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Abstract

This paper discusses the basic role of the trifocal tensor1 in scene reconstruction from
three views. This 3 × 3 × 3 tensor plays a role in the analysis of scenes from three
views analogous to the role played by the fundamental matrix in the two-view case.
In particular, the trifocal tensor may be computed by a linear algorithm from a set
of 13 line correspondences in three views. It is further shown in this paper, that the
trifocal tensor is essentially identical to a set of coefficients introduced by Shashua to
effect point transfer in the three view case. This observation means that the 13-line
algorithm may be extended to allow for the computation of the trifocal tensor given any
mixture of sufficiently many line and point correspondences. From the trifocal tensor
the fundamental matrices of each pair of images may be computed, and the scene may
be reconstructed. For unrelated uncalibrated cameras, this reconstruction will be unique
up to projectivity. Thus, projective reconstruction of a set of lines and points may be
reconstructed linearly from three views. If the tree cameras have the same calibration,
then reconstruction up to a similarity transform may be achieved (though not linearly).

1 Introduction

This paper gives an effective algorithm for the projective reconstruction of a scene con-
sisting of lines and points in space as seen in three views with uncalibrated cameras.
The placement of the cameras with respect to the scene is also determined, as is the
epipolar geometry (as expressed by the fundamental matrix) for each pair of images.
This algorithm is unique in the literature in that it gives a unified linear approach that
can deal with a mixture of points and lines. For instance, previous algorithms have been
specific to points ([9, ?, 8]) or lines ([15, 16]), but could not handle both. True, one
could always use pairs of matching points to determine line matches, which can then be
used in an algorithm for reconstruction from lines. This strategem, however, achieves
a unified approach for lines and points at considerable expense, since a pair of point
matches contains much more information than a single line match (as will be made clear
quantitively in this paper). The restraint of using only points or lines forces one to ignore
important information available in most images, particularly of man-made objects, since
typically, one can find both distinguished points and lines in matching images.

Points are important in that they give much more information than lines. For instance
although one can do relative reconstruction from only two views of a set of points ([9]),

1Suggestions for possible alternative names are solicited. One possibility is the fundamental tensor
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for lines at least three views are necessary ([16]). On the other hand, lines have several
advantages. Firstly, they can normally be determined more accurately than points,
typically with an accuracy of better than a tenth of a pixel. Secondly, line matches may
be used in cases where occlusions occur. Often end points of lines are not visible in the
images. For instance, in Fig 1, the left hand slanting roof edge of the rear house may be
matched in the three images, although its end point is occluded behind the front house.
On the other hand, if we are to use line matches, then at least three views must be
used, since no information whatever about camera placements may be derived from any
number of line-to-line correspondences in fewer than three views.

Euclidean Reconstruction. With three arbitrary cameras with unknown possibly
different calibrations it is not possible to specify the scene more precisely than up to
an arbitrary projective transformation of space. This contrasts with the situation for
calibrated cameras in which a set of sufficiently many lines may be determined up to
a scaled Euclidean transformation from three views ([15, 16]). In the case where all of
the three cameras are the same, however, or at least have the same calibration, it is
possible to reconstruct the scene up to a scaled Euclidean transformation. This result
relies on the theory of self-calibration expounded by Maybank and Faugeras ([10]) for
which a robust algorithm has been given in [4]. In particular for the case of a stationary
camera and a moving object the camera calibration remains fixed. This motion and
structure problem for lines was solved in [15, 16] for calibrated cameras. The assumption
of calibration means that a pixel in each image corresponds to a uniquely specified ray
in space relative to the location and placement of the camera. The result of this paper
is that this assumption is not necessary.

2 The Trifocal Tensor

This paper deals with the properties of an entity called, here for the first timer, the
trifocal tensor. Since this entity has appeared previously in the literature in different
guises, and it is therefore appropriate to discuss its history. With hindsight, we may
atribute the discovery of the trifocal tensor to Spetsakis and Aloimonis ([15] and Weng,
Huang and Ahuja ([16]), where it was used for scene reconstruction from lines in the
case of calibrated cameras. It was later shown by the present author in [1, 3, 6] to be
equally applicable to projective scene reconstruction from 13 lines in the uncalibrated
case. Those papers form the basis for part of this article. In all of the above papers, the
entity referred to here as the trifocal tensor was not considered as a tensor, but rather
as a set of three 3 × 3 matrices. Perhaps the first author to refer to it as a tensor was
Vieville ([?]) who continued the work on scene reconstruction from lines.

