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Abstract
In this paper we consider learning the environment model in reinforcement learning tasks where

the environment cannot be fully observed. The most popular frameworks for environment modeling
are POMDPs and PSRs but they are considered difficult to learn. We propose to bypass this hard
problem by assuming that (a) the sufficient statistic of any history can be represented as one of
finitely many states and (b) this state is given by a deterministic map from histories to the finite
state space. This finite set of states can be interpreted as the state space of an MDP which can then
be used to plan. Now the learning problem is to estimate this deterministic history-state map. One
of the earliest approaches in this direction is McCallum’s USM algorithm. Our work can roughly
be understood as extending this general idea by replacing prediction suffix trees, used in USM,
with deterministic-probabilistic finite automata from learning theory. In this paper we describe our
model, derive a pseudo-Bayesian inference criterion, and show its consistency. We also describe a
heuristic algorithm that uses the criterion to learn the models, along with experiments showing its
efficacy.
Keywords: partially observable reinforcement learning, Bayesian reinforcement learning, de-
terministic probabilistic finite automata, consistency of Bayesian estimators, Bayesian sequence
prediction

1. Introduction

In the general reinforcement learning (RL) problem (Bertsekas and Shreve, 1996; Sutton and Barto,
1998) an agent operates in some environment where at each step the agent takes an action and in
return receives an observation and a reward. The goal of the agent is to maximize its discounted time
averaged future reward. Current RL algorithms can be classified in terms of the type of observation
received by the agent at each step. The most common approach is to assume that the environment
is a finite Markov decision process where the states are observable (Bellman, 1957; Bertsekas and
Shreve, 1996). That is, at each point in time, the observation received by the agent is one of finitely
many states, each of which is a sufficient statistic of the past and hence can be used to plan for the
future. Unfortunately, in many applications, the observation received at each step is (possibly much)
less informative than a state. In this case, during planning, the agent also has to determine from the
partial information what the underlying state is (if any).

The most prominent approaches to handling this partially observable RL problem include mod-
eling the environment via partially observable Markov decision processes (POMDPs) (Sondik,
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Figure 1: Schematic description of our Approach.

1971; Kaelbling et al., 1998) and predictive state representations (PSRs) (Littman et al., 2002).
The parameters describing the relationship between the observations and underlying hidden vari-
able describing the environment dynamics are referred to as the model. Given the true model for an
environment, the planning problem is undecidable in general (Madani et al., 2003); but in practice
this is not a severe issue as effective heuristic planning algorithms have been developed (see the sur-
vey Ross et al. (2008)). However, in many problems of interest, the model is not available a priori
and has to be learned from observations. Unfortunately, despite some promising new results (for
instance, Doshi-Velez (2009)), POMDP and PSR models are generally considered quite difficult to
learn from data. In this paper1we address this issue by taking a step back and looking at a class of
models which are simpler (hence less expressive) but easier to learn.

1.1 Our Approach in Brief

The key assumption in our simplified approach to environment modeling is that each history deter-
ministically maps to one of finitely many states and this state is a sufficient statistic of the history
(McCallum, 1995b; Shalizi and Klinkner, 2004; Hutter, 2009). Given this history-state map, at each
point in time we can deterministically compute the state and hence we end up in the finite state
MDP planning problem, for which efficient planning algorithms exist. So the learning problem now
is to learn this history-state map. Indeed, the well known USM algorithm (McCallum, 1995b) used
prediction suffix trees (PST) (Ron et al., 1994) for these maps (each history is mapped to exactly
one leaf/state) and was quite successful in benchmark POMDP domains. However, PSTs lack long
term memory and have difficulty with noisy environments and so USM was not followed up on for
the most part (exceptions being Shani et al. (2004, 2005)). In our work we consider a Bayesian
setup and replace PSTs with finite state machines and endow the agent with long term memory. The
resulting model is a proper subclass of POMDPs, but (hopefully) maintains the computational sim-
plicity and efficiency that comes with considering deterministic history state maps. Our approach is
illustrated in Figure 1.

Interestingly, belief states of POMDPs are also deterministic functions of the history. But this
state space is infinite and so POMDP model learning algorithms try to estimate the hidden states
(see for instance Doshi-Velez (2009)). As a result, these methods are quite different from algorithms
using deterministic history-state maps – we discuss other related methods in Section 1.3.

1. The experimental results presented in this paper previously appeared in Mahmud (2010) and the new material in this
paper are a further elaboration of each section and the theoretical development of our method.
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Figure 2: A phase in our learning algorithm.

We now briefly outline our algorithm for learning the environment model. The algorithm runs
in phases and in each phase it performs four different tasks (see Figure 2). First, given the history
observed so far, it computes an estimate of the correct model. This estimation is done using a
MCMC style heuristic search algorithm and is described in Section 4. Given the estimated model it
constructs the MDP defined by the model – this step is trivial and described in Section 2.5. It then
computes the optimal policy for the constructed MDP using standard policy learning algorithms
(Sutton and Barto, 1998). After that, it uses the policy to act in the environment which then generates
additional history; this history is appended to the existing history and used in the next phase.

One non-standard aspect of our model is that following Hutter (2009), we do not model the
observation distribution explicitly. This is because, for planning, only the reward distribution is
relevant and the observation distribution is useful in so far as it helps us predict the next state. In
other words, we leave out the irrelevant details of the observation – consider for instance the fact
that when crossing a road we are interested only in modeling how the cars move, but not the swaying
of the trees lining the road – see Section 2.4 for details. Hence, our model is not a generative model
of the environment and so we need to use a non-standard likelihood function to compare goodness
of models in the first step in Figure 2. The bulk of the theoretical content of this paper is dedicated
toward showing that this likelihood function is in fact consistent – that is in the limit of infinite data,
the ratio of the likelihood of the correct model and an incorrect model will go to infinity.

1.2 The Exacerbated Exploration-Exploitation Problem

In the next subsection we will discuss related work, most of which use much more expressive and
powerful models than us. Interestingly, the use of simpler models can be further motivated by con-
sidering what, in our opinion, is the problem in model learning in partially observable RL problems.
This problem is the exacerbated exploration-exploitation problem (E3 problem) where the agent has
to figure out which regions of the state space to explore before knowing what the relevant states are
(!). It is clear that this problem is much more difficult than the traditional exploration-exploitation
problem in RL (Sutton and Barto, 1998) where the agent has to choose actions so as to balance
exploration of the state space and accumulation of reward (by exploiting its current knowledge).
The E3 problem was first pointed out, to the best of our knowledge, in Chrisman (1992), and has
been recognized by later researchers like McCallum (1995a); but it does not seem to have gained the
notoriety it deserves amongst researchers working on model learning in partially-observable-RL.
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So consideration of simpler models can further be justified because with them we should be able
to learn an estimate of the space explored so far more easily (both in terms of computational and
sample complexity) and hence explore unseen regions more efficiently. Of course, if the underlying
environment can only be modeled by a PSR or a POMDP, then our approach fails (and learning in
such environments will be very hard whatever the model used). Hence, the implicit assumption in
our work is that deterministic history-state maps are sufficiently expressive for many problems of
interest.

1.3 Related Work

As mentioned above, the USM algorithm, using PSTs as the deterministic history-state maps, can
be considered to be our earliest precursor. For the most part USM was not followed up on due to the
problems mentioned earlier. A couple of exceptions are the papers by Shani et al. (2004, 2005). In
the first paper, the authors propose the NUSM algorithm, an extension of USM that is more tolerant
of highly noisy observations. In the second paper the authors convert the tree learned by USM to a
POMDP and find that in experiments this POMDP model performs much better than pure USM.

Recently, Hutter (2009) proposed a generalization of USM called Φ-MDP to consider arbitrary
history-state maps (Φ-functions), along with a MDL style cost criterion to select between different
models. The δ functions of our DMMs (see Section 2.4) can be considered to be Φ-functions.
However, Φ-MDP does not require that the mapping result in Markovian states (which USM does
not either) whereas our states are Markovian by construction. The MDL-style cost criterion for Φ-
MDP is also non-standard like our likelihood function and recently the consistency of this function
was proven in Sunehag and Hutter (2010). As mentioned earlier, our decision to not model the
observation distribution was inspired by the Φ-MDP approach – however our likelihood function is
different from that in Hutter (2009). The latter explicitly uses the state transition distribution in the
cost function, while we only use the reward distribution. Likewise, our consistency results in Section
3 holds under the identifiability Assumption 12 (see Section 3.2.3) while the Φ-MDP consistency
result holds for Φ functions that are bounded-memory finite state machines (this assumption is
unrelated to ours).

