
Lines and Points in Three Views - An

Integrated Approach

Richard I. Hartley

G.E. CRD, Schenectady, NY, 12301.
LIFIA Grenoble

Abstract

This note outlines a new method for carrying out a projective reconstruction of a scene
from three views of a mixture of lines and points. The algorithm is non-iterative (in fact
linear) consequently very rapid. A particular case of this algorithm gives a new linear
method for computing a scene from seven points in three views.

1 Introduction

In a previous paper ([3, 4]) I gave a method for doing projective reconstruction from a set
of 13 or more lines seen in three views. This method was demonstrated to be relatively
stable in [4], provided sufficient care is taken with the implementation. Meanwhile, in [7]
a method was given for computing a novel view of an image from two reference images.
This method uses certain “trilinearity conditions” to transfer points into the new image.
In that paper, a linear method was given for computing the coefficients of the trilinear
equations from just seven points in two images. This result implied the possibility of a
linear method for carrying out a projective reconstruction of a set of points seen in three
views. How to extend Shashua’s method to obtain a projective reconstruction was not
entirely obvious. Shashua’s derivation of his method uses somewhat unfamiliar concepts
and terminology.

In this note, the results of Shashua are rederived using more standard means. As a result,
a method for computing the projective structure using linear techniques is derived. Along
the way, an unexpected connection appears between the 7-point algorithm of Shashua and
the 13-line algorithm of [3, 4]. By merging the two techniques one obtains an algorithm
that works for a mixed set of lines and points. This new algorithm integrates both lines
and points into one linear framework. This contrasts with previously known algorithms
that have been specific to either point sets (for example the 8-point algorithm of [5, 6])
or line sets ([3, 4]). Previously to deal with both points and lines at the same time, an
iterative least-squares approach has been necessary.

The new algorithm has not to date been tried on mixed sets of points and lines. However,
the results obtained in ([3, 4]) for lines and in [7] using points, both special cases of this
algorithm show quite good results.

Thanks are due to Long Quan and Andrew Zisserman for discussions before
and during the preparation of this note.

2 Notation

All vectors are written as lower case bold letters, such as u or λ. Such a notation denotes
a column vector. A row vector is written as a transposed column vector such as u�. The
inner product of two vectors is written as a�b, that is by viewing a vectors as a matrix
with only one column, and carrying out a matrix multiplication. Similarly a product
ab� represents a matrix.

The symbol ≈ is used to denote equality up to multiplication by a non-zero scale factor.

3 Derivation of Shashua’s Trilinearity Conditions

Suppose that a point x in space is seen in three images, and that the three cameras are
given in the normalized form P = (I | 0), P ′ = (A | p′) and P ′′ = (B | p′′). We may
assume that this is the case, since the relationships that will be derived are independent
of projective transformations of space, and hence we may apply an arbitrary projective
transformation. This transformation may be chosen in such a way as to transform the
first camera matrix to the desired normalized form (I | 0).
We suppose that the point x is seen at positions u, u′ and u′′ in the three images, where
u (and similarly u′ and u′′) is a 3-vector u = (u, v, 1), the representation of the point
in homogeneous coordinates. The coordinates (u, v) are the coordinates actually seen in
the image. We wish to find a relationship between the coordinates of the points u, u′

and u′′.

Because of the form of the matrix P = (I | 0), it is extremely simple to give a formula
for the position of the point in space. In particular, since (I | 0)x ≈ u, we may write

x =
(

u
t

)
for some t, yet to be determined. It may be verified that t is the same as

the “relative affine invariant”, k, considered by Shashua ([7]). Now, projecting this point
into the second image, we see that

u′ ≈ P ′x = (A | p′)
(

u
t

)

Denoting the i-th row of A by ai�, we may write this equation as three separate equations

u′w′ = a1
�u + p′1t

v′w′ = a2
�u + p′2t

w′ = a3
�u + p′3t

(1)

where w′ is an unknown scale factor. We may eliminate w′ to obtain two separate
equations

u′(a3
�u + p′3t) = a1

�u + p′1t
v′(a3

�u + p′3t) = a2
�u + p′2t

(2)

From each of these equations independently, one may compute the value of t. We obtain

2

t =
a1
�u− u′a3

�u
u′p′3 − p′1

=
a2
�u− v′a3

�u
v′p′3 − p′2

(3)

Considering only the first of these expressions for t, we see that the point x may be
written as

x =
(

u
(a1
�u− u′a3

�u)/(u′p′3 − p′1)

