to the

Solomonoff-Levin prior2−K(h) and is given by:

P (h) :=
2−Kxt(h)

ZKxt
.

where theZ is a normalization term. TheZ exists, here becauseHs are finite,

and in general becauseki = Sc0 + l(p0) gives lengths of programs, which are

known to satisfy the Kraft inequality
∑

i 2
−ki ≤ 1.

For the transfer learning case, we need to approximateK(.|.). We are going

to consider transferring fromm − 1 previously learned trees, and so without loss

of generality, assume thath ∈ Him andh
′ ∈ Hij , j < m. We now approxi-

mateK(.|.) using a function that is defined for a single previously learned tree as
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follows:

Kxt2(h|h′) := Kxt(h)− d(h,h′)

whered(h,h′) is maximum number of overlapping nodes starting from the

root nodes (see Figure 6.2):

d(h,h′) := d(nroot,n
′
root) d(n, ∅) := 0

d(n,n′) := 1 + d(nL,n′
L) + d(nR,n′

R) d(∅,n′) := 0

Figure 6.2: Example illustratingd between two decision trees.

and so in the transfer learning case, the prior when there is only one tree learned

previously,

P (h|h′) :=
2−Kxt2(h|h′)

ZKxt2

.

In both cases, we can sample from the prior directly by growing the decision

tree dynamically. This fact will become useful below when we sample from the

posterior using a MCMC algorithm. Call a∅ in h a hole. Then forP (h), during

the generation process, we first generate an integerk according to2−t distribution

(easy to do using a pseudo random number generator). Then at each step we select

a hole uniformly at random and then create a node there with two more holes

and the rule generated randomly. The prior2−Kxt(h)/ZKxt gives equal probability

to all trees of the same complexityk, while giving trees of complexityk half as

probability as the trees of complexityk− 1. So the above procedure samples from

the prior as it samplesk according to2−t and gives equal probability to every tree

of sizeKxt(h) = k by growing the tree uniformly at random.

In the transfer learning case, for priorP (h|h′) we first generate an integerk

according to2−t distribution. Then we generate a tree using the above procedure

until we get a treeh with Kxt2(h|h′) = k. P (h|h′) gives equal probability to

all trees of the same conditional complexityKxt2(h|h′) equal tok, while giving

trees of complexityk half as probability as the trees of complexityk − 1. So the

72



above procedure samples from the transfer prior as it samplesk according to2−t

and gives equal probability to every tree of sizeKxt2(h|h′) = k by growing the

tree uniformly at random.

Form− 1 previously learned treesh1,m−1, with hj ∈ Hij , we defineKxtm as

an averaging of the contributions of eachm− 1 previously learned trees:

Kxtm(hm|h1,m−1) = − log

(
1

m− 1

m−1∑

i=1

2−Kxt2(h|hi)

)

In the transfer learning case, the prior, and hence our approximation toξTL is

PTL(h|h1,m−1) :=
2−Kxtm(h|h1,m−1)

ZKxtm

.

which reduces to:

1

[(m− 1)ZKxtm ]

m−1∑

i=1

2−Kxt2(h|hi) . (6.7)

To sample from this, we can simply select one of them−1 trees at random and

then use the procedure for sampling from2−Kxt2 to get the new tree. So, finally,

the approximation of the transfer learning mixtureMξTL
is now:

MPTL
(Dn) =

∑

h∈Him

h(Dn)2−Kxtm(h|h1,m−1)

ZKxtm

whereh(Dn) is Pr(Dn|h1,Mh) from (6.6). So by (6.3), the convergence rate

for MPTL
is given byKxtm(h|h1,m−1) ln

√
2+ log ZKxtm (thelog ZKxtm is a con-

stant that is same for allh ∈ Hi). In our experiments we actually used the expo-

nent1.005−Kxtm instead of2−Kxtm above to speed up convergence of our MCMC

method.