While not following USM, tree-based representations has also been considered by other re-
searchers for model learning for partially observable environments. Even-Dar et al. (2005) derive a
asymptotically convergent algorithm for t-Markov policies (i.e. policies that may be represented by
depth t PSTs). The authors also note that the algorithm is computationally very expensive (exponen-
tial in relevant parameters) and do not give any experimental results. Another paper that considers
tree-based representation of the environment is Farias et al. (2010). In this work, the authors use
a context tree (Risssanen, 1983) based representation for the environment and derive an algorithm
that, asymptotically, learns the right model and hence the optimal value function (provided that the
environment can be represented as a context tree).

Among the more usual approaches, ours is most closely related to the POMDPs. The latter are
essentially hidden Markov models with actions, and hence, the most obvious approach to learning
POMDP models is to adapt the Baum-Welch algorithm for learning HMMs. This basic idea has
been improved using Bayesian approaches (for example Ross et al. (2007) or references in Doshi-
Velez (2009)) – these algorithms need the number of states to be specified a priori. Unfortunately,
none of these methods is able to go beyond small POMDP benchmark domains (≤ 5 × 5 maze
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problems) and USM seems to outperform them all in terms of number of episodes required and
computational cost. The main challenge seems to be overcoming the E3 problem described above.

Finally, finite state controllers for POMDPs (Kaelbling et al., 1998) seem closely related to our
work but these are not quite model learning algorithms. They are (powerful) planning algorithms
that assume a hidden but known environment model (at the very least, implicitly, an estimate of the
number of hidden states).

Aside from POMDPs, the approach that has received the most attention from researchers is
representing the environment as a PSR (Littman et al., 2002; Singh et al., 2004; Wolfe et al., 2005).
While algorithms have been developed for PSRs, they are considered difficult to learn and do not
seem to scale beyond small problems in the benchmark POMDP problem sets (same as POMDP
model learning methods) and, depending on the algorithm and setup, require many more examples
(McCracken and Bowling, 2005). In particular, determining the core tests (Littman et al., 2002)
seem to be particularly challenging. While PSRs have been shown to work in higher dimensions
under specific domain constraints (for example, Rosencrantz et al. (2004) when the domain can
be reset to a start state, Boots et al. (2010) when observations are sufficient to distinguish state-
clusters, if not states) the general problem remains unsolved. In particular there does not seem to be
any explicit attempt to solve the E3 problem in PSR approaches.

1.4 Paper Organization

In the following we proceed as follows. In Section 2 we introduce our model, show how it models
the environment and how it defines an MDP that can be used to plan in the environment. In Section 3
we derive a novel (pseudo) likelihood function to choose between models and prove its consistency.
In Section 4 we describe our learning algorithm for estimating the problem from experience and
planning with it. In Section 5 we describe experiments in some suitable problems showing the
efficacy of the learning algorithm. Finally, we conclude with a discussion of future development of
the method and related work in Section 6. The proofs of the theorems in Sections 2 and 3 appear in
the Appendix.

2. Modeling RL Environments

Our approach to learning the hidden environment model is as follows: we represent a general RL
environment by our model, the deterministic Markov models (DMMs), and then use the MDP de-
rived from the DMM to plan for the problem. In the following we introduce notation (Section 2.1),
define a general RL environment (Section 2.2), define our model, the DMMs (Section 2.3) and show
how they can model the environment and define a MDP that can be used for planning (Section 2.5).

2.1 Preliminaries

For a distribution P (x) over some space, EP (x)[f(x)] denotes the expectation of the function f
with respect to P . The symbol , is used for definitions. A is a finite set of actions, O a finite set
of observations and R ⊂ IR a finite set of rewards. We set H , (A×O)∗ to be the set of histories
and γ ∈ [0, 1) to be a fixed discount rate. We will need some notation for sequences (over arbitrary
finite alphabets). x0:n will denote a string of length n + 1 and x<n ≡ x0:n−1 will denote a string
of length n. xi:j will denote elements i to j inclusive, while xi will denote the ith element of the
sequence. The indices will often be time indices (but not always). If there are two strings x0:n and
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y0:n, we will use xy0:n to denote the interleaved sequence x0y0x1yn . . . xnyn. We will also use xyi
to denote the ith element of xiyi and xyi:j to denote xiyi . . . xjyj . Finally, x0:ny0:m will denote the
string x0:n followed by y0:m and λ will denote the empty string.

2.2 General Reinforcement Learning Environment

We define a general RL environment as G ,(A,R, O, RO, γ), where all the quantities except
RO were defined above. RO defines the dynamics of the environment: at step t when action a is
applied, the next reward-observation pair is selected according to probability RO(ro|h, a) where h
= ao0:t−1 is the history before step t. We will write the marginals of RO over R and O by R (the
reward distribution) and O (the observation distribution) respectively.

The actions at each step are chosen using a policy π : H → A; the value function V π of π is
defined by:

V π(h) = ER(r|h,a)(r) + γEO(o|h,a)[V
π(hao)] (1)

where a = π(h). The goal in RL problems is to learn an optimal policy π∗ which satisfies V π∗(h) ≥
V π(h) for each policy π and history h. In particular the value function of this policy is given by:

V π∗(h) , V ∗(h) , max
a

{
ER(r|h,a)(r) + γEO(o|h,a)[V

∗(hao)]
}

(2)

The existence of these functions follows via standard methods (Bertsekas and Shreve, 1996).

2.3 Deterministic Markov Models

Each of our models is defined by a tuple (~θ, ~φ, ξ). We define ξ , (q◦,S,Σ, δ) and call it a de-
terministic Markov model (DMM); it is simply a deterministic finite state automaton (Hopcroft
et al., 2006) with q◦ as the start state, S the set of states, Σ = A × O the edge-label alphabet and
δ : S × Σ → S the transition function. If ξ is at state s and δ(s, z) = s′ then ξ transitions to state
s′ on input z ∈ Σ. We overload δ to denote its transitive closure so that δ(q, h) = s means that ξ
transitions to s from q when h ∈ H is given as input. In fact, the transitive closure of the δ function
is the deterministic history-state map that we mentioned in Section 1. That is, κ(h) , δ(q◦, h) is the
function that maps each history to its sufficient statistic. In the sequel we will use the term ‘model’
to refer to the triples of the form (~θ, ~φ, ξ) and not DMMs.

The first two components of a model are defined thus: ~θ , {~θs,a} and ~φ , {~φs,a}, indexed by S
andA. ~θs,a(r) is the probability of the next reward being r given that ξ is at state s and action a was
chosen. ~φs,a(s′) gives the probability that ξ transitions to s′ given ξ is at state s and action a was
chosen. Since bothR and S are finite, the distributions ~θs,a and ~φs,a are multinomials satisfying∑

r

~θs,a(r) = 1, and
∑
s′

~φs,a(s
′) = 1.

The dynamics of our model is deterministic or probabilistic depending on the conditioning val-
ues. If action a is taken at state s of ξ, then it transitions to state s′ with probability ~φs,a(s

′).
However, if the next observation o is also given, ξ transitions deterministically to state s′, where
δ(s, ao) = s′. This implies that, given a history ao0:n, there is exactly one state sequence s0:n that
ξ could have transitioned through, where δ(q◦, ao0:k) = sk. So, DMMs are (roughly speaking) de-
terministic probabilistic finite automata from learning theory (Vidal et al., 2005) but extended with
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actions to a sequential setting. Another way to interpret the DMM state space is as a discretization
of POMDP belief state space (Kaelbling et al., 1998)2. This rich avenue of research will be pursued
in the future.

2.4 Modeling Environments

For the rest of the paper we fix G , (A,R, O, RO, γ) as the environment. Now our basic assump-
tion is that ∃ξg (g stands for ‘generating’) such that ∀s ∈ Sg, a ∈ A, h such that κg(h) = s and
r ∈ R, ∃~θgs,a:

~θgs,a(r) = R(r|h, a) (3)

We do not model O because all we actually care about is R (Hutter, 2009). This way, we do not
sacrifice reward prediction accuracy or learn an unnecessarily complex model by trying to model
task-irrelevant details of O. For example, in a domain with a million states where O is different at
each state but R is the same everywhere, it will be a bad idea to try to learn O. In more realistic
terms, consider the fact that when crossing a street we care about modeling car movements, but
not swaying of the trees lining the road. Note that we do not ignore the observations as the δs are
functions over them. In a sense we only use observations in so far as they help predict rewards. We
do need to impose an additional consistency constraint for not modeling O: we further assume that
for all s, s′ ∈ Sg and h such that κg(h) = s,

~φgs,a(s
′) =

∑
o|δ(s,ao)=s′

O(o|h, a) (4)

That is, for any s and h with κg(h) = s, the probability of the state s′ on action a must be equal to
the cumulative probability of the observations o such that δ(s, ao) = s′ 3. Together, this motivates
the following definition,

Definition 1 We say a DMM ξ represents G if it satisfies (3) and (4).

