(© 2008 M. M. Hassan Mahmud

UNIVERSAL TRANSFER LEARNING

BY

M. M. HASSAN MAHMUD

B.S., Stevens Institute of Technology, 2000
M.S., University of lllinois at Urbana-Champaign, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
University of lllinois at Urbana-Champaign, 2008

Urbana, lllinois

Doctoral Committee:

Professor Gerald F. DeJong, Chair
Associate Professor Steven M. LaValle
Professor Stephen Levinson

Professor Mehdi T. Harandi

Abstract

The aim of transfer learning is to reduce sample complexity required to solve a
learning task by using information gained from solving related tasks. femans
learning has in general been motivated by the observation that whete sabype
problems, they almost always use information gained from solving relatds pr
lems previously. Indeed, the thought of even children trying to solvel@nub
tabula rasaseem absurd to us. Despite this fairly obvious observation, typical ma-
chine learning algorithms consider solving one task at a time and so do not take
advantage of information that has become available from solving relatesipgeesk
viously. Transfer methods aim to rectify this rather serious oversighsarthve

a potential to make a huge impact on how successful and widespreadetioé us
machine learning is.

Practical methods to transfer information has been developed and appiied s
cessfully to difficult real life problems. In addition theoretical analysis @fsth
methods have been developed. However one fundamental problem ragling
unsolved, which is how one measures similarity between tasks. This problem is
obviously quite troubling from a conceptual point of view, as the notiorelafted-
ness seem central to the objective of transferring information betwksdaddasks.
Furthermore, it has been shown in experiments that transferring frorelated’
tasks hurts generalization performance of learning algorithms. So aopmjgie
notion of similarity between tasks seem necessary to design algorithms that can
determine when to transfer information, when not to and how much information to
transfer. In this dissertation we give a formal solution to the problem of unigas
task relatedness and all its associated problems.

We derive a very general measure of relatedness between taskbowWehat
this measure isniversal— i.e. no other measure of relatedness can uncover much
more similarity than our measure. We then use this measure to dgriversally
optimal transfer learning algorithms in a Bayesian setting. Universal optimality
means that no other transfer learning algorithm can perform much betteotns:

The methods we develop automatically solve the problems of determining when
to transfer information and how much information to transfer. Indeed, wes sh

that transferring information is always justified — i.e. it never hurts too much to
transfer information. This latter result is quite surprising indeed as the cotymon
held belief in the transfer learning community is that it should hurt to transder f
unrelated tasks. We also show how our transfer learning methods magdmu
transfer in Prediction with Expert Advice Systems and in Reinforcemeniraa
agents as well.

Our distance measures and learning algorithms are based on powegahtele
and beautiful ideas from the field of Algorithmic Information Theory. Whileale
oping our transfer learning mechanisms we also derive results that amesiirig
in and of themselves. We also developed practical approximations to onalfgr
optimal method for Bayesian decision trees, and applied it to transfer informa
tion between 7 arbitrarily chosen data-sets in the UCI machine learningt@pos
through a battery of 144 experiments. The arbitrary choice of databzsess our
experiments the most general transfer experiments to date. The experatsents
bear out our result that transfer should never hurt too much.

To my father, mother and little sister.

Acknowledgments

I would like to thank all the people who have over the years provided fezdin
various forms that has helped my intellectual and personal growth, wielieve
and hope, finds a manifestation through this dissertation.

| would like to Dr. Gerald DeJong, Dr. Steven LaValle, Dr. Stephen Lerins
Dr. Mehdi Harandi and Dr. Jean Ponce for being part of my thesis conenzittd
providing valuable feedback for helping developing the thesis.

I would like to thank the various people who have over the years participated
the ANNCBT seminar and introduced me to various ideas etc. In particulaultwo
like to thank Dr. Sylvian Ray, Dr. Thomas Anastasio and Dr. Stephen Laviiaso
running the seminar and always providing many very illuminating discussiuhs a
explanations of the technical and philosophical aspects of both humantifiwial
intelligence. Their ideas and thoughts provided very welcome depth, teasare
nuance to my understanding of machine learning.

I would like to thank Dr. Gerald DeJong for making me excited about rekgarc
supervising my Master’s thesis and helping me appreciate the need fisgtyec
and formally stating our ideas and being able to defend them against pemetra
and probing questions. | would also like to thank him for coming in at a crucial
time near the end of my thesis and agreeing to take over when tragedy stidick a
Dr. Ray passed away.

| would like to express my deep gratitude to Dr. Sylvian R. Ray for advising
me for most of my tenure as a Ph.D. student. Unfortunately, Professopd®agd
away on 12th December 2007, just a few months before this thesis was tedaple
He was the primary researcher in building the ILLIAC lll, one of the fasin-
puters in the world; and not surprisingly, he was deeply interested intigaéing
what it would take to build one of the first truly intelligent robots, one that is ca
pable of learning and developing itself autonomously and continually. It isliarg
for this reason | was able to pursue research into transfer learninghisd am
grateful, but | think | will remember him most fondly because of his humor, his
kindness, his constant encouragement and the freedom he gave mveltipde-
tellectually as | felt was best for me, while making sure | do not go too faradk.

As such, he made a permanent impact on my life, as he did with all of his students
prior to me. 1 will miss him, and | profoundly regret that he was not able tdlsse
completed dissertation.

| would like to thank fellow graduate students in the Biosignals Intelligence
Group, Samarth Swarup, Kiran Lakkaraju, Tuna Oezer, Alex Kosifkand oth-
ers who have over the years provided me with valuable feedback negattds
work.

| would also like to thank Ms. Barbara Cicone, Ms. Mary Beth Kelley and
others at CS Department Academic Advising Office the for helping me negotiate
the myriad rules and regulations that any graduate student has to coritend w

Finally | would like to thank for my parents, M. Jinnat Ali Mian and Kaniz
L.L. Jinnat and my sister Zerin B. Jinnat for the constant love and suppere
received from them beyond the call of duty. | would also like to thank all amyify
and friends back home in Bangladesh for their love and support ovgetrs.

Y

Table of Contents

Listof Figures e iX
Listof Tables X
Chapter 1 Introduction 1
Chapter2 PreviousWork 7
2.1 Intra-Domain Transfer Methods 8
2.1.1 Intra-Domain Transfer in Classification 8
2.1.2 Intra-Domain TransferinAgents 11
2.1.3 Theoretical Framework 13
2.1.4 Intra-Domain Transfer: Coda. 14
2.2 CrossDomainTransfer 15
2.3 Programmatic Transfer Methods 16
24 DISCUSSION e e e 18
Chapter 3 Universal Transfer Learning Distances 19
3.1 Fundamentals 19
3.2 The Task Space and the Learning Problem 21
3.3 Distance FunctionforTasks 23
3.3.1 Kolmogorov Complexity Basics 23
3.3.2 Universal Transfer Learning Distance for Tasks 27
3.3.3 ProofofTheorem3.3. 29
3.3.4 Universal Transfer Learning Distance forTasks 31
3.35 Proofof Theorem3.4. 32
3.4 DISCUSSION v o e e e 34
Chapter 4 Universal Bayesian Transfer Learning 35
4.1 Solomonoff Induction and Bayesian Convergence Results 35
4.2 Universal Sequential Transfer Learning 38
4.3 Universal Parallel Transfer Learning 40
4.3.1 Joint-parallel Transfer 40
4.3.2 Online-parallel Transfer 42
4.3.3 Parallel Transfer in Practice 46
4.4 Competitive Optimality of the Universal Priors 47
45 DISCUSSION 50

Vii

Chapter 5 Universal Transfer Learning: Extensions 51

5.1 Transfer Convergence Rates for Arbitrary Bounded Loss . . . 51
5.2 Transferinthe PEASetting 53
5.3 Transfer in Bayesian Reinforcement Learning Agents 55
5.3.1 TheAlAgentModel 55
5.3.2 Convergence Bounds for the Al Agent Model 57
5.4 Kolmogorov Complexity of Functions 59
5,5 DISCUSSION v v o e e e e e 64
Chapter 6 Practical Approximations 65
6.1 Bayesian Setting for Finite Spaces 65
6.2 Brief Primer on Practical Bayesian Learning 67
6.3 The Bayesian Decision TreeModel 68
6.4 Transfer Learning in Bayesian Decision Trees 71
6.5 Experiments 74
6.5.1 Setup ofthe Experiments 74
6.5.2 Overview and Interpretationof Results 75
6.5.3 Results for thecoliDataset 77
6.5.4 Results for thbc-wiscDataset 82
6.5.5 Results forthausDataset 87
6.6 Discussion. 92
Chapter7 Conclusion 93
7.1 Contributions ofthisThesis 93
7.2 FutureWork 94
7.3 Similarity Measures in Human Cognition 95
References e 96
Author's Biography 103

viii

List of Figures

1.1 The figure shows three tasks which are related by virtue of the

concepts to be learned having similar shapes. 1
1.2 Atypical Transfer Learning Method. 3
2.1 Schematic lllustration of typical Transfer Learning Methods. . . . 8
3.1 The Sequence Prediction problemwbée= 5. 23
6.1 Schematic illustration of recursive tree definition. 70
6.2 Example illustrating between two decisiontrees. 72
6.3 Percentage Improvement for the 20/80 ecoli data-set. Each color
represents a particular type of the transfer-from data-set. 78
6.4 Percentage Improvement for the 40/60 ecoli data-set. Each color
represents a particular type of the transfer-from data-set. 79
6.5 Percentage Improvement for the 60/40 ecoli data-set. Each color
represents a particular type of the transfer-from data-set. 80
6.6 Percentage Improvement for the 80/20 ecoli data-set. Each color
represents a particular type of the transfer-from data-set. 81
6.7 Percentage Improvement for the 20/80 bc-wisc data-set. Each color
represents a particular type of the transfer-from data-set. 83
6.8 Percentage Improvement for the 40/80 bc-wisc data-set. Each color
represents a particular type of the transfer-from data-set. 84
6.9 Percentage Improvement for the 60/40 bc-wisc data-set. Each color
represents a particular type of the transfer-from data-set. 85
6.10 Percentage Improvement for the 80/20 bc-wisc data-set. Each color
represents a particular type of the transfer-from data-set. 86
6.11 Percentage Improvement for the 20/80 aus data-set. Each color
represents a particular type of the transfer-from data-set. 88
6.12 Percentage Improvement for the 40/60 aus data-set. Each color
represents a particular type of the transfer-from data-set. 89
6.13 Percentage Improvement for the 60/40 aus data-set. Each color
represents a particular type of the transfer-from data-set. 90
6.14 Percentage Improvement for the 80/20 aus data-set. Each color
represents a particular type of the transfer-from data-set. 91

List of Tables

6.1 Summary of the data-sets used in the transfer experiments. 75
6.2 Non-Transfer error rates forthe DataSets 76
6.3 Table Key: The From Typerow gives the type of data-set infor-

mation is being transferred fromNo-Transmeans no transfer is

occurring, and: /(100 — =) mean the corresponding data-set type

(see text for details). Each subsequent row gives the result when

information is transferred from the corresponding data-set. The top

half of the table gives the actual error rates and standard deviation,

and the lower half gives the percentage improvement in each case. 77
6.4 Results of 2 transfer experiments for t# /80 ecoli data set. See

Table Key for meaning of the table entries. 78
6.5 Results of2 transfer experiments for th#) /60 ecoli data set. See

Table Key for meaning of the table entries. 79
6.6 Results of2 transfer experiments for thg#) /40 ecoli data set. See

Table Key for meaning of the table entries. 80
6.7 Results of2 transfer experiments for tt88) /20 ecoli data set. See

Table Key for meaning of the table entries. 81

6.8 Table Key: The From Typerow gives the type of data-set infor-
mation is being transferred fromNo-Transmeans no transfer is
occurring, and: /(100 — =) mean the corresponding data-set type
(see text for details). Each subsequent row gives the result when
information is transferred from the corresponding data-set. The top
half of the table gives the actual error rates and standard deviation,
and the lower half gives the percentage improvement in each case. 82
6.9 Results ofi2 transfer experiments for tH#) /80 bc-wisc data set.

See Table Key for the meaning of the table entries. 83
6.10 Results ol2 transfer experiments for th#) /60 bc-wisc data set.

See Table Key for the meaning of the table entries. 84
6.11 Results ol2 transfer experiments for th)/40 bc-wisc data set.

See Table Key for the meaning of the table entries. 85

6.12 Results of2 transfer experiments for tr&$) /20 bc-wisc data set. 86

6.13 Table Key: The From Typerow gives the type of data-set infor-
mation is being transferred fromNo-Transmeans no transfer is
occurring, and: /(100 — =) mean the corresponding data-set type
(see text for details). Each subsequent row gives the result when
information is transferred from the corresponding data-set. The top
half of the table gives the actual error rates and standard deviation,
and the lower half gives the percentage improvement in each case. 87
6.14 Results oi2 transfer experiments for tH#)/80 aus data set. See

Table Key for the meaning of the table entries. 88
6.15 Results oi2 transfer experiments for th#)/60 aus data set. See

Table Key for the meaning of the table entries. 89
6.16 Results ol2 transfer experiments for th#) /40 aus data set. See

Table Key for the meaning of the table entries. 90
6.17 Results ol2 transfer experiments for th#)/20 aus data set. See

Table Key for the meaning of the table entries. 91

Xi

Chapter 1

Introduction

In Transfer Learning (TL) (Pratt, 1992; Singh, 1992; Schmidhut#94; Caruana,
1993; Caruana, 1997; Thrun & Mitchell, 1995), we are concerned witlucing
sample complexity required to learn a particular task by using information from
solvingrelated tasks- Fig. 6.8 gives a simple example of this idea (see Thrun &
Pratt, 1998; Vilalta & Drissi, 2002 for reviews).

Task 1 Task 3 Task 3
+4+ T - - - - - - _ -
- + _ - _ }
- (e . ¥ o _:_,__
++ - - 2-] -+
-+ + - - + - -_t
+° -I-+ - -& - -7 - - - -
att + T - -
P -
/
\ //
N\ /
N /

Transfer Information Between Related Tasks

Figure 1.1: The figure shows three tasks which are related by virtue obtiezpts
to be learned having similar shapes.

Each task in TL corresponds to a particular probability measure genetla¢ing
data for the task. Transfer learning has in general been inspired tmgrbat
to solve a problem at hand, people almost always use knowledge frimmngso
related problems previously. This motivation has been borne out by @bstic-
cesses; TL was used to recognize related parts of a visual scen®imesfigation
tasks (Caruana, 1997), predict rewards in related regions in rearfamt learn-
ing based robot navigation problems (Thrun & Mitchell, 1995), predistite of
related medical tests for the same group of patients (Caruana, 1998fetran
formation across relational/structured data sets (Mihalkova et al., 208@3fér in
difficult reinforcement learning problems (Taylor & Stone, 2007), avehdrans-
fer acrossuperficiallyunrelated classification tasks (Mahmud & Ray, 2007; Mah-
mud, 2007). A key concept in transfer learning, then, is this notion ofe@teess
between tasks. As we will see, in the work preceding the contents of theridiss

tion it was not clear what a proper way to define this notion is (see als@a@aru
1997; Ben-David & Schuller, 2003). This problem is conceptually quiteltiiag
and has also hampered development of even more powerful and prehtgusfer
algorithms that know how much information to transfer, when to transferrimder
tion, and when not to.

Many current TL methods are in essence based on the method developed by
Caruana, 1997. The basic idea is to learmelated tasks iparallel using neural
networks, with all the tasks defined on the same input space (Fig. 1.2)asrhe
sumption is that the different tasks are related by virtue of requiring the satne
of good ‘high level features’ encoded in the hidden units. The goaliadatry to
learn these high level features quicker by learning all the tasks at thetsaeney
alternating the training samples from the different tasks. The same idea&bas b
used for sequential transfer — i.e. input-to-hidden layer weights frawiqusly
learned related tasks were used to speed up learning of new tasks. rixidimeof
relatedness between tasks is ‘functional’ in nature — tasks are cortsigdaed if
they can be learned faster together than individually, or in other wortgyfhave
a common near-optimal inductive biagith respect to a given hypothesis space
(e.g. the common hidden units in Fig. 1.2).

This case was analyzed extensively in a PAC setting by Baxter, 200@ a&Her
probability distributionP was assumed over the space of tasks, and bounds were
derived on the sample complexity required to estimate the expected error (with
respect toP) of the m tasks when the tasks were learned using a sub-space of
the hypothesis space. That is bounds were derived for sample comptaxéy-
timating fitness of inductive biases. Most work done on TL is subsumed by this
analysis, and they all begin with the assumption that tasks have a common, near
optimal inductive bias. So no actual measure of similarity between tasks is pre-
scribed, and hence it becomes difficult to understand, let alone gnguestions
such as *how and when should we transfer information between tasksl ?haw
much information should we transfer?’

Many attempts have been made to solve this problem in practice and, while
quite effective in application domains considered, they are, unfortunaielgoc
in nature. There has been two major efforts to give a theoretical undéngito
this problem and we now briefly describe these methods and how they retate to
theory.

Ben-David & Schuller, 2003 give a more explicit measure of relatedness in
which two tasksP and @ are said to be similar with respect to a given set of
functionsF if 3f € F such thatP(a) = Q(f(a)) for all events (i.e. measurable

Indeed, the discussions in the Neural Information Processing Syg@@ssWorkshop on In-
ductive Transfer (i.e. Transfer Learning) was largely focusethpng to answer this very question.

Output Layer:
- 1unit for each task
Task specific

Weights

—Hidden Layer

Weights shared
amongst tasks

Figure 1.2: A typical Transfer Learning Method.

setsk. UsingF', the authors derive PAC sample complexity bounds for the error of
each task (as opposed to expected error in Baxter, 2000), whiclecandiler than
single task bounds under certain conditions. So the measure of similaritysused
binaryin that the tasks are either related or they are not. So this does not help solve
the problems of measuringow muchinformation to transfer and so forth. And
while the authors have presented applications where this approach dBaies
David et al., 2002), due to the dependence on an a-priori known dpaaich
needs to satisfy the stringent constraint, it is unclear just how generajgpisach

is.

More interesting is the work by Juba, 2006 which extends Baxter, 2008. T
paper deals with finite sample spaces, and computable tasks and hypqibess s
and gives PAC bounds, where the sample complexity required to bounc-the e
pected error is proportional to th@nt Kolmogorov complexitgf them hypothesis
being considered. The number of tasks required for the bounds to hol&192
(Theorem 3). Use of joint Kolmogorov complexity to measure relatedness is a
step in the right direction as it measures how well the tasks compress together
hence theotal absolute information content of the tasks considered as a whole
(see below). However what we actually want is the amount of informatika as
containabouteach other, and for this we need to use ¢baditional Kolmogorov
complexityand thenformation Distancgsee below). Indeed, this is basic idea that
we explore and make concrete in this dissertation.

Let us take a brief look at our approach, which is essentially transfaritea
in the setting of Solomonoff Induction (Solomonoff 1964a; 1964b; 19F8Iter,
2003). Recalling that each task corresponds to the probability measweeatjag
the samples for that task, we assume that each hypothesis/probability ensasur
represented by a program — for example a decision tree is represgntedrb-
gram that contains a data structure representing the tree, and the reledaro
compute the leaf node corresponding to a given input vector. The Kolrmego
complexity of a hypothesih (or any other bit string) is now defined as the length
of the shortest program that outplitgiven no input. This is a measure of absolute
information content of an individual object — in this case the hypothesdiscan be

shown that Kolmogorov complexity is a sharper version of Information Tiéten
entropy, which measures the amount of information ieasemble of objectsith
respect to aistribution over the ensemble. The conditional Kolmogorov com-
plexity of hypothesish givenh’, K (h|h'), is defined as the length of the shortest
program that outputs the prograingivenh’ as input. K (h|h’) measures amount
of constructiveinformationh’ contains abouh — how much informatiorh’ con-
tains for the purpose of constructihg This is precisely what we wish to measure
in transfer learning. Hence this becomes our measure of relatednpgsftiming
sequential transfer learning in the Bayesian setting.

In the Bayesian setting, any sequential transfer learning mechanism/aigorith
is ‘just’ a conditional priod¥ (-|h’) over the hypothesis/probability measure space,
whereh’ is the task learned previously — i.e. the task we are trying to transfer in-
formation from. In this case, by setting the prior over the hypothesis spaae to b
P(.|h’) := 2~ K(I") we weight each candidate hypothesis by how related it is to
previous task(s), and so we automatically transfer the right amount ofiaton
when learning the new problem. We show that in a certain precise sensgdhis p
never much worse than amgasonabldransfer learning prior, or any non-transfer
prior. So, sequential transfer learning is always justified from a thieateer-
spective. This result is quite unexpected as the current belief in thderdearn-
ing community that it should hurt to transfer from unrelated tasks. We shatv th
similar results hold for theorrectinterpretation of parallel transfer learning, while
current parallel transfer methods, used in practice, are in fact seguansfer
methods in disguise.

Kolmogorov complexity is computable only in the limit, that is with infinite
time and resource. Hence our approach gives a transfer method timdy iheo-
retically/formally optimal. At first blush, this might seem to reduce its importance
for those who are interested in practical transfer. But this is not truehasthis
method actually does is give us a ‘gold standard’ that transfer learningodeeth
should be trying to achieve. This assertion is borne out by the fact thepx-
imating this method we were able to construct the most general possible transfe
experiments to date. See also Cilibrasi & Vitanyi, 2005 for an impressive alemo
stration of the power of Kolmogorov complexity approximation based methads fo
difficult clustering problems.

We also note here that since we use a previously learned hypothesisras pr
knowledge, and since we represent each hypothesis as simply a bitvsittiogt
looking at its properties as a program, the prior knowledge being uselecany
arbitrary bit stringb at all. Hence the corresponding set of prior knowledge based
schemes we get af& (.|b) and all the optimality results for our sequential transfer
holds — i.e. 2~ K(l) is the universally optimal Bayesian prior for arbitrary prior

knowledge based methods.

Before proceeding further, let us briefly return to the issue with Jutpgsoach
where the joint Kolmogorov complexity was used to measure task relatedness.
the example above, this would be given Byh, /'), which is the length of the
shortest program that outputsandh’ in sequence. So in essence this measures
the amount of information contained in both taskandh’ together, whereas, as
explicated above, what we require is the amount of information the tasksh’
contain aboueachother. And for this reason use of joihf() is inappropriate.

Our exposition in this dissertation takes the following course. In Chap. 2
we categorize and discuss various transfer methods that have bedapaeyso
far. We discuss their strengths and weaknesses and contrast it withedliod
in general terms. In particular we focus on how these methods measuesitela
ness between tasks and transfer information between tasks, and homagdye
improved upon.

In Chap. 3 we introduce our measure of task relatedness. We starsttde
ing some fundamental notions we need and learning framework we cariBisr
we introduce notions from orithmic Information Theory that we use and extend
to derive our measure of relatedness. We use and extend the theofgrofidtion
Distance (Bennett et al., 1998) to measure relatedness between taséigrtthe
right amount of information etc. For our task space we restrict oursévesob-
ability measures that are lower semi-computable, which is reasonable agili§ cov
all situations where we can learn using computers. In this space the Iifonma
Distance is a universally optimal measure of relatedness between taskgvaie
a sharp characterization of Information Distance by showing it is, uptmstant,
equal to the Cognitive Distance (Theorems 3.3 and 3.4, which are quitesitigre
results in and of themselves).

Based on our transfer learning distance, in Chap. 4 we develop sailyeop-
timal Bayesian transfer learning methods for doing sequential transfeo(&m
4.3). We show that sequential transfer is always justified from a forewpec-
tive (Theorem 4.4). We also investigate parallel or multitask learning ang sho
that while universally optimal methods exist for currerierpretationof multitask
learning schemes (Theorem 4.5), which we term joint-parallel transfisr,jutst
single task learning in a product space. We also show that transfeitailgsrcur-
rently used in practice are just sequential transfer methods in disguite4S8).

We also derive a different interpretation of parallel transfer we terimesmparallel
transfer and a universally optimal scheme for this interpretation (Thed:@mWe
show that this scheme can be said to be performing actual transfer andhissal
justified like sequential transfer (Theorem 4.7). Finally, we show thatrathods
are also optimal with respect to other methods in a sense stronger than tieatlas

Universal sense. That is, itis a powerful base method (due to itsngaivaptimal-
ity) that can be used any time, and can also be used to improve the perfernfanc
any other transfer method that we may feel more appropriate in a giveti@itua

We further extend the theory developed in Chaps. 3 and 4 in Chap. 5. We
extend the universal optimality results of the Bayesian transfer methodsdagbe
of arbitrary bounded loss function and the artificial agent setting vidtsasuHut-
ter 2003; 2004. We also show how our universal distance measurebanased
to construct universally optimal transfer method for the Prediction with Egpe
Advice setting (Littlestone & Warmuth, 1987; Vovk, 1990), in particular in the
methods described in Vovk, 2001. Finally we briefly investigate Kolmogooon-c
plexity of functions and show that under certain natural restrictions orcdhe
putability of this quantity it is, upto an additive constant, equal to the Kolmogorov
complexity of bit strings (Lemma 5.2).

Finally, in Chap. 6, we apply an approximation our method to transfer learn-
ing in Bayesian decision trees. We were successfully able to transfemiation
between? databases from the UCI machine learning repository (Newman et al.,
1998). At the time we performed the experiments, our experiments were thie mos
general transfer experiments, in the sense that we were able to triaufefaration
between databases that have little or no semantic relationship to each other. An
equally interesting aspect of our result is that in our experiments traimgferever
hurt, which also confirm our theoretical result that sequential trafséening is
always justified. We performed a total of 144 individual transfer eixpents.

