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Abstract

In this paper, we consider the problem of finding the position of a point in space given
its position in two images taken with cameras with known calibration and pose. This
process requires the intersection of two known rays in space, and is commonly known as
triangulation. In the absence of noise, this problem is trivial. When noise is present, the
two rays will not generally meet, in which case it is necessary to find the best point of
intersection. This problem is especially critical in affine and projective reconstruction in
which there is no meaningful metric information about the object space. It is desirable
to find a triangulation method that is invariant to projective transformations of space.
This paper solves that problem by assuming a gaussian noise model for perturbation of
the image coordinates. The triangulation problem then may be formulated as a least-
squares minimization problem. In this paper a non-iterative solution is given that finds
a global minimum. It is shown that in certain configurations, local minima occur, which
are avoided by the new method. Extensive comparisons of the new method with several
other methods show that it consistently gives superior results.

1 The Triangulation Problem

We suppose that a point x in R3 is visible in two images. The two camera matrices P and
P ′ corresponding to the two images are supposed known. Let u and u′ be projections
of the point x in the two images. From this data, the two rays in space corresponding
to the two image points may easily be computed. The triangulation problem is to find
the intersection of the two lines in space. At first sight this is a trivial problem, since
intersecting two lines in space does not present significant difficulties. Unfortunately, in
the presence of noise these rays can not be guaranteed to cross, and we need to find the
best solution under some assumed noise model.

A commonly suggested method ([2]) is to choose the mid-point of the common perpendic-
ular to the two rays (the mid-point method). Perhaps a better choice would be to divide
the common perpendicular in proportion to the distance from the two camera centres,
since this would more closely equalize the angular error. Nevertheless, this method will
not give optimal results, because of various approximations (for instance the angles will
not be precisely equal in the two cases). In the case of projective reconstruction, or affine
reconstruction however, the camera matrices, will be known in a projective frame of ref-
erence, in which concepts such as common perpendicular, or mid-point (in the projective
case) have no sense. In this case, the simple mid-point method here will not work.

The importance of a good method for triangulation is clearly shown by Beardsley et. al.
who demonstrate that the mid-point method gives bad results. In [2, 3] they suggest



an alternative method based on “quasi-Euclidean” reconstruction. In this method, an
approximation to the correct Euclidean frame is selected and the mid-point method is
carried out in this frame. The disadvantage of this method is that an approximate
calibration of the camera is needed. It is also clearly sub-optimal.

In this paper a new algorithm is described that gives an optimal global solution to the tri-
angulation problem, equally valid in both the affine and projective reconstruction cases.
The solution relies on the concepts of epipolar correspondence and the fundamental ma-
trix ([4]). The algorithm is non-iterative and simple in concept, relying on techniques of
elementary calculus to minimize the chosen cost function. It is also moderate in computa-
tion requirements. In a series of experiments, the algorithm is extensively tested against
many other methods of triangulation, and found to give consistent superior performance.
No knowledge of camera calibration is needed.

The triangulation problem is a small cog in the machinery of computer vision, but in
many applications of scene reconstruction it is a critical one, on which ultimate accuracy
depends ([2]).

2 Transformational Invariance

In the last few years, there has been considerable interest in the subject of affine or
projective reconstruction ([4, 5, 9, 11, 15, 12, 14]). In such reconstruction methods, a
3D scene is to be reconstructed up to an unknown transformation from the given class.
Normally, in such a situation, instead of knowing the correct pair of camera matrices P
and P ′, one has a pair PH−1 and P ′H−1 where H is an unknown transformation.

For instance, in the method of projective reconstruction given in [5] one starts with
a set of image point correspondences ui ↔ u′i. From these correspondences, one can
compute the fundamental matrix F , and hence a pair of camera matrices P̂ and P̂ ′. In
the method of [5], the pair of camera matrices differ from the true ones by an unknown
transformation H , and P̂ is normalized so that P̂ = (I | 0). Finally, the 3D space points
can be computed by triangulation. If desired, the true Euclidean reconstruction of the
scene may then be accomplished by the use of ground control points to determine the
unknown transformation,H , and hence the true camera matrices, P and P ′. Similarly, in
the paper [7] one of the steps of a projective reconstruction algorithm is the reconstruction
of points from three views, normalized so that the first camera matrix has the form (I | 0).
Given three or more views, an initial projective reconstruction may be transformed to
a Euclidean reconstruction under the assuption that the images are taken all with the
same camera ([8]).