Algorithm 6.2 Metropolis-Hastings Algorithm

1: Let Dn be the training sample;
2: Select the current tree/statehcur using the proposal distributionq(hcur).
3: for i = 1 to J do
4: Choose a candidate next statehprop according to theq(hprop).
5: Drawu uniformly at random from[0, 1]
6: Sethcur := hprop if A(hprop,hcur) > u, whereA is defined by

A(h,h′) := min

{
1,

h(Dn)2−Kxtm(h|h1,m−1)q(h′)

h′(Dn)2−Kxtm(h′|h1,m−1)q(h)

}

7: end for
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As in standard Bayesian MCMC methods, the idea will be to drawN samples

hmi
from the posterior,Pr(h|Dn,h1,m−1) which is given by

Pr(h|Dn,h1,m−1) :=
h(Dn)2−Kxtm(h|h1,m−1)

ZKxtmP (Dn)

Then we will approximateMPTL
by

M̂PTL
(y|x) :=

1

N

N∑

i=1

hmi
(y|x)

We will use the standard Metropolis-Hastings algorithm to sample fromMPTL

(see Sect. 6.2 for details). The algorithm is given in Table 6.2. The algorithmis first

run for someJ = T , to get the Markov chainq ×A to converge, and then starting

from the lasthcur in the run, the algorithm is run again forJ = N times to getN

samples for̂MPTL
. In our experiments we setT to 1000 andN = 50. We setq

to our prior2−Kxtm/ZKxtm , and hence the acceptance probabilityA is reduced to

min{1,h(Dn)/h′(Dn)}. Note that every time after we generate a tree according

to q, we set theC entries tomkj values obtained from the training sampleDn

The main question that one will ask about the approximations presented in this

section is just how good these approximations are. One very meaningful and appro-

priate way to answer this question is by looking at how well these methods perform

in practice. This is done in the next section where we show that our approximations

perform quite well and enable us to perform very general and successful transfer

experiments.

6.5 Experiments

6.5.1 Setup of the Experiments

In our experiments we used7 data-sets from the UCI machine learning repository

Newman et al., 1998. The data-sets and their summary are given in table 6.1. To

show transfer of information, we chose3 data-sets to transfer to, and for each such

data-set we chose3 other data-sets at random to transfer from. So there are9 pairs

of data-sets we performed transfer experiments for. For each such pair, we divided

up the transfer-to and transfer-from data-set intox/(100 − x) andw/(100 − w)

portions respectively, wherex, w ∈ {20, 40, 60, 80}. We usedx% andw% of

the samples as a training set and100 − x% and100 − w% of the samples as the

test set for the corresponding data-sets. For each of the pairs, we first learned the

transfer-from data set using thew/(100−w) sample and then learned the transfer-

to data-set usingx/(100 − x) sample and the50 trees sampled during learning
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of the transfer-from data set (as described at the end of the preceeding section).

So we performed3× 4× 3× 4 = 144 different transfer experiments in total. We

present the results below for each transfer-to data-set, where all error rates reported

were obtained by averaging over10 different runs. Within each run we shuffled the

samples of each data-set before splitting them up.

Table 6.1: Summary of the data-sets used in the transfer experiments.

Database # of Samples # of Features # of Classes Ref. Name

E-coli 336 7 8 ecoli
Yeast 1484 8 10 yeast

Australian Credit 690 14 2 aus
German Credit 1000 20 2 german

Hepatitis 155 19 2 hep
Breast Cancer,Wisc. 699 9 2 bc-wisc
Heart Disease, Cleve. 303 14 5 heart

6.5.2 Overview and Interpretation of Results

Before we dive into the details of the experiments, we will make some observations

about our methods and the results presented below. The key result we observe is

that in most cases we see improvement in performance (presented in terms ofper-

centage improvement with respect to the non-transfer case), and in many cases

the improvement is significant. Furthermore, when we do see reduction in perfor-

mance, in most cases it is< 2% and never> 10%. This seems to give evidence

that the approximations of our transfer method in Chap. 4 that we have developed

are effective, as they bear out the theoretical justification that transfershould never

hurt too much. In addition, we can also give an intuitive explanation of the results

in purely Bayesian machine learning terms without reference to our AIT based

results.

MCMC methods are essentially stochastic exploration methods with nice con-

vergence guarantees. When we perform transfer learning, we change the prior

so that the MCMC algorithm explores certain areas of the hypothesis spacewith

higher probability. Now the base (Non-Transfer) learner with prior2−Kxt(h) is sim-

ply a Bayesian learner with a Occam prior, assigning higher probability to smaller

trees. Use of the2−Kxtm priors during transfer forces the MCMC algorithm to

focus its attention on trees with size possibly larger than recommended by the Oc-

cam prior. For this reason, transfer learning improves performance. The reason

it does not degrade performance significantly is because MCMC methods,being
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stochastic exploration methods, automatically reject larger trees that causeslower

performance in the transfer learning case. The tradeoff in the transferlearning case

is between possibly improved performance and possibly higher computational cost

from testing larger trees. In case the reader is wondering, the computational cost is

not twice as much because we assume that the we were going to learn the transfer-

from task anyway.