For us, a most interesting aspect of this work is how beautifully and naturally
AIT formally solves problems in transfer learning that has been vexirearebers
for along time. We hope the work done here will encourage machine legrrang
titioners to look to AIT for inspiration and perhaps for solutions to difficuitda-
mental problems that are unyielding in the face of more traditional appreache

Chapter 2

Previous Work

We gave an introduction to transfer learning in the previous chapter aedaee
will go into various transfer methods developed so far in greater depth

The bulk of transfer methods developed to date can be divided into oneof tw
distinct categories. The first is intra-domain transfer, where the prinoansfis on
transferring information between tasks defined on the same input-outmet, spel
the second is cross-domain transfer where the focus is on transfezdretasks
defined over different input and output spaces. The latter, vegntéo origin, is
in fact the current phase of transfer learning research, and hsisaccontinuation
of intra-domain transfer methods. However, to be able to transfer agoosains
the cross-domain transfer methods need to explicitly measure and use similarity
between tasks to transfer information. Indeed, this explicit attempt to meawire a
exploit task similarity is the key property that distinguishes intra-domain transfe
and cross-domain transfer.

Another strand of transfer learning research is that of programmatis-tran
fer methods, which has been developed largely by Jurgen Schmidhuheok
leagues. The main distinguishing feature of these methods is that the hypothes
space considered are programs, and learning is performed by dtcalasearch-
ing through program space. When learning a particular task, the sisavsed
by beginning with a program that had solved previous tasks.

Given the above, our work can be seen as a merging of cross-domaga tra
fer and programmatic transfer methods. We provide a theoretical foundatio
cross-domain transfer in the Bayesian setting and we do so by considsring
hypothesis space the most general space we will need — the set of cbtaputd-
ability measures.

In the following we will first discuss in succession intra-domain, cross doma
and programmatic transfer methods. In each case we will pay particulati@iten
to exactly how task similarity is measured (implicitly or explicitly) and how this

lIt is also interesting to note the review paper Vilalta & Drissi, 2001, where titteogs discuss
how transfer learning methods relate to othegta-learningmethods. The term Meta-learning is
used to refer to any method that dynamically learns the bias space,tmeaessarily for multi-task
learning - e.g. boosting (Schapire, 1997).

Training Samples
for a single task

Training Samples for
n related tasks

Transfer Learning
Algorithm

Typical Learning
Algorithm

..........................
.
S,

Final Learnt
Hypothesis

Hypothesis Space

Hypothesis subspace
Useful for Related Tasks]

Figure 2.1: Schematic lllustration of typical Transfer Learning Methods.

measure is used to perform transfer. We will then end this chapter withuzsdisa
of the relationship our methods to these methods.

2.1 Intra-Domain Transfer Methods

The fundamental idea behind most current intra-domain methods is exactly the
same, which is that tasks have a near optimal common-inductive bias — i.e. in
the hypothesis space being used by the algorithm there is a subspackothait a
for faster learning of the tasks together. During transfer learning, thispace is
learned by using the tasks to determine which subspace is best for festenl
ization for the related tasks. For instance, in the example from Carua®a,in9

the Introduction, the learned weights from the input to the hidden layeesond

to the shared subspace that is learned from the related tasks. This lesis id
illustrated schematically in Fig. 2.1.

In this section we will look at intra-domain transfer methods developed for
classification and for artificial agent setting. Then we will look at the themie
framework for these methods developed so far and end with some finaivabs
tions on intra-domain transfer algorithms.

2.1.1 Intra-Domain Transfer in Classification

One of the earliest studies of transfer learning in machine learning waesidon
Pratt, 1991. The author showed that, when learning using neural rkestvebiaring
hidden units across related tasks is likely to improve performance (loweraen
ization error from the same number of training samples). This follows from the

8

fact alluded to earlier, that hidden layer units encode high level feathatsnay

be useful across related tasks. The authors demonstrated this by sokimgje

task problem faster by presetting weights in the network learning the task. Th
presets to be used were obtained by training smaller networks on the same task
Interestingly, the total time taken in this combine-smaller-networks approash wa
actually smaller than in when a single monolithic network was used.

Pratt, 1992 used a more sophisticated method to actually transfer information
across a set of related tasks — e.g. transfer from detection of voweiscuitg fe-
males to detection of vowels uttered by males, transfer of diagnosis offiteart
lems from Californians to Swiss patients etc. The improvement achieved both in
terms of generalization error and training time required were significant.ign th
paper, the authors used the Mutual Information between the hypaesutéfined
by hidden units learned in a previous task and samples in the new task (as-in de
sion tree learning (Breiman et al., 1993)) as a heuristic to determine whicarhidd
layer weights from the previous task to use in the new task. Thus, this wesfdra
is achieved.

Mitchell & Thrun, 1993; Thrun, 1995; Thrun & Mitchell, 1995 developibe
Explanation Based Neural Network method to transfer information acifiicsii
real world problems. The idea is again to train a neural network for a phatic
task quicker by using information from related tasks. In this case, exarimphas
the previous tasks are used to construct a function that computes an estimate
the the derivative of the task/function being learned at each sample pobiat.isT
using the examples in the previous tasks, a fungjiamlearned, such that for each
sample point:, g(x) is an estimate of thgg, wheref is the function being learned
for the current task. This gradient information is used to speed up mEwee by
using the TangentProp algorithm (Simard et al., 1992). The Tangentjaittam
is an extension of the famous BackProp algorithm for training neural mkstoat
uses the gradient information at each point to converge faster. Thmpsen in
EBNN is that the gradient functions of the tasks are close to each othieh islof
course a heuristic. In classification, the EBNN was used to solve obmgmdion
problems. Here each task corresponded to recognizing a particulat,adijen
images of the object from various poses and lighting conditions. The EBAN w
able to transfer the information about the transformations necessarydorador
the changes in pose etc. EBNN based classification was also used td fredic
next state for a given action in reinforcement learning problems. In tlsis each
task corresponded to a particular room/environment.

In Thrun & O’Sullivan, 1996 the authors developed a transfer learmiagh-
anism that uses the Nearest Neighbor algorithm as the underlying algorithm.
this case, task relatedness is identified as the degree to which the Nezigrgidy

distance metric learned for one task is useful in another task. The seskefdaen

so far are clustered into groups where within each group the taskstareaty re-
lated i.e. the tasks are clustered so that the distance metric learned usingesxamp
from all the tasks has minimal error over all the tasks. Given a new taskh¢he
distance metric from the most related cluster is used to perform Nearegsthdeig
classification for the new task.

The papers Caruana 1993; 1997 describe the Multitask Learning mettiod tha
we mentioned in the Introduction. Here multiple tasks are learned in parallel and
transfer between tasks occurs by virtue of the tasks having common high lev
features, as described in the Introduction.

Silver and Mercer 1996; 2001 described tidTL method to augment the
MTL system in the previous paragraph. Here, the aim was to learn a particu
task, while using the previous related tasks as 'hint’ tasks (Abu-Mostafig) to
speed up learning. Transfer from the hint tasks to the target task waslkbed by
heuristically measuring relatedness between tasks, and then using thearteasu
set the learning rate for each hint task. The more related a hint task is tagbe ta
task, the greater its learning rate is and the more influence it has on training the
shared hidden layer units. This way, transfer is accomplished from téssiktoThe
most interesting heuristic used was of mutual information between hidden layer
units activations and target values for each task for each sample. If theaimu
information was high, then it means that the contribution for a particular task to
learning the shared weights are high and so the task is related.

Silver & McCracken, 2002; Silver & McCracken, 2003 and Silver andi€o
2004; 2005 developed the same ideas to handle task consolidation via task re
hearsal for Lifelong Learning. That is, these papers addresseproidems of
how a lifelong learning/transfer learning agent may consolidate and retaimlk
edge gathered during its task. The solution the authors proposed was tioeus
nMTL network collect all the knowledge. Problems of catastrophic intenese
was avoided by rehearsal using virtual examples generated by thedezetwork.
When new tasks arrived, the heuristics mentioned above were appliedfidlThie
network to determine which previous tasks are most related to the currieréras
these are used to learn the new task faster.

In Jebara, 2004, the author implemented multi-task learning for SuppddrVec
Machines. In this case, the kernel function to be used for learning evasdered
to be a convex combination of a set of base kernels, where the weigtesemened
during training. The author further modified the SVM objective function s th
the subset of features to used were also determined during the learisg. dh
the multi-task learning setting, the subset of features and weights forl&enree
learned so that they are good for all tasks simultaneously. The amountibig w

10

feature and kernel weight selection in one task is affected by featdrkeainel se-
lection in another task is determined by a parameter that measures task edatedn
and itis set by the user. Hence, the idea was that by using informationéated
tasks, one should be able to learn better weights for the base kernekssainck§.
Multi-task learning was also implemented in Regularized Networks (Evgeniou
et al., 2000) (a generalization of SVMs) by Evgeniou et al., 2005 ance:kivg
et al., 2004. The idea in these works was to convert the multi-task learnohg pr
lem into a single task learning problem by constructing an objective functain th
minimizes error over all the tasks simultaneously. Again, while the mathematics is
different from the methods used above, because of the framewory beéd, the
basic idea is still the assumption that the tasks share a common inductive bias.
Another very interesting work is Ando & Zhang, 2005 where the authodys
multitask learning using linear classifiers. The setup is very similar to the methods
described in the preceding paragraph, and the authors assume thakiwhtare a
commonstructural paramete#d that determines their relatedness. A key difference
from regularized network based transfer learning is that the weightsafdr task
are partitioned into two disjoint sets. Weights in one partiticshetermine contri-
bution of § to the separating hyperplane, while the weights in the other partition
u are task specific. The authors then propose an iterative algorithm to optimize
(0, v) andw in alternate steps given the value of the oth@nd (0, v) respectively.
Another interesting contribution of the paper is the heuristic of using of etdab
data to generate related tasks. Such tasks are generated by usingtane tlee
class label to be predicted and the remaining as predictors. The effit#aig o
algorithm was then established via experiments using text databases. pais pa
also begin with the same assumption as other intra-domain transfer methods, i.e.
tasks are related via a shared parametdiowever since the weights are divided
into shared and not-shared portion, one may expect it to prevent teshaansfer.
However, this is not true as the valuetdiearned is only locally optimal and hence
may not capture the fact that tasks are unrelated. Furthermore gsmoptimized
for all tasks simultaneously, the valuetbthat might be useful for transfer between
certain subsets of tasks is also not learned.

2.1.2 Intra-Domain Transfer in Agents

Most research in transfer learning has been targeted at implementinfgtrans
classification algorithms. The reason is partly because solving the traomster

lem in agent systems boils down to solving it in classification problems (see, for
example, the EBNN algorithm mentioned above). In both cases the aim is to learn
a distribution faster given other related distributions learned previoustiel case

11

of artificial agent systems the distributions are over the next state orvaliiser
the agent makes and the reward it obtains given its history (the sequiesntéeon-
observations that the agent has seen so far).

An example of this is Wilson et al., 2007, where the authors consider Multi-
task Bayesian Reinforcement Learning using a hierarchical Bayggsganach. In
essence, the idea is to assume that the MDPs describing the tasks asgegener
according to some generative process (hence theherarchicalin the name of
the approach). When learning a task, tasks encountered previoaskged to in-
duce a prior distribution over the parameters for the generative proaegshen
samples from the current task is used to induce a posterior distributiorvitlver
parameters for the current task. This posterior is then used in the uayatiow
perform Bayesian reinforcement learning (Sterns, 2000). The eu#re able to
show improvement of performance in some proof of concept problems.

However, there are some exceptions to the above, and we discuss thhem no
The following three agent based transfer methods perform transifey tie notion
of subtasks. Use of this mechanism is missing from the classification basssd tra
fer systems discussed above, but it is obviously vitally important to investigate
people use it to do transfer all the time.

The first method (Singh, 1992; Barto et al., 1995; McGovern, 2002gt5in
et al., 2004a; Singh et al., 2004b), is involved with learning temporally ertbnd
actions (called options) akillsthat the agent can reuse across different tasks. For
example,TURN-ON-THE-LIGHT-SWITCH is a skill that a robotic agent may use
across different tasks. Essentially, the agent learns to solve a sutéck is
present in different domains. A major hurdle for this methods is to determiaé wh
exactly constitutes a subtask. The authors suggest using the advestliéra
event in the world (a light turning on for example) as a way to determine what
subtasks should be.

The second subtask based method we discuss was described in Drummond,
2002. In this method the author considered reinforcement learning agéniPs
and proposed to identify subtasks ‘automatically’. The learning algorittatyass
the shape of the value function to determine subtasks. The value functiom is th
function learned by an artificial agent which is defined on the state spaddpr
each state it gives the value of that state. This is all the agent needs tmideter
which action take at each state. Image analysis methods are applied thewalue f
tion to determine which parts of it stand out visually and these parts are idéntifie
as subtasks. When solving a new task, given a rough shape of thefuatiion
learned after some exploration, the subtasks are searched to see nddcimight
apply at a particular part of the value function, and then that subtaskthed’
into the current estimate of the value function. By composing subtasks likethis,

12

solution to the new task is obtained. Hence, by using subtasks, the agéid is a
to solve the new task quite well after a little exploration (of course, only if the
visual-based heuristic holds).

In Mehta et al., 2005 the authors also used the notion of subtasks. Itsvas a
sumed that the policies for the set of related tasks to be solved are combsration
some base set of policies. The only thing that differs from task to task isefghtv
assigned to each base policy. The authors assumed that this weight imdorma
for each task is given to the agent, and it simply learns the base policieg dsrin
exploration. This way, it is able to learn to solve the related tasks faster.

Transfer Learning methods have also been applied extensively in cExgin
nitive Architectures - that is comprehensive learning systems that are tomart
replicating human level cognitive abilities, either for modeling human behavior o
for controlling robots, intelligent agents etc. Here we consider someseipia
tive set of architectures such as Soar (Newell, 1990), Prodigy (Velbal., 1995),
Icarus (Langley & Rogers, 2004) etc. All of these use some type of siallan-
guage (such as FOPL, or the STRIPS language) to encode knowlithgeagent.
This knowledge describes the entities that exist in the world (&rg.L-BITS in a
robot drill press application) and the known effect of the agent’s astiomthese
entities (e.gAPPLY-DRILL cause3{OLE-IN-METAL-PLATE). In general, these ar-
chitectures implement sophisticated extensions to classical planning, whioh lea
to improve planning performance from experience. The actual methodsysdp
vary from architecture to architecture, but they usually take the formashieg
macro-actions (Russell & Norvig, 2003). For example, Prodigy usesdofyical
Learning to determine what sequence of actions will be useful in a particasia,
using knowledge about solutions/sequences of actions used in similar tasks

2.1.3 Theoretical Framework

We have already discussed existing theoretical frameworks in the lctiodun
all the detail we feel is necessary. So the contents of this section will bengtahe
repetitive, but is included for completeness.

The major theoretical work done for transfer learning are Baxter 19988;
2000 Ben-David & Schuller, 2003; Juba, 2006. Baxter considersat@ning
transfer learning framework. The fundamental assumption made is thatdesk
drawn from the task space according to some distribuffonNow M different
tasks are drawn from this space according’tand then the problem is to choose
choose a hypothesis space, from a given set of hypothesis sfztasinimizes
the expected error for new tasks drawn according’toln this framework the
author derives PAC sample complexity bounds for the expected errqrasfiaular

13

hypothesis space. All the intra-domain transfer methods discussedfablavaler

this framework. For instance, for the neural network learning case inada,
1997, givenn hidden layer units, each possible hypothesis space corresponds to
a particular value for the input-to-hidden layer weights. Given such athggis
space, each possible hypothesis in this space corresponds to a peaissigament

of values to the hidden to output layer weights.

Hence, Baxter 1995; 1998; 2000, and consequently in all the intraidoma
transfer methods, the similarity between tasks is assumed to be in the form of com-
mon inductive bias, that is a subset of the given hypothesis space wihelpfsi|
in quicker generalization. Therefore this similarity measure is largely demtnd
on the algorithm being used. The similarity between hypotheses in a particbtar s
space is measured by the capacity of the subspace. The capacity obsipace
H for a given reak is given by the size of the smallest subsetdf H such that for
eachh € H, there is a& € B with the absolute difference between the expected
loss incurred by, and and the expected loss incurredibig less thare. This is
a measure of richness’ of the subspace, i.e. how many ‘differentigses are
there in the space.

More interesting is the approach by Juba, 2006 who gives PAC bourits in
setting of Baxter, 2000, where the sample complexity is proportional to the joint
Kolmogorov complexity of then hypotheses. The joint Kolmogorov complexity
measures how well the programs computing the hypothesis, when interasdtéd
strings, compress together than individually. So the Kolmogorov complexitgis th
measure of relatedness. However, the bounds hold only #1192 tasks (Theorem
3), and as we establish in this work, the more appropriate measure of relased
is the conditional Kolmogorov complexity and the Information Distance (Bennett
etal., 1998).

In Ben-David & Schuller, 2003 on the other hand, the authors measurersimila
ity in terms of the distributions that correspond to the tasks themselves. Tloesauth
defines two measureB and @ to be F similar if, in a given set of functiong-,
there is a functiory that maps between events that have the same probability under
P and@ - thatisP(A) = Q(f(A)). Using this measure of similarity, the authors
are able to bound the sample complexity for generalization error of eachgdask a
opposed to expected generalization error.

2.1.4 Intra-Domain Transfer: Coda

We hope what becomes clear from the above discussion is that, as ahelvas a
practically effective intra-domain transfer methods are, they are healiant on
the assumption that tasks are related functionally. That is, it is better to learn th

14

tasks together than separately. However, as pointed out in Carud@g,tdghsfer
methods can significantly degrade classification accuracy if this a-pesunap-
tion does not hold. Therefore, to make transfer algorithms more broaglicap
ble, it is imperative that we derive a general measure of task relatetingsgelop
transfer methods that know how much information to transfer, when to &@ansf
information and when not to. This has been a major focus of researcmsfdra
learning, and cross-domain transfer methods try to address this probkeprim-
cipled way. As we show in the rest of this dissertation, our work in this thégis g
a constructive theoretical foundation for cross-domain transfer inyg@$an set-
ting, and hence gives a completion of the programme for transfer leasegich
outlined in Caruana, 1997.

2.2 Cross Domain Transfer

A recent strand in transfer learning research is the so-called crossinldrans-

fer method (Swarup & Ray, 2006; Mihalkova et al., 2007; Taylor & St@W€7).

In this, the goal is to transfer across tasks that are in different dondefised

over different input, output and hypothesis spaces. Current mettzodenthese
problems by assuming the existence of some kind of ‘structural similarity’ legtwe
hypothesis from different spaces that measure the amount of traregfon neces-

sary to convert a hypothesis in one space to another hypothesis inrenlifpace.

This structural similarity is then used as the measure of similarity between tasks.
We now discuss the exact form this idea takes in the papers mentioned abdve
how this measure is used to effect transfer.

In Swarup & Ray, 2006, the authors consider a proof-of-conceyilem do-
main where they learn a sequence of boolean functions using spanrsg inetd
works (Utgoff & Stracuzzi, 2002). Information between tasks is transtkby
finding common substructures across neural networks learned in theyséasks.
These substructures are discovered using standard graph-minimghahgofrom
data-mining literature. Each task is learned using a genetic algorithm (Mitchell,
1996), and when learning a new task, these common substructuresedrasis
primitiveswhen constructing candidates for the new generation. Hence the search
is biased toward networks that contain sub-structures that were foureldcom-
mon across previous tasks. Our practical approximation to our theoryap.Gh
in fact uses a similar idea, but for decision trees in a Bayesian setting.

In Mihalkova et al., 2007, the authors transfer information between stectu
datasets which are learned using Markov logic networks (Richardsoomiimyos,
2002). In this case transfer is performed by mapping between compatédde pr
cates learned in one task to a new task. Predicates are compatible if thethdave

15

same arity and the types of their argument agree with type-constraints chyce
previous mappings (if any). The authors were successfully able tderdretween
real world databases.

In Taylor & Stone, 2007, the authors transfer information between the com-
plex reinforcement learning problems of Keepaway, Ringworld and Krighst.

In this case transfer is achieved by defining transform functions thelétes be-
tween source and target states and actions, and hence policies leaaredlth
task can be used to speed up learning of policies in the new tasks. These tra
form functions were constructed via specific, known prior knowledgeuaithe
problems being considered.

The most interesting thing about cross-domain transfer methods is that these
methods actually try to measure the relatedness between tasks in a principled wa
and use it to determine how to transfer information. One way to view this thesis
is as an affirmation that this is more or less the correct approach and tbedtthe
cally there is in fact an optimal method for measuring relatedness and tramgfe
information.

2.3 Programmatic Transfer Methods

In this section we will discuss two other transfer methods that are sufficiently
unique in their approach that we believe they deserve their own sectioeseTh
methods are the Optimal Ordered Problem Solver (Schmidhuber, 2004hand
Godel Machine (Schmidhuber, 2006). In both cases the learning algs@hmhes
through program space to find solution to a given task, and uses psgviound
programs, that solve previous tasks, to guide the search for the newltaiskap-
proach is interesting because when learning with computers the only hgpsthe
we can consider are ones that are computable (i.e. has representgtiograss).

In this respect, these methods are similar to Levin Search (Levin, 198} w@tter
Search (Hutter, 2002) — but the key difference is that these methodsewseys
tasks to speed up search. We will describe each in turn.

OOPS solves a sequence of problems, where a problem is defined tiyra re
sive functionf, that given a problem instanaeand a solution instancg outputs
1if y is a solution tar and otherwise outputs The goal now is to find a program
that given problem instances outputs solution instances. In OOPS, suimraes a
prior P over the set of all programs. When learning tietask, the learner spends
half the time trying to use the prograpa; learned so far, that solvedl thei — 1
previous tasks, to solve thi# task and uses the other half of the time trying to con-
struct a new program to solve tifé task only. This learning system is bias optimal
—that is OOPS will find the correct progragmn time proportional taP(q).

16

As an example application of OOPS, when solving classification problems,
the set of allowed programs may be those computing particular type of hymthe
(such as decision trees). In this case, starting with a null hypothesis thabda
highest possible error on the training sample, each ‘task’ would camedp find-
ing a hypothesis that is better than the previous onef,.8othis case would output
1 if a found hypothesis is better than the previous one and oGtptiterwise.

In the Gddel machine, the goal is to construct an optimal reinforcement learn-
ing agent operating in some domain. The machine starts off with some gengéralize
problem solver (such as OOPS) as the current learner, then attepdhusses the
current learner to learn the value function. What makes tiveGmachine unique
is that it also tries find a maodification to the current learner thatagablyoptimal
modification to the current problem solver (including the prover), whezgthof
is in some appropriate formal system. Thédel machine is optimal in the sense
that it tries to improve itself by finding provably optimal modifications, which is,
of course, any computable learner can do.

The basic ideas and the optimality proofs in each of these methods are quite
straightforward, but nonetheless quite interesting as they try to solvedbéeprs
by searching directly through the space of all programs. However biéfér rom
implementational issues. The main challenge in the case of OOPS is that to get it to
work for some problem domain, one needs to spend significant effostreating
an instruction set that is useful for solving the problem at hand — withalt grior
knowledge, the machine may take too long. This is equivalent to selectingdsatu
for a particular problem, however the difference is that features aré easier to
specify in the traditional learning setup as more often than not they ara give
the problem definition itself, while construction of an appropriate instruct&n s
is likely to be more time consuming and difficult. So this is justifiable for very
difficult problems, as in the tower of Hanoi problem for langén Schmidhuber,
2004. This is more difficult to justify for general inference problems wlearning
algorithms are meant to deal with diverse domains. The problem with dokelG
machine is that it requires implementation of an automated theorem prover suitable
for the problems that the @&lel machine is using and it requires constructing the
right proofs to operate successfully. Implementing appropriate theorevens
may not be that difficult, given that many such softwares already exisfinoling
the right proof quickly requires appropriate heuristics which are likelfycdilt to
construct for the the problems thé&@el machine is intended for. However, if these
challenges are solved these methods will be quite formidable indeed.

17

2.4 Discussion

All current transfer methods begin with a particular assumption of relassdoe
tween tasks, differing only in how explicitly they try to exploit this assumption.
Intra-domain transfer methods rely on using this assumption implicitly and hence
tend to suffer when this requirement is not met. Programmatic transfer methods
also make a similar assumption, where tasks are related because by viraie of r
quiring similar subroutines. Cross-domain transfer methods, on the othdr ha
actually try to measure this relatedness and so transfers information more intelli-
gently, and are not as susceptible to problems arising from tasks beielgtewl:
However, all of the above methods lack a general theory of task rekgednith
which to perform transfer as intelligently as possible. And so there is asoyet
clear theory of transfer algorithms that know how much information to transfe
when to transfer information, and when not to.

In this thesis, we present such a theory; we present formally optimal nsethod
of measuring task relatedness and performing transfer in a Bayesiam s€2iin
method formally solves the current problems in transfer learning of detemgninin
when to transfer information when not to, and how much information to transfe
The approach we adopt is a hybrid of cross-domain transfer methoqs@mem-
matic transfer methods. We consider Bayesian learning, but the hyposipesis
consists of programs computing probability measures. The measure ofinelsse
we use is the very general Information Distance (Bennett et al., 1998)hwin a
sense, current cross-domain transfer methods approximate. Ountearethod is
updates according to Bayes rule in the formal setting, and posterior saraplirg
Markov Chain Monte Carlo methods in the practical setting. Swarup & R#6,20
a cross domain transfer method, also use stochastic learning methods. Among th
programmatic transfer methods OOPS uses a similar stochastic depth fict sear
through program space, howevedd&l machine uses proof search, which may or
may not be stochastic depending on the algorithm used (Fitting, 1996)rthefu
contrast to the latter two, the practical approximations to our method we constru
are easily able to make use of features provided in the problem descriptiaiso
converge within an acceptable period of time by using Markov chain Montie Ca
methods (Chap 6).