A desirable feature of the method of triangulation used is that it should be invariant under
transformations of the appropriate class. Thus, denote by τ a triangulation method used
to compute a 3D space point x from a point correspondence u↔ u′ and a pair of camera
matrices P and P ′. We write

x = τ(u,u′, P, P ′)

The triangulation is said to be invariant under a transformation H if

τ(u,u′, P, P ′) = H−1τ(u,u′, PH−1, P ′H−1)

This means that triangulation using the transformed cameras results in the transformed
point. If the camera matrices are known only up to an affine (or projective) transforma-
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tion, then it is clearly desirable to use an affine (resp. projective) invariant triangulation
method to compute the 3D space points.

3 The Minimization Criterion

We assume that the camera matrices, and hence the fundamental matrix, are know
exactly, or at least with great accuracy compared with a pair of matching points in the
two images. A formula is given in [6] for computing the fundamental matrix given a pair
of camera matrices. The two rays corresponding to a matching pair of points u ↔ u′

will meet in space if and only if the points satisfy the familiar ([10]) relationship

u′�Fu = 0 . (1)

It is clear, particularly for projective reconstruction, that it is inappropriate to minimize
errors in the 3D projective space, P3. For instance, the method that finds the midpoint
of the common perpendicular to the two rays in space is not suitable for projective
reconstruction, since concepts such as distance and perpendicularity are not valid in the
context of projective geometry. In fact, in projective reconstruction, this method will give
different results depending on which particular projective reconstruction is considered –
the method is not projective-invariant.

Normally, errors occur not in placement of a feature in space, but in its location in the
two images, due to digitization errors, or the exact identification of a feature in the image.
It is common to assume that features in the images are subject to Gaussian noise which
displaces the feature from its correct location in the image. We assume that noise model
in this paper.

A typical observation consists of a noisy point correspondence u ↔ u′ which does not
in general satisfy the epipolar constraint (1). In reality, the correct values of the cor-
responding image points should be points û ↔ û′ lying close to the measured points
u ↔ u′ and satisfying the equation û′�F û exactly. We seek the points û and û′ that
minimize the function

d(u, û)2 + d(u′, û′)2 , (2)

where d(∗, ∗) represents Euclidean distance, subject to the epipolar constraint

û′�F û = 0 .

Assuming a Gaussian error distribution, the points û′ and û are the most likely values
for true image point correspondences. Once û′ and û are found, the point x may be
found by any triangulation method, since the corresponding rays will meet precisely in
space.

4 An Optimal Method of Triangulation.

In this section, we describe a method of triangulation that finds the global minimum of
the cost function (2) using a non-iterative algorithm. If the gaussian noise model can
be assumed to be correct, this triangulation method is then provably optimal. This new
method will be referred to as the Polynomial method, since it requires the solution of
a sixth order polynomial.
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4.1 Reformulation of the Minimization Problem

Given a measured correspondence u↔ u′, we seek a pair of points û′ and û that minimize
the sum of squared distances (2) subject to the epipolar constraint û′�F û = 0.

Any pair of points satisying the epipolar constraint must lie on a pair of corresponding
epipolar lines in the two images. Thus, in particular, the optimum point û lies on an
epipolar line λ and û′ lies on the corresponding epipolar line λ′. On the other hand, any
other pair of points lying on the lines λ′ and λ′ will also satisfy the epipolar constraint.
This is true in particular for the point ū on λ lying closest to the measured point u,
and the correspondingly defined point ū′ on λ′. Of all pairs of points on the lines λ and
λ′, the points ū and ū′ minimize the squared distance sum (2). It follows that û′ = ū′

and û = ū, where ū and ū′ are defined with respect to a pair of matching epipolar lines
λ and λ′. Consequently, we may write d(u, û) = d(u,λ), where d(u,λ) represents the
perpendicular distance from the point u to the line λ. A similar expression holds for
d(u′, û′).

In view of the previous paragraph, we may formulate the minimization problem differently
as follows. We seek to minimize

d(u,λ)2 + d(u′,λ′)2 (3)

where λ and λ′ range over all choices of corresponding epipolar lines. The point û is
then the closest point on the line λ to the point u and the point û′ is similarly defined.

Our strategy for minimizing (3) is as follows

1. Parametrize the pencil of epipolar lines in the first image by a parameter t. Thus
an epipolar line in the first image may be written as λ(t).

2. Using the fundamental matrix F , compute the corresponding epipolar line λ′(t) in
the second image.

3. Express the distance function d(u,λ(t))2 + d(u′,λ′(t))2 explicitly as a function of
t.

4. Find the value of t that minimizes this function.

In this way, the problem is reduced to that of finding the minimum of a function of a single
variable, t. It will be seen that for a suitable parametrization of the pencil of epipolar
lines the distance function is a rational polynomial function of t. Using techniques of
elementary calculus, the minimization problem reduces to finding the real roots of a
polynomial of degree 6.