Table 6.2: Non-Transfer error rates for the Data Sets

Data-set 20/80 40/60 60/40 80/20

ecoli 19.5%, 3.4 13.38%, 4.45 9.9%, 2.11 10.89%, 5.8
yeast 15.3%, 2.77 17.88%, 3.96 17.0%, 3.06 14.89%, 2.73
aus 21.93%, 4.03 18.55%, 2.25 20.9%, 3.08 18.9%, 2.1

german 31.6%, 1.38 31.6%, 1.38 29.0%, 1.27 31.1%, 4.47
hep 23.3%, 1.85 20.1%, 3.7 20.8%, 4.35 19.8%, 1.38

bc-wisc 10.8%, 3.1 8.92%, 1.01 8.27%, 1.93 8.99%, 2.3
heart 26.6%, 4.7 27.7%, 3.9 26.6%, 3.45 23.3%, 1.8

Finally, to ensure that the improvement in performance is due to transfer and

not because our base learner was faulty, we compared the error rate of the base

learner to results in previous work. From a survey of literature it seems theerror

rate for our classifier for the80/20 case is always at least a couple of percent-

age points better than C4.5. As an example, forecoli our classifier outperforms

Adaboost and Random Forests in Breiman, 2001, but is a bit worse than these for

German Credit. These non-transfer results are summarized in table 6.2. Our results

for each Transfer-To data-set appear starting on the next page.
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6.5.3 Results for theecoli Dataset

Tables 6.4 to 6.7 and Figs. 6.3 to 6.6 shows the results of transfer learning experi-

ments when the transfer-to data-set was ecoli with types20/80, 40/60, 60/40 and

80/20 respectively. The transfer from data-sets were yeast, german and bc-wisc.

As can be seen by just skimming through the results, particularly the percentage

improvement part of the results (the second part of each table and the figures), in

almost all cases, transfer learning results in improved performance than the no-

transfer case. The tables and figures appear starting in the next page

Table 6.3:Table Key: TheFrom Typerow gives the type of data-set information is
being transferred from -No-Transmeans no transfer is occurring, andx/(100−x)
mean the corresponding data-set type (see text for details). Each subsequent row
gives the result when information is transferred from the corresponding data-set.
The top half of the table gives the actual error rates and standard deviation, and the
lower half gives the percentage improvement in each case.

TRANSFER TOx/(1− x) TRANSFER-TO DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

data-set 1 9%, 9 9%, 9 9%, 9 9%, 9 9%, 9
data-set 2 9%, 9 9%, 9 9%, 9 9%, 9 9%, 9
data-set 3 9%, 9 9%, 9 9%, 9 9%, 9 9%, 9

TRANSFER TOx/(1− x) TRANSFER-TO DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/40 40/60 60/40 80/20

data-set 1 – 9% 9% 9% 9%
data-set 2 – 9% 9% 9% 9%
data-set 3 – 9% 9% 9% 9%

77



Table 6.4: Results of12 transfer experiments for the20/80 ecoli data set. See
Table Key for meaning of the table entries.

TRANSFER TO20/80ECOLI DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

yeast 19.5%, 6.44 11.19%, 4.27 13.54%, 5.87 12.39%, 4.94 13.88%, 3.21
german 19.5%, 6.44 14.7%, 4.46 11.72%, 4.66 14.25%, 3.26 11.12%, 2.93
bc-wisc 19.5%, 6.44 14.63%, 4.43 12.95%, 4.52 12.54%, 4.77 11.31%, 4.26

TRANSFER TO20/80ECOLI DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

yeast – 42.62% 30.56% 36.46% 28.82%
german – 24.62% 39.9% 26.92% 42.97%
bc-wisc – 24.97% 33.59% 35.69% 42.0%
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Figure 6.3: Percentage Improvement for the 20/80 ecoli data-set. Each color rep-
resents a particular type of the transfer-from data-set.

20/80 ecoli data-set:For the20/80 data-set type, in all cases we observe signif-
icant improvement in performance, which is intuitively satisfying because in this
case the loss in performance due to reduced data will be most severe, andhence
opportunities for transfer the most.
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Table 6.5: Results of12 transfer experiments for the40/60 ecoli data set. See
Table Key for meaning of the table entries.