Meanwhile in independent work, Shashua introduced a set of 27 coefficients for a set of
four independent tri-linearity conditions relating the coordinates of corresponding points
in three views with uncalibrated cameras ([12]). Subsequently ([?]) Shashua gave a linear
method for computation of the coefficients from only 7 point matches in three views.

A key result of this paper is that the set of coefficients introduced by Shashua ([12])
are exactly the same as the entries of the three 3 × 3 matrices of ([16, 3]), except for a
change of sign2 and rearrangement of the indices. The importance of this result is that

2In order to avoid the sign discrepancy, Shashua’s coefficients will be defined with opposite sign in
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it allows an amalgamation of the linear algorithms for points (Shashua [?]) and for lines
([6]). This results in an algorithm of significantly greater applicability and power than
either of the line or point algorithms alone.

Whereas the line papers [16, 3, 6] consider three 3× 3 matrices, Shashua’s paper defines
his coefficients as the entries of nine 3-vectors. In fact, essentially, we are dealing with
a triply indexed 3 × 3 × 3 array of values, which it is natural to treat as a tensor, as
suggested by Vieville. Therefore, in this paper, we refer to this three-dimensional array
as a tensor, though without making significant use of tensor notation or machinery. In
recent unpublished work, Shashua has also considered his set of coefficients as a tensor.
As for the name, I suggest the words trifocal tensor in an attempt to establish a standard
terminology. Despite the potentially fundamental role played by this tensor in three-view
stereo, I believe that the word fundamental is too often used for us to adopt the term
fundamental tensor.

3 Notation and Basics

The three-dimensional space containing the scene will be considered to be the 3-dimensional
projective space P3 and points in space will be represented by homogeneous 4-vectors
x. Similarly, image space will be regarded as the 2-dimensional projective space P2 and
points in an image will be represented by homogeneous 3-vectors u. The space-image
mapping induced by a pinhole camera may be represented by a 3× 4 matrix M of rank
3, such that if x and u are corresponding object and image points then u = Mx. Such a
matrix will be called a camera matrix. It will often be desirable to decompose a camera
matrix into a 3 × 3 matrix A and a column vector t, as follows : M = (A | t). If the
camera centre is at a finite point, then A is non-singular, but we will not make this
restriction.

All vectors are assumed to be column vectors. The transpose u� of u is a row vector.
Notationally, vectors will be treated as n × 1 matrices. In particular a�b is the scalar
product of vectors a and b, whereas ab� is a matrix.

If t is a vector and X is a matrix, then t × X denotes the matrix (t × x1, t × x2, t ×
x3) constructed by taking the cross product t × xi with each of the columns xi of X
individually. Similarly, X × t is a matrix obtained by taking the cross product of t with
the rows of X individually.

Just as points in image space P2 are represented by homogeneous vectors so are lines in
P2. Bold greek letters such as λ represent lines. The point u lies on the line λ if and only
if λ�u = 0. The line through two points u and u′ is given by the cross product u× u′.
Similarly, the intersection of lines λ and λ′ is equal to λ× λ′. We will sometimes wish
to consider the Euclidean space R2 as a subset of P2 and determine the perpendicular
Euclidean distance from a point to a line. If u = (u, v, w)� and λ = (λ, µ, ν)�, then the
perpendicular distance is given by

d(λ,u) =
λ�u

w(λ2 + µ2)1/2
(1)

A basic tool used in this paper is the solution of redundant sets of linear equations.
The sets of equations that we generally need to solve are of the form Ax = 0. We

this paper
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are not interested in the solution x = 0. Generally, in the presence of noise, no exact
solution is possible, since A will have full rank, hence we wish to find the nearest solution
possible. The solution of such a system is defined up to an indeterminate (and usually
uninteresting) scale factor. This system may be solved by minimizing ||Ax|| subject to
the restriction ||x|| = 1. The required x is the unit eigenvector corresponding to the
smallest eigenvalue of A�A. It may be found using either Singular Value Decomposition,
or Jacobi’s method for finding eigenvalues of symmetric matrices ([11]).

