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Abstract

There is considerable current interest in deriving
accurate dimensional measurements of the internal ge-
ometry of complex manufactured parts, particularly
castings. This paper describes an approach to the re-
construction of 3D part geometry from multiple dig-
ital X-ray images. A novel method for radiographic
stereo 1s described which takes into account the spe-
cial imaging geometry of the digital X-ray sensor mod-
eled by a linear moving array, or pushbroom, camera.
The 3D reconstruction algorithm employs a nominal
geometric model which is perturbed by X-ray image
constraints. Manufacturing applications are discussed
and illustrated by experimental results on synthetic
phantoms and actual casting images.

1 Introduction

Investment casting designs, particularly airfoils for
aircraft engines and gas turbines, are rapidly evolv-
ing in complexity. In order to reduce the development
cycle for a new design it is necessary to monitor and
control the critical dimensions of the casting and as-
sociated cores and molds. In addition, detailed knowl-
edge of the casting geometry is necessary to plan the
drilling of cooling holes during airfoil manufacturing.
We describe a new approach to dimensional control of
casting machining operations based on X-ray metrol-
ogy. Precise measurements of casting dimensions and
hole geometry can be achieved using a new algorithm
for radiographic stereo.

The most common form of X-ray image is a 2D dig-
ital radiographic (DR) image formed by the projection
of rays from an x-ray point source on to a linear array
of detectors (figure 1). 3D material density is pro-
jected to a 2D image as a line integral which can be
directly related to material thickness (assuming that
imaging parameters such as the point spread function
of the imaging system and beam-hardening correction
are known). However, in practice these parameters
are not known precisely and only relative measure-
ments can be made. Thus, industrial inspection from
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Figure 1. Scanning geometry.

a single DR image has been largely limited to material
flaw detection and part screening where the goal is to
locate (local) abnormalities such as cracks, voids, or
splatter from a laser, by looking for unexpected ma-
terial density changes in otherwise uniform material
density regions [1, 2, 3, 4].

A widely used method for internal part geome-
try verification is based on 2D computed tomogra-
phy (2DCT) image analysis and many publications
describing dimensional measurement algorithms from
2DCT have appeared in both the medical and NDE
(nondestructive evaluation) literature, e.g. [5, 6].
2DCT provides a slice-by-slice view of the internal ge-
ometry of a part [7, 8, 9]. Slices can be stacked on
top of each other to provide a volumetric represen-
tation of a part (typically with interpolation between
the slices to give an object a smoother appearance).
However, this type of reconstruction requires a large
amount of data to be analyzed and data acquisition is
slow. Therefore it can not be used in near real-time
applications such as process monitoring or high vol-
ume part inspection. Further, in many applications, a
full volumetric analysis of an object (industrial or hu-
man) is not necessarily the desired final output. This
is particularly true when the goal is to perform dimen-
sional analysis and/or control where analysis typically
only involves boundaries of the object.

In this paper we consider 3D geometry reconstruc-
tion from multiple view X-ray images as a means



to achieve practical 3D geometry measurement. Al-
though CT reconstruction from a few views is ill-
conditioned [10], one can, in theory, achieve it from
a limited number of views of the object using assump-
tions about the geometry of the features being re-
constructed, X-ray imaging distortions, and feature-
based stereo reconstruction techniques. In the med-
ical domain, this approach has been applied to es-
timate artery structure from biplane angiograms (2
views taken at 90 degrees apart) with some success.
Here, the primary emphasis has been on the evalua-
tion of the precision of boundary extraction techniques
from 2D X-ray images to provide features for match-
ing and reconstruction [11, 5, 12] modelling arteries
(including bifurcations) and, the recovery of the 3D
medial axes of arterial structures [13, 14].