Finally, our transfer method also translates quite readily to the Bayesian Re-
inforcement Learning framework (Dearden et al., 1998) via the resukfuiter,
2004. However the optimality results are weaker, and so this will need to-be ex
plored further in future work.

18

Chapter 3

Universal Transfer Learning
Distances

In the previous chapter we looked at existing methods for performingféraasd

in the process determined that the key unsolved problem here is that itdkeaot
how to measure task relatedness. We also showed that this problem makes it d
ficult to design algorithms that know how much information to transfer, when to
transfer information and when not to. In this chapter we give a formally optima
solution to the problem of measuring task relatedness. Then in the nexéchap
show how this may be used to derive formally optimal Bayesian transferitegarn
methods, and solve the problems with actually performing transfer. Wegutase
follows.

First we introduce some basic notation, notions and some concepts from com-
putability of real functions that we use. Then we describe the spacebébility
measures that we use as our task space. This space will be shown fidbensly
general for the purposes of machine learning. Finally, we describeroversally
optimal measures of transfer learning distance and show the sense inthisich
measure is optimal. Our goal in this chapter will be to explore how much similar-
ity between tasks we can uncover using computers/Turing machines gfirgtein
time and memory. We will explore this using tools from Algorithmic Information
Theory.

3.1 Fundamentals

We usea := b to mean expressioa is defined by expressiolh We uselN,, to
denote the numberk 2,--- ,m. For any finite alphabetl, we useA*, A™, A>
to denote the set of all finite strings, lengthstrings and infinite sequences i
respectively. Let be the empty string. Far,y € A*, xy denotegy concatenated
to the end ofc. Letl(x) denote the length of a finite string We will usex; ., to
denote the first elements of a sequenaeeandz.; the elements.; ;. We use
x4 to refer to thet'” letter of the sequence and reserve single indices to refer
to different sequences. We will use ,, as a shorthand for, za, - - - , .

We use(-,-) to denote a standard bijective mapping froth x A* — A*.

19

()™ denotes then-arity version of this, an¢gl(™ denotes thé' component of the
inverse of()™. We assume the standard ‘lexicographical’ correspondence between
A* andIN — e.qg. forA := {0, 1}:

00 «
01 «
11 <~
000 «
001 <

S O e W NN = O

Depending on the context, elements of each pair will be used interchdpgsab
01 (and4) may mean eithebl or4). Arational numbet /b is represented biu, b).
We use% to denote< upto an additive constant independent of the variables in the
relation i.e. f(x) % g(z) = f(z) < g(x) + ¢. We use the same convention
for all the usual binary inequality relations. L&t> := 0, log := log, andm
the self-delimiting encoding ofr € IN usingi(m) + 2i(I(m)) + 1 bits where
I(m) = |log(m + 1)] (Li & Vitanyi, 1997). Self-delimiting means that, given
is embedded in some longer bit string, and we are given whebegins, we can
determine its end point (and heneg without any further information.

We fix a reference prefix universal Turing machiie 5* x A* — A*, where
B := {0, 1} is the alphabet for programs, antl A O B, is an arbitrary alphabet
for inputs and outputs. ‘Prefix’ means that the valid programg/fidorm a prefix
free set, that is no program is a prefix of another. Standard prograntamggages
satisfy this property by virtue of the begin and end markers feamd} in C,C++
and Java). The prefix property also entails another property whicbdégatfor us,
which is that the lengths of valid programssatisfy theKraft inequality (see Li
& Vitanyi, 1997; Cover & Thomas, 1991):

Z 9—l(p) <1
p

U(p, z) denotes running the prograpnon inputz. When it is clear from the
context thap is a program, we will denot& (p,) simply byp(x). We need some
notions of computability of real functions.

Definition 3.1. A real functionf : A* — IR is upper semicomputableif there is
a programp such that forz, t € IN,

20

1. p({z,t)) halts in finite time
2. p((z,1)) > p((z,t + 1))

3. im0 p({x, 1)) = f(2).

A real functionf : A* — IR is lower semicomputableif — f is upper semi-
computable.

A functionf : A* — IR is computable/recursiveif there is ap such that
Vn,z € IN,

L p((z,m)) = flao)] <277
2. p({x,n)) halts in finite time.

We usep(z) f} ¢g(x) to denote that at: p and ¢ lower semicomputes the same
function.l

So functionf is upper semi-computable when there is a program that computes
smaller and smaller approximationsf@r) in finite time, but we never know how
close the approximation is. Functighis lower semi-computable when there is
a program that computes larger and larger approximatiornf§io in finite time,
but we never know how close the approximation is. And finally, a funcfias
computable when we can compuytdo any arbitrarily specified precision in finite
time.

As mentioned earlier, in this work we wish to investigate how much similarity
we can uncover and the best transfer method we can derive, giveitaméisources.

We achieve this goal by considering only similarity functions and probability- mea
sures that are upper and lower semicomputable respectively. Tha feashoos-

ing lower semicomputable probability measures instead of upper semicomputable
ones is given in the next section. The reason for choosing upper seputable
similarity functions instead of lower semicomputable ones is because this is the
only way we can use the similarity functions to induce lower semicomputable prob-
ability measures — see Sect. 4.2.

3.2 The Task Space and the Learning Problem

In transfer learning we wish to transfer information between tasks. Eakhda
learning problem and recall that each task is identified with the probability mea-
sure generating the samples for that problem. Now the question becomel, wh
class of probability measures should we consider as our task space r&osfer
framework to be reasonably powerful, it seems appropriate to requtrarth@om-
putable probability measure should be included in that class, as any prdidém

21

we hope to be able to solve will either itself be computable, or have a redsonab
approximation that is computable. In this section we describe such a clask, wh
is the set of all lower semicomputatdemimeasuresThis space was introduced
for use in inductive inference in Solomonoff, 1978, and discussedqusgly in
Zvonkin & Levin, 1970 (see below). We also considgequence prediction tasks
instead of typical i.i.d. tasks considered in most machine learning literature. Se
guence prediction tasks are generalizations of the i.i.d. case and so wéldeen
anything by this choice. We refer the reader to Chap. 6 and Hutter, 32@8, 6.2
for details on this issue.

As mentioned above, our task space is a particular subset of the set of all
semimeasures

Definition 3.2. A semimeasureas a functionf : A4* — [0, 1] such that

Ve e A, f(z) > Z f(za).

acA

So f(x1.¢) is the ‘defective probability’ that a particular infinite sequence starts
with the prefixzi.; (f is a probability measure if(¢) = 1 and the inequality is
an equality). Sof is equivalent to a probability measupedefined on[0, 1] such
that f(z) = p([0.z1.4,0.21.+ + | A|")) where0.zy.; is in base.A|. The conditional
probability of the next letter being given the string;.; observed so far is

f(r14a)
f(@1:4)

Zvonkin & Levin, 1970 showed that the set of all lower semicomputable semimea
sures is recursively enumerable. That is, there is a Turing madhisiech that
T({(i,-)) lower semicomputeg; (-), thei’® semimeasure in this effective enumer-
ation. SinceU is universal, for eacli € IN, there is a progranp; such that
pi(z) = T((i,z)). LetV be the enumeration of these programs — pge.€ V
lower semicomputeg;, and each lower semicomputable semimeaguiecom-
puted by at least ong; € V. We will consider enumerable subs&tsof V as our
task space, as any probability measure that we may expect to be able tmlesirn
either be computable, or have a reasonable approximation (however iterdes: b
fined) that is computablé/ is the largest superset of this that contains any Bayes
mixture of its own elements, which is important in Chap. 4 (see also Hutter, 2003,
Sect. 2.6 and Li & Vitanyi, 1997). See also Hutter, 2004, Sect. 2.4.3 foemor
details on the class of semimeasures that contains mixtures of its own elements.

The learning problem we consider is the online Bayesian sequencetmmedic

flalzi) =

22

setting (Fig. 3.1) :

Definition 3.3. (Learning in Bayesian Sequence PredictioVhen learning task
u, at each step, a € A is generated according to(.|z;), wherex ., was gener-
ated by in the previoug — 1 steps. The learning problem is to predict the letter
a at each stel

X1

ith bit

|— Xt+1

101010101011....1010001001E}11...0101011011?

For each i, distributed

according to p(.[x;) Sequence Prediction Problem:
1 unknown; predict X¢44-

Figure 3.1: The Sequence Prediction problem wHes 5.

3.3 Distance Function for Tasks

In this section we will define our universally optimal measure of transfenieg
distance. We will start by showing why classical Information Theory iséoaecte

for our purposes and through that motivate the use of Algorithmic Information
Theory to measure relatedness between tasks, i.e. transfer learnimgelistse

will then define our measure and describe its optimality properties, which will
be used later to derive universally optimal Bayesian transfer learningoaeeih
Chap. 4.

3.3.1 Kolmogorov Complexity Basics

The main unsolved problem in transfer learning, as discussed in thedprgce
chapters, is to measure the amountnddbrmationtasks contain about each other.
The traditional and accepted measure of information of a probability measure
which we have identified as our tasks, is the well known Information Thieore
Entropy (Cover & Thomas, 1991). For a probability measHrever a countable
setX, this is defined as:

H(X):=—-> P(z)log P(z) .

zeX

So H(X) measures the information content of the ensemble of objEctgith
respect to the measufe. The amount of information that a measupecontains

23

aboutP is given by the relative entropy/KL divergence:

DPIQ) =~ P) f

zeX)

Note that both? and() need to be defined over the same Xetln transfer learn-
ing, we are interested in how much information measurg € V contain about
each other — and it seems at first blush that KL divergence shoulddupiat for
this purpose. However, it is often the case that we wish to transfer betwea-
sures defined on different spaces (Swarup & Ray, 2006) i.e. th&ts points at
whichQ(z) = 0, but P(x) # 0, and in this case KL divergence is undefined. Fur-
thermore, what we are really interested in is not just any type of informatiatn,
amount of constructive information th&t and @ contain about each other —i.e.
amount of informationP contains for the purpose of constructing measrand
vice versa. So in this case classical Information Theory does not gige appro-
priate measure. To solve this problem, we have to turn to Algorithmic Information
Theory (AIT) (see Li & Vitanyi, 1997 for the results below and a compgretive
introduction to AIT).

AIT remedies the above problem by givingcanstructivemeasure of infor-
mation thatindividual objects contain about each other via the beautiful notion
of (prefix) Kolmogorov complexity of strings (Levin, 1974; Gacs, 19Thaitin,
1975):

Definition 3.4. TheKolmogorov Complexity of z € A* is given by the length of
the shortest program that on inpgt outputse:

K(z) := min{l(p) : p(¢) =z} .

The intuition is that, the minimum number of bits we would need to communi-
cate to someone so that they can reconstruct the stiigmthe length of the shortest
programp the outputse given no input. Hence the length pfis a measure of the
amount of absolute information content:ofe A*. As we shall see, for transfer
learning we will need to measure the amount of information a stimgntains
about another string, and this is given by the conditional version gt

Definition 3.5. Theconditional Kolmogorov complexity of x giveny, x,y € A*,
is the length of the shortest program that outpuigiveny :

K (aly) = min{i(p) : p(y) =z} .

24

Again, the intuition is that length of := arg K (z|y) is the minimum number
of bits we would need to communicate to someone so that they can reconstruct
given that they already have string Hencel(p) is an absolute measure of the
amount of information thag contains for the purpose of constructingNot only
are these quantities intuitively satisfying, as we shall soon show, the Kohmogo
complexity and conditional Kolmogorov complexity are both sharper versibns
the entropy and conditional entropy in classical Information Theory.

To define the above quantities for strings we simply use th@” map to en-
code then strings to a single string, and use the definitions on that single string. So
for instanceK (z, y|z, w,v) := K((z,y)|(z,w,v)) etc. This does not cause any
problems becausg™ is computable with a short, constant length program com-
puting it. We also note that fixin§y as a reference universal Turing machine does
not cause problem because of the celebréedriance TheorentKolmogorov,
1965): given any two universal Turing machiriésandU;

\Ku, (zy) — Ku, (z]y)| =0

where Kz is the conditional Kolmogorov complexity where the programs are
for universal Turing maching. We list some fundamental properties/of

Lemma 3.1. Vx, y, y1.m € A™:

1. K(zly) < K(x).
2. K(z) < K({x, y1;m1)™).

3. The functionk (z|y) is upper semicomputable.
4. K(z|arg K(y)) + K(y) = K (z,y) (Gacs, 1974; Chaitin, 1975)

5. K(z,yl2) = K(z|arg K (y|2), 2) + K (y]2) = K(zly, K (y|2), 2) + K (y]2)

Proof. (Sketch The first two properties follow from the definition of thé func-
tions and the following. The first property follows from the fact that any-p
gram that computes, with a constant length modification to ignore any input,
is also a program to output giveny. The second property follows because any
program that outputsr, y1 ,,—1)™, with a constant length modification to output
@, y1,m—1)" (", also outputs:.

For the third property, we note that the following prograrapper semicom-
putesK (x|y): p(((z,y),t)) runs all programg ony with I(¢q) < 2I(x) (a loose
upper bound oK (x|y)), in parallel by ‘dovetailing’, fort steps each.p then
outputs the length of the shortest program found thus far.

25

The fourth property, discovered first by Gacs, and then indepdigdsnChaitin,
is one of the deepest and fundamental results in Kolmogorov complexityytheor
The proof is quite long and complex, and we refer the reader to Li & Vitanyi,
1997. The fifth property is a conditional version of the the fourth prigpemnote
the lack of a constant of equality in the final equality. This is becaugé (y|z)
and(y, K(y|z)) contain the same amount of information — given one we can com-
pute the other and vice versa.. O

The functionK (z|y) is upper semicomputable which is in agreement with our
goal to investigate what type of transfer is possible given infinite ressurtVe
will also make extensive use of the following minimality propertyrofz|y):

Lemma 3.2. For any partial, non-negative, upper semicomputable functfon
A* x A* — R, with f(x,y) = co when it is undefined, we have:

K(zly) < flay) it S 270 <1

where the constant ili is equal toK (f) + O(1) whereO(1) is quite small (see
Li & Vitanyi, 1997).

In the above lemma the dependence of the constart of) can be ignored
in this work for two reasons. First, in our applicatiofisvill either be symmetric
distance functions (see Def. 3.8) and Bayesian priors (see Def. Weltassume
that all such distance functions and probability measureseasonable- i.e. that
they have shorO(1) length. That this is a acceptable assumption to make can
be seen by contemplating the distance functions and priors used in pr&ice.
ond, should the reader find the first assumption onerous, we refertth&mct.
4.4, where we dispense with even this very reasonable assumption awé adu
different and arguably more robust interpretation of our optimal methods.

Using the above lemma, we can now show the relationship betWeamnd H
whereH is the classical information theoretic entropy. et ¢, and letP € V.
Now f := —log P satisfies the condition for lemma 3.2. Hence we have

K(z) % —log P(z) .
Taking expectation with respect 10, we have

However, sinces (x) is code word length of a prefix free code, the Noiseless Cod-

26

ing Theorem (Cover & Thomas, 1991) states:

H(z) < Ep(K(x)) .
And hence, we have that P-expect&dx) is, upto an additive constant equal to
H(P). In a similar manner it can be shown thd{ P|Q) is equal to P-expected
K(zly).

3.3.2 Universal Transfer Learning Distance for Tasks

K (x]y) measures the amount of information stripgontains about. Now, to
measure the amount of information strimgcontains about string and string y
contains about string, Bennett et al., 1998 defined the following function:

Definition 3.6. Thelnformation Distance betweenz, y € A* is the length of the
shortest program that given outputsy, and vice versa:

Eo(z,y) := ngn{l(p) cp(x) =y, ply) =z} .

The punchline is as now this. Fer, € V, p andy are also strings (in-
terpreted as programs). Hené&u|p) measures the amount of informatign
contains for the purpose of constructipgwhich is exactly the type of information
we want to measure for transfer learning. SimilaBy(u, ¢) measures the amount
of constructive informatiom andy contain about each other, which is exactly the
measure of distance that we have been looking for when trying to measkneta
latedness. Furthermore, bahand Ey are upper semicomputable, which is again
in agreement with our desire to investigate transfer in the limit. Upper semicom-
putability of X was established in Lemma 3.1. To do the sameHgrconsider
the following prograny that upper semicomputés (x, y). p({{z,y), t)) runs all
programsg ony andz, with I(¢) < 2max{l(z),[(y)} (a loose upper bound on
Ey(x,y)), in parallel by ‘dovetailing’, fort steps eachp then outputs the length of
the shortest program found thus far.

HenceEy is the natural candidate for a transfer learning distance. We will
however use a sharper characterizatiofvgf

Definition 3.7. TheCognitive Distancebetween:, y € A* is given by

Ey(z,y) == max{K (z|y), K (y|z)} .

27

E4 is upper semicomputable - we simply upper semicompute in ‘parallel’ (by
dovetailing) each term in the definition &f . Bennett et al., 1998 proved:

Theorem 3.1.
Eo(z,y) = E1(z,y) + Ollog(E1(z,y))] -

The above has been termed twversion theorenHence,F; is considered a
sharper version ofy because it is expressed in terms of the more well understood
and investigated functio and is also equal t&, upto a logarithmic term. In
fact, we will enhance the status Bf by proving an improved version of Theorem
3.1 where théog term is replaced by a constant.

The reasortr; is particularly interesting is because it uncovers, in a very formal
and precise sense, more information than any adlkenissible distanc&unction,
which is a class of distances that we define below. The reason it is suiffficie
consider only admissible distances in this dissertation is because, as w8stiow
4.2, any transfer learning distance function that can be used to cdrestracsfer
learning algorithm in a Bayesian setting must be an admissible distance. Sotwithou
further ado, we define:

Definition 3.8. An admissible distanceD is a partial, upper semicomputable,
non—negative, symmetric function @i x A* with Vy

o Pl <

(we will assumé)(z, y) = oo when it is undefined). L&? be the set of admissible
distances. AD € D is universal in D if VD' € D,Vz,y € A*, D(z,y) %
D'(xz,y). &

Bennett et al., 1998 also showed that

Theorem 3.2.VD € D,Vz,y € A*
+

That is, E is universal inD (this was proved via Lemma 3.2 with= D, as
D satisfies the requisite conditions due to its admissibility).

So what the inequality in Theorem 3.2 translates to is fatincovers more
similarity than any other admissible distance function. In the paper Bennéit et a
1998 itself the authors showed that the above holds for admissiéiiecs but as
pointed outin Li et al., 2004 this holds for admissible distances as well. Adri@ssib
distances include admissible versions of Hamming, Edit, Euclidean, Lempel-Ziv
etc. distances (Bennett et al., 1998; Li et al., 2004; Cilibrasi & VitanyQ330

28

See Bennett et al., 1998 for an eloquent account of why admissible ckstéand
distances satisfying the Kraft Inequality) are interesting for strings.mdézed,
practical versions of; has been applied very successfully in various clustering
tasks (Li et al., 2004, Cilibrasi & Vitanyi, 2005).

We now state our improvement of the conversion theorem, (proof in Sect.).

Theorem 3.3.
EU(xvy) ; El(l'ay) .

Given Theorem 3.3, we now define:

Definition 3.9. Thetransfer learning distance between two tasks,p € V is
defined ag; (1,). A

So from the above, we immediately get that transfer learning distance is uni-
versal in the class of admissible distances that may be used for measuking tas
similarity. This formally solves the conceptual problem of how one measuwsks ta
similarity. We will use this distance function in Chap. 4 to formally solve other
problems in transfer learning mentioned in the Introduction and give mosemsa
why it is sufficient to consider only admissible distances (see discusdlowiing
the proof of Theorem 4.3).

3.3.3 Proof of Theorem 3.3

Proof. Let p be a program such thatx) = y andp(y) = z. So by defini-
tion Ei(x,y) < l(p) for all suchp. Sincearg Ey(z,y) is a such g, we have
Eq(z,y) % Ey(z,y).Now we prove the inequality in the other direction. Fix any
two stringsa, § and setF; (a, 3) = E1. Now we will derive a programz; with
I(qz1) = E1 which givena outputsj3 and giveng outputsa. We will do so by
constructing a graplkir that assigns a unique color/code of lengthE'1 + 1 to
each pair of strings, y with £ (z,y) < E1, and the code will turn out to be more
or less the programg, we need to converd to 5 and vice versa. We note that
the proof of Theorem (3.1) also uses a similar graph construction metheftheD
G := (V, E) with verticesV” and undirected edgés:

Vi={x:2ze€ A} andE := {{z,y} : x € A,y € A, }, where,
A:={z: 3y, Ei(x,y) < El}andVz € A, A, :={y: Ei(x,y) < E1} .

29

The degree of € V is |A,| by construction. Hence the maximum degre&:at
Ag = maxgea |A|. We define the set of colors/code; as:

Cp1:={p0:p € B} U{pl:pe B}, where,
B:={p:p(x)=y,v € Ay € A;,l(p) < E1} .

g1 Will need to dynamically construet andCg1, and assign &alid coloring to

the edges ir7 usingCg. For this, all we need i€1. We run all programsg with

l(p) < Elonallxz € A* in ‘parallel’ by dovetailing and record triple®, z, y)

such thatp(z) = y. Whenever we recor@p, z,y) we check to see if we have
previously recordedq, y, z). If so, we addp0, p1, q0, q1 to Cg1, z,y to V and
{z,y} to E. Of course, if any of these already exist in the respective sets, we do
not add it again. We color a newly added edgey} using a color fronCg; using

the First-Fit algorithm - i.e. the first color that has not been assigned totaey
{z,w} or{y, z}. So, by dynamically reconstructir@, givenz (y) and the color

for {z,y}, g1 can use the color to recognize and outp).

ThatCg; has sufficient colors to allow valid coloring can be seen as follows.
p € Biff [(p) < FE1 and for somed,, y € A,,p(x) = y. So for each4,, for
eachy € A, 3p, € B, andp, # p, Vy' € A,y # y sincep,(z) # y'. This
means, for eact,, |Cg1| > 2|A.|, or |Cr1| > 2A¢. By the same reasoning
and the construction procedure above, as we dynamically conétraictiCg, the
estimate€’;; and AL, at stept of the construction process also satisfiés, | >
2AL. Now at stept First-Fit requires at mostAL, — 1 colors to assign a valid
color, as two vertices could have exhausted at ma{g — 2 colors between them.
Therefore First-Fit always has sufficient colors to assign a valid icwjor

Each color/code i€ is at mostE'l + 1 in length by construction. So, as we
constructG, « and shows up in the graph at some point with code/color (say)
v, andl(y) < E1+ 1. From construction of g1, «y is a self-delimiting string,
followed by0 or 1. v and E1 can be encoded by a stripg0Z!~!(®)1, wherea is
0if v = p0, or 1 if v = p1, and0®'~4?) is 0 repeatedE1 — I(p) times.

The desired programy;; has encoded in it the string0”! /()1 at some fixed
position, andgg1(z) works as follows.qgr; decode® (which is possible as it is
self-delimiting) and then reads the next bit, whichujgo get~. It computesE'1
from counting the number dfs aftera andi(p). Whena = 0, it is not confused
with the 0s following it because it is the bit that appears immediately aftend
p can be decoded by itselfiz1 then reconstruct&’ using £1, and finds the edge
{z,w} with color ~, and outputsv. By construction, ifz = « thenw = 5 and
if z = Bthenw = a. Sincel(qgz;) = E1 (the constant being for the extra
bits in pa0”'~(P)1 and other program code ij), we haveEy(«a, 5) < l(qg) =

30

E1(a,), and thereforéy (o, §) = E1(a, 3). O

3.3.4 Universal Transfer Learning Distance form Tasks

In this section we will extend the definition of transfer learning distance task
case. The material in this section may be skipped as it is not used belowgbut w
include it here for completeness and because the results are interestimd af a
themselves. We also hope that the functions here will find application in task clu
tering problems which are important for designing ‘Long Lived’ trangéarning
agents (Thrun & Pratt, 1998), and in clustering problems in general, asbnaSi
& Vitanyi, 2005. The distance functions in this section apply to arbitrary siring
addition to elements af.

LetX := {x1,m},z; € A%, X[thei'" subset ofX of sizem,, 0 < m; < m,
0<i<(,) Leta(X;™)be the set of permutations of elements\gf. Then,
to generalizeF, to measure how much each groupsaf z;S,0 < m; < m,
contain about the othen — m; z;s, we define:

Definition 3.10. Them fold information distance Ej*(z1,,) betweenz; ,, €
A*, is the length of the shortest program that given any permutationof;s,
1 < my < m, outputs a permutation of the other — m; z;s. That is:

Ey'(z1,m) == min{l(p) : Vmq,i,2,0 <m3 <m, 1 <i< (m>7
p ma

z € a(X™), p({{z)™,m1)) = (y)™ ™, wherey € o(X\X™)} .

In contrast taly, the additional informatiomn; is included in the definition for
E¢" to determine how to interpret the input, —i.e. whijgi"* to use to decode the
input. Ey* is upper semicomputable by the same reasotings (Bennett et al.,
1998). To give a sharper characterizatiortgf, we define:

Definition 3.11. Them fold Cognitive Distancefor z1 ,,, € A* is:

E™(x1m) :=max max FEy(z;, (y)™ 1) .
I'(#1,m) = ma Jeol 1(zis (y)™)

E7" is upper semicomputable by the same reasosings. We can now state
the analogue of Theorem 3.3 for strings (the proof is given below):

Theorem 3.4.