4.2 Details of Minimization.

If both of the image points correspond with the epipoles, then the point in space lies
on the line joining the camera centres. In this case it is impossible to determine the
position of the point in space. If only one of the corresponding point lies at an epipole,
then we conclude that the point in space must coincide with the other camera centre.
Consequently, we assume that neither of the two image points u and u′ corresponds with
an epipole.
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In this case, we may simplify the analysis by applying a rigid transformation to each
image in order to place both points u and u′ at the origin, (0, 0, 1)� in homogeneous
coordinates. Furthermore, the epipoles may be placed on the x-axis at points (1, 0, f)�

and (1, 0, f ′)� respectively. A value f equal to 0 means that the epipole is at infinity.
Applying these two rigid transforms has no effect on the sum-of-squares distance function
(2), and hence does not change the minimization problem.

Thus, in future we assume that in homogeneous coordinates, u = u′ = (0, 0, 1)� and that
the two epipoles are at points (1, 0, f)� and (1, 0, f ′)�. In this case, since F (1, 0, f)� =
(1, 0, f ′)F = 0, the fundamental matrix has a special form

F =


 ff ′d −f ′c −f ′d
−fb a b
−fd c d


 .

Consider an epipolar line in the first image passing through the point (0, t, 1)� (still in
homogeneous coordinates) and the epipole (1, 0, f)�. We denote this epipolar line by
λ(t). The vector representing this line is given by the cross product (0, t, 1)× (1, 0, f) =
(tf, 1,−t), so the sqared distance from the line to the origin is

d(u,λ(t))2 =
t2

1 + (tf)2
.

Using the fundamental matrix to find the corresponding epipolar line in the other image,
we see that

λ′(t) = F (0, t, 1)� = (−f ′(ct+ d), at+ b, ct+ d)� .

This is the representation of the line λ′(t) as a homogeneous vector. The squared distance
of this line from the origin is equal to

d(u′,λ′(t))2 =
(ct+ d)2

(at+ b)2 + f ′2(ct+ d)2
.

The total squared distance is therefore given by

s(t) =
t2

1 + f2t2
+

(ct+ d)2

(at+ b)2 + f ′2(ct+ d)2
. (4)

Our task is to find the minimum of this function.

We may find the minimum using techniques of elementary calculus, as follows. We
compute the derivative

s′(t) =
2t

(1 + f2t2)2
− 2(ad− bc)(at+ b)(ct+ d)
((at+ b)2 + f ′2(ct+ d)2)2

. (5)

Maxima and minima of s(t) will occur when s′(t) = 0. Collecting the two terms in s′(t)
over a common denominator, and equating the numerator to 0 gives a condition

f(t) = t((at+ b)2 + f ′2(ct+ d)2)2

−(ad− bc)(1 + f2t2)2(at+ b)(ct+ d)
= 0 . (6)
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Figure 1: Example of a cost function with three minima.

The minima and maxima of s(t) will occur at the roots of this polynomial. This is a
polynomial of degree 6, which may have up to 6 real roots, corresponding to 3 minima
and 3 maxima of the function s(t). The absolute minimum of the function s(t) may
be found by finding the roots of f(t) and evaluating the function s(t) given by (4) at
each of the real roots. More simply, one checks the value of s(t) at the real part of each
root (complex or real) of f(t), which saves the trouble of determining if a root is real
or complex. One should also check the asymptotic value of s(t) as t → ∞ to see if the
minimum distance occurs when t =∞, corresponding to an epipolar line −fu = 1 in the
first image.

4.3 Local Minima

The fact that f(t) in (6) has degree 6 means that s(t) may have as many as three minima.
In fact, this is indeed possible, as the following case shows. Setting f = f ′ = 1 and

F =


 4 −3 −4
−3 2 3
−4 3 4




gives a function

s(t) =
t2

1 + t2
+

(3t+ 4)2

(2t+ 3)2 + (3t+ 4)2

with graph as shown in Fig 11 The three minima are clearly shown.

As a second example, we consider the case where f = f ′ = 1, and

F =


 0 −1 0
1 2 −1
0 1 0


 .

1In this graph and also Fig 2 we make the substitution t = tan(θ) and plot for θ in the range
−π/2 ≤ θ ≤ π/2, so as to show the whole infinite range or t.
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Figure 2: This is the cost function for a perfect point match, which nevertheless has two
minima

In this case, the function s(t) is given by

s(t) =
t2

t2 + 1
+

t2

t2 + (2t− 1)2

In this case, both terms of the cost function vanish for a value of t = 0, which means
that the corresponding points u and u′ exactly satisfy the epipolar constraint. This can
be verified by observing that u′�Fu = 0. Thus the two points are exactly matched.
A graph of the cost function s(t) is shown in Fig 2. One sees apart from the absolute
minimum at t = 0 there is also a local minimum at t = 1. Thus, even in the case of
perfect matches local minima may occur. This example shows that an algorithm that
attempts to minimize the cost function (2), or equivalently (3) by an iterative search
beginning from an arbitrary initial point is in danger of finding a local minimum, even
in the case of perfect point matches.