This contribution presents a novel approach to 3D
reconstruction from multiple views based on a linear
pushbroom camera which 1s a simplified version of the
pushbroom camera often used in photogrammetry to
analyze satellite imagery [15]. In most previous work
on multiple view X-ray reconstruction, affine (paral-
lel projection) geometry has been assumed which is
a good approximation to perspective (pinhole cam-
era) geometry if the source-to-object distance is much
larger than the depth of the object. A linear pushb-
room camera, however, generates an image that can
be considered as a projective image in one direction
and an orthographic image in the other [16]. This
more accurately captures the imaging geometry of a
real X-ray system than an affine or perspective camera
model. To our knowledge, this paper presents the first
application of the linear-pushbroom camera model to
feature-based stereo reconstruction. It also reports on
the first application of multiple view X-ray reconstruc-
tion to industrial part inspection.

2 Approach
2.1 X-ray Imaging Scanning Geometry

The scanning geometry is depicted in Fig 1. A
source projects X-rays through the part onto a lin-
ear array of sensors. The plane defined by the X-ray
source and the sensor array is known as the sensor
plane. A complete image is captured by moving the
part by a series of step motions in a direction per-
pendicular to the sensor plane and capturing a new
line of image data at each step. Subsequent images
are captured in the same way after rotating the part
through known angles about an axis perpendicular to
the sensor plane.
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Figure 2. Feature projection.

2.2 Feature and Intensity Modeling

We consider the recovery of 3D drilled hole geom-
etry from 2D X-ray projection images. We assume
that drilled holes can be represented as right cylinders
with elliptical cross-sections . It can be shown [17] that
(under parallel projection) the projected thickness of
a feature is also elliptic and the silhouette outlines of
straight drilled holes are projected to straight lines as
illustrated in figure 2. In a real DR image holes appear
as dark elongated features as shown in figure 6.

The challenge in feature-based reconstruction is to
extract features from several images taken at known
(relative) view angles, establish the correspondence
between the features in the views and recover the 3D
geometry. We focus on the latter in the next section.
Intensity feature modeling and template-based view
correspondence are subjects of our current research
(see the last section 4).

2.3 Object Reconstruction

The imaging geometry is shown in figure 3. We
define a Euclidean coordinate frame as follows. The
source is located at the origin. The y and z axes lie in
the sensor plane, the z-axis (or principal azis) being
perpendicular to the sensor array, and the y axis par-
allel to 1t. The # axis is perpendicular to the sensor
plane, completing a right-handed coordinate system.

A mathematical model has been developed for this
sort of imaging geometry, the linear-pushbroom model
[16]. Let (z,y,2)” be the coordinates of a point in
the part at time ¢ = 0, the time when the first line is
captured. The coordinates of the corresponding image
point are (u,v) = (u',v'/w') where
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Figure 3. Imaging geometry.
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1. f is the focal length, that is, the distance from
the origin to the sensor array along the z axis;

2. py 18 the coordinate of the principal point;

3. (Vy,Vy, V2) is the motion vector of the part be-
tween scan lines of the image. Components V,
and V;, will nominally equal zero, corresponding
to motion perpendicular to the sensor plane.

4. w' is a scale factor.

Separate Views : For each separate image, the
part is rotated about an axis nominally perpendic-
ular to the sensor plane. This rotation may be
parametrized by the following parameters :

1. its angle 8;;

2. the coordinates (t,,t.) of the point where the ro-
tation axis meets the sensor plane;

3. two angles ¢, and ¢, determining the orientation
of the rotation axis with respect to the perpen-
dicular to the view plane. Nominally, these two
angles are zero.

In terms of these parameters, it is possible to com-
pute a 4 x 4 matrix R such that (2/,y, 2/, 1)T =
R(z,y,2,1), where (2',y,2)T are the Euclidean co-
ordinates of a point in the rotated part, and (z,y, )T
are coordinates of the same point prior to rotation.
Putting this together in equation 1 we find that

(u, vw, v)T =M(z,y,z, 1)T,

where M= M p, v, v, V. 00,0y,t.,6y,6. 15 @ 3 X 4 pro-
jection matrix depending on all the parameters.