Ef (z1m) = B (z1,m) -

31

Definition 3.12. Them-fold transfer learning distance betweenn tasksy ,, €
V is defined a2} (u1). B

We can also define admissible distances:

Definition 3.13. Them fold admissible distancesbetweenn tasksj; ,, € V

are defined as function®,, : x,,.4* — IR that are non-negative, upper semi-
computable,m-wise symmetric, and satisfies the following version of the Kraft
inequality: YV, y1 -1 € A*

Z 2_D7n($7zl,m71) S 1 and Z 2_D'm(wvy1,m71) S 1 .

21,m—1€A* weA*

Let D,, be the set ofn fold admissible distances. B ¢ D is universal in D if
+
VD' € D,Vx1m € A", D(1,m) < D'(21,7,). R

Theorem 3.5. ET* has the following properties:
1. E7" satisfies the above version of the Kraft inequality.
2. ET"is universal in the class of admissible distancesrfostrings.
Proof. Letz,y; -1 € A*. Part 1 follows because by definition
Ei(@, (y1m-1)""") < B (@, y1m-1) -

and B (z, (y1,m—1)™"!) satisfies the Kraft inequality. For part 2, by Lemma 3.2
and admissibility ofD,,,:

+
K(2|y1,m-1), K(y1,m-1|2) < Din(z,y1,m-1) -
The desired result now follows because by definition,

Ein(xayl,mfl) é K($|y1,m71),K(y1,m71!$) .

3.3.5 Proof of Theorem 3.4

Proof. The proof is similar to the proof of Theorem 3.3 - we assumis fixed and
treat it as a constant. Otherwise the theorem holds upto additivg m terms.
Fix A := {1, }. We will first show

+
E{n()\l,m) < E(T)n()\l,m) :

32

Let p be a program such thatmn;,i,A, 0 < my < m, 1 <@ < ("), A €
a(A™), p(((N)™,mq)) = (y)™ ™, wherey € o(A\A;""). Fix andi € IN,,
andn € o(A\A™). Then we can construct 1) a prograjrthat given any);
outputsy and 2) a prograng’ that givenn outputs); andi(p) = I(¢q) = I(¢).
The programy operates as follows. Given input it runsp((z, 1)) and ifz = \;,
gets ay € o(A\A"1). ¢ also has encoded in it @&nm in < 4mlogm bits
the order in which\;, j # 7 appears iny, and in which they should appearin
as (for definition ofmn see Sect. 3.1). It then uses that to decgdand output
n. The programy’ operates as follows - given input, it runs p({(z,m — 1)),
needing< 2logm bits to encoden — 1 asm —1. If z := n ¢ gets)\; and
just outputs it. By constructioi(p) = I(q) = I(¢); furthermorearg EJ*(\1.m)
is a program satisfying the properties mf while, since); andn were chosen
arbitrarily, arg E{" (A1) is @ program satisfying either the propertiesgasr ¢'.
Hencel(arg E7"(A1,,)) is at mosti(arg E5* (A1) and so we have the above
inequality.

Now we prove

B (am) < E{"(im) -

Let E1m = E7"(A1,m). We will construct a programg:,, with [(ge1,m) ~ Elm
that will have the same outputs@g Ej*(A1,,) on((y)™,m1),y € o(A]"),0 <
mi <m,1<i< (:]1) For this, we need the sétthe setsA,,

L:={{z1m}: E"(z1,m) < Elm}
Am = {{Zl,m—l} : {x,zlym_l} S L} .

and color<L g1, defined using the sé.

Ceim = {pj : p € B,j < m}, where,
B = {p : p(l‘) = <y1,mfl>m_1> {yl,mfl} € Axal(p) < Elm} :

By using E1m andm, qg1.,, Will constructZ dynamically and color each element
of L using colors fronCg1,,,, S0 that if a stringe; appears in multiplen tuples in
L, then eachn tuple will have a different color from the: tuples - this is stated
more precisely below.

To perform the coloring as above, we run all progranvéith I(p) < E1m on
all z € A* in parallel. If we findp(z) = y, we record the tuple®, (w1 m—1),v)
and (p,z, (21,m—1)), Wherez = (wy,—1)™ P andy = (z1,-1)"" 1. If we
find axy,, such that we have recordég,, ,, z;,y) and(py .,, v, z;) for eachz;
andVy € o({z1m}\{z:}), then we add each of the,, ,,p, .,S to B and add
the corresponding colors t&;,,. We addX := {z;,,} to L and color it using a

33

variation of First-Fitin Theorem 3.3 as follows. Denoted{yX) the color assigned
to X. ThenC(X) is setto the first € Cgy,, suchthavz € X,ifx € X', X' € L,
theny # C(X’). So given any: € X, andC(X), ¢g1., can reconstruct and color
L as above and hence find.

To see thatg;,, has enough colors: Let;, := max, |A,|. For eachs € A,
Ipk € B, pe(x) = ()™ L,y € o(k) andp,s # p. VK’ € Ay, k' # k. Therefore
ICE1m| > mAy. Also, from the construction method farabove Ct,,,,| > mAL
for the estimates at each stepf the construction process. When coloriAgat
stept, eachr € X has used A} — 1 colors previously. So, ds(| = m, First-Fit
will require at mostn (A — 1) + 1 colors to assign a valid color t§.

Now max,ecy,,, [(7) < Elm +1(m) (I(m) = |log(m + 1)] Li & Vitanyi,
1997), and withm as a constant, this becom&dm + c¢. Like qg; from The-
orem 3.3,qg1,,» Can encodel1m, m, and the coloryy, = pj for A in itself as
pjm0E1Im=lP)1 Using thisgg1,, can dynamically construdt, Cx1,, and colorL.
For input(z,m1), 0 < m1 < m, gr1m decodess with 3; :=)a ("', 0 < j < my.
By construction ofL, using any3; and~a, gg1, can findA in L, and output
(yym=my € o(A\{B1,m,}), which is what is required. This proves, with
as a constanig* (A1) % ET"(A1,m) and EJ (A1) % ET"(A1,m) + 3[logm]
otherwise. This and the first inequality completes the proof. O

3.4 Discussion

In this chapter we defined our universal measures of task relatedndsset the
stage for use of these for developing formally optimal Bayesian transtarifey
scheme in the next chapter. The capability of AIT theoretic distance maatsure
measure amount of constructive information that individual objects coatznt
each other made it possible for us to solve one of the long standing problems in
transfer of how to measure relatedness between tasks. By proving ther€o
sion Theorem for both th2 andm string case (very interesting results in and of
themselves) we were able to give a simple to understand characterizatiek of ta
relatedness. Future work for this should involve developing finitely comfmutab
versions of these distance functions. A first, and seemingly effectii@mpt at
such a distance is presented in Chap. 6. We believe more sophisticatedealistan
functions can be constructed by restricting ourselves to group of spewfihine
learning domains and then deriving compression based distance furstitatse

for measuring relatedness between hypothesis that are suitable foothe dgior

an impressive example of such an approach, we refer the reader tca€lil&r
Vitanyi, 2005.

34

Chapter 4

Universal Bayesian Transfer
Learning

In Chapter 3 we defined our transfer learning distance and established ih
formally optimal in the sense that in the limit of infinite resources, no other rea-
sonable distance function can uncover more similarity. While this is a significant
result from a conceptual point of view, we did not describe how it mayde

for performing actual transfer learning. In this section we focus on thigisind
present Bayesian transfer learning schemes thatigirersally optimal We as-
sume notation and results described in the preceding chapter and thergp e
follows.

First we describe a very general Bayesian framework and assopiatestiful
convergence results, which together constitute Solomonoff Inductidar(®moff,
1978; Hutter, 2003). We then use results from the previous chaptefite dmi-
versally optimal transfer learning schemes for this setting. We consider pes ty
of transfer learning frameworks, sequential and parallel transfer,show that
our methods for each framework are universally optimal. We also showhibse
methods are always justified from a formal perspective —i.e. our tnamsfthod
never performs much worse than a non-transfer method. An interessalj tteat
falls out of this work is that while current practical transfer learning meshare
considered to be parallel transfer methods, they are in fact sequestisfidr meth-
ods in disguise. Finally, we further strengthen the classical univepsahality of
our priors by showing that they are also optimal in a competitive setting. All the
results and discussion in this chapter are for the squared loss functibtheacase
for arbitrary bounded loss function is handled in Sect. 5.1.

4.1 Solomonoff Induction and Bayesian Convergence
Results

We first recall from Sect. 3.2 the sgtof lower semi-computable semimeasures

and the learning problem defined on this space. We consider as oumpgstss

enumerable subsels C V; and without loss of generality, we fix sorwé for the
sequel. Given some;.;, generated by some tagke V', the prediction problem

35

is to predict the next letter. Wheny is known, the prediction is made according
to u(alzy.) (see Sect.5.1). When is not known, in the Bayesian setting, this
prediction is made using a conditional Bayes MixtWBy (a|x1.¢) for a prior W
overV'’:

Definition 4.1. For anyx € A* the Bayes mixture ové{’ is defined as follows:

My (2) =), pi(x)W (1) wherevp, W(p) > 0and - W) <1 . (4.1)
ney’ peVy!

The conditional probability, according /1y, of the next letter being is now
given by:
My (z1.a)
My (a|x1y) == ————= . 4.2
W) = N o) @2

For our purposes it is sufficient that the pridf satisfy the density inequality
rather than the equality. SMIy, is a weighted sum of the elements ¥t As
mentioned in Chap. 3, we wish to investigate transfer in the limit, andeswill
only consider lower semicomputable priors — and in the sequel all prias will
be assumed to be suchn this case, a¥”’ is enumerable and eaghe V' is lower
semicomputable, we can lower semicompMeg, by enumerating’ and lower
semicomputing:s in parallel. HenceVy, € V.

We will now state a well-known extraordinary convergence resulMgy (.|.)
(Solomonoff, 1978; Hutter, 2003):

Theorem 4.1(Solomonoff, Hutter) Vi € V'

Do i) (Z[Mw(alxlzt) - u(alxlzt)P) <—InW(p) . (43
t=0 T1:¢ acA

That is, for any target probability measurgthe . expected error aMy; goes
to zero very rapidly as long asIn W () finite. That is, as long as the targeis
not assigned probability byW, we have:

e the expected number of timethat| My (a|z)—pu(a|z)| > eis< —In W (1) /€2,
and

e the probability that the number efdeviations> — In W () /€25 is < 6.

Hence by predicting using the conditiorldlyy (.|.), we are guaranteed rapid con-
vergence to the target probability measure. Theorem 4.1 was firsthiro8®lomonoff,
1978 for)’ = ¥V and. A = B, and was then extended to arbitrary finite alphabets,
V's and bounded loss functions (Hutter 2003; 2004). In Hutter, 2003stals0

36

shown that Bayes mixtures are Pareto optimal, and thatdf V', but there is a
p € V' such thatvt € IN, thet'” order KL divergence betweenandy < k, i.e.

vt € IN,
E:u@mﬁln<u@m0> <k .

= p(x1:t)

then
Eby (u) = —InWi(p) + k .

That is,Myy will still converge tou even if i itself ¢ V', but has an acceptable
approximation in terms of the KL divergence.

For all the above reasons, we use Theorem 4.1 as the main tool to estaiblish o
own optimality results. To that end we define:

Definition 4.2. For a prior W, theerror bound under Theorem 4.1 is defined as
Ebw (1) == —InW(p) .

A prior W is said to beuniversally optimal in some clas<” if for all priors
W' e C,VueV:
+
Ebw (1) < Ebw(p) . (4.4)

We end this section by looking at the Solomonoff-Levin prior :

Definition 4.3. TheSolomonoff-Levin prior is defined by:

€sL(p) =27 KW

&s1 is lower semicomputable a& is upper semicomputable. For this prior
we haveEbe, (1) = K (i) In2. This is intuitively appealing because it shows the
smaller the code for, the smaller the bound, which is a instantiation of Occam’s
razor. In addition, for any other lower semicomputable pFioy the error bound
—In W (u) is upper semicomputable, ardin 1V/ In 2 satisfies the conditions for
Lemma 3.2 (withy = e andW (z) undefined ifx ¢ V'), so:

K(p)In2 % —InW(n) . (4.5)

and therefore we have:

Theorem 4.2. The Solomonoff-Levin prior is universally optimal in the class of
lower semicomputable priors.

37

Indeed, our universally optimal transfer learning priors will be trarsirning
versions oftgr,, and furthermore, we will use Theorem 4.2 to show that our transfer
learning methods are always justified.

4.2 Universal Sequential Transfer Learning

In this section we will look at sequential transfer learning in the setting ofrBotmff
Induction and derive transfer learning methods that are universdilyaland are,

in a formal sense, always justified. We assume that we are givengasks, - - - ,
pm—1 € V, as previously learned tasks. We should stress here that the transfer
method we present here is representation agnostic — that is, we do ectxarn
how these were learned and our method will simply try to do the best it can give
these previous tasks. For instance eacimay be a weighted sum of elements of
V' after having observed a finite sequené® (Hutter, 2003, Sect. 2.4) or eagh
may be given by the user. Let:= (¢1, 02, ..., pm_1)""1. The aim of transfer
learning is to use as prior knowledge when predicting for thé” task with some
unknown generating semimeaswre= V. Given this, a transfer learning scheme
is just a conditional prior ovey’, and it may or may not be based on a distance
function. So,

Definition 4.4. A transfer learning schemeis a lower semicomputable prior
W (111l p) with
> Wmle) <1 .

ni€V’
and W (x|y¢) undefined forr ¢ V’. A symmetric distance D based transfer
learning schemeis a transfer learning schemé’p (1;|¢) with

Wp (i) := g(D (i, ¢)) -

for a symmetric functio® : A* x A* — IR and an arbitrary functiory : R —
[0,1]. m

Wp is defined in terms of because we do not want to put restrictions on how
the distance functio may be used to induce a prior, or even what constrdints
must satisfy other than being symmetric.

Definition 4.5. Our universal transfer learning schemeis the prior

Err(pilp) = 27K kilo)

Our TL distance based universal transfer learning scheméor Bayes mixtures

38

over) is the prior
Eorr (i) = 27 Frlmie)

For {pt1, we useFE; instead ofE]* becauseF; measures amount of infor-
mation between the:t" task and previous: — 1 tasks, which is what we want,
whereask|* measures amount of information between all possible disjoint group-
ings of tasks, and hence it measures more information than we are interested
&pTr is a prior since

Z 9—E1(pisp) < Z 9= K (uil#) <1.

wi €V’ ui €V’

where the inequality holds far— (%) becausek (u;|¢), being lengths of pro-
grams, satisfies the Kraft inequality. 4% (-, ¢) and K (-|¢) are upper semicom-
putable (prr, andéty, are lower semicomputable.

So in the Bayesian framewogk 1, automatically transfers the right amount of
information from previous tasks to a potential new task by weighing it accptdin
how related it is to older taskgry, is less conceptually pleasing &5 ;) is not
a distance, and a goal of TL has been to define transfer learning sctsemgeT L
distance functions. But as we see belgw, is actually more generally applicable
for sequential transfer.

Theorem 4.3. &1p, andépy, are universally optimal in the class of transfer learn-
ing schemes and distance based transfer learning schemes respectively

Proof. Let W be a transfer learning scheme, then

Eber, (1) = K(u|e) In2 andEbyy (p) = —In W (ulp) .

W is lower semicomputable, which impliesln W is upper semicomputable;
—InW/1n 2, restricted to/’, satisfies the requisite conditions for Lemma 3.2 with
y = ¢, and so

Ebey, (1) < Ebw (1) -

Let Wp be a distance based transfer learning scheme. Then:

Ebepr (1) = E1(p,) In2 andEbyy,, (1) = —In Wp(ple) .

—InWp is upper semicomputable &Bp is lower semicomputable: In Wp, is
symmetric, and restricted %/, — In W/ In 2 satisfies the Kraft inequality condi-

39

tion in Def. 3.8; therefore- ln Wp/In2 € D. Now by Theorem 3.2

+
EbEDTL (/’L) < EbWD (/‘) .

O

Note that forl¥ the error bound is given by In Wp /In2 which ise€ D,
and so whetheD itself is admissible or not is irrelevant. This further justifies
considering only admissible distances. So from the theorem and discassios,
our method formally solves the problem of sequential transfer. It is tsallg
optimal, and it automatically determines how much information to transfer. Ad-
ditionally, {11, does not transfer information when the tasks are not related in the
following sense. By (4.5), the non-transfer universally optimal priari& (), with
error boundK (i) In 2. As K (u]¢p) % K (u) by Lemma 3.1, we have

Theorem 4.4. &1, is universally optimal in the class of non-transfer priors.

The above implies, that, from farmal perspectivesequential transfer is al-
ways justified - i.e. it never hurts to transfer (see Sect. 4.3.3).

4.3 Universal Parallel Transfer Learning

Multitask learning methods used in practice are considered to be ‘paratel tra
fer methods where we leann different tasks simultaneously and transfer across
all the tasks as we learn them. In the following two sections, we will explore this
type of transfer. There are two different possible interpretationsraflphtransfer,
which we term joint-parallel transfer and online-parallel transfer retspdy. We

will show that although current transfer methods are conceived of delinemt-

ing joint-parallel transfer is not really a transfer method, while the onlirre}eh
transfer is a genuine transfer method. We also show in Sect. 4.3.3, thamhtcur
transfer methods are in fact just sequential transfer methods, but insksg

4.3.1 Joint-parallel Transfer

In joint-parallel transfer we learm related tasks in parallel. There aregenerat-
ing semimeasures; , o, - - - , tm € V generating sequences), 22 ... z(m)
respectively. At step, ;; generates th&” bit of sequence(® in the usual way. To
apply Theorem 4.1 in this scenario, we assume that our semimeasureé§irred de
over an alphabe#t,, of size|.A|™, i.e. we use am: vector of A to represent each
element of4,,. So given a sequenceof elements of4,,, i.e. = € A*,, () will

be theit" components of vectors in, for 1 < i < m. A semimeasure oved,, is
now defined as in Definition 3.2.

40

Definition 4.6. Themeasure spacé’,, for joint-parallel transfer is now defined
by:

Vi = A{p :Vt € N, Va1, p(1.4) = Hp;”(:cﬁ) wherepi" € V} .

We denote the: different components gfc V,, by p/”. B

It is easy to see that,, is enumerable: as we enumer&teve use the)™ map
to determine the elements Bfthat will be the components of a particulae V,,.
We will consider as our task spaces enumerable sub%etsf V,,,. As before we
define:

Definition 4.7. A joint-parallel transfer learning scheme W,,, is a lower semi-
computable prior oveV,, (W,,(z) undefined for: ¢ V!):

Win(p) := Wm(p??m) with Z Win(pi) <1 .
Pi€V,

A Bayes mixture is now given by:

M (x) == Y pi@)W (pi) -

pi€VL,
[|

Definition 4.8. Theuniversal joint-parallel transfer learning schemeis defined

as the prior:

& (p) = Gpri(pfy,) = 27K

Theorem 4.5. &5pr, is universally optimal in the class of joint-parallel transfer
learning schemes.

Proof. Let the generating semimeasure/be- 111", andW,,, be any joint-parallel
transfer scheme. Then,

Ebg;pry, (1) = K(/‘Tm) In2 andEbyw,, (1) = —In Wy, (ﬂ?}m) .

By Lemma 3.2, and reasoning similar to the first part in the proof of Theot8m 4
+
K(u’f?m) In2<—1In Wm(uqffm) .

Hence the prio€;prr, is universally optimal. O

41

Indeed,K(pg’jm) is the measure of similarity that was used in Juba, 2006 to
analyze multitask learning in a PAC setting (as mentioned in the Chaps. 1 and 2).
However£yprr, is also the non-transfer Solomonoff-Levin prior for the spHge
Therefore, it seems that in this interpretation of multitask transfer, in carntras
sequential transfer, no actual transfer of information is occurringn Biagle task
learning is taking place, but in a product space. The benefit of this idestfrom
a formal perspective a& (x) % K(z,y1,m-1), and so this type of ‘transfer’, in
general, should not help learning.

4.3.2 Online-parallel Transfer

In this section, we consider an ‘online’ version of parallel transfemiear, where

we havem different target taskgy,,, 1 < k£ < m with each tasku,, € V' as

in sequential transfer learning. However, unlike in sequential trgnsteassume
that at each stepthet* letter of each sequence is generated simultaneously, and
so we predict these sequences in parallel. When learning/thask, the idea now

will now be to use a prior that is conditioned on the sequences generatatidyy

m — 1 tasks, and hence in this way we effect parallel transfer. Note that, since
the information that the prior is being conditioned on is changing at eachvetep,
will have asequence of time-varying prioisstead of a single static prior. At first
glance this seems like quite a novel setup, that would require a tool morefpbwe
than Theorem 4.1 to handle. But one key interesting result we uncovextis ih
guite easy to show that in the general case Theorem 4.1 suffice. We giitl the
analysis by defining the time-varying priors.

Definition 4.9. For target task,, , letz!™) .= <:z(<]t) :7 €Ny, g #4) wherea:gt)

is the sequence generated by target tagkin the previoug — 1 steps. We define
aonline-parallel transfer learning schemefor task.,, as the sequence of lower
semicomputable conditional priof$¥;} over)’, t € IN such that for eact:

S Wiulai) <1
3%
We define the corresponding sequence of mixturgs where for eacht, t €
IN:
Mi(2) = Y ula) W (ule ™) -
pney’

YItis not necessary for what follows that each target megsuremit their letters simultaneously.

Indeed, we can define! =" := x(it)] wheret; is the number of letters of thg” sequence seen at

the time of seeing'” letter of .1, ; now everything in the sequel will still hold.

42

These TL schemes are different from typical priors in that they are atlaw
change at each step. It is straightforward to show that these prioksetave in a
way so that the mixture never converges.

Lemma 4.1. There exists4, V', i/ € V" and {W}} such thatW,! (1) > 0 for all
finite ¢ but:

Z Zﬂl(xl:t) <Z[M§(a|x1;t) - /J/(a|x1;t)]2> =00 .

t=0 x1:¢ acA

Proof. Let A = B and sed’ := {u/, 1’} such that/(01) = 1 andp”(z1.4) =
2~ tforall ¢ (i.e. 1/ always predict$, i.e. corresponds to the the sequed@@...).
Let W}l (u') = 27t and so the./-expected squared error at steg given by:

= > p @) | D Mi(alzr-1) — i (alzre—1)]?

Z1:¢—1 ae{0,1}
= 1/ (01:4-1) Z [M (al01:4—1) — 4/ (al01:-1)]?
ae{0,1}
= [M}(0[01:4-1) — 1/ (001:6-1))* + [MG(1[01:¢—1) — ' (1]01:0-1)]

7 2
> IM(031) — o (10n) = V(1103 = | S

_ [2—tu'<1oul> +(1- 2—t>u"<101:t1>} a [(1—27%)2]
tﬂ/(olzt—l) + (1 _ 2—t),u//(01:t_1) 92—t + (1 _ 2—t)2—t+1

[o1-2t P

2421 -27)

The last term— 1/16 for ¢ — oo. So for the total expected squared error upto
stepT” we have:

>i[113; >f

which goes tax for T' — oo, from which the claim follows immediately. O

Hence we can have online-transfer schemes that never converige never
assigning) prior to the target measure in any finite stefo fix this problem we
need to restrict the types of sequences of priors that we should conBatethis
purpose, we define the type of online-parallel transfer priors thatlkmeed:

Definition 4.10. We define admissible online-parallel (AOP) transfer learning
schemefor task,, as the sequence of lower semicomputable conditional priors

43

{W}} overV’, such that for each € IN:

> Wy ()2t ™") < 1 such that
pnev’

if W (ulzl™) >0, thenlant(u]xt) >0} .

We define the correspondingline-parallel admissible mixturesas in Definition
49.1

That is, a sequence of priors is admissible if it does not agsgobability to
any measure in the limit, a restriction which is eminently reasonable given Lemma
4.1. We can now define the the error bound of such schemes and asahivem-
ber as follows:

Definition 4.11. We define the error bound for the sequemaéti} as:
Ebyyyy () = sup Eby; () = sup —In Wi (el ™)

An admissible online-parallel transfer schefié!} is said to beuniversally opti-
mal in some clasg” of AOP transfer schemesifW;} € C, vu € V',

+
Ebpiy (1) < Ebgyyiy(n) -

That the error bound definition is tight in a certain sense can also be shown
quite easily:

Lemma 4.2. There existy’ C V, u € V' andW, such that the-expected squared
error obtained in the first step is— In W (u))/1.3.

Proof. Set A := B and)’ = {u1,us} such thatu;, always predict®) and uo
always predictd. Leta = 11(0) = 1,5 = p2(0) = 0 and letW (1) = w = 0.3
andW (u2) = v = 1 —w. Then, assuming, is the target measure, the expected
squared error &= 1 becomes

—Ja—(wa+vB)P+1—a—(w(l—a)+uv(l-EG))>
—wat+(1-wp)P+[l-a—w+watv—uvp]?

(1—w)(a— B3>+ [v—a+wa+v—vb?

(1= w)(a= B +[(1 - w)(a—H)

2(a — B)*(1 —w)* =2(1 —w)? = 0.98 .