)

≈
(

(u′p′3 − p′1)u
a1
�u− u′a3

�u

)

Now, projecting this point via the third camera, we find that

u′′ ≈ (B | p′′)x
≈ (u′p′3 − p′1)Bu + p′′(a1

�u− u′a3
�u)

≈
(
(u′p′3 − p′1)B + p′′(a1

� − u′a3
�)
)
u

Writing this in terms of the rows of B (denoted by bi�), we have an expression

u′′ ≈

 (u′p′3 − p′1)b1

� + p′′1(a1
� − u′a3

�)
(u′p′3 − p′1)b2

� + p′′2(a1
� − u′a3

�)
(u′p′3 − p′1)b3

� + p′′3(a1
� − u′a3

�)

u .

We may rearrange terms to obtain

u′′ ≈

 u′(p′3b1

� − p′′1a3
�)− (p′1b1

� − p′′1a1
�)

u′(p′3b2
� − p′′2a3

�)− (p′1b2
� − p′′2a1

�)
u′(p′3b3

� − p′′3a3
�)− (p′1b3

� − p′′3a1
�)

u (4)

In a similar manner, starting with the other estimate of t in (3), we have a second formula
for u′′, namely

u′′ ≈

 v′(p′3b1

� − p′′1a3
�)− (p′2b1

� − p′′1a2
�)

v′(p′3b2
� − p′′2a3

�)− (p′2b2
� − p′′2a2

�)
v′(p′3b3

� − p′′3a3
�)− (p′2b3

� − p′′3a2
�)

u (5)

By eliminating in the usual way the constant factor implied by the ≈ sign in equations
(4) and (5), we obtain the four independent trilinear forms defined by Shashua ([7]).
Following Shashua ([7]) we now write

αij
� = p′ibj

� − p′′j ai� (6)

3

Then, the equations (4) and (5) may be written as

u′′ ≈

 u′α31

� −α11
�

u′α32
� −α12

�

u′α33
� −α13

�

u ≈

 v′α31

� −α21
�

v′α32
� −α22

�

v′α33
� −α23

�

u . (7)

Eliminating the unknown scale factors in the usual way, we obtain for each correspon-
dence u↔ u′ ↔ u′′ a set of 4 equations in the unknown entries of the vectors αij . Given
7 point correspondences, we have sufficiently many equations to solve for the vectors αij .
Thus, we may obtain the transfer equations (7) linearly from a set of 7 point matches in
all three images.

There are other ways of finding the particular coefficients αij in the transfer equations.
For instance, given sufficiently many correspondences u ↔ u′ between the first two
images, we may do a complete projective reconstruction of the scene ([1, 2]) to obtain
the position of points in a projective reconstruction of the scene. One also obtains the
camera matrices (I | 0) and (A | p′) of the first two cameras from this reconstruction ([2]).
Subsequently, given sufficiently many points in the third image that correspond with
matched points in the first two images, we may compute the camera matrix P ′′ = (B | p′′)
directly. Specifically, given matches u ↔ u′ ↔ u′′, we effectively have a match x↔ u′′,
where x is the reconstructed point in the scene. From these scene – image matches one
can compute the camera matrix P ′′. This is the classical camera resectioning problem.
From six or more point matches (actually 5 1

2 matches suffice) one can compute the camera
matrix P ′′ = (B | p′′) using the Direct Linear Transformation (DLT) method ([9]). For
more precise results, the matrix P ′′ can be computed using iterative techniques ([8]).
Once the three camera matrices are known, the coefficients of the transfer equations (7)
may be computed directly.

4 Connection with Line Transfer

In [3, 4] a triple of matrices Ti were introduced for the purpose of transferring lines from a
pair of images into a third image. This method was used to do projective reconstruction
from line matches. We summarize some of the main results of that paper here, using the
notation of this note.

Theorem 4.1. Consider three images of a set of lines taken by cameras with camera
matrices P = (I | 0), P ′ = (A | p′) and P ′ = (B | p′′). Let λ ↔ λ′ ↔ λ′′ be a set of
corresponding lines in the three images. Then there exist 3 × 3 matrices T1, T2 and T3

such that

λ =

 λ′�T1λ

′′

λ′�T2λ
′′

λ′�T3λ
′′

 . (8)

Each matrix Ti has the form
Ti = âip′′� − p′b̂i� (9)

where âi is the i-th column of the matrix A, and b̂i is the i-th column of B.