TRANSFER TO40/60ECOLI DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

yeast 13.38%, 4.5 11.44%, 3.95 11.54%, 3.86 10.05%, 3.29 10.25%, 2.45
german 13.38%, 4.5 10.2%, 2.73 11.64%, 3.84 9.9%, 4.47 10.6%, 4.16
bc-wisc 13.38%, 4.5 11.84%, 3.26 9.45%, 3.61 9.3%, 2.63 9.3%, 2.73

TRANSFER TO40/60ECOLI DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

yeast – 14.5% 13.75% 24.89% 23.39%
german – 23.77% 13.0% 26.01% 20.78%
bc-wisc – 11.51% 29.37% 30.49% 30.49%
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Figure 6.4: Percentage Improvement for the 40/60 ecoli data-set. Each color rep-
resents a particular type of the transfer-from data-set.

40/60 ecoli data-set:We see improvement in performance for the40/60 data-set
type that is similar to those for the20/80 type, which is also intuitively satisfying
for the same reason as above. In addition, we do not see any adverse effect due to
transfer.
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Table 6.6: Results of12 transfer experiments for the60/40 ecoli data set. See
Table Key for meaning of the table entries.

TRANSFER TO60/40ECOLI DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

yeast 9.9%, 2.11 10.07%, 3.08 8.21%, 2.97 8.66%, 2.74 6.34%, 2.25
german 9.9%, 2.11 9.48%, 3.61 8.06%, 4.18 9.63%, 3.54 10.15%, 3.82
bc-wisc 9.9%, 2.11 9.93%, 3.6 10.82%, 5.43 8.28%, 1.55 10.6%, 3.14

TRANSFER TO60/40ECOLI DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

yeast – −1.72% 17.07% 12.53% 35.96%
german – 4.24% 18.59% 2.73% −2.53%
bc-wisc – −0.3% −9.29% 16.36% −7.07%
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Figure 6.5: Percentage Improvement for the 60/40 ecoli data-set. Each color rep-
resents a particular type of the transfer-from data-set.

60/40 ecoli data-set:In the60/40 data-set type we for the first time observe ill-
effects of transfer, as in half the cases we see reduction in performance. However,
except in one case, the negative impact of transfer is not that severe.
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Table 6.7: Results of12 transfer experiments for the80/20 ecoli data set. See
Table Key for meaning of the table entries.

TRANSFER TO80/20ECOLI DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

yeast 10.89%, 5.82 8.06%, 3.28 7.61%, 3.74 9.55%, 4.18 8.96%, 4.95
german 10.89%, 5.82 10.15%, 2.57 9.55%, 4.63 11.04%, 4.44 9.55%, 5.14
bc-wisc 10.89%, 5.82 8.51%, 5.82 7.61%, 3.16 8.66%, 6.36 10.15%, 2.89

TRANSFER TO80/20ECOLI DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

yeast – 25.99% 30.12% 12.3% 17.72%
german – 6.8% 12.3% −1.38% 12.3%
bc-wisc – 21.85% 30.12% 20.48% 6.8%
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Figure 6.6: Percentage Improvement for the 80/20 ecoli data-set. Each color rep-
resents a particular type of the transfer-from data-set.

80/20 ecoli data-set:The results for the80/20 case is much better than the result
for the 60/40 case, where we see significant improvement in most cases, and a
minor reduction in performance in only one case.
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6.5.4 Results for thebc-wisc Dataset

Tables 6.9 to 6.12 and Figs. 6.7 to 6.6 shows the results of transfer learning ex-

periments when the transfer-to data-set was ecoli with types20/80, 40/60, 60/40

and80/20 respectively. The transfer from data-sets were heart, aus and ecoli.The

performance improvement here is not as notable as for ecoli, and in many cases

there is a reduction in performance. However, as mentioned in Sect. 6.5.2, most

of these reductions are not that significant. Strangely enough, the most significant

improvement is observed for the 80/20 transfer-to data-set. So in this caseit seems

that the space of tree sizes that the MCMC algorithm is being told to explore in

the transfer case is insufficient to overcome the paucity of data in thex/(1 − x)

transfer-to data-types forx < 80. Not only that, the space being suggested seem

to somewhat harmful in some cases. The tables and figures appear startingin the

next page.

Table 6.8:Table Key: TheFrom Typerow gives the type of data-set information is
being transferred from -No-Transmeans no transfer is occurring, andx/(100−x)
mean the corresponding data-set type (see text for details). Each subsequent row
gives the result when information is transferred from the corresponding data-set.
The top half of the table gives the actual error rates and standard deviation, and the
lower half gives the percentage improvement in each case.