= o
[
[

44

while —Inw = 1.204 and1.204/0.98 = 1.3.
O

Hence, for the’ andW in the statement of the theorem, Wltﬁf(u\mg_i)) =
W, and thean(u1|x§_i)) = 1forallt > 1 (i.e. all the prior is put on the
target measure), the final total expected squared error cannot ebatier than
the Theorem 4.1 error boursthp Ebyy: (1) = —In Wf(mmt‘”). So this shows
that the definition oEb{Wg} is not unreasonable. So now, as before we can define
universal AOP transfer learning method:

Definition 4.12. Our universal online-parallel transfer learning schemeis the
sequence of prior$§opTLi} where

] —i Kl
oprLt(plz! ™)) = 2~ Kl ™)

Theorem 4.6. {gopTL};} is universally optimal in the class of AOP transfer learn-
ing schemes.

Proof. Let {W}} be a AOP transfer learning scheme. Now,

Ebe (1) = K (l; ") In2

and for eacht by Lemma 3.2, and reasoning similar to the first part in the proof of
Theorem 4.3,

+) i
Ebe, i (1) < — W (ulzf) = Ebyys (u)
and hence
+ . —
Ebfeopriiy (1) = supEbgy 5 () < sup —In Wi (e ™) = Ebgyygy () -

O]

Since any non-transfer prié¥ corresponds to the AOPV}'}, with W} = W
for all ¢, we have (unlike the joint-parallel universal transfer prior):

Theorem 4.7. £oprr, is universally optimal in the class of non-transfer priors.

Finally, just as in Sect. 4.2, we can also define distance based AOP transfe
schemes and its universal element:

45

Definition 4.13. We define aequence of symmetric distance§D: } based AOP
transfer learning schemefor tasky,, as the sequence of conditional prigié’p:}
over)”’ such that for each € IN:

> Wpi(ulzi™) < 1 such that
nev’

if Wpﬁ(u\mg_i)) > 0, then irtlf Wpi(,u,\xi_i)) >0 .

whereWpi(plz!™") 1= g(Di(u, z\~")) for a symmetric functiomi : A*x A* —
R andg : R — [0, 1]. We define the correspondifid. distance based universal
AOP transfer learning schemeby the sequence of priofgoppr:} where

‘ —i _)
Sopprii(ulay ") =27 (4.6)

Theorem 4.8. {gopDTLi} is universally optimal in the class of symmetric distance
based AOP transfer learning schemes.

Proof. Let {IWp:} be a symmetric distance based AOP transfer learning scheme.
Then:

Ebyy,i (1) := —In Wpi(p)

—InWpi(u)/In2 is upper semicomputable d&p¢ is lower semicomputable;
—In Wp} is symmetric, and restricted %/, — In Wp!/ In 2 satisfies the Kraft in-
equality condition in Definition 3.8; thereforeln Wp/In2 € D. Now:

Eb (n) = El(u,x(ﬂ')) In2 .

£OPDTL{

and for eacht by Theorem 3.2:
Jr
EbEOPDTLi(H) < EbWDi(H))
and so:
ED{coppref) (1) = SUP Ebgopr (1) < s —In Wil ™) = Ebgyy 1)
O

4.3.3 Parallel Transfer in Practice

In the majority of multitask learning methods used in practice, giwgiasks, each
z() corresponds to training samples for taskln a Bayesian setting, for each

46

taski, 29, j # i now function as prior knowledge, and we have priors of the
form : W(ulz0),1 < j < m,j # i). So current multitask learning methods
seem to be performing: sequential transfers in parallel. Note that this is different
from online-parallel transfer because té are static rather than being generated
online in parallel. It has been observed that transferring from uncetasiks hurts
generalization (Caruana, 1997), which, given Theorem 4.4, seerosti@dict the
above conclusion. Nonetheless, our own empirical investigations in Gred in
Mahmud & Ray, 2007 lead us to believe that this is not because of paratisféra
but use of improper algorithms.

4.4 Competitive Optimality of the Universal Priors

In the universal optimality results of the Kolmogorov complexity based traasig
non-transfer based schemes described above, the inequalities hold agatstant

that depends on the complexiy (1) of the prioriV that the universal priors are
competing against. In this competitive instance, we can actually define a modified
version of our universal priors such that this constant is now indigrenof W/

and depends only ofi, the reference universal Turing machine. First, we need the
following extension of Lemma 3.2:

Lemma 4.3. For any partial, non-negative, upper semicomputable function
A* x A* — R andy € A*, if

Z 2~ f@¥) < 1(taking f(, y) = co when it is undefined)

then we have,
+
K(zly, f) < f(z,y) .

where the constant ili depends only on the reference universal Turing ma-
chineU and is small (Li & Vitanyi, 1997, Chap. 4).

Proof. (Sketchpefine:

my(zly) = glaly)2~ KON

9€VD

whereVp is the enumerable set of conditiortiscretelower semicomputable
semi-measures —that is eagk Vp, for eachy € A*, satisfies:

> glaly) <1 .

rEA*

a7

Note that sincef is upper semicomputable, and the element®pfare lower
semicomputable, there is a functigp € Vp such that;(z|y) = 2=/@¥) . Now
we have, by definition ofn :

—logmy(z|y) < —log gs(zly) + K(gs|f) = —log gr(z]y) + O(1) .

then by using essentially the same proof as in Li & Vitanyi, 1997, Lemma
4.3.3., we have

K(zly, f) = —logmy(z|y) < —log gs(z|y) + O(1) = f(z,y) + O(1) .

We also need the definition of a conditional versiorEpf

Definition 4.14. Define theCognitive Distance conditioned onz € A* for all
z,y € A*to be:

Ei(x,y|2) == max{K(z|y, z), K(y|z, z)}

We can now prove the following conditional version of Theorem 3.2:

Lemma4.4.VD € D,Vx,y € A*
+
where the constant in the inequality depends only on the reference UadiVering

machinel.

Proof. Use definition ofE'1(.,.|D) and Lemma 4.3 wittf = D (D satisfies the
requisite conditions due to its admissibility). O

Now we define competitively optimal (CO) version of each of the universally
optimal prior we have defined, which are same as before but now coreatitiom
the priorWV it is competing against:

Definition 4.15. Fix any prior W. Then theCO non-transfer universal prior
over) is now defined by:

E(ulW) =27 K@)

Given any sequential transfer scheé and distance based sequential transfer
schemdVp and previous taske, the CO sequential transfer and symmetric

48

distance based sequential universal transfer schemesver) are now defined,
respectively, by:

Ern(plp, W) = 27 KWeW) ey (ulp, Wp) = 27 FLelWn)

Given any AOP transfer schen{@V}} and distance based sequential transfer
schemg Wp;} and sequence&é‘i), theCO AOP and AOP symmetric distance-

based universal transfer schemesver) are now defined, respectively, §oprri(.|[W/)}
and{¢opprLi(.|Wpi)} where:

i —i i _ (=) i
Copri(pla!™) Wiy 1= 2~ Klule ™7

] —1 ; _ (—14) i
§OPDTL§(u!m,§ ’),Wpi) — 9~ Bl(pz U [Wpi)

We now have the following:

Theorem 4.9. 1. For any priorlW andu € V, the following holds

+
Ebe(jwy (1) < Ebw(p)

where the constant in the inequality depends only on the fixed univensal Tu
ing machinel.

2. Given any sequential transfer scheWieand distance based sequential trans-
fer scheméVp and previous taskg, the following holds

+ +
Eber, jw) (1) < Ebw (1), Ebepr ciwp) () < Ebwy, (1) -

where the constants in the inequalities depend only on the fixed universal
Turing machindJ.

3. Given any AOP transfer scherfid’}} and distance based sequential trans-
fer schemd Wi} and sequences ", the following holds
+ +
Bbteopreicimin (1) < BDqwiy (1), Bbyeqppnryiiwniy (1) < Ebgwpy (1) -

where the constants in the inequalities depend only on the fixed universal
Turing machindJ.

Proof. The theorem follows from the same methods as Theorems 4.2, 4.3, 4.4, 4.6,
4.8 but using Lemma 4.3 instead of Lemma 3.2 and Lemma 4.4 instead of Theorem
3.2. O

49

Note. This actually induces a different interpretation of exactly what the uni-
versal methods are achieving. Now instead of being optimal, these metheods ar
viewed as ones that are powerful ‘base’ methods that may be used anatiche
are also ways to enhance any other high complexity meliatat we may choose

to use for a particular problem. So even if our prior knowledligas wrong, the
universal priors are guaranteed to not do too badly.

4.5 Discussion

In this chapter we defined our Bayesian transfer learning methods adisstd
their universal optimality. We analyzed both sequential and parallel galesfrn-
ing, and showed that practical transfer learning methods are in factiség] trans-

fer learning methods. The methods we derived automatically transfer the righ
amount of information and are never much worse than any non-transfeiirig
scheme. So our optimal Bayesian priéosmally solves the problem of when to
transfer information, when not to, and how much information to transferal&
introduced a different notion of optimality in the competitive setting wherein our
methods are powerful 'base’ transfer algorithms that can be used licagms
where we do not know which transfer method to use; and at the same timksoan a
be used to improve any high complexity transfer method that we suspecfis use
in the given application.

Future work will involve deriving practical versions of these methodsausin
approximations to the distance functions (as mentioned at the end of Chap. 3)
and Markov Chain Monte Carlo methods to sample from the Bayes mixtures. We
have already done a battery of successful experiments in this setting jn 6ha
but we believe it is possible to construct much more sophisticated and pbwerf
approximations by constraining ourselves to specific groups of machirrériga
domains. In this case we attain tractability by exploiting the peculiarities unique to
the specific group of domains.

50

Chapter 5

Universal Transfer Learning:
Extensions

In this chapter we will extend the transfer paradigm developed in the pretim
chapters. We will first extend the results in Chap. 4 to arbitrary boundsd lo
functions. Then we will look at how the transfer methods may be applied in the
Prediction with Expert Advice setting. We will extend our result to the reader
ment learning setting. We will then end this chapter with a look at Kolmogorov
complexity of functions to head off one possible objection to the theoretialdr
work developed in the previous two chapters.

5.1 Transfer Convergence Rates for Arbitrary Bounded
Loss

We now use the convergence results in Hutter, 2003 to extend the Bayresisier
learning results to arbitrary bounded loss functions.

Definition 5.1. A bounded loss function/ : A x A — TR is a function such that
if the observed letter is and the letter predicted by some predictobjghen the
loss suffered by the predictor is given fiy,, b). B

Definition 5.2. Theprediction schemeA; defined by a measurer € V at stept
is given by:

Axy) := argmanl a,y)m(alr<y) .
acA

For target measure, € V), for A, the y-expected loss at stepis given by:

EA (z<t) Zla Ar(z<r))plalz<t)
acA

Andfor A the total » expected loss im stepsis given by:

le\:’;l = Z Zu Tet)l x<t))

t=1 T<¢

51

The above is a fairly standard definition of loss functionals in a Bayestap.se
The equivalent of Theorem 4.1 in this setup is as follows.

Theorem 5.1(Hutter). For any mixtureMyy, the following holds true for the loss
bound:

0 < MW — M < W () + 20/00 (W () .

So we may define the loss bounds and universally optimal prior for eatle of
transfer learning priors we considered in chapter 4.

Definition 5.3. The/-loss boundfor the mixtureMy; corresponding to the se-
guential transfer learning schem#& (of any type) is defined as:

Loy (1) = — InW (1) + 24/ €2 (— W (1))

A prior W in any classC of sequential transfer learning scheme is said to be
Z-universally optimal if forall P € C

Lby (1) < Lbp(p) + 24/ et | (5.1)

where the constantis equal to the constant iﬁ.
The/-loss boundfor the mixtureM{Wti} corresponding to the AOP transfer
learning schemg W/} (of any type) is defined as:

i —1 A —1
Loy () = sup |~ k=) + 24/ (- W (ula ()

A prior {W}} in any classC of AOP transfer learning scheme is said to be
universally optimal if for all {Pj} € C

+ Ay,
Lbyyyiy () < Lbypiy(u) + 24/ ety (5.2)

+
where the constantis equal to the constant in. B
And now we get:
Theorem 5.2. We have the following:

1. ¢is¢-universally optimal in the class of all lower semicomputable pridfs

2. &, andépry, aref-universally optimal in the class of sequential and symmetric-

distance based sequential transfer learning schemes.

3. éoptr and {opprr, are f-universally optimal in the class of lower semi-

computable AOP transfer and and symmetric-distance based AOP transfer

schemes.

52

The above also holds in the competitive setting of Sect. 4.4 where the constant
in (5.2) now depend only on the reference universal Turing madtine

Proof. In the non-competitive setting, the theorem follows from the same methods
as Theorems 4.2, 4.3, 4.4, 4.6, 4.8. In the competitive setting the theorem also
holds with constant of inequality depending Brby using Lemma 4.3 instead of
Lemma 3.2 in the theorems just listed. O

5.2 Transfer in the PEA Setting

A very interesting class of learning algorithms are called the Prediction witkrExp
Advice (PEA) algorithms which are a generalization of the Bayesian setta®y (s
Cesa-Bianchi & Lugosi, 2006 for a comprehensive introduction). i ¢hction
we briefly describe a prominent algorithm, the Aggregating Algorithm (AAMY
2001), give its convergence bound and then show how easily oufergomsor 1,
applies here. In future work we will look at if and how the idea in this sectiop ma
be applied in other PEA algorithms and in transfer settings other than thexsdjue
transfer case.

The basic setup in which AA/Learner operates is defined using the following
elements:

Definition 5.4. PEA SetuplLet © be a set of expertd, a set of decisions, and
a loss function? : ' x I' — IR". Let Lea be the learner and leEnv be the
Environment with whictLea plays the game in algorithm 5.1 f@r steps.l

Algorithm 5.1 The PEA Setting

1: fort=1to Tdo

2. Env chooses a decisiofl, , € T

3: Eachf € © chooses a decisiot}, € T.
4: Lea chooses a decisioff ., € I without knowingy gy,
5. Eachd € © suffers los¥(~%,,.,75) -
6:
7

. Leasufferslosg(v4;, .74 .,) -
: end for

The aim of the Learner is to suffer loss as close as possible to
T

in L7 (0) whereLr(0) :== Y £(~} £y
Iglelg T() T() ; (’YEnva/yH)

i.e. do as well as the best expert. Given pir:= W, 3 = e ", n > 1 where
n is the learning rate, the learner Aggregating Algorithm operates as in algorith

53

Algorithm 5.2 The Aggregating Algorithm
1: fort=1to Tdo
2: AA chooses decision:

Vaa = arg mgll 108;5/ ﬁg(%’yé)Ptfl(dQ)

3: Receive all losses for both itself ai
4: Setthe weights for the+ 1" step as:

P,(df) = B*Onv9) P,_ (d6)

5: end for

5.2 (we are ignoring some subtelties, that are not relevant to us, regduainthe
decision is chosen by AA — see Vovk, 2001 for details).
Now we state the convergence bound

Theorem 5.3(Movk). The following holds true:
Ly(AA(n, Py)) < logg / 3Er) py(de) .
e
for countable set of experts, the following is true:

Lr(AA(n, By)) < logg Y B py(6;) .

Theorem 5.4. Lety := {p1, p2, -, om } be a set ofn previously learned tasks
(as long asp; are strings, we do not care how they represent previously learned
tasks — e.g. eacly; may be a program computing measurg over ©, learned
from m previous games df; steps each). Thefirr,(-|¢) is universally optimal —

i.e. for any transfer learning priofV (-|¢), the following holds:

loggZﬁ P ern(0s]p) <logﬁZﬂLT W (0;]¢) -

The competitively optimal version of the above, where the constant dejen
reference universal Turing machigéalso holds.

Proof. Recall thattry,(-|p) := 2~ 5(1¥) and note thalogg x = lf’éz) - —%.

54

Settingk := we get,

n log(e)

= logg ZBLT 90— K(0ilp)

= —klog ¥ gLr(®gK(eds)

< —klogiﬁ“”ﬂe—cwwﬂw

= ke log(e)l— klog Y~ gL ®IW (0;]¢)

C)
= o+ logg > LT EIW (0;])

Wherec is the constant from thé inequality in Lemma 3.2. The competitively
optimal version of the above, where the constant depends on redenanersal
Turing machingJ also holds by using Lemma 4.3 instead of Lemma 3.2. So this
proves the theorem. O

5.3 Transfer in Bayesian Reinforcement Learning Agents

In the previous sections we have primarily considered transfer learngegjirence
prediction problems. However transfer learning can also be applied irciaftifi
agents interacting with an environment — see Sect. 2.1.2 for a discussiantof s
methods. In this section, we apply the ideas of task similarity and optimal transfer
learning prior to solve transfer problems in a very general model of 8agee-
inforcement learning agent developed in Hutter, 2004. In the followirggdavnot
consider discounted version of reinforcement learning as the devehbpsraguite
similar and does not add anything from the transfer learning perspectvare
pursuing. We refer the reader to Hutter, 2004 for the full details. Int\fidilws,
for reasons of clarity we will use, etc. to denote thé” letter in some sequence
instead of a string.

5.3.1 The Al Agent Model

The Al agent model we consider consists of a set @fgent environmenit pairs
{p, ¢} where eaclp andq are partially recursivehronological Turing machines
Thatis,p : Y* — X* andq : X* — Y*. The model runs from stefp= 1 to some
stepT € IN U {co} starting from some initial input,. Afterward, at each step
t (discrete time) the agent generates ouptz,) := y; and the environment
generates input(yx<y:) := x; (Whereyx oy := zoy1x1y22 -+ Yp—12¢—1).

55

We assume thal C S x IR —i.e. each output; is broken up into two
parts thestates; at timet, and thereward r; at timet¢. The aim of the agent is
to, at each point in time, generate the outpyt such that thevalue functionis
maximized. Before defining the value function we will weaken our assumption
about the environment: we will assume that instead of a single fungtignis
described by a lower semicomputable chronological semimeasure

Definition 5.5. A chronological semimeasure, is defined as a function that sat-
isfiesvy,., € Yt :

Z p(yr<iyra) < p(yr<e) andu(e) <1
aceX

That is, we assume that at each stethe next output is drawn according to
w(xelyr<iy,) where, as usual,

p(e|lye<iye) = Z(

We set as our task space enumerable subsé€tef the set of chronological
semimeasuredA will be our task space in the reinforcement learning setting. It
can be shown that1 is enumerable by using a method very similar to the one used
in Zvonkin & Levin, 1970 to show thay is enumerable (Hutter, 2004, Sect. 5.10).
Without loss of generality we set/&’ as our task space.

Definition 5.6. Thevalue function for environmeny. € M’ for policy/agentp is
now defined as :

Vim(y2<k) = py, Zpyk+1 Z © Pym Z (re +repr+-)
Tk

Tp41 Tm

/‘L(xkzzm |yl‘<kpyk:ym) .

wherep,, is the action chosen by the agent on iHé step based on the output-
input sequencgx ., seen so far.

We also use* to denote the optimal policy with respect to enviornment

[|

HenceV?" (yz) is the expected value w.r.t. probability distributiprof the
actions of the agent when the environmentisThe subscriptm in V2" (ya<y)
is the expectation for ste@sto m, wherem is the lifetime of the agent.

The agent would like to select a policy that maximizes the expected reward or
value function. This maximum value is:

56

Yk+1 Ym
Tm

Vil (yrar) = mameaX Z . .maxZ[(rk + g1+)
v =
H(xhﬂJyx<kyka]‘

and the corresponding optimal action is:

Yk+1
Tr+1

= ar maxg maxg ---maxg T+ T +--- 47
Yk & Un -~ Yo - [(k k+1 m)
(ke | YT <k Ykm)]

Sincep is unknown, the idea behind Huttetsiversal Al agenHutter, 2004
is to use a mixturédy to approximatg: and hence get the AM agent:

My (yz<r) == Y plyz<)W(p)and > W(u) <1
pnemM’ neM’

wherelV is a lower semicomputable prior. Please note that th@&/Ris actu-
ally called the At agent in Hutter’s work, but as a we u$é¢o denote priors, we
use AlM to avoid confusion. This agent which chooses the following aq;[éﬁ
at stepk:

Vim ™ (ycr) = max y Jmax - eoomax d [(rg + g + o0+)
Yk Th Yk+1 Thit Ym -

M (YT <kYZp.)]

Yk+1
Th+1

Mw
= arg max max -+ -mmax Tk + T + -4
Yy gma Exk E na. gm [(rk + Trg1 m)
Mw (YT <kYZ g)]

5.3.2 Convergence Bounds for the Al Agent Model

The first convergence result is given below; this result parallels fEmea.1 and
has similar implications:

57

Theorem 5.5(Hutter) Vu € V' 314 € Vit € IN:

S5 nlyere) (Z[Mwmwxl:n - M(a|y$1:t)]2> <—WW() . (651)

t=0 yx1:¢ acX
And the following now holds trivially:

Theorem 5.6. Theorems 4.2, 4.3, 4.4, 4.6, 4.8 and 4.9 now hold but with lower
semicomputable semimeasure replaced by lower semicomputable clgiocablo
semimeasure.

So this may suggest that the agent usifig¢™ should converge to thE** as
k — oo wherep is the chronological semimeasure defining the environment. This
is correct but only in the following sense:

Theorem 5.7 (Hutter). If Vu € M’ there exists a sequence of policigs such
that

Vim(yz <) = Virt (yz <) < A(m)

then

N My A(m
Vit — ViR M) < 50

So the above theorem shows that if there exists a pglicyfor each lifetime
m, whose value function comes to withik(m) of the optimal policy, then there
is auniversalpolicy pMw that comes to withim\(m)/W (m). Using the above
result we can now derive:

Theorem 5.8 (Hutter). If Vi € M’ there exists a sequence of policijgs such
that

1 oo 1,
%V&W(yx%) = Evl,f:(yx@)

then,

lvﬁglwu(y$<k) e iV1*mu(yﬂc<k)
m m
The above shows that if the average value of a sequence of policiegheith
average taken over the lifetime of the agent, converges to the optimal, then so
does the value of the sequence of universal policies. The speedwdrgence is
at mostl /W (u) slower.
The transfer learning setup described in Chaps. 3 and 4 can easiljeeled
to cover the Al agent setting. This is done by defining our task space fotbe
instead of), and then we obtain the same optimality results for both non-transfer
and transfer learning case for learning a target chronological seminee@he-
orem 5.6). Unfortunately, as we have seen above, these convergdasdo not
translate to convergence rate of the value function which is what we arested

58

in. The convergence results are in fact much weaker. So for instantee se-
guential transfer learning setting, we assume we have seen a seqtigaskso
¢ = p1.m—1 € M. When learning then'" task, we use the conditional prior
W (u|p) and hence from Theorem 5.7 we get the ‘convergence ratéVfgr of
A(m) /W (u|p). If we use the transfer pricz— %) the convergence rate is
A(m)2K#¥) | From Lemma 3.2, we have

oK (ulp) % W (ul)

Hence for the artificial intelligent agent case, our transfer learningece
better only upto a multiplicative constant. So optimality conditions are not as in-
teresting. This requires further study and will be done so in future work.

5.4 Kolmogorov Complexity of Functions

One natural definition of Kolmogorov complexity of a functigngiven stringgq

is K'(f|q), the length of the shortest program that compytegiven ¢ as extra
information (Hutter, 2002, Sect. 7), (Grunwald & Vitanyi, 2004, Sect 3.2.80

one objection to the definitions in chapter 3 may be that, since we are interested in
i €V as semimeasures (i.e. functions), perhaps we should define the complexity
of u € VasK'(u|q). HoweverK’ is not computable in the limit, so to address this
concern, we establish another reasonable definition of complexity of eleroen

V, Kp. We then deflate this possible objection by showing fatis in fact, upto

a constant, equal tA'. To motivate the definition af(p, we will begin by looking

at a slight adaptation of a definition of Kolmogorov complexity of functiafig,

This was introduced and used in Hutter, 2002, and was defined primariby tier

the noncomputability in the limit of”.

To defineK”, we need a formal systerfi (Shoenfield, 1967) with axioms and
inference rules in which we can formalize the notions of provability and gurin
machines. We enclose formulas ffin § § and the proof of a formula is a
sequence of formulas such that, each formula in the sequence is eithdoan a
or derived from a previous formula in the sequence via the inference, iaute the
last formula in sequence §ss §. The properties of- we use are:

e The set of correct proofs ik is enumerable.

e We can formulate the formulavz : p(z) a(z) § which is true if and only
if Ve, U(p, z) 1 U(a, x).

Now we defineK” (11|q)

59

Definition 5.7. For u € V, ¢ € A*,

K"(ulq) = mTin{l(r) :r(q) = aand3 proof§Vz : u(x) f+ a(x)§} .

The above definition mearfs” (u|q) is the length of the shortest program that
givengqg as input, outputs a programthat provablylower semicomputes (denoted
by 1) the same semimeasureasThis definition is slightly different from the one
used in Hutter, 2002, which is:

K () := mrin{l(r) : 3proof§ Vo : p(z) f r(z)§} .

This is the length of the shortest program that provably lower semicomputes
However, now it is not entirely clear how the conditional should be defihad-
ition suggests we define it as

K (ulg) == min{i(r) : 3 proof§ Va: : p(x) 4 r((w,) §} -

which is a little awkward. Hence, we adapt Hutter's definition to &iff given
above. It is easy to show, using standard methods, Afat= K" for a small
constant of equality. That is: Giverthat is a witness in Def. 5.7 we can construct
r'(z) := (r(q))(x) to getKY, (ulq) % K" (u|q). Similarly, givenr that is a witness
in the definition of K%, we can define”’(¢q) := r({(q,-)) to show K" (y|q) %
KY,(rlq), which proves the equality. The constant of equality is small because the
definition of’ in each case requires just a little bit of extra code.