The following is the precise statement of our central modeling assumption.

Assumption 2 The DMM ξg represents the target environment G.

Finally, from a formal perspective, DMMs are (trivially) maximally general as all the history-state
maps computable using finite time and memory must have a FSM representation. Future research
will reveal if this translates to applicability of the model across many practical problems.

2.5 From Models to MDPs and Optimal GRLE Policies

Each of our models (~θ, ~φ, ξ) (with ξ , (q◦,S,Σ, δ)) defines a MDP M , (A,R,S, RM , T, γ)
(Bertsekas and Shreve, 1996). The first 3 components are as defined above and

RM (r|s, a) , ~θs,a(r), T (s′|s, a) , ~φs,a(s
′) (5)

2. The POMDP belief-state space also has deterministic-probabilistic dynamics like our model, but the space is infinite.
3. Two notes: (a) The fact that ~φgs,a is a distribution follows as δ(s, ao) maps to only one state. (b) Condition (4) is

equivalent to saying that if κg(h′) = κg(h) = s, then
∑
o|δ(s,ao)=s′ O(o|h, a) =

∑
o|δ(s,ao)=s′ O(o|h′, a) for all

states s′ ∈ Sg .
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where RM is the MDP reward distribution and T is the state transition distribution. Given a policy
π̄ : S → A forM, the value function is defined as follows:

V π̄(s) , ERM (r|s,a)(r) + γET (s′|s,a)[V
π̄(s′)] (6)

where a = π̄(s). Using π̄ we act in the G as follows – for history ao0:t, if δ(q◦, ao0:t) = s we
choose π̄(s) as our action. Note that if h = h′ao and q = δ(q◦, h

′), then δ(q, ao) = s and hence we
can infer states of our model incrementally. Optimal MDP policies are defined analogously to (2).
Denoting the MDP constructed from (~θg, ~φg, ξg) by Mg, we establish correspondences between
policies of G andMg.

Theorem 3 Let π be a G policy such that if κg(h) = κg(h′) = s, then π(h) = π(h′). Then theMg

policy defined by π̄(κg(h)) = π(h) is well defined and V π(h) = V π(h′) = V π̄(s). Conversely,
eachMg policy ρ̄ also defines a corresponding G policy ρ such that if κg(h) = κg(h′) = s, then
ρ̄(s) = ρ(h) = ρ(h′) and V ρ(h) = V ρ(h′) = V ρ̄(s).

The above theorem states something quite simple: any policy that assigns the same action to histo-
ries mapping to the same state, gives anMg policy, and eachMg policy corresponds to a G policy
that assigns the same action to histories mapping to the same state.

Theorem 4 There exists an optimal G policy µ such that κg(h) = κg(h′), implies µ(h) = µ(h′).
This further implies that an optimalMg policy defines an optimal G policy.

This theorem is saying that there is an optimal GRLE policy that is also an MDP policy – and
hence the optimal MDP policy is also an optimal GRLE policy. The proofs of both theorems are in
Appendix A.

3. Inference of the Correct Model

In this section we describe how to choose between different models given data in a Bayesian frame-
work. First, in Section 3.1 we define our likelihood function and develop a fairly standard Bayesian
inference framework around the function. Then in Sections 3.2.2 and 3.2.3 we show that our like-
lihood function is consistent. Recall that the consistency proof is necessary as our function is not
standard (see below for more details). Throughout this section, we assume that all actions are
chosen using a fixed G policy π and that we are given a history + reward sequence (data) āō0:v

and r̄0:v (written in the sequel as ār̄ō0:v) generated from G using π (so in the sequence ār̄ō0:v, āk
= π(āō<k)). Since no history is ever repeated, assuming a fixed policy does not result in loss of
generality.

3.1 The Bayesian Inference Framework

Our Bayesian inference framework is fairly standard, with the exception of the likelihood func-
tion. The main novelty here is that as our models do not model the observation distribution, it is a
partial distribution over reward-observation sequences generated by the environment and hence the
standard likelihoods used in Bayesian analysis can no longer be defined (see next paragraph). We
define the following non-standard likelihood function. Each model (~θ, ~φ, ξ) (with ξ = (q◦, δ,S,Σ)),
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defines the following distribution onRn conditioned on āō0:n:

Pr(r0:n|āō0:n, ~θ, ξ) ,
n∏
i=0

~θs̄i−1,āi(ri) (7)

where, as usual, κ(āō0:i) = s̄i and s̄−1 = q◦. This quantity is a distribution over reward sequences
that result from the action-state sequence ās̄0:n. We now use this as the likelihood function of
(~θ, ~φ, ξ) – that is the likelihood of ξ given data ār̄ō0:n is taken to be

Pr(r̄0:n|āō0:n, ~θ, ξ) (8)

To see in what sense this likelihood function is non-standard, consider the case where we model
the observation distribution by the parameters ~ηs,a which are elements of the |O| dimensional sim-
plex (i.e. probability distributions on O). Then, the (standard) likelihood of a model (~θ, ~φ, ~η, ξ)
given ār̄ō0:v would simply be:

Pr(r̄ō0:v|ā0:v, ~θ, ~η, ξ) ,
∏

~θs̄i−1,ai(r̄i)~ηs̄i−1,ai(ōi)

where s̄i = κ(āō0:i) and s̄−1 = q◦. Since, by construction, ~η satisfies the relationship,

~φs,a(s
′) =

∑
o|δ(s,ao)=s′

~ηs,a(o)

if we choose between two models using the standard likelihood as the cost function, we will be
guaranteed consistency by the usual statistical consistency results. That is, in the limit of the length
of the data going to infinity we will choose the model with the better reward and state transition
distribution.

However, in (7) the parameters ~η and ~φ are missing and so it is not clear whether the non-
standard likelihood (8) is consistent. In particular, we need to show that (8) satisfies two types of
consistency – (type 1) consistency that shows that the likelihood chooses models with the correct
reward distribution, and (type 2) consistency that shows that the likelihood chooses models with the
correct state transition distribution.

We establish these two types of consistency in Sections 3.2.2 and 3.2.3 while in the rest of this
subsection we complete development of the Bayesian inference framework, which is fairly standard
(see for instance Chipman et al. (1998)). In particular, we discuss how to compute the marginal
likelihood of a DMM given the data ār̄ō0:n. The marginal likelihood will then be used to infer the
correct model in a Bayesian framework. We also discuss how to compute the Bayes estimate of the
reward and state transition distributions for the model given the data. The DMM together with the
Bayesian estimates give us our estimate of a model.

We start by rewriting (7) as:

Pr(r0:n|āō0:n, ~θ, ξ) =
∏
s,a

∏
r

~θs,a(r)
ms,a(r)

wherems,a(r) is the number of times ri = r and s̄i−1 = s and āi = a in r0:n and ās̄0:n. Each ~θs,a is
given an uninformative Dirichlet prior w() which is conjugate to the multinomial distribution. The
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marginal likelihood of state s and action a is given by integrating out the multinomial parameters
given the Dirichlet prior:

L(r0:n|āō0:n, s, a, ξ) ,
∫ ∏

r

~θs,a(r)
ms,a(r)w(~θs,a)d~θs,a = Γ(1)

∏
r′ Γ(ms,a(r

′) + 1
|R|)

Γ(
∑

r′ms,a(r′) + 1)
(9)

L here is not a distribution over reward sequences, but over rewards at state s for action a. The
notation was chosen because the marginal likelihood of ξ is a distribution over reward sequences
(that has s̄0:k as state sequence) and is given by:

Pr(r0:n|āō0:n, ξ) ,
∏
s,a

L(r0:n|āō0:n, s, a, ξ) (10)

The predictive distribution for the reward at state s and action a is given by:

Pr(r|ār̄ō0:n, s, a, ξ) ,
ms,a(r) + 1

|R|

1 +
∑

r′ms,a(r′)
(11)

Similarly, the state transition distributions, Pr(s′|s, a, ξ), are multinomials and we perform the
same trick with Dirichlet priors. This time, we just need the predictive distribution, which is given
by,

Pr(s′|ār̄ō0:n, s, a, ξ) ,
m̂s,a(s

′) + 1
|S|

1 +
∑

q m̂s,a(q)
(12)

where m̂s,a(s
′) is the number of times state s̄i = s′ and s̄i−1 = s and āi = a in ās̄0:n.