TRANSFER TOx/(1− x) TRANSFER-TO DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

data-set 1 9%, 9 9%, 9 9%, 9 9%, 9 9%, 9
data-set 2 9%, 9 9%, 9 9%, 9 9%, 9 9%, 9
data-set 3 9%, 9 9%, 9 9%, 9 9%, 9 9%, 9

TRANSFER TOx/(1− x) TRANSFER-TO DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/40 40/60 60/40 80/20

data-set 1 – 9% 9% 9% 9%
data-set 2 – 9% 9% 9% 9%
data-set 3 – 9% 9% 9% 9%
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Table 6.9: Results of12 transfer experiments for the20/80 bc-wisc data set. See
Table Key for the meaning of the table entries.

TRANSFER TO20/80BC-WISC DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

heart 10.8%, 3.1 9.52%, 2.74 10.07%, 2.01 10.21%, 2.27 9.95%, 1.95
aus 10.8%, 3.1 10.47%, 2.24 11.27%, 2.55 9.71%, 1.66 11.66%, 2.13
ecoli 10.8%, 3.1 8.91%, 2.19 10.77%, 2.67 9.55%, 1.44 10.27%, 2.14

TRANSFER TO20/80BC-WISC DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

heart – 11.85% 6.76% 5.46% 7.87%
aus – 3.06% −4.35% 10.09% −7.96%
ecoli – 17.5% 0.28% 11.57% 4.91%

-10

 0

 10

 20

 30

 40

 50

ecoli
aus

heart

%
 Im

pr
ov

em
en

t

Data Sets Transferred From

Transfer For bc-wisc 20/80 data Set

20/80
40/60
60/40
80/20

Figure 6.7: Percentage Improvement for the 20/80 bc-wisc data-set. Each color
represents a particular type of the transfer-from data-set.

20/80 bc-wisc data-set:We mostly observe improvements in performance, but for
the most part it is not that significant, and there are some insignificant reduction in
performances.
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Table 6.10: Results of12 transfer experiments for the40/60 bc-wisc data set. See
Table Key for the meaning of the table entries.

TRANSFER TO40/60BC-WISC DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

heart 8.92%, 1.01 8.97%, 0.87 8.9%, 2.42 9.02%, 2.02 9.59%, 1.37
aus 8.92%, 1.01 9.71%, 2.49 8.93%, 1.87 7.76%, 1.34 7.8%, 1.13
ecoli 8.92%, 1.01 8.59%, 1.39 9.33%, 3.63 9.19%, 2.46 9.14%, 1.04

TRANSFER TO40/60BC-WISC DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

heart – −0.56% 0.22% −1.12% −7.51%
aus – −8.86% −0.11% 13.0% 12.56%
ecoli – 3.7% −4.6% −3.03% −2.47%

-10

 0

 10

 20

 30

 40

 50

ecoli
aus

heart

%
 Im

pr
ov

em
en

t

Data Sets Transferred From

Transfer For bc-wisc 40/60 data Set

20/80
40/60
60/40
80/20

Figure 6.8: Percentage Improvement for the 40/80 bc-wisc data-set. Each color
represents a particular type of the transfer-from data-set.

40/60 bc-wisc data-set:In this case, almost all the change in performances are
reductions. There are two increase in performance, (aus, 60/40 and 80/20), that
are just significant, but also two reductions in performance that are also nearly
significant. In our entire collection of experiments this is the worst performingset
– and yet there are only2 nearly bad performances. So this is a good sign for our
method.
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Table 6.11: Results of12 transfer experiments for the60/40 bc-wisc data set. See
Table Key for the meaning of the table entries.

TRANSFER TO60/40BC-WISC DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

heart 8.28%, 1.93 8.32%, 2.04 7.46%, 1.4 7.53%, 1.71 8.42%, 1.54
aus 8.28%, 1.93 7.67%, 2.15 8.57%, 2.2 8.28%, 1.45 8.35%, 1.59
ecoli 8.28%, 1.93 8.49%, 1.9 6.77%, 3.07 7.56%, 1.73 7.99%, 1.72

TRANSFER TO60/40BC-WISC DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

heart – −0.48% 9.9% 9.06% −1.69%
aus – 7.37% −3.5% 0.0% −0.85%
ecoli – −2.54% 18.24% 8.7% 3.5%
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Figure 6.9: Percentage Improvement for the 60/40 bc-wisc data-set. Each color
represents a particular type of the transfer-from data-set.

60/40 bc-wisc data-set:The results here are much better than in the preceding
case, with no significant reductions in performance, and several significant im-
provements in performance.
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Table 6.12: Results of12 transfer experiments for the80/20 bc-wisc data set.