Note that bothK” and K%, are upper semicomputable becausds upper
semicomputable and the set of correct proofs is enumerable. Now we have

Lemma 5.1. Let arg K (u|q) denote thex that is the witness in Definition 5.7.
Then,

1)VueV,qge A K" (ulg) < K(ulq)

2)Vn € IN,q € A*3p € V such thatK (u|q) — K" (ulq) E n
3)VueV,qe A K(arg K" (ulg)) = K" (arg K" (1lq))
Age A,y 27D = oo

ney

Proof. The results are mostly self-evident.
Part 1. This follows from definition since eagh € V provably computes the same

60

function as itself.

Part 2. Fix ¢ € A*, ¢ € V, andn € IN. Now by the theory of random strings
(see Li & Vitanyi, 1997), there exists infinitely many incompressible strings - i.e
stringss such thatk (s|¢, K (¢|q),q) > I(s). Leti(s) = n, and construct & € V
which is justy with s encoded in it at a fixed positidn Now K (12]q) = K (s, ¢|q),
since, using, given a program to generategivengq, we can recovep ands from

it, and given a program to generdte @) giveng, we can construgt. By Lemma
3.1 part 5, we get

K(s,lq) = K(slo, K(plq),q) + K(¢lq) -

By definition K (u|q) < K(¢l|q), so we get:

K(ulq) — K" (plq) = K(p, slq) — K" (ulq) = K(s|o, K(¢lq), q) + K (¢lq)—
K"(plg) = n+ K(elg) — K" (ulq) > n+ K(plq) — K(elg) =n .

Part 3. Follows from definition.

Part 4. for eachy € V, by the method in paf, there are infinitely many, € V
such thatvz, p(2) ft p(xz) provably . S0y, ., 27 K"(1l9) = oo, as infinitely
many ;s have the sam&"” (u;|q) value.

O

Partsl and2 in the lemma show that th&”’s can uncover much more similar-
ity between tasks thalR. However, there is no advantage to usiitj for Bayesian
transfer learning, as for any enumerabledethe set of program‘s’;mo f that are
provably equal to the elements Bf is also enumerable (because the set of correct
proofs inF are enumerable). Therefore we get that for ang V', arg K (11]q)
isin Véroof. Since the error bound in Bayes mixtures depends only on the weight
assigned to the generating semimeasure , from part 3 of the above lemma, sub
stituting V' with V), counteracts the benefit of usidg”. Part 2 in the lemma
seems to suggest that” deserves further study and this will be done in future.
However for now, we note that in the definition A" we require the witness
to output a program that provably lower semicomputes the target functibmed
do not require it to actually output the proof. To keep the witness honestyillv
now look at a slightly altered version @& where the witness is also required to
output this proof. It will then turn out that this new function akidcare in fact equal
upto a constant. We first define this altered versioi 6f

Definition 5.8. Theprovable Kolmogorov complexity Kp of 4 € V is defined as

61

follows:

Kp(p) = mpin{l(p) : p(e) = (v,) wherer is a proof for§ Va : y(z) 1 pu(z) §} .

So now, in addition toy that provably computeg, we also require that the
program output the corresponding proof. We can now define theittcmal Kp
and the information distances. But first we need:

Definition 5.9. Let 7, be the enumerable set of &, 7) such thatr is a proof of
§Va : y(z) 1 p(x)§ (J, is enumerable because the set of all correct proof&in
is enumerable)ll

Now define:

Definition 5.10. Theconditional Kp is defined as:
Kp(uli') == min{l(p) : V7' € T, p(r') € Tu} -
the Information Distance FEp is defined as:
Epo(u, i) = min{l(p) : V7 € T, V' € Ju o p(7) € Ty, p(7') € Ty}
and Cognitive DistanceE'p; is now defined as:

Epi(p, p') = max{Kp(u|p'), Kp(p'|p)} -

Kp is upper semicomputable by the same reasodiifgis. However, our
definition of K'p(.|.) is a lot stronger than definition df”(.|.) as we require that
the arg Kp(p|') output an element 7, given any element of7,,. Because
of this last conditionK» (and by similar reasoningy»; and Epg) is not upper
semicomputable. However, we can show the following:

Lemma 5.2. The following equalities now hold:
1. Kp(p) = K(p).
2. Kp(un) = K(uin).
3. Kp(ulp') = K(ulp).
4. Er(p, 1) = Epr(p, 1)

62

5. Eo(u, 1) = Epo(p, 1)
6. Epo(u, 1) = Ep1(p, i)
7. Kp(ularg Kp(p)) = K (u| arg Kp(p)).

8. Kp(ularg Kp(p)) + Kp(p) = Kp(p, p) = Kp(pl arg Kp(p)) + Kp(p).

That is theKp and K etc. are equal upto a constant, and heRgesatisfies
some of the most interesting inequalities in Kolmogorov complexity theory. Hence
this shows that there exists a reasonable definition of Kolmogorov complédxity o
elements ol for which it is equivalent to the Kolmogorov complexity of strings.
That is, the objection stated in the beginning of the section, that since we-are in
terested i € V as semimeasures (i.e. functions), perhaps we should define the
complexity ofu € V asK'(ulq), is not justified.

Now we prove Lemma 5.2, and we will do so using the following technical
lemma:

Lemmab5.3. Lety; € V,i € INy andp; € V,j € INy for finite N and M. Then,
1. For all programp such that
VX, X = (nin:7 € Tu}), p(X) =Y whereY = (k1 : ki € Ty, }) -
there exists a programpwith I(p) = I(¢) such that
q({p1,n0)) = (p1,n) -
2. Similarly given any prograny’ such that,

qd ((p,n1)) = (p1,N) -
there exists a prograny with [(p') = I(¢') such that

VX, X = (N :7i € Tu}), P(X) =Y whereY = (ki : ki € Ty, }) -

Proof. Let p be a program as above. Then we can construct the requisite program
q as follows. Prograng given any(u,), constructsX := (my v : 7; € J, }) by
settingr; := (u;, m;) wherer; is simply the statemeritVz : u;(z) 1 pi(z)8§. ¢

then runsp(X) to getY := (ki : ki € Jp,). We extractp; from x; := (v, m)
decodingp; in = as the last statement isis of the form§ vz : v(z) f} pi(z)§.

Then prograng outputs(p; 7). As ¢ has only constant amount of additional code,

1(q) = I(p).

63

Let ¢’ be a program as above. Then we can construct the requisite program
p' as follows. Program’ given anyX := (ryn : 7; € J,,}) extractsy; from
7; = (7, m) usingzT and~. It then runsqg((x1 7)) to get(p; as). p’ then outputs
Y whereY := (k1) Wherek; := (p;, m) andr is simply the statemeritVz :
pi(z) 1 pi(z) §.
O

Proof of Lemma 5.2We prove each part in turn.

Part 1. With p; set toe in Lemma 5.3 part 1 we g&t’ (1) % Kp(u); by part 2 of
Lemma 5.3 we gef('p(u) % K (u). Hence this proves part 1 of this lemma.

Part 2. This follows from Lemma 5.3 withu; := ¢ via similar reasoning as part 1.
Part 3. This follows from Lemma 5.3 withi; := y/ via similar reasoning as part
1.

Part 4. This follows from part 3 and definitions df; andEp; .
Part 5. This can be easily proved using the method in Lemma 5.3.
Part 6. This follows from parts 4, 5 and theorem 3.3.

Part 7. This follows from Lemma 5.3 withu; := arg Kp(p) via similar reasoning
to parts 1 and 3.

Part 8. This now follows by Lemma 3.1 part 4, and parts 1, 2 and 3. O

So, in our definition ofK™”, if we include the additional information required
in the form of the proof, we immediately get the equivalence between Kolmagor
complexity of functions and bit strings. We should also note that the abglegap
for 4 ¢ V and notions of computability other than lower semicomputability.

5.5 Discussion

In this chapter we introduced some miscellaneous extensions to the Kolmogorov
complexity based transfer learning paradigm. First we rederived suittsefor
arbitrary bounded loss functions using Hutter’s result. Then we exteodesys-

tem to the Prediction with Expert Advice algorithms. Then we extended oultres

to the reinforcement learning setting. Finally we allayed some possible ecancer
about our definition of Kolmogorov complexity of functions by showing thtato
related and reasonable measures of function complexity also reduce agtharr
Kolmogorov complexity case.

64

Chapter 6

Practical Approximations

In this chapter we develop practical approximations to the universally opseal
qguential transfer prioér, developed in chapter 4. We consider Bayesian binary
decision trees (Breiman et al., 1993) and in this setting develop approximadions
our distance measures and universal transfer learning priors. \Weatimy our
approximations inl44 individual transfer experiments usiffgarbitrarily chosen
data-sets from the UCI machine learning repository (Newman et al., 199).
arbitrary choice of data-sets make our experiments are the most genewstbtr
experiments to date.

6.1 Bayesian Setting for Finite Spaces

We consider Bayesian transfer learning for input sp&gdpossibly infinite) and
finite output space®;. We assume finite hypothesis spatgswhere each € H;

is a computable conditional probability measure®@y conditioned on elements
of Z;. Sofory € O; andx € Z;, h(y|x) gives the probability of output being
given inputz. GivenD,, = ((z1,91), (z2,92), -, (Zn,yn)) from Z; x O;, the
probability of D,, according tdh € H, is given by:

W(Dy) = [] h(yxlar) -
i1

The conditional probability of a new sample,.cw, Ynew) € Z; x O; for any
conditional probability measuneis given, as usual, by:

p((Tnews Ynew), Dn)) (6.1)

(Ynew|Tnew, Dn) ==
(newlne Do) =22,

So the learning problem is: given a training samplg where for eaclizy, yx) €
D, yi is assumed to have been chosen accordihgzat;, learnh. The predic-
tion problem is to predict the label of new samplg,, using (6.1). We ignore the
probability of the inputs”(z;) because in the conditional, they cancel out. That is,
assuming that the the;s are generated according to some measyrand denot-

65

ing by up := p - P, we have the conditional probability of the new sample given
sample(Zpew, Ynew) IS given by definition to be:

- /LP((ynewa xnew)|Dn)
MP(Dm (xnewa ynew))

pop(Dn)
_ (YL s Yns Ynew|T1, - Ty Tnew) P(21, T2, Tny Trew)
- M(ylv ’yn|$1,... ,$n)P($1,$2,"' ’xn)
(YL s Yns Ynew|T1, - Ty Tnew) P(Tnew|T1, 22, - -+, 20)

M(yla e 7yn|l‘1a to axn)

Finally we have, again, by definition :

H(ynew|xnewa Dn)P(Inew’xlv L2y axn) = HP((ynew) xnew)’Dn)
#P((ynewyxnew”Dn)

= :U’(ynew‘mnewa Dn) =

P(xpew|T1, T2, -, Tp)
_ P(Ynews Y15 YnlTnew, T1, -+, Tn) P(Tpew|T1, 22, - - -, 20)
B WYL, s ynlTn, o 0) P(Tnew|T1, T2,)
,u(ynewa Yi, - ayn|xnew7$1a s ,l'n)

M(yla e ,yn|$1v T a$n)
M((xnewaynew)aDn)
1(Dy)

Turning our attention back to the prediction problem, in this setting the se-
guence of predictions made over the sequence of outputs to be ohsksusefore,
this is done using a Bayes mixtudy; overH,:

My (Dy) := Y h(Dy)W(h)with >~ W(h) <1 (6.2)
heH; heH;

and hence the convergence bound Theorem 4.1 is now expressadas,:

> hi(Da) Y (Mw(yle, Dy) — hy(yla, Dp)]?) < —InW(hy). (6.3)
n=1 D, yeo;

We seek to perform sequential transfer using decision trees. Sinceothe K
mogorov complexityK' is computable only in the limit, to apply the methods and
results in Chap. 3 in transferring using Bayesian decision trees, wemapgrox-
imate K and hencéy,. Furthermore we also need to specify the spa¢e®;, Z;
and how to sample from the approximationset,. We address each issue in turn.

66

6.2 Brief Primer on Practical Bayesian Learning

In chapter 4 and even in the preceding section we took a somewhat faewedf/
Bayesian learning where we did not consider whether it is computationabibie
to predict using the Bayes mixture in practice. In this section we addresssis is
In majority of cases of interest in practice, it is intractable to compute the mixture
My because of difficult summations or integrals involved, and so it is impractical
to predict the label of a new sample usiMiyy (Ynew|Tnew, Dr) directly. So the
posterioris used to approximate the mixture as described below. Before proceed-
ing, we note that to avoid confusion, we uBeand 1V to denote measures that are
given by our assumed model, aRa to denote densities that arise from tHe via
probability theory.

The posterior of: € H; given D,, is given according to Bayes’ rule by:

Pr(ulDy) = p(D)W () (D)W (1)

Pr(Dn) > pert MDn)W (1)

We can now rewrite the mixtuidIy;, by:

MW [(xneun ynew>7 Dn}
My (D)

5 v, HlEnen Yo Dol W (1)
ZueHi M(Dn>W(,UJ>
5™ vert, iltmens e D) (D)W (1)
ZHGHi 1(Dn)W (1)

= Z (Ynew|Tnew, Dn) Pr(p|Dy)
HEH;

MW (ynew |xnew7 Dn) =

Therefore, the posterior is the weight that is assigned to gaehH; because of
the evidenceD,,. The mixtureMy; is now approximated as an averaging/of
measurep; that were sampled fror{; according to the posterid?r(u|D,,):

N

— 1

MW(ajnew|ynew7 Dn) = N Z pi(ynew|$new) .
=1

Unfortunately, even the posterior is usually difficult to sample from directly.
However, if we can computg(D,,) and W (x) upto a normalization term, then
we can uséMarkov Chain Monte Carlanethods to sample from it. The literature
on Markov Chain Monte Carlo is vast, so here we will content ourself withngi
the briefest of description. Essentially, the idea is to construdtraducible and
aperiodicMarkov chain withH; as its state space, and that has the posterior as its
stationary distribution There are standard ways of constructing such chains, and

67

one popular method, the Metropolis-Hastings chain that we use in oureqrgs,

is described in Sect. 6.4 and algorithm 6.2. Given this, the chain is simulatef usin

a random number generator, and eventually it is guaranteed to corteetge
stationary distribution — i.e. after a certain number of steps, as we simulate the
chain we start sampling from the posterior. The issue of determining whieaima c
converges is an highly active research area. There are methods lasoexact-
sampling methods, that guarantee that if the algorithm halts, then the samples are
generated from the stationary distribution. However, these require thitankov

chain state space satisfy certain special criteria and so we do not uséntibem
experiments.

For an introduction to the Bayesian approach to machine learning, please se
Andrieu et al., 2003; Neal, 2004; Mackay, 2003. For full details on thgeBian
approach to statistics see Bernardo & Smith, 1994, and for more detailsrowWa
chain Monte Carlo please see Gilks et al., 1996; Robert & Casella, 2@0%anF
introduction Markov chains and fast mixing/convergence to stationary distib
(and additional references), please see Behrends, 208§gdtbm, 2002. For
more on exact sampling, please see Propp & Wilson, 1996; Fill, 1988gstom,

2002.

6.3 The Bayesian Decision Tree Model

We will consider transfer learning with Bayesian binary decision treesiabye
pothesis spack,;s. Of course, decision trees (Breiman et al., 1993) are well known
models for classification and regression, but when used in a Bayesiigg séhey
need some additional explanation. In particular, Bayesian decision twhether
used for classification or regression, are parameterized by continasameters
and hence we need to describe how they fit into the finite hypothesis-caeeave
described above.

We use the standard Bayesian decision tree setting as described in Denison
et al., 2005. We assume that:= [0, 1]If/, wheref; is a finite set of features, and
finite O; := IN, for someo € IN. As is well known, decision trees partition the
input spaceZ; into a finite set of hypercubes, defined by axis parallel hyperplanes.
In the Bayesian setting, we assume that within each such hypehgultbe dis-
tribution overo classes is given by a multinomial distribution with paramé@er
a vector ofo elements such thazg?zl §k(j) = 1. So for any sampleD,,, the
likelihood of iy is given by:

P(Dy 0 hi) =] 01 G)™
=1

68

wheremy,; is the number of pairs ifx,y) € D, with x € h, andy =
j. We do not include theﬁj”T’kj! term above because we considey, to be a
sequence of pairs, rather than a representative of any samplexwitelements of
classj. We assume a Dirichlet prior over the parametars) (for details see for
instance, Friedman & Singer, 1998), for which the density function isgisng
hyperparameters;,; as follows:

akjfl

Gk\hk) H F (o) 1;[

where the normalization term consists of the well known gamma function,
[(z) := [;°t* 'e 'dt, with the property that fof'(z) = (2 — 1)I'(z — 1). We
set eachy,; = 1, which corresponds to the uniform prior over the valué}m‘]').
Now, we have

Pr(Dplhi) = /Hak)™ P(0),)d0),

/ H9 H r Z:J [T 00y a0i
]

J

- Z:@ / H9 (Gt ess g
J
_ (ZJ o) I1; F(mkg+04kj)
H [() (Z Mikj + Qgj)
my; + 1
= O o

Therefore, the probability of the,.,, = i for inputz,,.,, € hj is now simply given
by,

P((ynew = aaxnew)a Dn)
P(Dy)
Mg + Qka
Zj mi; + Qg
Mpa + 1
Zj mg; + 1

Pr(ynew = a‘mnew € hkan) =

(6.5)

Hence, giverhy, the predictive distribution is determined solely by the saniple
And so we are left with the task of choosing the partitibps- i.e. thestructureof
the tree. And in Bayesian decision tree learning for classification, this iswdnat
learn and restrict our attention to. So from now orh will refer to the structure
of the tree that consists @/ partitionshy,.

69

The likelihood of a treén is now given by
Mh
h(D,) := P(Dyfh) := [P(Dnlh)
k=1

The posterior for the tree is now given by:

Pr(h|D,) := Pr(hyym|Dn) (6.6)
PT(Dn|h1,Mh)P(h1,Mh)
Pr(D,,)
P(hy am) TTRE Pr(Dalhy)
Pr(D,,)

whereP(hy ym) is the prior over the structure. To complete the definition of any
Bayesian decision tree learning algorithm, transfer or otherwise, all e toedo
is specify the prior over the structures. In the following, we define thesire
more formally and set the ground for describing our approximation to theetieo
cally optimal Bayesian transfer learning algorithm discussed so far.

Atreeh € H; is defined recursively (see Figure 6.1):

h =m0

e . O . J o T |
nj:=r;C;00|r;Cjnj 0|r; C;0ny|r; C;n} nj

N = N or (N or N or N
DT root / \ \ /
N N N N
Left Right Right Left
DT DT DT DT

Figure 6.1: Schematic illustration of recursive tree definition.

So each decision tree is defined by its root nagg,;. Each node is eithef,
or consists of a rule aand a vectoC and two sub-decision trees (each of which
are defined the same way). Each ruie of the formf < v, wheref € f; andv is
a value forf. Categorical features are converted to integer valued features for this
purpose.C is a vector of size, with componeni corresponding to thé” class.
The vectorC is used during classification only when the corresponding node has
one or mord) children, andh;.C(j) contains the value of.; for all the inputs in
D,, that belong to the partition defined by the nadeand its parents. We restrict
the possible values af for each feature to the the values observed in the sample
D, and so this makes the space of possible trees finitebeinds the Bayesian
decision tree framework discussed so far in the framework of finite sjpsngsded

70

in Sect. 6.1 Classification is performed using algorithm 6.1. So all we need to do
now is define the priors.

Algorithm 6.1 Method for classifying input using decision trea
1: Letng,, < h.node, oot
2: while Probability is not Outputlo

3: if z satisfiesn.,,..r then
4 Npext < Neyr NL

5: else

6: Npegrt < Neyr-NR

7 end if

8: if thenn,,.,; # 0

9: Neyr <= Npext

10: else

11 Output probability of class via (6.5) using valueg; stored inn.,,,.C.
12: end if

13: end while

6.4 Transfer Learning in Bayesian Decision Trees

Before beginning this section we draw attention to the factlhabw refers only

to the structure. To be able to use approximation of our transfer method in this
case, we need to define the approximation to Kolmogorov complexity of each tre
Now, the size of each tree i8¢y where S is the number of nodes, ang is a
constant, denoting the size of each rule entry, the outgoing pointer<; aSthce

co and the length of the program coglgfor computing the tree output are constants
independent of the tree, we define the length/complexity of a trdécgh) =

S. So the approximation of Kolmogorov complexity(h) of treeh is given by
Krt(h). Hence, in the single task case, the prior we use is the approximation to the
Solomonoff-Levin prio2~ %) and is given by:

Q—Mt(h)
P(h) :=

Lt

where theZ is a normalization term. Th& exists, here becausgés are finite,
and in general because = Sco + I(po) gives lengths of programs, which are
known to satisfy the Kraft inequality _, 27k <1,

For the transfer learning case, we need to approximigte.). We are going
to consider transferring frorm — 1 previously learned trees, and so without loss
of generality, assume thai € H;, andh’ € H;,, j < m. We now approxi-
mate K (.|.) using a function that is defined for a single previously learned tree as

71

follows:
Krta(h|h') := Krt(h) — d(h,h’)

whered(h, h’) is maximum number of overlapping nodes starting from the
root nodes (see Figure 6.2):

d(h, W) := d(nye0t,)p0p) d(n,0):=0
d(n,n’) := 1+ d(ng,n}) + d(ng,ny) d(®,n"):=0
d(h,h’) =5

N

=z

h
Figure 6.2: Example illustrating between two decision trees.

and so in the transfer learning case, the prior when there is only onedraede
previously,

/ 9— Kt (h|h')
P(hlh') := e

In both cases, we can sample from the prior directly by growing the decision
tree dynamically. This fact will become useful below when we sample from the
posterior using a MCMC algorithm. Callfain h a hole. Then forP(h), during
the generation process, we first generate an integecording t® ¢ distribution
(easy to do using a pseudo random number generator). Then atepetesselect
a hole uniformly at random and then create a node there with two more holes
and the rule generated randomly. The pﬂof@t(h)/Zth gives equal probability
to all trees of the same complexity while giving trees of complexity: half as
probability as the trees of complexiky— 1. So the above procedure samples from
the prior as it samplek according t@~* and gives equal probability to every tree
of size Kxt(h) = k by growing the tree uniformly at random.

In the transfer learning case, for prié¥(h|h’) we first generate an integér
according ta2~* distribution. Then we generate a tree using the above procedure
until we get a treeh with Krto(h|h') = k. P(h|h’) gives equal probability to
all trees of the same conditional complexiis(h|h’) equal tok, while giving
trees of complexityt half as probability as the trees of complexity- 1. So the

72

above procedure samples from the transfer prior as it sankpesording to2—?
and gives equal probability to every tree of sizetz(h|h’) = k by growing the
tree uniformly at random.

Form — 1 previously learned treds, ,,,_1, with h; € H;,, we definekrt,, as
an averaging of the contributions of eaeh— 1 previously learned trees:

m—1
1
Kty (hy|hy 1) = —1 - o— Ktz (h|h;)
(hp By m—1) og <m E

In the transfer learning case, the prior, and hence our approximatéan, is

2—Krtm(h|h1,m,1)

Pri(hlhy 1) = 7
tm

which reduces to:
m—1

1 - 2 1
] ;2 Keta(ulh) 6.7)

To sample from this, we can simply select one ofthe 1 trees at random and
then use the procedure for sampling fram’®*2 to get the new tree. So, finally,
the approximation of the transfer learning mixtivk.,, is now:

h(Dn)Q_I@t'm(h|hl,m71)

Mp,, (Dn) = Z

Z
heHim Kt

whereh(D,,) is Pr(Dy|h ym) from (6.6). So by (6.3), the convergence rate
for Mp,, is given byFet,, (hihy 1) In V2 +1og Zras,, (thelog Zig,,, is a con-
stant that is same for ali € H;). In our experiments we actually used the expo-
nent1.005~ ' instead o2~ "'~ above to speed up convergence of our MCMC
method.

Algorithm 6.2 Metropolis-Hastings Algorithm

. Let D,, be the training sample;

Select the current tree/stadig,,. using the proposal distributiof(h.,;).
:fori=1toJ do

Choose a candidate next staig.., according to the(hy,,.qp).
Draw v uniformly at random frono, 1]

Seth.,, = hyop if A(hprep, heyr) > u, whereA is defined by

2 A R - o

—I@tm(h|h17m_1) /
A(h,h') := min {1 h(Dn)2 a(h) }

(D)2 (g)

7: end for

73

As in standard Bayesian MCMC methods, the idea will be to ds&samples
h,,,, from the posteriorPr(h|D,,, h; ,,—1) which is given by

h(Dn>2*I@tm(h‘hl,'mfl)
ZI@t'r?LP(Dn)

P’I”(h|Dn, hl’mfl) =

Then we will approximat@& p,., by

N
My, (y}e) i= 5 3 by o)
=1

We will use the standard Metropolis-Hastings algorithm to sample b,
(see Sect. 6.2 for details). The algorithm is given in Table 6.2. The algoigtfirat
run for someJ = T, to get the Markov chaip x A to converge, and then starting
from the lasth.,, in the run, the algorithm is run again fgr= N times to getV
samples foﬂ\A/IpTL. In our experiments we s@t to 1000 and N = 50. We sely
to our prior2= %= /7., . and hence the acceptance probabilitys reduced to
min{1,h(D,)/h’(D,)}. Note that every time after we generate a tree according
to ¢, we set theC entries tom,,; values obtained from the training samlg

The main question that one will ask about the approximations presented in this
section is just how good these approximations are. One very meaningfapano-
priate way to answer this question is by looking at how well these methods perf
in practice. This is done in the next section where we show that our apgaib&ns
perform quite well and enable us to perform very general and ssitdeésansfer
experiments.