To complete the specification of the Bayesian criterion for model selection, we denote the space
of DMMs we consider by H, and we assume we have a prior W over this space. The details of
these will be given in Section 4. Given the model space and the prior, the posterior probability of a
ξ for the data ār̄ō0:n is now given by:

Pr(ξ|ār̄ō0:n) ,
Pr(r̄0:n|āō0:n, ξ)W (ξ)∑

ξ′∈H Pr(r̄0:n|āō0:n, ξ′)W (ξ′)
(13)

Our goal will be to learn the maximum a-posteriori (MAP) ξ – i.e. arg maxξ′ Pr(ξ
′|ār̄ō0:n) and

this learning algorithm is given in Section 4. Hence, (13) is our criterion/cost function for choosing
the right model.

3.2 Consistency of the Likelihood

We now prove our consistency theorems. We first introduce some preliminaries that we use through-
out and then we state our theorems. In Section 3.2.2 we establish consistency for the reward distri-
bution and then in Section 3.2.3 we establish consistency for the state transition distribution.

3.2.1 PRELIMINARIES

We start by recalling that all actions are chosen using a fixed policy π and in the sequel we will use
this fact without further mention. Let Ω be the σ-algebra over (R × O)∞ generated by the set of
cylinder sets:

{C(ro0:n)|ro0:n ∈ (R×O)n, n ∈ IN}, where C(ro0:n) , {r̂ô0:∞|r̂ô0:n = ro0:n}

10
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We use the following fact often in the sequel. The definition of cylinder sets implies thatC(ro0:n) ⊂
C(r̂ô0:m) if and only if n ≥ m and ro0:m = r̂ô0:m.

We need the probability measure, defined by RO and π, over the algebra of cylinder sets:

ROπ[C(ro0:n)] ,
n∏
k=0

RO(rok|ao<k, π(ao<k))

We extend this measure over Ω in the usual way and denote this extension by ROπ as well. We will
often write ROπ[C(ro0:n)] as ROπ(ro0:n).

3.2.2 CONSISTENCY FOR REWARD DISTRIBUTION (TYPE 1)

In this section we establish consistency of the reward distribution. We will start by stating precisely
what it means for a model to be incorrect. To that end, for a model (~θ, ~φ, ξ) with ξ = (q◦, δ,S,Σ)
define for n ∈ IN and ε > 0,

Aπ,ε,n ,

{
ro0:∞

∣∣∣∣KL [~θgκg(ao0:n),an+1
||~θκ(ao0:n),an+1

]
≥ ε
}

whereKL is the KL divergence between the distributions. SoAπ,ε,n is the set of reward-observation
sequences for which the n length prefixes have ‘ε-incorrect’ reward distribution (i.e. the KL diver-
gence between the true distribution and distribution given by the model is ≥ ε).

Definition 5 Define:
Aπ,ε , lim sup

n→∞
Aπ,ε,n

So Aπ,ε is the formal description of the event that the model (~θ, ~φ, ξ) predicts incorrectly infinitely
often. We can now state our first theorem (all the proofs are in Appendix B):

Theorem 6 If C(r̄ō0:v) ⊂ Aπ,ε then for all sequences ro0:∞ ∈ C(r̄ō0:v) we have

lim
n→∞

Pr(r0:v+n|ao0:v+n, ~θ
g, ξg)

Pr(r0:v+n|ao0:v+n, ~θ, ξ)
=∞

in ROπ probability. Alternatively, if there exists some N such that n > N implies

KL[~θgκg(ao0:n,a)||~θκ(ao0:n,a)] = 0

for any sequence ao0:n, then the above ratio is bounded in ROπ probability.

The theorem says something that is quite intuitive. In the above, C(r̄ō0:v) ⊂ Aπ,ε implies that
on all extensions of r̄ō0:v the model predicts incorrectly infinitely often. In this case, as we see more
of the output, the ratio of likelihoods of the true model and the incorrect model will go to infinity
in probability. Similarly, if in no extension of r̄ō0:v the model predicts incorrectly infinitely often
(and is hence indistinguishable from the true model from a certain point on), then the ratio remains
bounded. This establishes type 1 consistency.

We now state the consistency theorem for the marginal likelihood. We start by defining for any
n ∈ IN,

AMπ,ε,n ,

{
ro0:∞

∣∣∣∣KL [~θgκg(ao0:n),an+1
||Pr(r|aro0:n, κ(ao0:n), an+1, ξ)

]
> ε

}

11
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Definition 7 Define:
AMπ,ε , lim sup

n→∞
AMπ,ε,n

Our consistency theorem for the marginal likelihood is as follows:

Theorem 8 If C(r̄ō0:v) ⊂ AMπ,ε then for all sequences ro0:∞ ∈ C(r̄ō0:v) we have

lim
n→∞

Pr(r0:v+n|ao0:v+n, ξ
g)

Pr(r0:v+n|ao0:v+n, ξ)
=∞ (14)

in ROπ probability. Alternatively, if there exists some N such that n > N implies

KL[Pr(r|aro0:n, s
g, a, ξg)||Pr(r|aro0:n, s, a, ξ)] = 0

for any sequence aro0:n, then the above ratio is bounded in ROπ probability.

So this theorem is saying that, if a model is such that on the sequence being observed it will
continue being incorrect, then its marginal likelihood will be overwhelmed by that of the correct
model or any other model that is indistinguishable from the latter. On the other hand, it is trivially
true that if the model is correct from a certain point onwards, then the marginal likelihood ratio will
remain bounded.

3.2.3 CONSISTENCY FOR STATE TRANSITION DISTRIBUTION (TYPE 2)

We now state type 2 consistency results – that is, we show that if a model has bounded marginal
likelihood ratio then it also gives the correct estimate of state transition distribution. To that end, for
any s ∈ S we define

Āπ,s,n , {ro0:∞|κ(ao0:n) = s}, and Āπ,s , lim sup
n→∞

Āπ,s,n

We also define Āπ,a,n, Āπ,a for the action a in a similar way. We set Āπ,sa,n = Āπ,a,n, ∩ Āπ,s,n−1

and Āπ,sa = lim supn→∞ Āπ,sa. As in the previous section, these definitions are formal expressions
of the events in the conditional occurring infinitely often.

Definition 9 A state s, action a and pair sa occurs infinitely often in C(ro0:n) iff, respectively
C(ro0:n) ⊂ Āπ,s, C(ro0:n) ⊂ Āπ,a and C(ro0:n) ⊂ Āπ,sa. These three notions are denoted,
respectively, by s ∈∞ C(ro0:n), a ∈∞ C(ro0:n) and sa ∈∞ C(ro0:n).

We now define precisely what it means for a state of the DMM to model a state of ξg. First
define for any state s ∈ S and C(ro0:n)

Z̄π,s(ro0:n) , {âô0:j |j > n,∃r̂0:j with r̂ô0:n = ro0:n and κ(âô0:j) = s},

So Zπ,s(ro0:n) are the set of histories that are extensions of ro0:n and that also map to state s.

Definition 10 Let s be a state of the DMM ξ and assume that s ∈∞ C(ro0:n). We say that smodels
a state s′ of ξg on C(ro0:n) if all but a finite number of elements h ∈ Z̄π,s(ro0:n) satisfy κg(h) = s′.
We denote this by (s, s′) ∈≡ C(ro0:n).

12
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So for s ∈ S, s′ ∈ Sg, we have (s, s′) ∈≡ C(ro0:n) if all but a finite number of histories ‘in’
C(ro0:n) that map to s, maps only to s′ (and hence the use of the word ‘model’). The significance
of this definition is that if s models s′, we would expect any statistics collected at s to converge to
the true distribution at s′ by the law of large numbers.

The following notion is needed for Assumption 12, which is in turn used in the statement of the
theorems below.

Definition 11 The string h ∈ H of length k occurs infinitely often after s in C(ro0:n) if C(ro0:n) ⊂
lim supn→∞ Āπ,s,h,n where Āπ,s,h,n , { ro0:∞ |κ(ao0:n) = s , aon+1:n+k = h}. We denote this by
(h, s) ∈∞H C(ro0:n).

Assumption 12 We assume that the model (~θg, ~φg, ξg) is identifiable given π; that is for each pair
s, s′ ∈ Sg with s, s′ ∈∞ C(r̄ō0:v), ∃h ∈ H such that

1. (h, s), (h, s′) ∈∞H C(r̄ō0:v).

2. δg(s, h) = q and δg(s′, h) = q′.

3. ~θgq,a 6= ~θgq′,a where qa, q′a ∈∞ C(r̄ō0:v).

This assumption means that for any two states s, s′ in the true DMM ξg, there must exist a history
h such that h leads to states q, q′ from s, s′ respectively and q and q′ have different true reward
distributions for an action that is taken infinitely often at q and q′. We view this assumption as
weak from a practical perspective because in most domains of interest, for any pair of states of the
true model, there exist a history that lead to different regions of the state space and hence different
rewards. We now state theorems for type 2 consistency.