TRANSFER TO80/20BC-WISC DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

heart 8.99%, 3.03 7.19%, 2.11 5.9%, 1.81 6.76%, 2.09 8.85%, 2.47
aus 8.99%, 3.03 8.2%, 1.62 6.76%, 1.96 7.91%, 2.09 7.77%, 2.47
ecoli 8.99%, 3.03 9.57%, 2.91 8.2%, 2.85 6.12%, 1.86 7.27%, 2.58

TRANSFER TO80/20BC-WISC DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

heart – 20.02% 34.37% 24.81% 1.56%
aus – 8.79% 24.81% 12.01% 13.57%
ecoli – −6.45% 8.79% 31.92% 19.13%
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Figure 6.10: Percentage Improvement for the 80/20 bc-wisc data-set. Each color
represents a particular type of the transfer-from data-set.

80/20 bc-wisc data-set:These are the best batch of results by far for the bc-wisc
data-set with significant performance improvements in all cases, and with only
reduction in performance.
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6.5.5 Results for theaus Dataset

Tables 6.14 to 6.17 and Figs. 6.11 to 6.14 shows the results of transfer learning ex-

periments when the transfer-to data-set was ecoli with types20/80, 40/60, 60/40

and80/20 respectively. The transfer from data-sets were german, ecoli and hep.

This is the best performing transfer-to data-set by far, with no reductions in perfor-

mance, and significant improvement in performance in all cases. The results are

also intuitive in that we observe the most improvement in performance when train-

ing data is most scarce – i.e. in the transfer-to 20/80 case. The tables and figures

appear starting in the next page.

Table 6.13:Table Key: TheFrom Typerow gives the type of data-set information is
being transferred from -No-Transmeans no transfer is occurring, andx/(100−x)
mean the corresponding data-set type (see text for details). Each subsequent row
gives the result when information is transferred from the corresponding data-set.
The top half of the table gives the actual error rates and standard deviation, and the
lower half gives the percentage improvement in each case.

TRANSFER TOx/(1− x) TRANSFER-TO DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

data-set 1 9%, 9 9%, 9 9%, 9 9%, 9 9%, 9
data-set 2 9%, 9 9%, 9 9%, 9 9%, 9 9%, 9
data-set 3 9%, 9 9%, 9 9%, 9 9%, 9 9%, 9

TRANSFER TOx/(1− x) TRANSFER-TO DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/40 40/60 60/40 80/20

data-set 1 – 9% 9% 9% 9%
data-set 2 – 9% 9% 9% 9%
data-set 3 – 9% 9% 9% 9%
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Table 6.14: Results of12 transfer experiments for the20/80 aus data set. See Table
Key for the meaning of the table entries.

TRANSFER TO20/80AUS DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

german 21.9%, 4.03 15.49%, 1.47 16.9%, 3.65 15.6%, 1.47 15.36%, 1.27
ecoli 21.9%, 4.03 14.8%, 0.94 15.63%, 1.91 15.47%, 1.32 15.54%, 1.46
hep 21.9%, 4.03 14.93%, 1.23 14.91%, 1.72 15.22%, 1.06 14.73%, 1.0

TRANSFER TO20/80AUS DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

german – 29.27% 22.83% 28.77% 29.86%
ecoli – 32.42% 28.63% 29.36% 29.04%
hep – 31.83% 31.92% 30.5% 32.74%
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Figure 6.11: Percentage Improvement for the 20/80 aus data-set. Each color rep-
resents a particular type of the transfer-from data-set.

20/80 aus data-set:We see significant performance in all cases.
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Table 6.15: Results of12 transfer experiments for the40/60 aus data set. See Table
Key for the meaning of the table entries.

TRANSFER TO40/60AUS DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

german 18.55%, 2.25 14.76%, 0.71 14.37%, 1.35 14.28%, 0.96 15.07%, 0.87
ecoli 18.55%, 2.25 14.49%, 0.95 14.54%, 1.29 15.07%, 0.9 15.05%, 0.99
hep 18.55%, 2.25 14.15%, 0.82 14.47%, 0.91 15.24%, 1.16 15.8%, 3.34

TRANSFER TO40/60AUS DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

german – 20.43% 22.53% 23.02% 18.76%
ecoli – 21.89% 21.62% 18.76% 18.87%
hep – 23.72% 21.99% 17.84% 14.82%
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Figure 6.12: Percentage Improvement for the 40/60 aus data-set. Each color rep-
resents a particular type of the transfer-from data-set.

40/60 aus data-set:The performance improvement not as significant in the pre-
ceding case, but still quite significant.
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Table 6.16: Results of12 transfer experiments for the60/40 aus data set. See Table
Key for the meaning of the table entries.