5 Other Triangulation Methods

In this section, we discuss several other triangulation methods that will be compared
with the polynomial method.

5.1 Linear Triangulation

The linear triangulation method
is the most common one, described for instance in [5]. Suppose u = Px. We write in
homogeneous coordinates u = w(u, v, 1)�, where (u, v) are the observed point coordinates
and w is an unknown scale factor. Now, denoting by pi� the i-th row of the matrix P ,
this equation may be written as follows :

wu = p1
�x , wv = p2

�x , w = p3
�x .
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Eliminating w using the third equation, we arrive at

up3
�x = p1

�x
vp3

�x = p2
�x (7)

From two views, we obtain a total of 4 linear equations in the coordinates of the x, which
may be written in the form Ax = 0 for a suitable 4× 4 matrix, A. These equtions define
x only up to an indeterminant scale factor, and we seek a non-zero solution for x. Of
course, with noisy data, the equations will not satisfied precisely, and we seek a best
solution.

The Linear-Eigen method. There are many ways to solve for x to satisfy Ax = 0.
In one popular method, one finds x to minimize ||Ax|| subject to the condition ||x|| = 1.
The solution is the unit eigenvector corresponding to the smallest eigenvector of the
matrix A�A. This problem may be solved using the Singular Value Decomposition, or
Jacobi’s method for finding eigenvalues of symmetric matrices ([13, 1]).

The Linear-LS method. By setting x = (x, y, z, 1)� one reduces the set of homoge-
neous equations, Ax = 0 to a set of 4 non- homogeneous equations in 3 unknowns. One
can find a least-squares solution to this problem by the method of pseudo-inverses, or by
using the Singular Value Decomposition [13, 1].

Discussion. These two methods are quite similar, but in fact have quite different
properties in the presence of noise. The Linear-LS method assumes that the solution
point x is not at infinity, for otherwise we could not assume that x = (x, y, z, 1)�.
This is a disadvantage of this method when we are seeking to carry out a projective
reconstruction, when reconstructed points may lie on the plane at infinity. On the other
hand, neither of these two linear methods is quite suitable for projective reconstruction,
since they are non projective-invariant. To see this, suppose that camera matrices P and
P ′ are replaced by PH−1 and P ′H−1. On sees that in this case the matrix of equations,
A becomes AH−1. A point x such that Ax = ε for the original problem corresponds to a
point Hx satisfying (AH−1)(Hx) = ε for the transformed problem. Thus, there is a one-
to-one correspondence between points x and Hx giving the same error. However, neither
the condition ||x|| = 1 nor the condition x = (x, y, z, 1)� is invariant under application
of the projective transformation H . Thus, in general the point x solving the original
problem will not correspond to a solution Hx for the transformed problem.

For affine transformations, on the other hand, the situation is different. In fact, al-
though the condition ||x|| = 1 is not preserved under affine transformation, the condi-
tion x = (x, y, z, 1)� is preserved, since for an affine transformation, H(x, y, z, 1)� =
(x′, y′, z′, 1)�. This means that there is a one-to-one correspondence between a vector
x = (x, y, z, 1)� such that A(x, y, z, 1)� = ε and the vector Hx = (x′, y′, z′, 1)� such
that (AH−1)(x′, y′, z′, 1)� = ε. The error is the same for corresponding points. Thus,
the points that minimize the error ||ε|| correspond as well. Hence, the method Linear-
LS is affine-invariant, whereas the method Linear-Eigen is not. These conclusions are
confirmed by the experimental results.
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5.2 Iterative Linear Methods.

A cause of innacuracy in the two methods Linear-LS and Linear-Eigen is that the value
being minimized ||Ax|| has no geometric meaning, and certainly does not correspond to
the cost function (2). In addition, multiplying each of the equations (rows of A) by some
weight will change the solution. The idea of the iterative linear method is to change the
weights of the linear equations adaptively so that the weighted equations correspond to
the errors in the image coordinate measurements.

In particular, consider the first of the equations (7). In general, the point x we find will
not satisfy this equation exactly – rather, there will be an error ε = up3

�x − p1
�x.