Theorem 13 Assume that for DMM ξ the ratio (14) remains bounded in probability for sequences
in C(r̄ō0:v). Then, under Assumption 12, Pr(s′|aro0:n, s, a) converges almost surely to ~φgq,a(q′)
where (s, q), (s′, q′) ∈≡ C(r̄ō0:v) and sa ∈∞ C(r̄ō0:v).

The interpretation of the theorem is that (s, q), (s′, q′) ∈≡ C(r̄ō0:v) means that s models q and s′

models q′. In this case, for a DMM that is correct, i.e. one for which (14) remains bounded, the
estimated state transition distribution of each state s of ξ converges to the distribution of the state q
of ξg it models (but only for actions a that are also taken infinitely often after s).

4. Online Learning and Planning

In this section we describe a heuristic algorithm called DMM-OLP for learning DMMs and planning
with them online. DMM-OLP interleaves phases of acting in the environment, and in the process
collecting data, and improving its estimate of true DMM ξg via learning. During learning, the
likelihood function (7) is used (via its marginal in the posterior (13)) to choose between different
models. We start by discussing looped-DMMs, the class of DMMs that we use as our hypothesis
space. Then we discuss the DMM-OLP algorithm and the stochastic search that is within it used to
estimate/learn DMMs.
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s0
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s2

s3 s4

s1

Figure 3: Example of a looped DMM. Edges for internal nodes can only connect to a child or loop
back to an ancestor. For leaf nodes, edges can connect to other leaves.

4.1 Looped DMMs

DMMs are sequential versions of DPFAs (Vidal et al., 2005) for which learning is NP-hard when
states might have equal distributions. Since this is in fact often the case in RL problems, we need to
put significant bias in our search algorithm. We introduce bias by restricting ourselves to a particular
class of tree-like DMMs, which we refer to as looped DMMs.

In a looped DMM, the initial state q◦ can be considered to be the root node, and then each
internal node satisfies the constraint that outgoing edges at each node can go only to a child or an
ancestor. Only leaf nodes are allowed to loop to nodes that are not its ancestors (see Figure 3). This
is similar to a looping suffix tree (Holmes and Isbell-Jr., 2006), but our model is not a suffix tree
structure as each node in the graph is in fact a state. Each node in a looped DMM also has a context
associated with it given by the string labeling the path from the root to that node. This context is
used by the search algorithm to perform surgery on looped DMMs while searching.

We now discuss the expressiveness of this subclass. It is easy to see that all DMMs, in fact, have
a loopy representation, although with possibly exponentially many states. In particular, a DMM
with n states can be represented by a looped DMM of depth n, such that each path from the root
to a leaf corresponds to a path of length n starting at q◦ in the original DMM. Hence, the looped
representation for a given DMM can be constructed by traveling along a path in the DMM and
adding a new node at each step or looping back to an ancestor if the state has been seen before.
Hence in any given path from the root in the looped representation, no state appears in more than
one node. Finally, when a leaf is reached it will always be possible to loop back to an ancestor for
each letter of the edge alphabet Σ because the depth is equal to the number of states in the DMM,
and hence any state must have appeared as an ancestor.

Finally, the main reason we choose the looped DMM representation is because it seems partic-
ularly suitable for typical POMDP domains. This is because the dynamics in such domains has a
neighborhood structure, where we are only able to transition back to states that were visited recently.
In the sequel any reference to a DMM is in fact a looped DMM.

4.2 The DMM-OLP Algorithm

This algorithm was outlined in Figure 2 and is now given in full in Algorithm 1. The initializations
are self explanatory and so we focus on the main for loop. The first step (line 4), learning a better
estimate, is the heart of the algorithm and discussed in detail below. The second step (line 5) is

14
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performed as follows. First, a MDP corresponding to ξi is constructed using the method in Section
2.5, but using the estimates (11) and (12) for, respectively, the MDP reward and state-transition
distributions (5) respectively. Then the optimal policy is learned offline by using Q-learning on the
constructed MDP (we do not use value iteration because Q learning was seen to be quicker without
any noticeable difference in performance).

Algorithm 1 Algorithm for online learning and planning.
function: DMM-OLP()

Require: T the length of each phase of acting in the world, N the number of phases.
1: Generate a random sample ār̄ō0:T−1 from the environment by choosing actions at random.
2: Let ξ0, the DMM with a single state (i.e. all transitions are to q◦), be the initial estimate of ξg .
3: for i = 1 to N do
4: Learn ξi from ξi−1 using history so far āō0:T i−1 by setting ξi to search (ξi−1, ār̄ō0:T i−1).
5: Estimate optimal policy π̂∗ for MDP corresponding to ξi using Q-learning.
6: Generate a sample ār̄ōT i:T (i+1)−1 from the environment by choosing actions according to

π̂∗.
7: end for

In the third step (line 6) we follow the policy as described at the end of Section 2.5. Addition-
ally, whenever the MDP/DMM transitions from state s to s′ on action a and we observe reward r,
the algorithm performs Q-learning updates on the Q-value of s at a (the Q-values learned in line
5 are used as initial values for this step). This additional Q-learning is to ensure that we over-
come incorrect parameter estimates due to mismatch between δi, δg and Si,Sg of ξi and ξg and
still properly explore the domain. This is our approach to dealing with the infamous ‘exacerbated
exploration problem’ described in Section 1.2. During this Q-learning, we also take a random action
with probability 0.1 to further aid in exploration. This approach is entirely heuristic and a formal
solution to this problem is a research topic in and of itself. The idea behind our heuristic is that
we start by acting according to what our current model tells us is the best course of action. Since
our model is likely incomplete/incorrect, we allow the computed Q-values to be changed based in
experience. Finally, the ε = 0.1 exploration is used to further observe effects of actions on hidden
states not modeled in the current estimate ξi, and hence discover it during the estimation step of the
next phase.

4.3 The Stochastic Search Algorithm

We now discuss how to estimate ξi in the first step of the for loop of DMM-OLP (line 4) using
a search algorithm. The search algorithm (search, Algorithm 2) is a stochastic search over this
space with the posterior (13) as the selection criterion. At each step, search performs one of two
possible operations. It chooses a leaf node, and either extends the node by adding another leaf node
(extend, Algorithm 3); or it chooses an internal or a leaf node and loops an unextended transition
of the leaf back to an ancestor (loop, Algorithm 4). These operations are chosen with probabilities
0.6 and 0.4 respectively. While other values of the these probabilities worked, these values were
experimentally found to be the quickest. The modification is then accepted as the estimate of ξg in
the next iteration if it satisfies a Metropolis-Hastings (MH) style condition (line 6). The condition
contains a parameter α which was set to 25 in all our experiments (this simulates the proposal
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Algorithm 2 Stochastic Search
function: search(ξ, ār̄ō0:n)

Require: K, the number of iterations.
1: Set ξcur to ξ.
2: for i = 1 to K do
3: With probability 0.6 and 0.4 respectively, set ξprop to extend(ξcur, ār̄ō0:n) or

loop(ξcur, ār̄ō0:n).
4: Choose rnd ∈ [0, 1] uniformly at random.
5: if Pr(ξprop|ār̄ō0:n)

αPr(ξcur|ār̄ō0:n) > rnd then
6: Set ξcur to ξprop.
7: end if
8: end for
9: Return ξcur.

Algorithm 3 Function for Extending Edges
function: extend(ξ, ār̄ō0:n)

1: Sample a leaf node/state s according to frequency in s̄0:n (s̄k = δ(q◦, āō0:k)).
2: Sample an outgoing edge ao at s according to the empirical (w.r.t. ār̄ō0:n) next step reward at
ao.

3: Create a new state snew with context xsao where xs is the context of s (the context of root is
empty).

4: Set δ(s, ao) to snew; set δ(snew, a′o′) = arg max{length(xs′)|xs′ is a suffix of xsnew}.
5: Add snew to the states of ξ.
6: Return ξ.

distribution ratio in the MH acceptance probability). This value was chosen because experimentally
this value was found to result in the best models.

Algorithm 4 Function for Looping Edges.
function: loop(ξ, ār̄ō0:n)

1: Sample a leaf node/state s according to frequency in s̄0:n (s̄k = δ(q◦, āō0:k)).
2: From all the outgoing edges of s that were not constructed by extend sample an outgoing edge
ao according to the empirical (w.r.t. ār̄ō0:n) next step reward at ao.

3: Choose an ancestor s′ of s according 2−m/Z, where m is the no. of ancestors of s between s
and s′.

4: Set δ(s, ao) to s′.
5: Return ξ.
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Figure 4: The two operators, extend and loop, used to search through looped DMM space.