TRANSFER TO60/40AUS DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

german 20.9%, 3.03 15.33%, 2.76 14.71%, 1.87 14.93%, 1.49 13.88%, 1.77
ecoli 20.9%, 3.03 14.24%, 1.47 13.55%, 1.48 13.77%, 1.64 14.24%, 1.76
hep 20.9%, 3.03 15.4%, 1.69 14.86%, 1.87 14.75%, 1.23 14.64%, 1.63

TRANSFER TO60/40AUS DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

german – 26.65% 29.62% 28.56% 33.59%
ecoli – 31.87% 35.17% 34.11% 31.87%
hep – 26.32% 28.9% 29.43% 29.95%
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Figure 6.13: Percentage Improvement for the 60/40 aus data-set. Each color rep-
resents a particular type of the transfer-from data-set.

60/40 aus data-set:We observe significant performance improvement in all cases.
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Table 6.17: Results of12 transfer experiments for the80/20 aus data set. See Table
Key for the meaning of the table entries.

TRANSFER TO80/20AUS DATA SET – ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20

german 18.99%, 2.9 13.94%, 2.22 14.45%, 2.5 13.87%, 1.73 14.31%, 3.4
ecoli 18.99%, 2.9 13.43%, 3.47 14.53%, 2.89 15.91%, 3.34 14.31%, 2.4
hep 18.99%, 2.9 15.62%, 2.6 13.5%, 4.38 15.04%, 2.43 15.04%, 2.1

TRANSFER TO80/20AUS DATA SET – PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

german – 26.59% 23.91% 26.96% 24.64%
ecoli – 29.28% 23.49% 16.22% 24.64%
hep – 17.75% 28.91% 20.8% 20.8%
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Figure 6.14: Percentage Improvement for the 80/20 aus data-set. Each color rep-
resents a particular type of the transfer-from data-set.

80/20 aus data-set:We observe significant performance improvement in all cases.
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6.6 Discussion

In this section we showed how we may approximate our optimal sequential transfer

prior ξTL in a practical setting. We approximated the prior for practical Bayesian

learning using decision trees and showed that these experiments more or less hew

closely to theoretical predictions. That is, in a battery of144 individual transfer ex-

periments, in most cases we see significant improvement due to transfer andonly

in a couple of experiments out of144 we see significant reduction in performance.

This shows our approximation, which are admittedly crude, still result in inter-

esting practical performance. We believe that this demonstrates the power of the

theory developed in preceding chapters.

While we have performed a whole slew of successful transfer experiments,

there are avenues of experimentation we have not yet explored. Due to the general

nature of our method, we can perform transfer experiments between anycombi-

nation of databases in the UCI repository and in the future it will be interestingto

perform these experiments. Additionally, our approximations, while effective in

practice, are not as sophisticated as they could be, and so in future we also wish

to explore transfer using more powerful generalized similarity functions likethe

gzip compressor as in Cilibrasi & Vitanyi, 2005. A flavor of this approach:if the

standard compressor is gzip, then the functionCgzip(xy) will give the length of the

stringxy after compression by gzip.Cgzip(xy)− Cgzip(y) will be the conditional

Cgzip(x|y). So Cgzip(h|h′) will give the relatedness between tasks. The most

promising avenue of research in this direction seems to be to restrict ourselves to

group of specific machine learning domains and then deriving compressionbased

distance functions suitable for measuring relatedness between hypothesisthat are

suitable for the group.
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Chapter 7

Conclusion

We will end this dissertation with a look at the contributions made in this thesis,

how this work can be extended in the future, and finally, a brief look at the connec-

tion of the ideas in this thesis to work in cognitive science in trying to understand

how humans measure similarity.

7.1 Contributions of this Thesis

We began this thesis by pointing out that while transfer learning is an important

subfield of machine learning, key problems in it remain formally unsolved. In par-

ticular, it was not clear how we should measure similarity between tasks, and this

lead to problems of not knowing when to transfer information, how much informa-

tion to transfer and when not to. In this thesis, with the aid of ideas in Algorithmic

Information Theory, we gave a formally/universally optimal measure of taskrelat-

edness. We then used this measure to derive universally optimal transferlearning

schemes in the Bayesian setting. Universal optimality means that no other rea-

sonable methods can do much better than the schemes we describe, and hence in a

very formal sense, our methods solved the key problems in transfer learning that we

mentioned above. We further extended our theory to the Artificial Agents setting

and Prediction with Expert Advice setting.