What we really want to minimize however, is the difference between the measured image
coordinate value u and the projection of x, which is given by p1

�x/p3
�x. Specifically,

we wish to minimize ε′ = ε/p3
�x = u − p1

�x/p3
�x. This means that if the equation

had been weighted by the factor 1/w where w = p3
�x, then the resulting error would

have been precisely what we wanted to minimize. The same weight 1/w is the correct
one to apply to the second equation of (7). For a second image, the correct weight would
be 1/w′ where w′ = p′3

�x. Of course, we can not weight the equations in this manner
because the weights depend on the value of x which we do not know until after we have
solved the equations. Therefore, we proceed iteratively to adapt the weights. We begin
by setting w0 = w′0 = 1, and we solve the system of equations to find a solution x0.
This is precisely the solution found by the linear method Linear-Eigen or Linear-LS,
whichever is being used. Having found x0 we may compute the weights.

We repeat this process several times, at the i-th step multiplying the equations (7)
for the first view by 1/wi where wi = p3xi−1 and the equations for the second view
by 1/w′i where w

′
i = p′3xi−1 using the solution xi−1 found in the previous iteration.

Within a few iterations this process will converge (one hopes) in which case we will have
xi = xi−1 and so wi = p3

�xi. The error (for the first equation of (7) for example) will
be εi = u− p1

�xi/p3
�xi which is precisely the error in image measurements as in (2).

This method may be applied to either the Linear-Eigen or Linear-LS method. The
corresponding methods will be called Iterative-Eigen and Iterative-LS respectively.
The advantage of this method over other iterative least-squares minimization methods
such as a Levenberg-Marquardt (LM) iteration ([13]) is that it is very simple to program.
In fact, they require only a trivial adaptation to the linear methods. There is no need for
any separate initialization method, as is often required by LM. Furthermore the decision
on when to stop iterating (convergence) is simple. One stops when the change in the
weights is small. Exactly when to stop is not critical, since the change in the reconstructed
points x is not very sensitive to small changes in the weights. The disadvantage of this
method is that it sometimes fails to converge. In unstable situations, such as when the
points are near the epipoles, this occurs sufficiently often to be a problem (perhaps for
5% of the time). If this method is to be used in such unstable circumstances, then a fall-
back method is necessary. In the experiments, we have used the optimal Polynomial
method as a backup in case convergence has not occured within 10 iterations. In this
way the statistics are not negatively biased by occasional very bad results, due to non-
convergence.

Despite the similarities of the properties of the Iterative-LS method with an direct non-
linear least squares minimization of the goal function 2, it is not identical. Because the
Iterative-LS method separates the two steps of computing x and the weights w and w′,
the result is slightly different. In fact the three methods Iterative-LS, Iterative-Eigen
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and LM are distinct. In particular, the methods Iterative-LS and Iterative-Eigen
are not projective-invariant, though experiments show that they are quite insensitive to
projective transformation. Of course, Iterative-LS is affine-invariant, just as Linear-
LS is.

Experiments show that the iterative methods Iterative-LS and Iterative-Eigen per-
form substantially better than the corresponding non- iterative linear methods.

5.3 Mid-point method

A commonly suggested method for triangulation is to find the mid-point of the com-
mon perpendicular to the two rays corresponding to the matched points. This method
is relatively easily to compute using a linear algorithm. However, ease of computation
is almost its only virtue. This method is neither affine nor projective invariant, since
concepts such as perpendicular or mid-point are not affine concepts. It is seen to behave
very poorly indeed under projective and affine transformation, and is by far the worst
of the methods considered here in this regard. For the record, we outline an algorithm
to compute this mid-point. Let P = (M | −Mc) be a decomposition of the first camera

matrix. The centre of the camera is
(
c
1

)
in homogeneous coordinates. Furthermore,

the point at infinity that maps to a point u in the image is given by
(
M−1u
0

)
. There-

fore, any point on the ray mapping to u may be written in the form
(
c+ αM−1u

1

)

or in non-homogeneous coordinates, c+αM−1u, for some α. Given two images, the two
rays must meet in space, which leads to an equation αM−1u− α′M ′−1u′ = c′ − c. This
gives three equations in two unknowns (the values of α and α′) which we may solve using
linear least-squares methods. This minimizes the squared distance between the two rays.
The mid point between the two rays is then given by (c+ αM−1u+ c′ + α′M ′−1u)/2.

5.4 Minimizing the sum of the magnitudes of distances

Instead of minimizing the square sum of image errors, it is possible to adapt the poly-
nomial method to minimize the sum of absolute values of the distances, instead of the
squares of distances. This method will be called Poly-Abs.

The quantity to be minimized is d(u, λ)+ d(u
′
, λ
′
) which, as a function of t, is expressed

by

s2(t) =
|t|√
1 + f2t2

+
|ct+ d|√

(at+ b)2 + f ′2(ct+ d)2
.