4.4 Operators on Looped DMM

We now discuss the heuristics used in extend and loop to choose nodes to modify. In line 1 of both
procedure, we sample states according to their frequency in the data because we expect the impact
to the likelihood to be the greatest if we modify high frequency states. Then in line 2 of both we
sample an outgoing edge ao of the state s from line 1 according to the average reward seen at s after
taking action a and observing o. The intuition is that if the reward at that edge is high, then it might
be a good idea to create a new state there (in extend) or move it to a different state (in loop) to get
a better model. A more sophisticated version of this heuristic would be to use the future discounted
reward at the edge. In lines 3 and 4 extend constructs the new state for the chosen edge. In line 3
loop chooses an ancestor to loop back to, choosing a closer ancestor with higher probability. This
is because in typical POMDP domains we expect the state to transition back to states visited very
recently. loop then loops the edge in line 4.

5. Experiments

In the following we describe experiments we performed to test the efficacy of our algorithm. We
first describe the set up for the algorithms, the domains we used and then we present our results and
their interpretation.

5.1 Setup

We conducted experiments to illustrate that we do in fact extend McCallum’s Utile Suffix Memory
in desirable ways. We first ran experiments on three POMDP maze problems to evaluate our model
on standard problems. Then we ran experiments on three novel, non-episodic domains to test the
long term memory ability of our method. The domains for the first are given in Fig. 5 (numbered 1,2,
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Figure 5: The three POMDP mazes. S is the start state and G is the goal state.

and 3 respectively) and they have the same dynamics as in McCallum (1995b) with state transition
and observation noise.
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Figure 6: Results for the maze domains; USM i is the number of steps to goal state for maze i at
the given trial. Similarly for DMM i etc.

The domains for the second type of experiments are a set of ‘harvesting’ tasks with m crops. A
crop i become ready to be harvested after being developed through ki different phases. It is ready
to be harvested for just 1 time step once development is complete and then it spoils immediately,
requiring to be grown again. The agent has m+ 1 different actions. Action ai develops crop i to its
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next phase with probability 0.7 and develops some other crop with probability 0.3. The remaining
action allows the agent to harvest any crop ready to be harvested at that step. The observation at
each step is the crop that has been developed at that step. So essentially this is a counting task
where the agent has to remember which phase each crop is at, and hence a finite history suffix is not
sufficient to make a decision. The agent receives −1.0 reward for each action, and 5.0 reward for a
successful harvest. There are no episodes and the each problem instance essentially runs forever.
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Figure 7: Results for the mining domains. USM i is the total reward accumulated by USM on
mining problem i at the given step. Similarly for DMM i etc.

We used several different values of [m, (k1, k2, · · · , km)] : [4, (2, 2, 2, 2)], [5, (2, 2, 2, 2, 2)] and
[7, (2, 2, 2, 2, 2, 2, 2)] (referred to as harvesting problems 1, 2 and 3 respectively from now on). The
POMDP representation of these problems have, respectively, 4 · 24 = 64, 5 · 25 = 160, 7 · 27 = 896
states. In each of these cases, we let each USM and DMM run for 3000 steps and report the total
accumulated reward for each method averaged over 10 trials.

5.2 Results

The results for the three maze domains are given in Fig. 6 we report the median time per trial to get
to the goal state to be comparable to McCallum (1995b) – the performance of our implementation
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of USM matches that of McCallum (1995b). In these experiments in Alg. 1, T is variable, equal to
the number of steps the agent reaches the goal, while N , 30; and K , 5000.

As can be seen, our algorithm more or less matches USM, except at the beginning where the
number of steps is much higher. This is because our model is trying to learn a recursive model
and hence gets confused when there is little data. Not surprisingly, the average number of states
estimated by our method was 45.3, 67.5 and 90.5 compared to 204.5, 231.5 and 623.5 for USM.
Similarly, our stochastic search took significantly longer off-line processing to learn (5 minutes
compared to 10s of seconds for USM). So for these types of episodic tasks, it might be better to first
learn a model using USM and then compress it to a DMM Shalizi and Klinkner (2004). Regardless,
the experiments give evidence that DMMs are viable for modeling hidden RL environments, and
that our inference criterion (7) is correct.

The results for the 3 harvesting/counter domains are in Fig. 7. Here the difference between
the two methods becomes quite significant, with our method dominating USM completely. The
differences in computational time were quite similar to that in the previous set of experiments. The
average number of states inferred differed by about 400, with the USM continually creating new
states.

6. Conclusion

In this paper we proposed a novel model, the DMM, for modeling the environment in partially ob-
servable reinforcement learning problems. We proposed an inference criteria for choosing between
the models and then proved consistency of this criterion. We also presented a heuristic algorithm
for learning and planning with DMMs along with experiments to show the promise of our approach.
Directions for future research are many, the foremost being constructing a principled algorithm for
learning these models – this is currently under active development. Another problem that needs to
be solved is the exacerbated exploration problem which, as we pointed out, is quite hard. Other im-
portant extensions include more experiments on more difficult domains to further establish viability
of this approach; dealing with very large, possibly continuous state spaces via state-aggregation
schemes; and extension to relational, multi-agent domains.
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Appendix A. Proofs for Section 2.5

Definition 14 Define the following n-step V function for any G policy π:

V π
0 (h) := 0, V π

n (h) := ER(r|h,π(h))(r) + γEO(o|h,π(h))[V
π
n−1(hπ(h)o)]

Similarly, define the following n-step V function for any MDP policy π̄ for the MDP (A,R,S, RM , T, γ):

V π̄
0 (s) := 0, V π̄

n (s) := ERM (r|s,π̄(s))(r) + γET (s′|s,π̄(s))[V
π̄
n−1(s′)]
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Lemma 15 For each history h, limn→∞ V π
n (h) = V π(h) (see (1)). Similarly, for each MDP policy

π̄, limn→∞ V π̄
n (s) = V π̄(s) (see (6)).

Proof Using standard value iteration convergence proof methods Bertsekas and Shreve (1996).

Proof [Proof of Theorem 3] That π̄ is well defined is obvious. We will show that V π
n (h) = V π̄

n (s)
for all n, and hence in the limit, whenever κg(h) = s; this will complete the proof via Lemma
15. We show this by induction on n; for n = 0, the theorem holds trivially. Now assume that the
statement holds for n = m > 1. Then, we can write with a = π(h),

V π
m+1(h)

(1)
= ER(r|h,a)(r) + γEO(o|h,a)[V

π
m(hao)]

(2)
= E~θgs,a(r) + γ

∑
o

O(o|h, a)V π
m(hao)

(3)
= E~θgs,a(r) + γ

∑
s′

∑
o|κg(hao)=s′

O(o|h, a)V π̄
m(s′)

(4)
= E~θgs,a(r) + γ

∑
s′

~φgs,a(s
′)V π̄

m(s′)
(5)
= V π̄

m+1(s)

(1) is just definition; (2) follows because (~θg, ~φg, ξg) represents G; (3) follows as κg partitions the his-
tory space and by the inductive hypothesis; (4) is by another application of the fact that (~θg, ~φg, ξg)
represents G. (5) is by definition of V π̄

m+1. This proves the first part of the theorem.
For the second part, the G policy ρ satisfies the conditions of the first part of the theorem and

hence the result follows.

Definition 16 Define the following n-step optimal Q function:

Q∗0(h, a) := 0, Q∗n(h, a) := ER(r|h,a)(r) + γEO(o|h,a)[max
a′∈A

Q∗n−1(hao, a′)]

Define the optimal Q function to be:

Q∗(h, a) := ER(r|h,a)(r) + γEO(o|h,a)[max
a′∈A

Q∗(hao, a′)]

Lemma 17 For each action a and history h, limn→∞ Q∗n(h, a) = Q∗(h, a).

Proof Using standard value iteration convergence proof methods (Bertsekas and Shreve, 1996).

We note that by construction, V ∗(h) = arg maxaQ
∗(h, a); indeed,

Q∗(h, a) := ER(r|h,a)(r) + γEO(o|h,a)[V
∗(hao)]

Proof [Proof of Theorem 4]
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We will show that if κg(h) = κg(h′) = s then Q∗n(h, a) = Q∗n(h′, a) for all actions a. Coupled
with the convergence of Q∗n(h̄, a) → Q∗(h̄, a) from Lemma 17, this will show that Q∗(h, a) =
Q∗(h′, a). This implies that the sets arg maxaQ

∗(h, a) and arg maxaQ
∗(h′, a) are identical if

κg(h) = κg(h′). Since arg maxaQ
∗(h, a) contains only actions chosen by an optimal policy,

existence of a policy satisfying the conditions of the theorem is immediate, and hence first part of
the theorem is proved.