6.5 Experiments

6.5.1 Setup of the Experiments

In our experiments we usétdata-sets from the UCI machine learning repository
Newman et al., 1998. The data-sets and their summary are given in tableo6.1. T
show transfer of information, we cho8elata-sets to transfer to, and for each such
data-set we choskother data-sets at random to transfer from. So theré pedrs

of data-sets we performed transfer experiments for. For each sirctvealivided

up the transfer-to and transfer-from data-set inf¢100 — z) andw/(100 — w)
portions respectively, where,w € {20,40,60,80}. We usedx% andw% of

the samples as a training set ari) — =% and100 — w% of the samples as the
test set for the corresponding data-sets. For each of the pairs,siiedirmed the
transfer-from data set using the/ (100 — w) sample and then learned the transfer-
to data-set using;/(100 — =) sample and th&0 trees sampled during learning

74

of the transfer-from data set (as described at the end of the piegessttion).
So we performed x 4 x 3 x 4 = 144 different transfer experiments in total. We
present the results below for each transfer-to data-set, whereallates reported
were obtained by averaging over different runs. Within each run we shuffled the
samples of each data-set before splitting them up.

Table 6.1: Summary of the data-sets used in the transfer experiments.

Database # of Samples # of Features # of Classes Ref. Name
E-coli 336 7 8 ecoli
Yeast 1484 8 10 yeast
Australian Credit 690 14 2 aus
German Credit 1000 20 2 german
Hepatitis 155 19 2 hep
Breast Cancer,Wisc. 699 9 2 bc-wisc
Heart Disease, Cleve. 303 14 5 heart

6.5.2 Overview and Interpretation of Results

Before we dive into the details of the experiments, we will make some obsersatio
about our methods and the results presented below. The key resulser/els
that in most cases we see improvement in performance (presented in tguers of
centage improvement with respect to the non-transfer case), and in rasey c
the improvement is significant. Furthermore, when we do see reductionforper
mance, in most cases it is 2% and never> 10%. This seems to give evidence
that the approximations of our transfer method in Chap. 4 that we haviogede
are effective, as they bear out the theoretical justification that trasiséerdd never
hurt too much. In addition, we can also give an intuitive explanation of thalte
in purely Bayesian machine learning terms without reference to our Al&das
results.

MCMC methods are essentially stochastic exploration methods with nice con-
vergence guarantees. When we perform transfer learning, weyehhe prior
so that the MCMC algorithm explores certain areas of the hypothesis sptce
higher probability. Now the base (Non-Transfer) learner with i (™) is sim-
ply a Bayesian learner with a Occam prior, assigning higher probability tdesma
trees. Use of th@ @t~ priors during transfer forces the MCMC algorithm to
focus its attention on trees with size possibly larger than recommended by the Oc
cam prior. For this reason, transfer learning improves performanbe.rdason
it does not degrade performance significantly is because MCMC metheits

75

stochastic exploration methods, automatically reject larger trees that dawses
performance in the transfer learning case. The tradeoff in the trdeafaing case

is between possibly improved performance and possibly higher computatomta
from testing larger trees. In case the reader is wondering, the compatatast is

not twice as much because we assume that the we were going to learn thertrans

from task anyway.

Table 6.2: Non-Transfer error rates for the Data Sets

Data-set 20/80 40/60 60/40 80/20
ecoli 19.5%,3.4 | 13.38%,4.45 | 9.9%,2.11 | 10.89%,5.8
yeast | 15.3%,2.77 | 17.88%,3.96 | 17.0%,3.06 | 14.89%,2.73
aus | 21.93%,4.03 | 18.55%,2.25 | 20.9%,3.08 | 18.9%,2.1
german | 31.6%,1.38 | 31.6%,1.38 | 29.0%,1.27 | 31.1%,4.47
hep | 23.3%,1.85 | 20.1%,3.7 | 20.8%,4.35 | 19.8%,1.38
bc-wisc | 10.8%,3.1 | 8.92%,1.01 | 8.27%,1.93 | 8.99%,2.3
heart | 26.6%,4.7 | 27.7%,3.9 | 26.6%,3.45 | 23.3%,1.8

Finally, to ensure that the improvement in performance is due to transfer and
not because our base learner was faulty, we compared the erroff taee lmase
learner to results in previous work. From a survey of literature it seemartbe
rate for our classifier for th80/20 case is always at least a couple of percent-
age points better than C4.5. As an example,dooli our classifier outperforms
Adaboost and Random Forests in Breiman, 2001, but is a bit worse tas@ fibr
German Credit These non-transfer results are summarized in table 6.2. Our results
for each Transfer-To data-set appear starting on the next page.

76

6.5.3 Results for theecoli Dataset

Tables 6.4 to 6.7 and Figs. 6.3 to 6.6 shows the results of transfer leargiag-ex
ments when the transfer-to data-set was ecoli with tog80, 40/60, 60/40 and
80/20 respectively. The transfer from data-sets were yeast, german ant®c
As can be seen by just skimming through the results, particularly the pegeenta
improvement part of the results (the second part of each table and tihesfigun
almost all cases, transfer learning results in improved performance thamoth
transfer case. The tables and figures appear starting in the next page

Table 6.3:Table Key: TheFrom Typerow gives the type of data-set information is
being transferred fromNo-Transmeans no transfer is occurring, and 100 — x)
mean the corresponding data-set type (see text for details). Eadtgseins row
gives the result when information is transferred from the correspgndia-set.
The top half of the table gives the actual error rates and standard dayiatio the
lower half gives the percentage improvement in each case.

TRANSFER TOz /(1 —) TRANSFER TO DATA SET — ERRORRATES

From Type | No-Trans| 20/80 | 40/60 | 60/40 80/20

data-set 1 9%, 9 9%,9 | 9%,9 | 9%,9 9%, 9

data-set 2 9%, 9 9%,9 | 9%,9 | 9%,9 9%, 9

data-set 3 9%, 9 9%,9 | 9%,9 | 9%,9 9%, 9

TRANSFER TOz /(1 —) TRANSFER TO DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans| 20/40 | 40/60 | 60/40 80/20

data-set 1 - 9% 9% 9% 9%

data-set 2 - 9% 9% 9% 9%

data-set 3 - 9% 9% 9% 9%

77

Table 6.4: Results of2 transfer experiments for th&0/80 ecoli data set. See
Table Key for meaning of the table entries.

TRANSFER TO20/80EcoLI DATA SET — ERRORRATES

From Type | No-Trans 20/80 40/60 60/40 80/20
yeast 19.5%,6.44 | 11.19%,4.27 | 13.54%,5.87 | 12.39%,4.94 | 13.88%,3.21
german 19.5%,6.44 | 14.7%,4.46 | 11.72%,4.66 | 14.25%,3.26 | 11.12%,2.93
bc-wisc 19.5%,6.44 | 14.63%,4.43 | 12.95%,4.52 | 12.54%,4.77 | 11.31%,4.26
TRANSFER TO20/80ECOLI DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans 20/80 40/60 60/40 80/20
yeast - 42.62% 30.56% 36.46% 28.82%
german - 24.62% 39.9% 26.92% 42.97%
bc-wisc - 24.97% 33.59% 35.69% 42.0%
Transfer For Ecoli 20/80 data Set
50 T T T
20/80 mm—
40/60 mmm—
40 60/40 m—
80/20 mm——
S 30t -
£
[0}
3 20| .
o
E
s 10 - E
-10 1 1

1
L
Q
%,

Data Sets Transferred From

4
7} s
So

Figure 6.3: Percentage Improvement for the 20/80 ecoli data-set. Bhurtrep-
resents a particular type of the transfer-from data-set.

20/80 ecoli data-set:For the20/80 data-set type, in all cases we observe signif-
icant improvement in performance, which is intuitively satisfying becauseisn th
case the loss in performance due to reduced data will be most severeetarel

opportunities for transfer the most.

78

Table 6.5: Results of2 transfer experiments for th&)/60 ecoli data set. See
Table Key for meaning of the table entries.

TRANSFER TO40/60ECOLI DATA SET — ERRORRATES

From Type | No-Trans 20/80 40/60 60/40 80/20
yeast 13.38%,4.5 | 11.44%,3.95 | 11.54%,3.86 | 10.05%,3.29 | 10.25%, 2.45
german 13.38%,4.5 | 10.2%,2.73 | 11.64%,3.84 9.9%,4.47 10.6%, 4.16
bc-wisc 13.38%,4.5 | 11.84%,3.26 | 9.45%, 3.61 9.3%,2.63 9.3%,2.73
TRANSFER TO40/60ECcOLI DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans 20/80 40/60 60/40 80/20
yeast — 14.5% 13.75% 24.89% 23.39%
german - 23.77% 13.0% 26.01% 20.78%
bc-wisc - 11.51% 29.37% 30.49% 30.49%
Transfer For Ecoli 40/60 data Set
50 T T T
20/80 mm—
40/60
40 60/40 m—
80/20 mmm—
S 30 -
€
(0]
3 20 .
o
E
s 10 - E
0
-10 1 1 1
}o %, 60\
Rt %‘?o %o

Data Sets Transferred From

Figure 6.4: Percentage Improvement for the 40/60 ecoli data-set. Bhutrep-
resents a particular type of the transfer-from data-set.

40/60 ecoli data-setWe see improvement in performance for te/60 data-set
type that is similar to those for th2 /80 type, which is also intuitively satisfying
for the same reason as above. In addition, we do not see any adffecselee to

transfer.

79

Table 6.6: Results of2 transfer experiments for th&) /40 ecoli data set. See
Table Key for meaning of the table entries.

TRANSFER TO60/40EcoOLI DATA SET — ERRORRATES

From Type | No-Trans 20/80 40/60 60/40 80/20
yeast 9.9%,2.11 | 10.07%,3.08 | 8.21%,2.97 | 8.66%,2.74 | 6.34%,2.25
german 9.9%,2.11 | 9.48%, 3.61 8.06%,4.18 | 9.63%,3.54 | 10.15%, 3.82
bc-wisc 9.9%,2.11 9.93%, 3.6 10.82%,5.43 | 8.28%,1.55 | 10.6%,3.14
TRANSFER TO60/40ECcOLI DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans 20/80 40/60 60/40 80/20
yeast - —-1.72% 17.07% 12.53% 35.96%
german - 4.24% 18.59% 2.73% —2.53%
bc-wisc — —0.3% —9.29% 16.36% —7.07%
Transfer For Ecoli 60/40 data Set
50 T T T
20/80 m—
40/60
40 60/40 mmmm -
80/20 www——
S 30 .
=
(4]
g8 20} .
o
£
< 10+ i
0
10 p P 7
e S, (a
%f O)‘?O 17//‘5"0

Data Sets Transferred From

Figure 6.5: Percentage Improvement for the 60/40 ecoli data-set. Bhatrep-
resents a particular type of the transfer-from data-set.

60/40 ecoli data-set:In the 60/40 data-set type we for the first time observe ill-
effects of transfer, as in half the cases we see reduction in perfoemeiogvever,
except in one case, the negative impact of transfer is not that severe.

80

Table 6.7: Results of2 transfer experiments for th&)/20 ecoli data set. See
Table Key for meaning of the table entries.

TRANSFER TO80/20EcoLI DATA SET — ERRORRATES
From Type No-Trans 20/80 40/60 60/40 80/20

yeast 10.89%,5.82 | 8.06%,3.28 | 7.61%,3.74 | 9.55%,4.18 | 8.96%,4.95
german 10.89%,5.82 | 10.15%,2.57 | 9.55%,4.63 | 11.04%,4.44 | 9.55%,5.14
bc-wisc 10.89%,5.82 | 8.51%,5.82 | 7.61%,3.16 | 8.66%,6.36 | 10.15%,2.89

TRANSFER TO80/20EcOLI DATA SET — PERCENTAGEIMPROVEMENTS

From Type No-Trans 20/80 40/60 60/40 80/20

yeast - 25.99% 30.12% 12.3% 17.72%
german - 6.8% 12.3% —1.38% 12.3%
bc-wisc - 21.85% 30.12% 20.48% 6.8%

Transfer For Ecoli 80/20 data Set
50 T T T

20/80 m—
80/20

40 60/40 mmmm
80/20 mww——

30 —

% Improvement
N
o
T
1

10 - —

1 1 1
4 & 4
Q (S Q
Q 77 Y,
v O)‘?O %o

-10

Data Sets Transferred From

Figure 6.6: Percentage Improvement for the 80/20 ecoli data-set. Bhatrep-
resents a particular type of the transfer-from data-set.

80/20 ecoli data-setThe results for th&0/20 case is much better than the result
for the 60/40 case, where we see significant improvement in most cases, and a
minor reduction in performance in only one case.

81

6.5.4 Results for thebc-wisc Dataset

Tables 6.9 to 6.12 and Figs. 6.7 to 6.6 shows the results of transfer leaming e
periments when the transfer-to data-set was ecoli with tgp¢80, 40/60, 60/40
and80/20 respectively. The transfer from data-sets were heart, aus and Eceli.
performance improvement here is not as notable as for ecoli, and in maey ca
there is a reduction in performance. However, as mentioned in Sect. 6.5, mo
of these reductions are not that significant. Strangely enough, the iggicant
improvement is observed for the 80/20 transfer-to data-set. So in thi# casens
that the space of tree sizes that the MCMC algorithm is being told to explore in
the transfer case is insufficient to overcome the paucity of data im thie — z)
transfer-to data-types far < 80. Not only that, the space being suggested seem
to somewhat harmful in some cases. The tables and figures appear stattiag
next page.

Table 6.8:Table Key: TheFrom Typerow gives the type of data-set information is
being transferred fromNo-Transmeans no transfer is occurring, and 100 — x)
mean the corresponding data-set type (see text for details). Eacgseins row
gives the result when information is transferred from the correspgritita-set.
The top half of the table gives the actual error rates and standard dayatid the
lower half gives the percentage improvement in each case.

TRANSFER TOz/(1 —) TRANSFERTO DATA SET — ERRORRATES

From Type | No-Trans| 20/80 | 40/60 | 60/40 80/20

data-set 1 9%, 9 9%.,9 | 9%.,9 | 9%,9 9%, 9

data-set 2 9%, 9 9%,9 | 9%,9 | 9%,9 9%, 9

data-set 3 9%, 9 9%,9 | 9%,9 | 9%,9 9%, 9

TRANSFER TOz/(1 —) TRANSFER TO DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans| 20/40 | 40/60 | 60/40 80/20

data-set 1 - 9% 9% 9% 9%

data-set 2 - 9% 9% 9% 9%

data-set 3 - 9% 9% 9% 9%

82

Table 6.9: Results of2 transfer experiments for th9 /80 bc-wisc data set. See
Table Key for the meaning of the table entries.

TRANSFER T020/80BC-wWISC DATA SET — ERRORRATES
From Type | No-Trans 20/80 40/60 60/40 80/20

heart 10.8%,3.1 | 9.52%,2.74 | 10.07%,2.01 | 10.21%,2.27 | 9.95%,1.95
aus 10.8%,3.1 | 10.47%,2.24 | 11.27%,2.55 | 9.71%,1.66 | 11.66%,2.13

ecoli 10.8%,3.1 | 8.91%,2.19 | 10.77%,2.67 | 9.55%,1.44 | 10.27%,2.14
TRANSFER T020/80BC-wWISC DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans 20/80 40/60 60/40 80/20
heart - 11.85% 6.76% 5.46% 7.87T%
aus - 3.06% —4.35% 10.09% —7.96%
ecoli - 17.5% 0.28% 11.57% 4.91%

Transfer For bc-wisc 20/80 data Set

50 T T T
20/80 m—
40/60
40 60/40 e -
80/20 mww——
30 E
20 —

% Improvement

-10 I I I
%, ?, Q
®$,>, (/\P OOé»

Data Sets Transferred From

Figure 6.7: Percentage Improvement for the 20/80 bc-wisc data-seh deéar
represents a particular type of the transfer-from data-set.

20/80 bc-wisc data-setWe mostly observe improvements in performance, but for
the most part it is not that significant, and there are some insignificanttredun
performances.

83

Table 6.10: Results af2 transfer experiments for th#) /60 bc-wisc data set. See
Table Key for the meaning of the table entries.

TRANSFER TO40/60BC-wWISC DATA SET — ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20
heart 8.92%,1.01 | 8.97%,0.87 | 8.9%,2.42 | 9.02%,2.02 | 9.59%,1.37
aus 8.92%,1.01 | 9.71%,2.49 | 8.93%,1.87 | 7.76%,1.34 | 7.8%,1.13
ecoli 8.92%,1.01 | 8.59%,1.39 | 9.33%,3.63 | 9.19%,2.46 | 9.14%, 1.04
TRANSFER T040/60BC-wiIsSCc DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans 20/80 40/60 60/40 80/20
heart - —0.56% 0.22% —1.12% —7.51%
aus - —8.86% —-0.11% 13.0% 12.56%
ecoli - 3.7% —4.6% —3.03% —2.47%
Transfer For bc-wisc 40/60 data Set
50 T T T
20/80 m—
40/60
40 60/40 mmm -
80/20 www——
g 30 E
(0]
IS
[}
g 20} .
o
E
£ 10FfF .
0 T l
-10 1 1 1

%

® Q
(2
U S

C
12

Data Sets Transferred From

Figure 6.8: Percentage Improvement for the 40/80 bc-wisc data-seh deéar
represents a particular type of the transfer-from data-set.

40/60 bc-wisc data-set:In this case, almost all the change in performances are
reductions. There are two increase in performance, (aus, 60/40042d) Sthat

are just significant, but also two reductions in performance that are alsdyn
significant. In our entire collection of experiments this is the worst perforreatg

— and yet there are onB/nearly bad performances. So this is a good sign for our
method.

84

Table 6.11: Results af2 transfer experiments for thg# /40 bc-wisc data set. See
Table Key for the meaning of the table entries.

TRANSFER TO60/40BC-wWISC DATA SET — ERRORRATES

From Type | No-Trans 20/80 40/60 60/40 80/20
heart 8.28%,1.93 | 8.32%,2.04 | 7.46%,1.4 | 7.53%,1.71 | 8.42%,1.54
aus 8.28%,1.93 | 7.67%,2.15 | 857%,2.2 | 8.28%,1.45 | 8.35%, 1.59
ecoli 8.28%,1.93 | 8.49%,1.9 | 6.77%,3.07 | 7.56%,1.73 | 7.99%,1.72
TRANSFER TO60/40BC-wisc DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans 20/80 40/60 60/40 80/20
heart - —0.48% 9.9% 9.06% —1.69%
aus - 7.37% —3.5% 0.0% —0.85%
ecoli - —2.54% 18.24% 8.7% 3.5%
Transfer For bc-wisc 60/40 data Set
50 T T T
20/80 m—
40/60
40 60/40 mmmm -
80/20 www——
g 30 E
[0}
=
(4]
g8 20} .
o
£
L 10Ff i
A | T . | E
.10 lé 1 1
@% % @“oé.

Data Sets Transferred From

Figure 6.9: Percentage Improvement for the 60/40 bc-wisc data-seh dedar
represents a particular type of the transfer-from data-set.

60/40 bc-wisc data-set:The results here are much better than in the preceding
case, with no significant reductions in performance, and several sigmtifim-
provements in performance.

85

Table 6.12: Results df2 transfer experiments for th## /20 bc-wisc data set.

TRANSFER TO80/20BC-WISC DATA SET — ERRORRATES

From Type | No-Trans 20/80 40/60 60/40 80/20
heart 8.99%,3.03 | 7.19%,2.11 | 5.9%,1.81 | 6.76%,2.09 | 8.85%,2.47
aus 8.99%,3.03 | 8.2%,1.62 | 6.76%,1.96 | 7.91%,2.09 | 7.77%, 2.47
ecoli 8.99%,3.03 | 9.57%,2.91 | 8.2%,2.85 | 6.12%,1.86 | 7.27%, 2.58
TRANSFER TO80/20BC-WISC DATA SET — PERCENTAGEIMPROVEMENTS

From Type | No-Trans 20/80 40/60 60/40 80/20
heart - 20.02% 34.37% 24.81% 1.56%
aus - 8.79% 24.81% 12.01% 13.57%
ecoli - —6.45% 8.79% 31.92% 19.13%

Transfer For bc-wisc 80/20 data Set
50 T T T
20/80 m—
80/20
40 60/40 messean
80/20 www——m

g 30

(0]

=

[}

3 20|

o

£

£ 10Ff
0
-10 lé 1 1

0@,?, L?(’d‘ Gooé.

Data Sets Transferred From

Figure 6.10: Percentage Improvement for the 80/20 bc-wisc data-seh. deéor
represents a particular type of the transfer-from data-set.

80/20 bc-wisc data-setThese are the best batch of results by far for the bc-wisc

data-set with significant performance improvements in all cases, and with on

reduction in performance.

86

6.5.5 Results for theaus Dataset

Tables 6.14 t0 6.17 and Figs. 6.11 to 6.14 shows the results of transfénfpaxn
periments when the transfer-to data-set was ecoli with tgp¢80, 40/60, 60/40
and80/20 respectively. The transfer from data-sets were german, ecoli gnd he
This is the best performing transfer-to data-set by far, with no redwgiioperfor-
mance, and significant improvement in performance in all cases. Thisrasel
also intuitive in that we observe the most improvement in performance wtien tra
ing data is most scarce — i.e. in the transfer-to 20/80 case. The tables ams fig
appear starting in the next page.

Table 6.13:Table Key: TheFrom Typeow gives the type of data-set information is
being transferred fromNo-Transmeans no transfer is occurring, and 100 — x)
mean the corresponding data-set type (see text for details). Eactgseins row
gives the result when information is transferred from the correspgritita-set.
The top half of the table gives the actual error rates and standard dayatid the
lower half gives the percentage improvement in each case.

TRANSFER TOz /(1 —) TRANSFERTO DATA SET — ERRORRATES

From Type | No-Trans| 20/80 | 40/60 | 60/40 80/20

data-set 1 9%, 9 9%,9 | 9%,9 | 9%,9 9%, 9

data-set 2 9%, 9 9%,9 | 9%,9 | 9%,9 9%, 9

data-set 3 9%, 9 9%,9 | 9%,9 | 9%,9 9%, 9

TRANSFER TOz /(1 —) TRANSFER TO DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans| 20/40 | 40/60 | 60/40 80/20

data-set 1 - 9% 9% 9% 9%

data-set 2 - 9% 9% 9% 9%

data-set 3 - 9% 9% 9% 9%

87

Table 6.14: Results df2 transfer experiments for tH /80 aus data set. See Table

Key for the meaning of the table entries.

TRANSFER T020/80AUS DATA SET — ERRORRATES

From Type | No-Trans 20/80 40/60 60/40 80/20
german 21.9%,4.03 | 15.49%,1.47 | 16.9%,3.65 15.6%,1.47 | 15.36%,1.27
ecoli 21.9%,4.03 | 14.8%,0.94 | 15.63%,1.91 | 15.47%,1.32 | 15.54%, 1.46
hep 21.9%,4.03 | 14.93%,1.23 | 14.91%,1.72 | 15.22%,1.06 | 14.73%,1.0
TRANSFER TO20/80AUS DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans 20/80 40/60 60/40 80/20
german - 29.27% 22.83% 28.77% 29.86%
ecoli - 32.42% 28.63% 29.36% 29.04%
hep - 31.83% 31.92% 30.5% 32.74%
Transfer For aus 20/80 data Set
50 T T T
20/80 m—
40/60 wewwem
40 60/40 messsem -
80/20 www—
S 30 .
£
(]
3 20 .
o
£
L 10| i
0
-10 1 1 1
00% Oc‘oé. /}%
%

Data Sets Transferred From

Figure 6.11: Percentage Improvement for the 20/80 aus data-set. &achep-
resents a particular type of the transfer-from data-set.

20/80 aus data-setWe see significant performance in all cases.

88

Table 6.15: Results df2 transfer experiments for thi® /60 aus data set. See Table
Key for the meaning of the table entries.

TRANSFER TO40/60AUS DATA SET — ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20
german 18.55%,2.25 | 14.76%,0.71 | 14.37%,1.35 | 14.28%,0.96 | 15.07%,0.87
ecoli 18.55%,2.25 | 14.49%,0.95 | 14.54%,1.29 | 15.07%,0.9 | 15.05%,0.99
hep 18.55%,2.25 | 14.15%,0.82 | 14.47%,0.91 | 15.24%,1.16 | 15.8%,3.34
TRANSFER TO40/60AUS DATA SET — PERCENTAGEIMPROVEMENTS
From Type No-Trans 20/80 40/60 60/40 80/20
german - 20.43% 22.53% 23.02% 18.76%
ecoli - 21.89% 21.62% 18.76% 18.87%
hep - 23.72% 21.99% 17.84% 14.82%
Transfer For aus 40/60 data Set
50 T T T
20/80 m——
40/60
40 + 60/40 me—
80/20 messmm
S 30 g
=
(0]
3 20| .
o
£
£ 10 F .
0
_10 1 1 1
s, GOO/. é%
2, 7

Data Sets Transferred From

Figure 6.12: Percentage Improvement for the 40/60 aus data-set. &achep-
resents a particular type of the transfer-from data-set.

40/60 aus data-set:The performance improvement not as significant in the pre-
ceding case, but still quite significant.

89

Table 6.16: Results df2 transfer experiments for thi# /40 aus data set. See Table

Key for the meaning of the table entries.