The first derivative is of the form

s′2(t) = = ω1
1

(1 + f2t2)3/2

−ω2
(ad− bc)(at+ b)

((at+ b)2 + f ′2(ct+ d)2)3/2

where ω1 and ω2 are equal to −1 or 1, depending on the signs of t and ct+d respectively.
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Setting the derivative equal to zero, separating the two terms on opposite sides of the
equal sign and squaring to remove the square roots gives

1
(1 + f2t2)3

=
(ad− bc)2(at+ b)2

((at+ b)2 + f ′2(ct+ d)2)3

which finally leads to a polynomial of degree 8 in t. We evaluate s2(t) at the roots of
this polynomial to find the global minimum of s2(t).

6 Experimental Evaluation of Triangulation Methods

A large number of experiments were carried out to evaluate the different methods de-
scribed above. We concentrated on two configurations.

Configuration 1 The first configuration was meant to simulate a situation similar to
a robot moving down a corridor, looking straight ahead. This configuration is shown in
the left part of Fig 3. In this case, the two epipoles are close to the centre of the images.
For points lying on the line joining the camera centres depth can not be determined,
and for points close to this line, reconstruction becomes difficult. Simulated experiments
were carried out for points at several distances in front of the front camera.

Numerical values we used are as follows:

• The distance between the two cameras is 1 unit.

• The radius of the sphere of observed points is 0.05 units.

• The distance between the center of the point sphere and the projection center of
the second camera is chosen as 0.15 or 0.55 units. The center of the sphere lies on
the baseline of the two cameras.

• The cameras have the same calibration matrix

K =


 700 0 0

0 700 0
0 0 1




Configuration 2 In the other configuration, the pair of cameras were almost parallel,
as in an aerial imaging situation. The points were assumed to be approximately equidis-
tant from both cameras, with several different distances being tried. This configuration
is shown in the right-hand part of figure 3). This was a fairly benign configuration for
which most of the methods worked relatively well

In each set of experiments, 50 points were chosen at random in the common field of view.
For each of several noise levels varying from 1 to 10 pixels (in a 700× 700 image), each
point was reconstructed 100 times, with different instances of noise chosen from a gaussian
random variable with the given standard deviation (noise level). For each reconstructed
point both the 3D reconstruction error, and the 2D residual error (after reprojection of
the point) were measured. The errors shown are the average errors. Median errors were
also computed. In this latter case the graphs (not shown in this paper) had the same
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Figure 3: The two simulation configurations.

general form and led to the same conclusions. However, they were a little smoother than
the graphs shown here, being less sensitive to the occasional gross error.

To measure the invariance to transformation, an affine or projective transformation was
applied to each camera matrix. The projective and affine transformations were chosen
so that one of the camera matrices was of the form (I | 0). This is the normalized form
of a camera matrix used in the projective reconstruction method of [5]. It represents a
significant distortion, since the actual camera matrix was (by construction) of the form
(M | 0), where M was a diagonal matrix diag(700, 700, 1).

The most unstable situation is Configuration 1, in which the epipoles are in the centre
of the two images, and points lie close to the epipoles. Since this situation gave the most
severe test to the algorithms, we will give the results for that configuration. Results of
two cases are presented. In one case the points are at a distance of 0.15 units in front of
the first camera (near points case) and in the other case, they are at 0.55 units distance
(far points case). The results will be presented in the form of graphs with a commentary
for each graph. The measured error is denoted either as 2D error (meaning error of mea-
sured compared with the reprojected points), or 3D error, meaning the error compared
with the correct values of the points in space. In addition, we talk of euclidean, affine
and projective reconstruction errors. For affine or projective reconstruction, the camera
matrices were transformed by a transformation of the given sort, the triangulation was
carried out, and finally the reconstructed points were retransformed into the original
frame to compare with the correct values. For euclidean reconstruction, no transforma-
tion was carried out. Every data point in the graph is the result of 5000 trials, and
expresses the RMS or mean value over all the trials. The horizontal axis of each graph
is the noise level (between 0 and 10 pixels RMS in each axial direction), and the vertical
axis measures the error, in pixels for 2D error, or in space units for 3D error.
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Graph 1 : 3D error for Euclidean reconstruction (near points). This graph shows
all methods. All perform almost equally. Marginally the best results are given by Mid-
point, Linear-LS and Iterative-LS, which are almost indistinguishable. The Polynomial
method performs marginally worse than the others. It is designed to minimize 2D error,
which explains why optimal in this regard, it is not quite optimal for 3D errors. Euclidean
reconstruction is the only instance in which Mid-point performed even marginally well,
and the only case in which Polynomial and Poly-Abs were beaten.