To show that Q∗n(h, a) = Q∗n(h′, a) we proceed by induction on n. The base case n = 0 holds
trivially by definition. Now assume that Q∗n(h, a) = Q∗n(h′, a) for all n ≤ m. For n = m + 1 we
write:

Q∗m+1(h, a)
(1)
= ER(r|h,a)(r) + γEO(o|h,a)[max

a′∈A
Q∗m(hao, a′)]

(2)
= ER(r|h′,a)(r) + γ

∑
s′

∑
o|κg(hao)=s′

O(o|h, a) max
a′∈A

Q∗m(hao, a′)

(3)
= ER(r|h′,a)(r) + γ

∑
s′

max
a′∈A

Q∗m(haos
′
, a′)

∑
o|κg(hao)=s′

O(o|h, a)

(4)
= ER(r|h′,a)(r) + γ

∑
s′

max
a′∈A

Q∗m(h′aos
′
, a′)

∑
o|κg(hao)=s′

O(o|h, a)

(5)
= ER(r|h′,a)(r) + γ

∑
s′

max
a′∈A

Q∗m(h′aos
′
, a′)

∑
o|κg(h′ao)=s′

O(o|h′, a)

(6)
= ER(r|h′,a)(r) + γ

∑
o

O(o|h′, a) max
a′∈A

Q∗m(h′ao, a′)
(7)
= Q∗m+1(h′, a)

(1) follows by definition. The first term in (2) follows as R(r|h, a) = R(r|h′, a) whenever κg(h) =
κg(h′); the second term because κg partitions the history space. In (3), os

′
is an arbitrary element

of B := {o| κg(hao) = s′}. So for each o ∈ B, by the inductive hypothesis, Q∗m(hao, a′) =
Q∗m(haos

′
, a′) for all a′ ∈ A. So we can replace all the arg maxa′ Q

∗
m(hao, a′) by arg maxa′

Q∗m(haos
′
, a′) and then bring that term out. (4) is yet another application of the inductive hypothesis

and the fact that κg(haos
′
) = κg(h′aos

′
) due to κ(h) = κ(h′). (5) follows because κg(h) =

κg(h′) = s and hence both h, h′ satisfy (4). (6) is the argument for (3) applied in reverse. And
finally, (7) is by definition. This completes the proof of the first part.

For the second part of the theorem, let the optimal G policy from the first part be µ. Then we
claim that theMg policy ρ, obtained from µ by the first part of Theorem 3, is an optimalMg policy.
To see this, let ρ̄ be an optimalMg policy and let µ̄ be the corresponding G policy from the second
part of Theorem 3. We need to show that V ρ(s) = V ρ̄(s). By Theorem 3, for any h and s such that
κg(h) = s, we have V ρ(s) ≤ V ρ̄(s) = V µ̄(h) ≤ V µ(h) = V ρ(s).

Appendix B. Proofs for Section 3

B.1 Proof of Type-1 Consistency (Reward Distribution)

The proofs in this subsection are a simple consequence of the definition of lim sup and the conditionally-
deterministic nature of the transitions in the model. We assume the context of Section 3, in particular
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that all actions are selected using a fixed policy π, and that we are given data ār̄ō0:v. We prove each
theorem in turn.

B.1.1 PROOF OF THEOREM 6

First some notation:

Definition 18 We say r̂ô0:m+k, 0 ≤ k ≤ ∞ is an extension of ro0:m if r̂ô0:m = ro0:m.

Now a definition:

Definition 19 For n > v, we define for the observed data ār̄ō0:v the following quantity:

ECn(~θg, ξg|~θ, ξ) ,
∑

ro0:n|ro0:v=r̄ō0:v

ROπ(ro0:n) log
Pr(r0:n|ao0:n, ~θ

g, ξg)

Pr(r0:n|ao0:n, ~θ, ξ)

We need two non-trivial lemmas for our theorem – here is the first one:

Lemma 20 We can write:

ECn(~θg, ξg|~θ, ξ) = Kv +
n∑

j=v+1

∑
ro<j |ro0:v=r̄ō0:v

ROπ(ro<j)KL[~θgκg(ao<j),aj
||~θκ(ao<j),aj ] (15)

where Kv > −∞ is a constant depending only on r̄ō0:v.

Proof Now we have the following equalities giving us the lemma:

ECn(~θg, ξg|~θ, ξ) =
∑

ro0:n|ro0:v=r̄ō0:v

ROπ(ro0:n) log
Pr(r0:n|ao0:n, ~θ

g, ξg)

Pr(r0:n|ao0:n, ~θ, ξ)

(0)
=

∑
ro0:n|ro0:v=r̄ō0:v

ROπ(ro0:n)
n∑
j=0

log
~θgκg(ao<j),aj

(rj)

~θκ(ao<j),aj (rj)

(1)
=

n∑
j=0

∑
ro0:n|ro0:v=r̄ō0:v

ROπ(ro0:n) log
~θgκg(ao<j),aj

(rj)

~θκ(ao<j),aj (rj)

(2)
= Kv +

n∑
j=v+1

∑
ro0:n|ro0:v=r̄ō0:v

ROπ(ro0:n) log
~θgκg(ao<j),aj

(rj)

~θκ(ao<j),aj (rj)

(3)
= Kv +

n∑
j=v+1

∑
ro0:j |ro0:v=r̄ō0:v

ROπ(ro0:j) log
~θgκg(ao<j),aj

(rj)

~θκ(ao<j),aj (rj)

(4)
= Kv +

n∑
j=v+1

∑
ro<j |ro0:v=r̄ō0:v

ROπ(ro<j)
∑
roj

RO(roj |ao<j , aj) log
~θgκg(ao<j),aj

(rj)

~θκ(ao<j),aj (rj)

(5)
= Kv +

n∑
j=v+1

∑
ro<j |ro0:v=r̄ō0:v

ROπ(ro<j)
∑
rj

R(rj |ao<j , aj) log
~θgκg(ao<j),aj

(rj)

~θκ(ao<j),aj (rj)
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(6)
= Kv +

n∑
j=v+1

∑
ro<j |ro0:v=r̄ō0:v

ROπ(ro<j)KL[~θgκg(ao<j),aj
||~θκ(ao<j),aj ]

(0) follows by chain rule of probability and definition of the log function. In (1) we simply switched
the sums and in (2) we introduced the term Kv > −∞ for the terms in the outer sum prior to v + 1.
In (3) we marginalized out the terms roj+1:n because the log terms depend only on ao0:j and be-
cause, by definition of cylinder sets, roj+1:n varies over all possible values in (R×O)n−j . (4) is an
application of the chain rule of probability. In (5) we marginalized out the oj terms because the log
terms do not depend on the oj and, by definition of cylinder sets, oj varies over all possible values
in O. Finally, (6) follows by definition of KL divergence and because, again by the definition of
cylinder sets, rj varies over all possible values inR.

Our second non-trivial lemma gives a bound on ECn defined above:

Lemma 21 If C(r̄ō0:v) ⊂ Aπ,ε, for any L ∈ IN we have that for some finite mL,

ECmL(~θg, ξg|~θ, ξ) ≥ Kv +
Lε

2
ROπ(r̄ō0:v)

where Kv was defined in Lemma 20.

Proof For convenience, we set α , ROπ[C(r̄ō0:v)]. Now, sinceC(r̄ō0:v) ⊂ Aπ,ε, for each ro0:∞ ∈
C(r̄ō0:v) there exists an infinite sequence 1 ≤ n1 < n2 . . . such that C(ro0:v+ni) ⊂ Aπ,ε,v+ni . Let
N(ro0:v+n) be the set of numbers ni in the prefix ro0:v+n of r0:∞. Define

ML,n := {ro0:∞|ro0:v = r̄ō0:v, |N(ro0:v+n)| ≥ L}

ML,n ↑ C(r̄ō0:v) and this implies that limn→∞ ROπ(ML,n) = α. Now set mL to be the smallest
number such that ROπ(ML,mL) ≥ α/2. We now prove an intermediate proposition:

Proposition 22 ∑
ro0:v+mL∈ZL

∑
ni∈N(ro0:v+mL )

ROπ(ro0:v+ni) ≥
α

2
L (16)

where ZL are the set of v +mL + 1 length prefixes of elements of ML,mL .

Proof First, observe that for any ro0:v+mL ∈ ZL, as |N(ro0:v+mL)| ≥ L, for any k < L, there
exists a proper suffix ro0:v+ni(k) such that |N(ro0:v+ni(k))| = k. By definition of cylinder sets
ROπ(ro0:v+mL) ≤ ROπ(ro0:v+ni(k)), which implies∑

ro0:v+mL∈ZL

ROπ(ro0:v+ni(k)) ≥
∑

ro0:v+mL∈ZL

ROπ(ro0:v+mL) = ROπ(ML,mL) ≥ α

2

Observe that ni(k) 6= ni(k′) for k 6= k′ and ni(k), ni(k′) ∈ N(ro0:v+mL). Therefore

L∑
k=1

∑
ro0:v+mL∈ZL

ROπ(ro0:v+ni(k)) ≥
α

2
L
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By construction, the set of strings we sum over in the left hand side of (16) contains the set of strings
we sum over in the left hand side of the above inequality; hence this proves the inequality (16).