TRANSFER TO60/40AUS DATA SET — ERRORRATES

From Type | No-Trans 20/80 40/60 60/40 80/20
german 20.9%,3.03 | 15.33%,2.76 | 14.71%,1.87 | 14.93%,1.49 | 13.88%,1.77
ecoli 20.9%,3.03 | 14.24%,1.47 | 13.55%,1.48 | 13.77%,1.64 | 14.24%,1.76
hep 20.9%,3.03 | 15.4%,1.69 | 14.86%,1.87 | 14.75%,1.23 | 14.64%,1.63
TRANSFER TO60/40AUS DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans 20/80 40/60 60/40 80/20
german — 26.65% 29.62% 28.56% 33.59%
ecoli - 31.87% 35.17% 34.11% 31.87%
hep - 26.32% 28.9% 29.43% 29.95%
Transfer For aus 60/40 data Set
50 T T T
20/80 m—
40/60 wewwem
40 60/40 messsem -
80/20 www—
S 30 .
£
(]
3 20 8
o
£
L 10| i
0
-10 1 1 1
00% Oc‘oé. /}%
%

Data Sets Transferred From
Figure 6.13: Percentage Improvement for the 60/40 aus data-set. &achep-
resents a particular type of the transfer-from data-set.

60/40 aus data-setWe observe significant performance improvement in all cases.

90

Table 6.17: Results df2 transfer experiments for th# /20 aus data set. See Table
Key for the meaning of the table entries.

TRANSFER TO80/20AUS DATA SET — ERRORRATES

From Type No-Trans 20/80 40/60 60/40 80/20
german 18.99%,2.9 | 13.94%,2.22 | 14.45%,2.5 | 13.87%,1.73 | 14.31%,3.4
ecoli 18.99%,2.9 | 13.43%,3.47 | 14.53%,2.89 | 15.91%,3.34 | 14.31%,2.4
hep 18.99%,2.9 | 15.62%,2.6 13.5%,4.38 | 15.04%,2.43 | 15.04%,2.1
TRANSFER TO80/20AUS DATA SET — PERCENTAGEIMPROVEMENTS
From Type | No-Trans 20/80 40/60 60/40 80/20
german - 26.59% 23.91% 26.96% 24.64%
ecoli - 29.28% 23.49% 16.22% 24.64%
hep - 17.75% 28.91% 20.8% 20.8%
Transfer For aus 80/20 data Set
50 T T T
20/80 mm—
80/20
40 60/40 e
80/20 www—
‘g 30 |
£
(]
3 20
o
£
L 10|
0
-10 1 1 1
90% 0004. /}%
%

Data Sets Transferred From

Figure 6.14: Percentage Improvement for the 80/20 aus data-set. &achep-
resents a particular type of the transfer-from data-set.

80/20 aus data-setWe observe significant performance improvement in all cases.

91

6.6 Discussion

In this section we showed how we may approximate our optimal sequentidkirans
prior &1r, in a practical setting. We approximated the prior for practical Bayesian
learning using decision trees and showed that these experiments morg loeves
closely to theoretical predictions. That is, in a battery4f individual transfer ex-
periments, in most cases we see significant improvement due to transfenlgnd
in a couple of experiments out 4 we see significant reduction in performance.
This shows our approximation, which are admittedly crude, still result in inter-
esting practical performance. We believe that this demonstrates the pbther o
theory developed in preceding chapters.

While we have performed a whole slew of successful transfer expetsmen
there are avenues of experimentation we have not yet explored. Duzdenieral
nature of our method, we can perform transfer experiments betweecoaniyi-
nation of databases in the UCI repository and in the future it will be interesiing
perform these experiments. Additionally, our approximations, while effedti
practice, are not as sophisticated as they could be, and so in future awigls
to explore transfer using more powerful generalized similarity functionstlike
gzip compressor as in Cilibrasi & Vitanyi, 2005. A flavor of this approatthe
standard compressor is gzip, then the functigp,, (zy) will give the length of the
stringzy after compression by gzifgy.i,(zy) — Cy.ip(y) Will be the conditional
Cyzip(z|y). S0 Cyip(hlh’) will give the relatedness between tasks. The most
promising avenue of research in this direction seems to be to restrict amgtelv
group of specific machine learning domains and then deriving comprdsasaa
distance functions suitable for measuring relatedness between hypdtizsise
suitable for the group.

92

Chapter 7

Conclusion

We will end this dissertation with a look at the contributions made in this thesis,
how this work can be extended in the future, and finally, a brief look atdhaec-

tion of the ideas in this thesis to work in cognitive science in trying to understand
how humans measure similarity.

7.1 Contributions of this Thesis

We began this thesis by pointing out that while transfer learning is an important
subfield of machine learning, key problems in it remain formally unsolvedain p
ticular, it was not clear how we should measure similarity between tasks, @nd th
lead to problems of not knowing when to transfer information, how muchrmder
tion to transfer and when not to. In this thesis, with the aid of ideas in Algorithmic
Information Theory, we gave a formally/universally optimal measure of rialsi-
edness. We then used this measure to derive universally optimal tréeesfieing
schemes in the Bayesian setting. Universal optimality means that no other rea-
sonable methods can do much better than the schemes we describe, anithlaenc
very formal sense, our methods solved the key problems in transfeiriginat we
mentioned above. We further extended our theory to the Artificial Agentiange
and Prediction with Expert Advice setting.

As a byproduct of the above investigation, we derived interesting reisults
Algorithmic Information Theory itself. We extended the theory of Information
Distance and gave a new, more robust, interpretation of classic uditersaults
in AIT. Furthermore, we used information measures for strings to meadiore in
mation content of programs computing distributions. To allay concern thatave a
not losing something in this process, we also briefly developed the thedtyl-of
mogorov complexity of functions, and showed that these two are equivaieier
certain reasonable conditions.

Interestingly, we were also able to construct a practical approximationrof o
theoretical methods. Using this, we performdd individual transfer experiments
to successfully transfer acrosseal-life databases from the UCI repository that

93

have little to no semantic similarity. This made our experiments the most general
transfer experiments to date.

7.2 Future Work

There are many directions for possible future work. As we mentioned indtig b

of the thesis, the theoretically optimal measures and methods that we intraduce a
computable only in the limit. So a major thrust of the future theoretical work will
be in developing a practical version of the theory. There are coupléfefent
ways to approach this. The first is to focus on specific machine learnimgids,
such as systems biology, machine vision etc. and develop transfer methoetailo
to transfer within such a domain, or to transfer across a certain classvaid®

and so forth. While we expect this to lead to interesting practical applicafioms,

a formal perspective this seems somewhat unsatisfactory as a main poterest

of our research was that we were able to transfer across arbitrargids.

The other more interesting option is to restrict the class of measures and trans
fer schemes we consider from computable-in-the-limit to those that ararceso
boundedly computable. That is, we only consider probability measuresdiand
tance functions such that there exists programs that compute them whéetiegp
some given time and memory usage constraint; then we try to find transfer learn-
ing distances and transfer methods that are universally optimal with tespbis
class. This framework we term resource bounded learning, and thiseiy aigh
area in machine learning that needs to be explored both in a single task ¢gearnin
case and transfer learning case. Current work in this include Feded&rbvski,
1998; Rajwan & Feder, 2000; Meron & Feder, 2004. The resultdjcpéarly
the last paper cited, are impressive. These papers considers sequediction
problem and the most impressive results give asymptotic regret bountie foest
K -state finite state machines competing against ofdglarkov chains. The way
we envision extending this work is via considering the Bayesian setting but with
resource bounded, computable measures (which is obviously a largertibn
those representable ly-state FSMs or ordet Markov chains), and derivingt
step bounds rather than asymptotic ones.

Furthermore, we just barely touched on applying our transfer learcimgnse
to the artificial intelligent agent setting. We plan on exploring this issue fuliper
focusing on Bayesian reinforcement learning agents (Dearden €98@8; $terns,
2000; Ross et al., 2007).

We expect future practical work to largely come out as applications of #ie th
ory to be developed. However, the decision tree based transfer methddwel-
oped in this thesis is also quite general, and it would be interesting to perforen mo

94

experiments with this method to establish its applicability.

7.3 Similarity Measures in Human Cognition

We began this thesis by observing that study of transfer learning wasateatitay

the fact that when people solve problems they almost always use trafsfet

is appropriate that we end this document by looking at the question of hgw co

nitively plausible our approach to measuring similarity is. That is, do peomge us

something similar to Kolmogorov complexity to measure similarity across tasks ?
While the answer is not known for the general case, there has beensmine

that postulates (Feldman, 2003) and gives evidence (Hahn et al., B@®Beople

do use something similar to Kolmogorov complexity to measure similarity between

concepts for the purpose of categorization. In the Cognitive sciencatliterthere

are two main hypothesis about how people measure similarity; the first is based

a distance function in some psychological space (Shepard, 1957heaseécond

based on how many features the entities being compared have in common (Tver

sky, 1977). Both suffer from the severe limitation that objects are repted as

points in a space or purely in terms of feature sets (i.e. no notion of struoture

the representation is allowed). Due to these limitations, the notidrangform

functionswere proposed as a measure of similarity (Hahn et al., 2003) . That is,

given two concepts, the measure of similarity between two concepts is the numbe

of transforms that need to be applied to convert one concept to the dthisris,

of course, a practical approximation to the Information Distance and eseden

use of this idea in people was given in Hahn et al., 2003. The connectived®

this and Kolmogorov complexity was elucidated in Chater & Vitanyi, 2002; Chater

& Vitanyi, 2003. This connection is quite gratifying and exciting, as it seents tha

the ideas that lead us to formal solutions to problems of measuring similarity in

machines may also hold the key to mysterious and deep question of how people s

successfully measure and similarity between mental concepts — the vetldact

initiated this whole work!

95

References

Abu-Mostafa, Y. S. (1995). Hintd\Neural Computation7, 639-671.

Ando, R. K., & Zhang, T. (2005). A framework for learning predictsteuctures
from multiple tasks and unlabeled dafimurnal of Machine Learning Research

Andrieu, C., de Freitas, N., Doucet, A., & Jordan, M. I. (2003). An idtrction to
MCMC for machine learningMachine Learning50(1-2) 5-43.

Barto, A., Bradtke, S., & Singh, S. P. (1995). Learning to act usingtiee
dynamic programmingArtificial Intelligence 72(1), 81-138.

Baxter, J. (1995). Learning internal representatidisceeding of the workshop
on Computational Learning Theary

Baxter, J. (1998).Learning to learn chapter Theoretical Models of Learning to
Learn, 71-94. MA: Kluwer Academic Publishers.

Baxter, J. (2000). A model of inductive bias learnidgurnal of Artificial Intelli-
gence Resear¢hi2, 149-198.

Behrends, E. (2000)Introduction to markov chains: With special emphasis on
rapid mixing Berlin: Vieweg Verlag.

Ben-David, S., Gehrke, J., & Schuller, R. (2002). A theoretical fraorkvior
learning from a pool of disparate data sourcesCM SIGKDD International
conference on Knowledge discovery and data mirng43—449.

Ben-David, S., & Schuller, R. (2003). Exploiting task relatedness famleg
multiple tasks Proceedings of th&6'" Annual Conference on Learning Theory

Bennett, C., Gacs, P., Li, M., Vitanyi, P., & Zurek, W. (1998). Informati@stahce.
IEEE Transactions on Information Theod4(4), 1407-1423.

Bernardo, J. M., & Smith, A. F. M. (1994Bayesian theoryNew York: Wiley.
Breiman, L. (2001). Random forestslachine Learning45, 5-32.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1998)assification and
regression treesNew York: Chapman and Hall.

Caruana, R. (1993). Multitask learning: A knowledge-based of sooirductive
bias. Proceedings of th¢0*" International Conference on Machine Learning

96

Caruana, R. (1997). Multitask learniniglachine Learning28, 41-75.

Cesa-Bianchi, N., & Lugosi, G. (2006Prediction, learning and gamesCam-
bridge University Press. 1st edition.

Chaitin, G. J. (1975). A theory of program size formally identical to infdiora
theory. Journal if the ACM 22(3), 329-340.

Chater, N., & Vitanyi, P. (2002). Simplicity: A unifying principle in cognitive
science?Trends in Cognitive Scienceg 19-22.

Chater, N., & Vitanyi, P. (2003). The generalized universal law ofegalization.
Journal of Mathematical Psycholog§7, 346—-369.

Cilibrasi, R., & Vitanyi, P. (2005). Clustering by compressidBEE Transactions
on Information theory51(4), 1523-1545.

Cover, T. M., & Thomas, J. A. (1991)Elements of information theoryWiley-
Interscience.

Dearden, R., Friedman, N., & Russell, S. (1998). Bayesian g-learfrareed-
ings of15" National Conference on Artificial Intelligence (AAABAAI Press,
Menlo Park, CA.

Denison, D. G. T., Holmes, C. C., Mallick, B. K., & Smith, A. F. M. (2005).
Bayesian methods for nonlinear classification and regresdiogland: Wiley.

Drummond, C. (2002). Accelerating reinforcement learning by compasohg
tions of automatically identified subtask3ournal of Artificial Intelligencel6,
59-104.

Evgeniou, T., Micchelli, C., , & Poggio, T. (2000). Regularization netvgoakd
support vector machineg&dvances in Computational Mathematits8, 1-50.

Evgeniou, T., Micchelli, C., , & Pontil, M. (2004). Learning multiple tasks with
kernel methodsConference on Knowledge Discovery and Data Minit@

Evgeniou, T., Micchelli, C., , & Pontil, M. (2005). Learning multiple tasks with
kernel methodsJournal of Machine Learning Researd) 615-637.

Feder, M., & Federovski, E. (1998). Prediction of binary sequensegj finite
memory.Proceedings of the International Symposium on Information Theory

Feldman, J. (2003). The simplicity principle in human concept learn@wgrent
Directions in Psychological Scienc&2(6), 227-232.

Fill, J. A. (1998). An interruptible algorithm for perfect sampling via Marko
chains.The Annals of Applied Probabilit(1), 131-162.

Fitting, M. (1996). First order automated theorem provin@erlin: Springer. 2nd
edition.

97

Friedman, N., & Singer, Y. (1998). Efficient bayesian paramter estimatitarge
discrete domainsProceedings of3** Neural Information Processing Systems
Conference

Gacs, P. (1974). On the symmetry of algorithmic informatiBaviet Mathematics
Doklady, 15, 1477-1480.

Gilks, W. R., Richardson, S., & Spiegelhalter, D. (199&)Jlarkov chain monte
carlo in practice London: Chapman and Hall.

Grunwald, P., & Vitanyi, P. (2004). Shannon information and Kolmogomw-c
plexity. Submitted to IEEE Transactions on Information Theory

Haggstbm, O. (2002).Finite Markov chains and algorithmic application€am-
bridge University Press.

Hahn, U., Chater, N., & Richardson, L. B. C. (2003). Similarity as tramségion.
Cognition 87.

Hutter, M. (2002). The fastest and shortest algorithm for all well @efjproblems.
International Journal of Foundations of Computer Scierk®(3), 431-443.

Hutter, M. (2003). Optimality of Bayesian universal prediction for gahkass and
alphabetJournal of Machine Learning Researeh 971-1000.

Hutter, M. (2004).Universal artificial intelligence: Sequential decisions based on
algorithmic probability Berlin: Springer-Verlag.

Jebara, T. (2004). Multi-task feature and kernel selection for stAmseedings of
the 215t International Conference on Machine Learnjrid1).

Juba, B. (2006). Estimating relatedness via data compresBioceedings of the
23" International Conference on Machine Learning

Kolmogorov, A. (1965). Three approaches to the quantitative definitionfor-
mation. Problems of Information and Transmissjdr{1), 1-7.

Langley, P., & Rogers, S. (2004). Cumulative learning of hierarclsikiéls. Pro-
ceedings of the Third International Conference on Development azahiog).

Levin, L. A. (1973). Universal sequential search probl@&rblems of Information
and Transmissior(3), 265—266.

Levin, L. A. (1974). Laws of information conservation (non-growthjlaspects of
the foundation of probability theorfProblems of Information and Transmissjon
10, 206-210.

Li, M., Chen, X., Ma, B., & Vitanyi, P. (2004). The similarity metriclEEE
Transactions on Information Theqry0(12) 3250-3264.

Li, M., & Vitanyi, P. (1997). An introduction to Kolmogorov complexity and its
applications New York: Springer-Verlag. 2nd edition.

98

Littlestone, N., & Warmuth, M. K. (1987). The weighted majority algorithAn-
nual Symposium on the Foundations of Computer Scj@@56-261.

Mackay, D. (2003)Information theory, inference, and learning algorithn@&am-
bridge University Press. 1st edition.

Mahmud, M. M. H. (2007). On universal transfer learnifgoceedings of thes™
International Conference on Algorithmic Learning Theory

Mahmud, M. M. H., & Ray, S. (2007). Transfer learning using Kolmogozom-
plexity:basic theory and empirical evaluatiorBroceedings of the1st Neural
Information Processing Systems Conference

McGovern, A. (2002).Autonmous discovery of temporal abstractions from inter-
actions with an environmenboctoral dissertation, University of Massachusetts.

Mehta, N., Natarajan, S., Tadepalli, P., & Fern, A. (2005). Transferanmable
reward hierarchical reinforcement learningVorkshop on Inductive Transfer,
19™ Neural Information Processing Systems Conference

Meron, E., & Feder, M. (2004). Finite-memory universal prediction dividual
sequencedEEE Transactions on Information ThegB0(7), 1506—-1523.

Mihalkova, L., Huynh, T., & Mooney, R. (2007). Mapping and revisingrkoa
logic networks for transfer learningProceedings of the2" National Confer-
ence on Artificial Intelligence (AAAI)

Mitchell, M. (1996).An introduction to genetic algorithmi€ambridge, MA: MIT
Press.

Mitchell, T. M., & Thrun, S. B. (1993). Explanation-based neural nekWearning
for robot control. Adavances in Neural Information Processing Systépms
287-294). San Mateo, CA: Morgan Kaufmann Press.

Neal, R. M. (2004). Bayesian methods for machine learning, NIPS tutorial.

Newell, A. (1990). Unified theories of cognitianCambridge, MA: Harvard Uni-
versity Press.

Newman, D., Hettich, S., Blake, C., & Merz, C. (1998). UCI repository ohiiae
learning databases.

O'Quinn, R., Silver, D., & Poirier, R. (2005). Continued practice andsodn
dation of a learning taskProceedings of the Meta-Learning Workshop, 22nd
International Conference on Machine Learning

Pratt, L. (1991). Discriminability-based transfer between neural n&svagxAAl
(pp. 204-211). Morgan Kaufmann.

Pratt, L. (1992). Discriminability-based transfer between neural né&svofd-
vances in Neural Information Processing Systen(pfp 204-211). Morgan
Kaufmann.

99

Propp, J. G., & Wilson, D. B. (1996). Exact sampling with coupled Markio&ins
and applications to statistical mechanid?andom Structures and Algorithms
9(1,2) 223-252.

Rajwan, D., & Feder, M. (2000). Universal finite memory machines falirog
binary sequence®roceedings of the Data Compression Conference

Richardson, M., & Domingos, P. (2002). Markov logic networkkachine Learn-
ing, 62, 07136.

Robert, C. P., & Casella, G. (2005Monte carlo statistical methodsBerling:
Springer.

Ross, S., Chaib-draa, B., & Pineau, J. (2007). Bayes adaptive FOMDceed-
ings of the20t" Conference on Neural Information Processing Systems

Russell, S. J., & Norvig, P. (2003)Artificial intelligence: A modern approach
Upper Saddle River, NJ: Prentice Hall. 2nd edition.

Schapire, R. E. (1997). Selective transfer of task knowledge usiehastic noise.
Advances in Artificial Intelligence, Conference of the Canadian Socieydor-
putational Studies of Intelligenc#&6, 190—205.

Schmidhuber, J. (1994)0n learning how to learn learning strategi€$echnical
Report FKI-198-94). Fakultat Fur Informatik, Technische UniitatsMunchen.

Schmidhuber, J. (2004). Optimal ordered problem soldachine Learning54,
211-254.

Schmidhuber, J. (2006). Goedel machines: self-referential gaivgroblem
solvers making provably optimal self-improvementaritifical General Intel-
ligence 54, 119-226.

Shepard, R. N. (1957). Stimulus and response generalization: a sticanadel
relating generalization to distance in psychological spadegychometrika22,
325-345.

Shoenfield, J. (1967).Mathematical logic Menlo Park: Addsion-Wesley. 1st
edition.

Silver, D., & McCracken, P. (2003). Selective transfer of task kndg#eusing
stochastic noise.Advances in Artificial Intelligence, 16th Conference of the
Canadian Society for Computational Studies of Intelliged&®—-205.

Silver, D., & McCracken, R. (2001). Selective functional transfeductive bias
from related tasks.Proceedings of the International Conference on Artificial
Intelligence and Soft Computin$y82—-189.

Silver, D., & McCracken, R. (2002). The task rehearsal method ofdiferlearn-
ing: Overcoming impoverished dataAdvances in Artificial Intelligence, 15th
Conference of the Canadian Society for Computational Studies of Intelégenc
90-101.

100

Silver, D., & Mercer, R. (1996). The parallel transfer of task knowlkedising
dynamic learning rates based on a measure of related@essection Science
8(2), 277-294.

Silver, D. L., & Poirier, R. (2004). Sequential consolidation of learns# tanowl-
edge.Proceedings of the Seventeenth Canadian Conference on Atrtificial Intelli-
gence

Simard, P., Victorri, B., LeCun, Y., & Denker, J. (1992). Tangent praformalism
for specifying selected invariances in an adaptive netwéwkvances in Neural
Information Processing Systepdy, 895-903.

Singh, S., Barto, A., & Chentanez, N. (2004a). Intrinsically motivatedfoede-
ment learning Advances in Neural Information Processing Systelis

Singh, S., Barto, A., & Chentanez, N. (2004b). Intrinsically motivatedfoege-
ment learning of a hierarchical collection of skillfnternation Conference on
Developmental Learning.

Singh, S. P. (1992). Transfer of learning by composing solutions ofierial
sequential taskdVlachine Learning8, 323-339.

Solomonoff, R. J. (1964a). A formal theory of inductive inferencartR. Infor-
mation and Contrgl7(1), 1-22.

Solomonoff, R. J. (1964b). A formal theory of inductive inferencartR. Infor-
mation and Contrql7(2), 224—-254.

Solomonoff, R. J. (1978). Complexity-based induction systems: comparatd
convergence theorem$EEE Transactions on Information TheQi34(4), 422—
432.

Sterns, M. (2000). A bayesian framework for reinforcement learritngceedings
of the17™ International Conference on Machine Learning

Swarup, S., & Ray, S. R. (2006). Cross domain knowledge transiieg struc-
tured representation®roceedings of the1s! National Conference on Artificial
Intelligence (AAAL)

Taylor, M., & Stone, P. (2007). Cross-domain transfer for reinforeet learning.
Proceedings of the4!" International Conference on Machine Learning

Thrun, S. (1995)Lifelong learning: A case studyrechnical Report CMU-CS-95-
208). Computer Science Department, Carnegie Mellon University.

Thrun, S., & Mitchell, T. (1995). Lifelong robot learningRobotics and Au-
tonomous Systems5, 25—-46.

Thrun, S., & O'Sullivan, J. (1996). Discovering structure in multiple |&agn
tasks:the TC algorithm Proceedings of theé3*" International Conference on
Machine Learning

101

Thrun, S., & Pratt, L. Y. (Eds.). (1998).earning to learn Boston, MA: Kluwer
Academic Publishers.

Tversky, A. (1977). Features of similaritiPsychological Revieyd4, 327-352.

Utgoff, P. E., & Stracuzzi, D. J. (2002). Many-layered learnifNgural Computa-
tion, 14(10)

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., & Fink, E. (1995)te¢mating
planning and learning: The prodigy architectudmurnal of Experimental and
Theoretical Atrtificial Intelligencg7(1).

Vilalta, R., & Drissi, Y. (2001). Research directions in meta-learniPigpceedings
of the International Conference on Artificial Intelligencéas Vegas, Nevada,
USA.

Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta#az.
Artificial Intelligence Reviewl8, 77-95.

Vovk, V. (1990). Aggregating strategieBroceedings of th"? Internation Con-
ference on Computational Learning Theory

Vovk, V. (2001). Competitive online statistickiternational Statistics Revig\g9,
213-248.

Wilson, A., Fern, A., Ray, S., & Tadepalli, P. (2007). Multi-task reinfonemt
learning: A hierarchical bayesain approatmProceedings of the4*" Interna-
tional Conference on Machine Learning

Zvonkin, A. K., & Levin, L. A. (1970). The complexity of finite objects anceth
development of the concepts of information and randomness by means of the
theory of algorithmsRussian Math. Survey25(6), 83—-124.

102

Author’s Biography

M. M. Hassan Mahmud was born the same year Solomonoff published his cel-
ebrated convergence theorem that is the basis for this very dissertbt®omet
people, made friends and learned new things, and carried on in this veintue

ally completing his O’Levels and A'Levels. During this period he came acosds
became fascinated with computers and making them to do things that they previ-
ously were not able to do. This resulted in him flying to the opposite side of the
world to the USA and pursuing and obtaining a B.S. in Computer Science in 2000
from Stevens Institute of Technology. During his stay at Stevens, he ttasee
making computers to do things that others have already made them do lafore,
grunt work. The solution was not to abandon CS, but M.S. — specificaly-in
tificial Intelligence where one makes computers learn what they need to-do, a
dare we say it — paradigm shift from just spelling out what computeraldhme
computing. After completing his M.S., he was sufficiently foolhardy to take the
next step and pursue a Ph.D. in Al and he completed this in 2008, the egidenc
for which is the dissertation you now hold in your hands/see on yoursckeeis
planning on pursuing a Post-Doc in Al somewhere nice.

103