Projective Reconstruction Consider a set of lines and points in space viewed by
several cameras. We use the word feature to represent either a line or a point. We
suppose that the image coordinates of each feature as seen in each image are given,
but the actual positions of the features in space are unknown. The task of projective
reconstruction is to find a set of camera matrices Mj and 3D-lines and points so that each
such 3D feature is indeed mapped to the given image feature in each of the images. For
the present we pass over the questions of how to represent lines in space and how they
are acted on by camera matrices Mj. If the camera matrices are allowed to be arbitrary,
then it is well known ([?, 2]) that the scene can not be reconstructed more precisely than
up to an arbitrary 3D projective transformation.

Consider now a reconstruction from three views, and let the three camera matrices be
M , M ′ and M ′′. We make the assumption that no two of the cameras are located at the
same point in space. Let H be formed by adding one extra row to M to make a non-
singular 4 × 4 matrix. Then since HH−1 = I4×4, it follows that MH−1 = (I|0). Since
M may be transformed to (I | 0), by applying transformation H to the reconstruction
we may assume without loss of generality that M = (I | 0).
In this case, the three camera matrices M , M ′ and M ′′ may be written in the form
M = (I | 0), M ′ = (A | a4) and M ′′ = (B | b4), where a4 and b4 denote the final
columns of M ′ and M ′′.

Assuming (as we always shall) that neither of the latter two cameras is located at the
same location as the first (that is the origin), we see that M ′(0, 0, 0, 1)� = a4. That is
a4 is the projection of the centre of the first camera as seen from the second – it is the
epipole. We may normalize a4 such that ||a4|| = 1. Similar considerations apply to b4.

4 Transferring lines

We now address the question of how lines are mapped by camera matrices. Instead of
considering the forward mapping, however, we will consider the backward mapping –
given a line in an image, determine the plane in space that maps onto it. This will be
a plane passing through the camera centre, consisting of points that map to the given
image line. This plane has a simple formula as follows.

The plane in space mapped to the line λ by the camera with matrix M is
equal to M�λ.

To justify this remark, note that a point x lies on the plane with coordinates M�λ if
and only if λ�Mx = 0. This is also the condition for the point Mx to lie on the line λ.
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Now, consider three cameras with matrices M = (I | 0), M ′ = (A | a4) and M ′′ = (B |
b4). Let λ, λ′ and λ′′ be corresponding lines in the three images, each one the image of
a common line in space. The planes corresponding to these three lines are the columns
of the matrix (

λ A�λ′ B�λ′′

0 a4
�λ′ b4

�λ′′

)
.

Since these three planes must meet in a single line in space, the above matrix must have
rank 2. Therefore, up to an insignificant scale factor,

λ = (A�λ′)(b4
�λ′′)− (B�λ′′)(a4

�λ′) (2)

This important formula allows us to transfer lines from a pair of images to a third image
directly. In general, we will represent a line in space simply by giving its images λ′ and
λ′′ with respect to the two cameras with matrices M ′ and M ′′.

Now, writing A = (a1,a2,a3) and B = (b1,b2,b3) where the ai and bi are the columns
of A and B, we see that the i-th entry (or row) of λ given in (2) is (ai�λ′)(b4

�λ′′) −
(bi�λ′′)(a4

�λ′), which may be rearranged as λ′�(aib4
� − a4bi�)λ′′. This leads to a

second form of (2).

λ =


 λ′�(a1b4

� − a4b1
�)λ′′

λ′�(a2b4
� − a4b2

�)λ′′

λ′�(a3b4
� − a4b3

�)λ′′


 (3)

Now, defining 3× 3 matrices Ti by the equation

Ti = a1b4
� − a4b1

� (4)

we obtain a simple set of equations

λ =


 λ′�T1λ

′′

λ′�T2λ
′′

λ′�T3λ
′′


 (5)

Formula (5) is much the same as a formula given for calibrated cameras in [16], but
proven here for uncalibrated cameras. In [16], the letters E, F and G are used instead
of Ti. However, since F is the standard notation for the fundamental matrix, we prefer
to use Ti. Equations (5) may be termed the transfer equation for lines.

If sufficiently many line matches are known, it is possible to solve for the three matrices Ti.
In fact, since each λ has two degrees of freedom, each set of matched lines λ↔ λ′ ↔ λ′′

gives rise to two linear equations in the entries of T1, T2 and T3. Exactly how these
equations may best be formulated will be discussed later. Since the T1, T2 and T3 have a
total of 27 entries, but are defined only up to a common scale factor, 13 line matches are
sufficient to solve for the three matrices. With more than 13 line matches, a least-squares
solution may be computed.