4

Note the difference between b̂i and âi and the vectors bi and ai that appear in (6).
Vector bi� is the i-th row of the matrix B, and ai� is similarly defined for A. Vectors
âi and b̂i on the other hand are the columns of A and B.

Since each line match gives two linear equations in the entries of the matrices Ti, it is
possible, gven at least 13 line matches, to compute the 27 unknown entries, up to an
unknown (and insignificant) common scale factor.

It is further shown in [3, 4] how the camera matrices of the three cameras may be
computed from the three matrices Ti. This is done using non-iterative linear techniques.
In this way, the projective structure of a scene may be deduced from a set of 13 lines
seen in 3 views.

The fact that we have 27 unknown values in the three matrices Ti as well as in the 9
vectors αij suggests that there could be a connection between these techniques. This is
indeed the case as will now be demonstrated. We denote the k-th entry of the vector αij
by αijk. Similarly, we denote the (jk)-th entry of the matrix Ti by Tijk. The entries of
matrices A and B will be denoted by aij and bij .

Now, from (6) we have
αijk = p′ibjk − p′′j aik .

Further, from (9) we have
Tijk = ajip

′′
k − p′jbki

One immediately sees that
αijk = −Tkij (10)

This equation has a number of significant implications.

1. Given a set of 7 point matches in 3 images, one has a linear method of computing
the projective structure of the scene, including the three camera matrices and the
fundamental matrices. One uses the 7-point linear method to compute the values
αijk and from this one reassembles the matrices Ti. Finally, the methods of [3, 4]
may be used to compute the camera matrices.

2. We may compute (linearly) the projective structure of a set of lines and points
seen in three views, provided that 2#lines + 4#points ≥ 26. In particular, for
each point, equation (7) gives 4 equations in the values αijk , and for each line,
equation (8) gives two equations in the entries Tijk. However, the unknowns Tijk
and αijk are the same (modulo a change of sign and permutation of the indices).
Thus, provided we have at least 26 equations, we may compute the values of Tijk
linearly and then reconstruct the scene as in [3, 4].

There is an alternative method of computing the matrices Ti, and hence projective struc-
ture from seven points. For each pair of points in space, one considers the line that passes
through these two points. The corresponding line in an image is the line that passes
through the images of the two points. In this way counting all pairs of points, one has
a total of 21 lines. Applying the line algorithm to this set of lines one may solve for Ti.
Because of obvious redundancies between these lines it is not clear that the 21 lines will
contain enough information to ensure that the set of equations derived from (8) will have
sufficient rank to ensure a unique solution. It has been empirically observed that they
do.

5

On the other hand with only 6 points one has 15 lines, more than the minimum number
of 13 lines necessary for the line-algorithm. However in this case the equation matrix
does not have sufficient rank and a solution can not be found. This is not surprising,
since otherwise we would have a linear algorithm for solving for six points in three views.
This is not likely, since according to ([6]) this configuration leads to a cubic equation
with three possible solutions.

It is not clear whether using 7 points to derive 21 line equations will give the same (or
as good) results as using them directly to derive 28 point equations using (7). Since
information is apparently lost in using the points only to define lines, it would appear
that this is not in general a good approach, and that it is preferable to use (7) to derive
four equations for each point directly.

References

[1] O. D. Faugeras. What can be seen in three dimensions with an uncalibrated stereo
rig? In Computer Vision - ECCV ’92, LNCS-Series Vol. 588, Springer-Verlag, pages
563 – 578, 1992.

[2] R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pages 761–764, 1992.

[3] R. I. Hartley. Camera calibration using line correspondences. In Proc. DARPA Image
Understanding Workshop, pages 361–366, 1993.

[4] Richard I. Hartley. Projective reconstruction from line correspondences. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, pages 903–907, 1994.

[5] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. Nature, 293:133–135, Sept 1981.

[6] L. Quan. Invariants of 6 Points from 3 Uncalibrated Images. Rapport Technique RT
101 IMAG 19 LIFIA, LIFIA-IMAG, Grenoble, October 1993. To appear in ECCV94.

[7] Amnon Shashua. Algebraic functions for recognition. IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, 17(8):779–789, August 1995.

[8] C. C. Slama, editor. Manual of Photogrammetry. American Society of Photogram-
metry, Falls Church, VA, fourth edition, 1980.

[9] I.E. Sutherland. Three dimensional data input by tablet. Proceedings of IEEE, Vol.
62, No. 4:453–461, April 1974.

6