Graph 2 : 3D error for Euclidean reconstruction (far points). The configuration
is the same as for Graph 1 except that the points are further from both cameras. The
curves from the bottom are Linear-LS, Poly-Abs and then Polynomial and Linear-Eigen
which cross each other. The curves for Mid-point and Iterative-LS are identical with
Linear-LS, and only one curve is shown. The same is true of Linear-Eigen and Iterative-
Eigen.
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Graph 3 : 2D error for Euclidean reconstruction (near points) The configuration
is the same as for Graph 1 , except that the average (not RMS) 2D error is measured.
Of course Poly-Abs performs best (since it is optimized for this task) but Polynomial,
Iterative-LS and Iterative-Eigen are almost indistinguishable. The three very bad per-
formers are Linear-Eigen, Linear-LS and Mid-Point. The maximum Y-scale is 120 pix-
els. This graph shows that 2D error and 3D error are not well correlated, since despite
large 2D errors, these methods perform well in terms of 3D error.

Graph 4 : Comparison of Euclidean (lower curve) and Projective 2D errors.
The method shown is Iterative-Eigen. The graph shows that this method is almost pro-
jective invariant (that is the two curves are almost the same). This would be an excellent
method, except for its failure to converge in very unstable situations (about 1% of trials
with noise above 2 pixels). The non-converging cases are ignored in this graph. In cases
where the points are not near the epipoles non-convergence is not a problem. The method
Iterative-LS (not shown) performs similarly, but just slightly worse, whereas Polynomial
is exactly projective-invariant (the two curves are superimposed).
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Graph 5 : 2D error for Projective reconstruction (near points). This is the case
for which all methods performed well in the Euclidean case. This graph shows the results
for methods (from the bottom) Polynomial, Iterative-Eigen, and Iterative-LS. The method
Poly-Abs (not shown) performed almost identically with Polynomial. This graph shows
that Polynomial, or Poly-Abs is the best method for projective reconstruction, whereas
Iterative-Eigen and Iterative-LS (except for occasional non-convergence) perform almost
as well. Full Y-scale is 20 pixels.

Graph 6 : 2D error for Projective reconstruction (near points), continued. This
shows the average (not RMS) error, to mitigate the effect of outliers. The graphs shown
are (from the bottom), Poly-Abs, Linear-Eigen, Linear-LS and Mid-point. Full Y-scale
is 400 pixels. This shows how serious a problem non-invariance under transforms can
be.
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Graph 7 : 3D error for Projective reconstruction (near points). This is the same
as Graph 5 except that we show the 3D error. Poly-Abs performs marginally better than
Polynomial. Then follow Iterative-Eigen (except that it fails for noise level of 10 pixels)
and Iterative-LS. Full Y-scale is 0.5 units.

Graph 8 : 3D error for Projective reconstruction (near points), continued. The
same as Graph 7 for the less well performing methods. From the bottom, are shown Poly-
Abs (for reference), Linear-Eigen, Linear-LS and Mid-point (going off scale for noise of
1 pixel). Full Y-scale is 1.0 units.
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Graph 9 : Affine Invariance. The three curves shown are from the bottom Iterative-
Eigen (Euclidean) Iterative-LS (Euclidean and Affine superimposed) and Iterative-Eigen
(Affine). Thus, as predicted by theory, the Iterative-LS method is precisely affine-invariant,
but Iterative-Eigen is not (but almost). Once more we remark that except for occasional
non-convergence, these would be good methods.

7 Evaluation with real images.

The algorithms were also carried out with the pair of real images shown in Figures 4.
These images were the images used for one set of experiments in [2].

Figure 4: Pair of images used for reconstruction experiments, showing matching epipolar
lines.

The goal of these experiments was to determine how the triangulation method effects
the accuracy of reconstruction. Since it makes sense to measure the accuracy of recon-
struction in a Euclidean frame where distance has a meaning, a close approximation to
a correct Euclidean model for the object was estimated by eye and refined using the
measured image locations of the corners of the dark squares. The Euclidean model so
obtained was used as ground truth.