5 Formulating the Line Equations.

The previous description of the form of the transfer equations (5) was a little vague. In
this section, the exact manner of forming these equations will be described.
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Scaling the coordinates. The first step is the normalization of the image coordi-
nates. If the units in the image plane are pixel numbers, then a typical line will have an
equation of the form λu + µv + ν = 0, where ν >> λ, µ. If the equations (6) are con-
structed using these unadjusted coordinates, then the resulting set of equations may be
poorly conditioned. By experiment, it has been found that scaling all pixel coordinates
so that the pixel values lie in the data range between about −1.0 and 1.0 works well,
giving a closer match of the transferred line to the actual data than with the unscaled
coordinates. A further possible transformation is to translate all the pixels so that the
centroid of the measured pixel values is at the origin. This can be done independently to
each image, without affecting the results of projective reconstruction. Later, we will be
considering point matches as well as line matches. This scaling and translation operation
should be applied to the coordinates of matched points, as well as lines.

Presentation of lines. So far, we have assumed perfect data. Of course, this will
never be the case, and the equations (5) used to solve for the transfer matrices Ti will
only be satisfied approximately. The effect of noise will be to perturb lines to lines that
lie close to the correct lines. The goal of the reconstruction algorithm must then be to
find 3D lines in space and camera matrices that project the 3D lines to lines in the images
“close” to the measured lines. But what does it mean for two lines to be close to each
other, and how is this to be quantified.

In general, in computer vision, we are interested in line segments, and not infinite lines.
However, often different segments of the same line are seen in two different views, so the
distance between endpoints is not a suitable metric. We will take the position in this
paper that line segments are usually defined by specifying a number of points on the line.
In the following discussion it will be assumed that a line is defined by specifying two end
points. The method generalizes easily to the case where a line is defined as the best fit to
a set of measured points, as is shown in the appendix to this paper. We denote the line
defined by two points u(1) and u(2) as λ(u(1),u(2)). Let λ′ be another line. We define
the distance d(λ′,λu(1)u(2)) to be (d2

1 + d2
2)

1/2, where d1 and d2 are the perpendicular
distances from the line λ′ to the points u(1) and u(2) respectively, as given by (1).

Normalization of lines. In the equations 5), the weight given to equations repre-
sented by different line correspondences depends on the specific representation of the lines
λi and λ′′i . To standardize this, we define a line lambda′ = (λ′, µ′, ν′)� (and similarly
for λ′′) to be normalized if λ′2 + µ2 = 1. Thus, the lines λ′i and lambda′′i are computed
by taking the cross-product of the two end points, and then normalizing.

The line equations. Now, we return to equations (5). Let lines λ′ and λ′′ be
computed and normalized. Let λ = λ(u(1),u′). From the equation λ(u(1),u(2)) =
(λ′�T1λ

′′,λ′�T2λ
′′,λ′�T3λ

′′)� we obtain two equations

u(1)λ′�T1λ
′′ + v(1)λ′�T2λ

′′ + λ′�T3λ
′′ = 0

u(2)λ′�T1λ
′′ + v(2)λ′�T2λ

′′ + λ′�T3λ
′′ = 0 (6)

where u(1) = (u(1), v(1), 1)� and u(2) = (u(2), v(2), 1)�. These equations specify that the
two end points of the line λ lie on the transferred line.

The left-hand sides of these equations are of the form (u, v, 1)� ˆlambda where ˆlambda
is the transferred line λ′�T1λ

′′,λ′�T2λ
′′,λ′�T3λ

′′)�. This quantity does not measure
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precisely the distance from the transferred line to the line endpoint (u, v, 1)�, since λ̂
will not in general be normalized, and the normalizing factor in the denominator of (1)
is missing. This is the price we pay to have a linear algorithm. However, we will come
back to discuss this point in section 8.

6 Transferring Points.

Suppose that a point x in space is seen in three images, and that the three cameras are
given in the normalized form M = (I | 0), M ′ = (A | a4) and M ′′ = (B | b4).