To complete the proof of this lemma, we start by rewriting the statement of Lemma 20 as:

ECmL(~θg, ξg|~θ, ξ) = Kv +

mL∑
j=v+1

∑
C(ro<j)⊂C(r̄ō0:v)

ROπ(ro<j)KL[~θgκg(ao<j),aj
||~θκ(ao<j),aj ]

Now setting Dj−1 ,C(r̄ō0:v) ∩Aπ,ε,j−1 we can write that the above is:

(0)

≥ Kv +

mL∑
j=v+1

∑
ro<j |C(ro<j)⊂Dj−1

ROπ(ro<j)ε

(1)
= Kv +

∑
ro0:v+mL |ro0:v=r̄ō0:v

∑
ro<j |C(ro<j)⊂Aπ,ε,j−1

v<j≤mL

ROπ(ro<j)ε

(2)

≥ Kv +
α

2
Lε

In the above, (0) follows by definition of Aπ,ε,j−1 and because Dj−1 ⊂ C(r̄ō0:v). (1) is a rewrite of
(0). Finally, (2) follows from (16) as each C(ro0:v+ni) ⊂ Aπ,ε,j−1 for some j − 1 by definition of
ni.

We can now prove Theorem 6:
Proof [Proof of Theorem 6] We have

lim
n→∞

ECn(~θg, ξg|~θ, ξ) =∞ (17)

because in Lemma 21, we can take the right hand side to ∞ as a mL exists for each possible L.
So (17) shows that the expectation of the log of the ratio in the theorem statement diverges. The
theorem now follows by arguments similar (but not identical) to those used to show that convergence
in expectation implies convergence in probability.

First define for any C(r̂ô0:k) ⊂ C(r̄ō0:v) and n > k,

ECC(r̂ô0:k)
n (~θg, ξg|~θ, ξ) ,

∑
ro0:n|ro0:k=r̂ô0:k

ROπ(ro0:n) log
Pr(r0:n|ao0:n, ~θ

g, ξg)

Pr(r0:n|ao0:n, ~θ, ξ)
.

Clearly, if ROπ(C(r̂ô0:k)) > 0, then

lim
n→∞

ECC(r̂ô0:k)
n (~θg, ξg|~θ, ξ) =∞ (18)

by the same arguments used to derive (17).
Now, let

EMn ,

{
ro0:∞

∣∣∣∣ro0:v = r̄ō0:v, log
Pr(r0:v+n|ao0:v+n, ~θ

g, ξg)

Pr(r0:v+n|ao0:v+n, ~θ, ξ)
≤M

}
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The theorem statement asserts that for each M , 1EMn = 0 in probability where 1EMn is the indicator
function of EMn . That is, ∀M, ε > 0, ∃N ε such that n > N ε implies ROπ(EMn ) < ε. By definition
of EMn this means that if n > N ε and C(ro0:v+n) ⊂ C(r̄ō0:v), then

log
Pr(r0:v+n|ao0:v+n, ~θ

g, ξg)

Pr(r0:v+n|ao0:v+n, ~θ, ξ)
≤M implies ROπ[C(ro0:v+n)] < ε

So if the theorem is false then there exists some M ′, ε′ > 0 and r̂ô0:v+N , C(r̂ô0:v+N ) ⊂
C(r̄ō0:v), such that

ROπ(C(r̂ô0:v+N )) > ε′ and log
Pr(r0:v+N+m|ao0:v+N+m, ~θ

g, ξg)

Pr(r0:v+N+m|ao0:v+N+m, ~θ, ξ)
≤M ′

for all m ∈ IN and C(ro0:v+N+m) ⊂ C(r̂ô0:v+N ). This in turn implies that
EC

C(r̂ô0:v+N )
n (~θg, ξg| ~θ, ξ) remains bounded as n → ∞ as it is the expectation of the log ratio.

This contradicts (18) and hence the first part of the theorem is proved.
For the second part of the theorem, the rewrite in Lemma 21 implies that limn→∞ ECn(~θg, ξg|~θ, ξ)

is now bounded. Hence, the ratio is also bounded in probability as convergence in expectation im-
plies convergence in probability.

B.1.2 PROOF OF THEOREM 8

Lemma 23 Under the hypothesis of Theorem 8, for sequences ro0:∞ ∈ C(r̄ō0:v) we have

lim
n→∞

Pr(r0:v+n|ao0:v+n, ~θ
g, ξg)

Pr(r0:v+n|ao0:v+n, ξ)
=∞

in ROπ probability.

Proof (Sketch) The proof is analogous to the proof for Theorem 6 and hence not repeated.

Proof [Proof of Theorem 8] By the law of large numbers Pr(r|aro0:n, s, a, ξ
g) converges almost

surely to ~θgs,a in total variation whenever sa ∈∞ C(r̄ō0:v) (see Definition 9). Furthermore, by
definition, for DMM ξ,

logPr(r0:n|ao0:n, ξ) =
∑
i

logPr(ri|aro<i, si−1, ai, ξ)

or in other words,

log
Pr(r0:v+n|ao0:v+n, ξ

g)

Pr(r0:v+n|ao0:v+n, ξ)

=
∑
i

[
logPr(ri|aro<i, sgi−1, ai, ξ

g)− log ~θg
sgi−1,ai

(ri)
]

+
∑
i

[
log ~θg

sgi−1,ai
(ri)− logPr(ri|aro<i, si−1, ai, ξ)

]
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Since the number of states and actions are finite, for ro0:∞ ∈ C(r̄ō0:v), as n → ∞ the terms in
the first sum converges (as mentioned above) almost surely to 0 and hence the sum converges to a
bounded constant; the second sum goes to infinity in probability by Lemma 23. All together this
implies the theorem.

The second part of the theorem follows by arguments analogous to the ones for the second part
of Theorem 6.

B.2 Proof of State Transition Distribution Consistency (Type 2)

Lemma 24 For any ξ and s ∈ S, s′ ∈ Sg, if (s, s′) ∈≡ C(r̄ō0:v), then for all other q′ ∈ Sg
(s, q′) 6∈≡ C(r̄ō0:v).

Proof By definition of ∈≡.

Lemma 25 If a state s of ξ models sg ∈ Sg in C(r̄ō0:v) (that is, (s, sg) ∈≡ C(r̄ō0:v)), then for
each action a such that sa ∈∞ C(r̄ō0:v), for sequences ro0:∞ ∈ C(r̄ō0:v), Pr(s′|aro0:n, s, a, ξ)
converges ROπ almost surely to ~φgsg ,a in total variation as n→∞.

Proof Assume that a ∈ A and s ∈ S , sa ∈∞ C(r̄ō0:v) and that s ∈ S models sg. Then for all but
a finite number of histories h with C(h) ⊂ C(r̄ō0:v), κ(h) = s implies κg(h) = sg. Therefore the
required almost sure convergence happens via (12) by the law of large numbers.

Proof [Proof of Theorem 13] Assume that the almost sure convergence does not happen for some
action a such that sa ∈∞ C(r̄ō0:v). Then by lemmas 24 and 25 s corresponds to (without loss of
generality) two states s′, s′′ ∈ Sg infinitely often – that is for all but a finite number of elements of
h ∈ Z̄π,s(r̄ō0:v) (see Definition 10) satisfy κg(h) = s′ or κg(h) = s′′, both infinitely often, and
s′, s′′ ∈∞ C(r̄ō0:v). We will refer to this condition as s being confused w.r.t. s′, s′′.

As s′, s′′ ∈∞ C(r̄ō0:v), let ĥ ∈ H be the corresponding sequence for s′ and s′′ from Assumption
12 and let δg(s′, ĥ) = q′ and δg(s′′, ĥ) = q′′. So ~θgq′,â 6= ~θgq′′,â and âq′′, âq′ ∈∞ C(r̄ō0:v) for some

â ∈ A. By determinism there exists a single state q such that δ(s, ĥ) = q and q ∈∞ C(r̄ō0:v) as ĥ
occurs infinitely often after s′, s′′ by Assumption 12. Hence q is confused w.r.t. q′, q′′.

Since q corresponds to states q′ and q′′ both infinitely often and since ~θq′,â 6= ~θq′′,â, it means
that C(r̄ō0:v) ⊂ Aπ,ε for some ε > 04. By Theorem 8, this means that the assumed boundedness of
the ratio (14) is false and so this is a contradiction of hypothesis of this theorem. This implies that
the almost sure convergence takes place.
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