We desired to measure how the accuracy of the reconstruction varies with noise. For
this reason, the measured pixel locations were corrected to correspond exactly to the
Euclidean model. This involved correcting each point coordinate by an average of 0.02
pixels. The correction was so small, because of the very great accuracy of the provided
matched points. At this stage we had a model and a set of matched points corresponding
exactly to the model. Next, a projective reconstruction of the points was computed by the
method of [5, 8], and a projective transformH was computed that brought the projective
reconstruction into agreement with the Euclidean model. Next, controlled zero-mean
Gaussian noise was introduced into the point coordinates, triangulation was carried out
in the projective frame, the transformationH was applied, and the error was measured in
the Euclidean frame. Graph 10 shows the results of this experiment for two triangulation
methods. It clearly shows that the optimal method gives superior reconstruction results.
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Note that for these experiments, the projective frame was computed only once, with
noiseless data, but triangulation was carried out for data with added noise. This was
done to separate the effect of noise on the computation of the projective frame from the
effect of noise in the triangulation process. The graph shows the average reconstruction
error over all points in 10 separate runs at each chosen noise level.
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Graph 10 : Reconstruction Error This graph shows the reconstruction error for the
Mid-point (above) and Polynomial methods. On the horizontal axis is the noise, on the
vertical axis the reconstruction error. The units for reconstruction error are relative to
a unit distance equal to the side of one of the dark squares in the image. The meth-
ods Linear-LS, Linear-Eigen, Iterative-LS and Iterative-Eigen gave results close to the
Polynomial method. Even for the best method the error is large for higher noise levels,
because there is little movement between the images. However, for the actual coordinate
error in the original matched points (about 0.02 pixels), the error is small.

In this pair of images, the two epipoles are distant from the image. For cases where the
epipoles are close to the images, the results on synthetic images show that the advantage
of the Polynomial methods will be more pronounced.

8 Timing

The following table shows approximate relative relative speeds for the different algo-
rithms.

Poly 28
Linear-Eigen 6
Iterative-Eigen 10
Mid-point 4
Poly-Abs 60
Linear-LS 4
Iterative-LS 6

Since these are relative measurements only no units appear, but all these algorithms
will process several thousands of points per second. In most applications, speed of com-
putation will not be an issue, since it will be small compared with other parts of the
computation, such as point matching, or camera model computation.
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9 Discussion of Results

All the methods performed relatively for Euclidean reconstruction, as measured in terms
of 3D error. In the case of 2D error, only the methods Polynomial, Poly-Abs, Iterative-
LS and Iterative-Eigen perform acceptably, and the last two have the disadvantage of
occasional non-convergence. The Poly-Abs method seems to give slightly better 3D
error performance than Polynomial but both of these seem to be excellent methods,
not suceptible to serious failure and giving the best overall 3D and 2D error performance.
The only distinct disadvantage is that they are not especially easily generalizable to more
than two images. They are a bit slower that the other methods, but by a factor of 2 or
3 only, which is probably not significant.

The Iterative-LS method is a good method, apart from the problem of occasional
non-convergence. Its advantage is that it is about 3 times as fast as the polynomial
method and is nearly projective-invariant. In general Iterative-LS seems to perform
better than Iterative-Eigen, but not very significantly. The big problem, however, is
non-convergence. This occurs frequently enough in unstable situations to be a definite
problem. If this method is used, there must be a back-up method, such as the polynomial
method to use in case of non-convergence.

We summarize the conclusions for the various methods.

Poly This is the method of choice when there are only two images and time is not an
issue. It is clearly superior to all other methods, except perhaps Poly-Abs. In
fact, it is optimum under the assumption of a gaussian noise model. It is affine and
projective-invariant.

Poly-Abs This is guaranteed to find the global minimum of sum of magnitude of image
error. This may be a better model for image noise, placing less emphasis on larger
errors. It seems to give slightly better 3D error results. Otherwise it does not
behave much differently from Poly and it is affine and projective-invariant.

Mid-point This is not a method that one could recommend in any circumstances. Even
for Euclidean reconstruction it is no better than other linear methods, such as
Linear-LS, which beats it in most other respects. It is neither affine nor projective
invariant.

Linear-Eigen The main advantage is speed and simplicity. It is neither affine nor
projective invariant.

Linear-LS This has the advantage of being affine invariant, but should not be used for
projective reconstruction.

Iterative-Eigen This method gives very good results, markedly better than Linear-
Eigen, but not quite as good as Poly. It may easily be generalized to several
images, and is almost projective invariant. The big disadvantage is occasional non-
convergence, which occurs often enough to be a problem. It must be used with a
back-up method in case of non-convergence.

Iterative-LS This method is similar in performance and properties to Linear-Eigen,
but should not be used for projective reconstruction, since it does not handle points
at infinity well. On the other hand it is affine-invariant.
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In summary, the Polynomial or Poly-Abs method is the method of choice for almost
all applications. The Poly-Abs method seems to give slightly better 3D reconstruction
results. Both these methods are stable, provably optimal, and relatively easy to code.
For Euclidean reconstruction, the linear methods are a possible alternative choice, as long
as 2D error is not important. However, for affine or projective reconstruction situations,
they may be orders of magnitude inferior.
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