Constraints :  Though parameters V,, V., ¢, and
¢, are nominally zero, there may be slight inaccu-
racies which cause them to deviate from their ideal
values. In modeling the imaging process we assume
these parameters as Gaussian random variables with
zero mean and a small variance (see [13] for justifica-
tion of this assumption). The other model parameters
have known values and will similarly be modeled as
random variables with appropriately chosen variances
reflecting the degree of confidence in their nominal val-
ues. All model parameters except the rotation angle
6, may be assumed to take the same values for all the
images.

2.4 Reconstruction

Suppose we know the coordinates u’ of the image of
a point x in a part being inspected, as seen in several
views. As long as the camera parameters are known,
x may in principle be computed as the intersection of
the rays corresponding to all u’. If there are errors
in the measurements of the u?, then the rays will not
intersect exactly, and it will be necessary to compute a
best fit to the intersection. Commonly, however, there
may also be uncertainties in the modeling parameters.
In this case, reconstructing x requires weighing the
uncertainties in the modeling parameters against the
uncertainties in the image coordinate measurements
to estimate the most likely point position.

As seen in section 2.3, the mapping from 3D
points to image points may be expressed as a func-
tion Fp,p, py from R? (the 3D object space) to R?
(the image), parametrized by a set of model parame-
ters p1,p2,...,PN. Suppose we are given point cor-
respondences u;:, each of which is the image of an
unknown point x; as seen in image number ;. We
estimate x; and pj, for each of the views so as to min-
imize a certain penalty function. Here pﬁc is the kth
parameter of the ith view. Let @} = F i, i (x;) be
the image of the point x; as seen]in thglfﬁh Z\)/]ive(vv]v)vith
the given calibration. Furthermore, let ]32 be a priori
estimations of the values of the modelling parameters.



The penalty function to be minimized is
D willag —w|* + > vi(ph — 5i)° (2)
ij ik

where 1/(w;) is the variance in the measurement of u§
and 1/(v%) is the variance associated with the a priori
estimates of the parameters pﬁc.

This estimation problem 1is solved using the
Levenberg-Marquardt [18] parameter estimation algo-
rithm. In this method, an initial guess at the values
of the parameters is refined by iteration to reach a fi-
nal least-squares estimate optimizing equation 2. At
each step of the iteration, an adjustment to the values
of the active variables is computed under an assump-
tion of local linearity. If the modelling parameters are
known with moderate accuracy, as is the case with
an X-ray inspection system imaging setup, then the
convergence is rapid from any initial estimate of the
points x;.

2.5 Registering two 3D point sets

We next address the problem of registering two
point sets {x;} and {x}} in R® . In particular, we
assume that the points are related by an unknown 3D
similarity transformation, T, that is, the composition
of a rotation, translation and isotropic scaling. The
goal is to compute 7. Since in the presence of noise
one can not expect an exact fit, one seeks instead an
optimal least-squares solution. In particular, we seek
a similarity transformation 7' that minimizes the error

> Ix = Txj° (3)
j

An efficient algorithm for computing the 7" that min-
imizes this term was given by Horn [19]. This algo-
rithm uses quaternions to represent the unknown ro-
tation [20], leading to a non-iterative rapid solution.

3 Experimental Results

In this section we present results of 3D geometry
reconstruction using the approach outlined in the pre-
vious section. Synthetic data was produced using a
fan-beam geometry phantom projection generation al-
gorithm from a CT reconstruction software package
written in C and implemented on a Meiko parallel pro-
cessing system. Experimental X-ray images from real
parts were provided by GE Aircraft Engines.

3.1 Hole pattern phantom

First, we consider the reconstruction of a synthetic
drilled hole pattern which consists of 2 perpendic-

ular rows of 5 cylindrical holes. Projection images
were generated at 107 intervals. Six views of a drilled
hole pattern phantom are shown in figure 4. Rele-
vant imaging geometry parameters are given in table
1. Features used in this experiment were the ends
of the holes and feature selection and correspondence
were established manually.

A good method of showing the accuracy of multiple-
view reconstruction is to compute the 3D geometry us-
ing several views, reproject the result into a new view
and compare how well the true and estimated features
match. As an example, 3D hole geometry was esti-
mated using stereo-reconstruction from the two views
at angles 0° and 30° (figure 5). The 3D point esti-
mates were then reprojected back into a third view at
angle 60°. The third image in figure 5 shows the re-
sult superimposed on the actual 60° angle projection
image. The agreement is very good.