As a byproduct of the above investigation, we derived interesting resultsin

Algorithmic Information Theory itself. We extended the theory of Information

Distance and gave a new, more robust, interpretation of classic universality results

in AIT. Furthermore, we used information measures for strings to measure infor-

mation content of programs computing distributions. To allay concern that we are

not losing something in this process, we also briefly developed the theory ofKol-

mogorov complexity of functions, and showed that these two are equivalent under

certain reasonable conditions.

Interestingly, we were also able to construct a practical approximation of our

theoretical methods. Using this, we performed144 individual transfer experiments

to successfully transfer across7 real-life databases from the UCI repository that
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have little to no semantic similarity. This made our experiments the most general

transfer experiments to date.

7.2 Future Work

There are many directions for possible future work. As we mentioned in the body

of the thesis, the theoretically optimal measures and methods that we introduce are

computable only in the limit. So a major thrust of the future theoretical work will

be in developing a practical version of the theory. There are couple of different

ways to approach this. The first is to focus on specific machine learning domains,

such as systems biology, machine vision etc. and develop transfer method tailored

to transfer within such a domain, or to transfer across a certain class of domains

and so forth. While we expect this to lead to interesting practical applications,from

a formal perspective this seems somewhat unsatisfactory as a main point ofinterest

of our research was that we were able to transfer across arbitrary domains.

The other more interesting option is to restrict the class of measures and trans-

fer schemes we consider from computable-in-the-limit to those that are resource

boundedly computable. That is, we only consider probability measures anddis-

tance functions such that there exists programs that compute them while respecting

some given time and memory usage constraint; then we try to find transfer learn-

ing distances and transfer methods that are universally optimal with respect to this

class. This framework we term resource bounded learning, and this is a very rich

area in machine learning that needs to be explored both in a single task learning

case and transfer learning case. Current work in this include Feder & Federovski,

1998; Rajwan & Feder, 2000; Meron & Feder, 2004. The results, particularly

the last paper cited, are impressive. These papers considers sequence prediction

problem and the most impressive results give asymptotic regret bounds for the best

K-state finite state machines competing against orderL Markov chains. The way

we envision extending this work is via considering the Bayesian setting but with

resource bounded, computable measures (which is obviously a larger class than

those representable byK-state FSMs or orderL Markov chains), and derivingt-

step bounds rather than asymptotic ones.

Furthermore, we just barely touched on applying our transfer learning scheme

to the artificial intelligent agent setting. We plan on exploring this issue furtherby

focusing on Bayesian reinforcement learning agents (Dearden et al., 1998; Sterns,

2000; Ross et al., 2007).

We expect future practical work to largely come out as applications of the the-

ory to be developed. However, the decision tree based transfer method we devel-

oped in this thesis is also quite general, and it would be interesting to perform more
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experiments with this method to establish its applicability.

7.3 Similarity Measures in Human Cognition

We began this thesis by observing that study of transfer learning was motivated by

the fact that when people solve problems they almost always use transfer. So it

is appropriate that we end this document by looking at the question of how cog-

nitively plausible our approach to measuring similarity is. That is, do people use

something similar to Kolmogorov complexity to measure similarity across tasks ?

While the answer is not known for the general case, there has been somework

that postulates (Feldman, 2003) and gives evidence (Hahn et al., 2003)that people

do use something similar to Kolmogorov complexity to measure similarity between

concepts for the purpose of categorization. In the Cognitive science literature there

are two main hypothesis about how people measure similarity; the first is basedon

a distance function in some psychological space (Shepard, 1957), andthe second

based on how many features the entities being compared have in common (Tver-

sky, 1977). Both suffer from the severe limitation that objects are represented as

points in a space or purely in terms of feature sets (i.e. no notion of structurein

the representation is allowed). Due to these limitations, the notion oftransform

functionswere proposed as a measure of similarity (Hahn et al., 2003) . That is,

given two concepts, the measure of similarity between two concepts is the number

of transforms that need to be applied to convert one concept to the other.This is,

of course, a practical approximation to the Information Distance and evidence for

use of this idea in people was given in Hahn et al., 2003. The connection between

this and Kolmogorov complexity was elucidated in Chater & Vitanyi, 2002; Chater

& Vitanyi, 2003. This connection is quite gratifying and exciting, as it seems that

the ideas that lead us to formal solutions to problems of measuring similarity in

machines may also hold the key to mysterious and deep question of how people so

successfully measure and similarity between mental concepts – the very factthat

initiated this whole work!
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