3.2 Real Parts

Next, we show our approach applied to the recon-
struction of 3D geometry for a real industrial part.
We did not have a ground truth to compare our re-
construction results against (eg. a CAD model) so
(as in the previous example) we chose to measure re-
construction accuracy gqualitatively in terms of the ob-
served accuracy of feature localization after reprojec-
tion of reconstructed 3D locations back into a view
that was not used in the initial reconstruction.

Two X-ray views of the part are shown in figure 6
together with the features selected to perform the 3D
reconstruction. The reprojected features computed af-
ter first reconstructing the 3D geometry and then re-
projecting into a third view are shown superimposed
on the actual projection image for this view. The
agreement can be seen to be quite good.

To give an idea of part-to-part 3D measurement
variability we computed the estimated mean and stan-
dard deviation of hole length (in 3D) for 5 indus-
trial parts using our approach. The same view an-
gles and image features were used for each reconstruc-
tion. The results are summarized in table 2 and show
that drilled hole lengths have fairly good repeatability
across parts. Some of the variability can be explained
as being due to the use of manual rather than auto-
matic feature selection (measurement error) and an-
other key source is manufacturing process variability.

We plan to compare the accuracy of reconstruc-
tion against available CAD models and physical di-
mensions computed by cutting up manufactured parts
in the near future.



Table 1. Imaging geometry parameters.

0z
10°

detect. spacing
0.00575"

pixel size
0.005"

central detect. pos.

128
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17.132"  14.47"

image height (y)

110 pixels

image width (z)
256 pixels

Figure 4. Views of a drilled hole pattern phantom at angles 30,70,100,120,140 and 170 degrees.
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Figure 5. Two views used for reconstruction and the reprojection into a third view.

hole mean variance
0 45.4571 5.76908
1 55.4283 10.8301
2 58.3581 9.67349
3 55.1082 8.05943
4 59.9354 17.4874

Table 2. 8D hole length statistics computed from multiple view X-ray reconstruction for 5 industrial parts.




Figure 6. Two views of a real part used for reconstruction and the reprojection into a third view.

4 Future Work

We have described a new approach to 3D geom-
etry reconstruction from multiple 2D X-ray images
and presented experimental results on X-ray data from
synthetic phantoms and real industrial parts. A key
practical advantage of our approach over volumetric
CT reconstruction is that both data acquisition and
reconstruction times are fast. However, much work
still needs to be done to evaluate the precision of in-
ternal geometry measurement achievable with this ap-
proach in order to demonstrate the practical use of
multiple view X-ray reconstruction.

There are a number of directions in which this work
could be extended.

e Automation - the results in this paper were
achieved using manual feature selection and cor-
respondence. We are currently working on
template-based feature extraction and registra-
tion methods to automate these two steps.

e Fine stereo-reconstruction - our approach pro-
vides a way to determine the 3D geometry of a
part using a global “best-fit” to a set of feature
points. In many cases, high precision measure-
ment on individual features is also desired - for

example the maximum radius along a laser-drilled
hole. This could be achieved by initially perform-
ing feature-based geometry estimation using the
approach described in this paper and then refin-
ing the geometry estimate by nonlinear optimiza-
tion of a combined intensity and geometry rep-
resentation of part feature that accounts for X-
ray imaging effects and noise. We refer to these
two stages as coarse and fine multiple view X-ray
stereo-reconstruction. We plan to investigate this
approach in future work.

Precision measurement integration - Another in-
teresting question is how internal geometry mea-
surements derived from X-ray-based reconstruc-
tion can be combined with surface profile mea-
surements derived, for example, from coordinate
measurement machines, laser profile scanning and
optical images to provide an integrated data rep-
resentation of a manufactured part. Many areas
of manufacturing design (for example tolerancing
[21, 22] and engineering analysis) and inspection (
for example automated inspection planning [23])
would benefit from the availability of information

of this kind.
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