We suppose that the point x is seen at positions u, u′ and u′′ in the three images, where
u (and similarly u′ and u′′) is a 3-vector u = (u, v, w), the representation of the point in
homogeneous coordinates. The coordinates (u/w, v/w) are the coordinates actually seen
in the image. We wish to find a relationship between the coordinates of the points u, u′

and u′′. At any point in the following derivation, we may set w, w′ or w′′ to 1 to obtain
equations relating to measured image coordinates.

Because of the form of the matrix M = (I | 0), it is extremely simple to give a formula
for the position of the point in space. In particular, since (I | 0)x ≈ u, we may write

x =
(
u
t

)
for some t, yet to be determined. It may be verified that t is the same as the

“relative affine invariant”, k, considered by Shashua ([13]). Now, projecting this point
into the second image, we see that

u′ ≈M ′x = (A | a4)
(
u
t

)

Denoting the i-th row of A by âi�, we may write this equation as three separate equations

u′ = kâ1
�u+ a14t

v′ = kâ2
�u+ a24t

w′ = kâ3
�u+ a34t

(7)

where k is an unknown scale factor. Eliminating k in different ways, we may obtain three
equations

u′(â3
�u+ a34t) = w′â1

�u+ a14t
v′(â1

�u+ a14t) = u′â2
�u+ a24t

w′(â2
�u+ a24t) = v′â3

�u+ a34t
(8)

Of these three equations, only two are independent. From each of these equations inde-
pendently, one may compute the value of t. We obtain

t =
w′â1

�u− u′â3
�u

u′a34 − w′a14

=
u′â2

�u− v′â1
�u

v′a14 − u′a24
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=
v′â3

�u− w′â2
�u

w′a24 − v′a34

(9)

Considering only the first of these expressions for t, we see that the point x may be
written as

x =
(

u
(w′â1

�u− u′â3
�u)/(u′a34 − w′a14)

)

≈
(

(u′a34 − w′a14)u
w′â1

�u− u′â3
�u

)

Now, projecting this point via the third camera, we find that

u′′ ≈ (B | b4)x
≈ (u′a34 − w′a14)Bu+ b4(w′â1

�u− u′â3
�u)

≈
(
(u′a34 − w′a14)B + b4(w′â1

� − u′â3
�)
)
u

Writing this in terms of the rows of B (denoted by b̂i�), we have an expression

u′′ ≈


 (u′a34 − w′a14)b̂1

� + b14(w′â1
� − u′â3

�)
(u′a34 − w′a14)b̂2

� + b24(w′â1
� − u′â3

�)
(u′a34 − w′a14)b̂3

� + b34(w′â1
� − u′â3

�)


u .

We may rearrange terms to obtain

u′′ ≈


 u′(a34b̂1

� − b14â3
�)− w′(a14b̂1

� − b14â1
�)

u′(a34b̂2
� − b24â3

�)− w′(a14b̂2
� − b24â1

�)
u′(a34b̂3

� − b34â3
�)− w′(a14b̂3

� − b34â1
�)


u (10)

Following Shashua ([13]) we now write

αij
� = ai4b̂j� − bj4âi� (11)

Then, the equations (10) may be written as

u′′ ≈


 u′α31

� − w′α11
�

u′α32
� − w′α12

�

u′α33
� − w′α13

�


u (12)

Starting with the other two formulae for t given in (9) we obtain two other similar
expressions for u′′. These can all be put together to give the set of equations :

u′′ ≈


 u′α31

� − w′α11
�

u′α32
� − w′α12

�

u′α33
� − w′α13

�


u ≈


 v′α11

� − u′α21
�

v′α12
� − u′α22

�

v′α13
� − u′α23

�


u ≈


 w′α21

� − v′α31
�

w′α22
� − v′α32

�

w′α23
� − v′α33

�


u .

(13)
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Once more, only two of these equations are independent. Just as before we may eliminate
the unknown scale factor implied by the ≈ sign. In this way, from each expression for
u′′ an we obtain three equations, of which only two are independent. This gives for each
correspondence u↔ u′ ↔ u′′ a set of 9 equations in the unknown entries of the vectors
αij . These are the trilinearity relationships of Shashu. Of these equations, only 4 are
independent. Those equations involving both w′ and w′′ form an independent set, as
follows :

u′′(u′α33
� − w′α13

�)u = w′′(u′α31
� − w′α11

�)u
v′′(u′α33

� − w′α13
�)u = w′′(u′α32

� − w′α12
�)u

u′′(v′α33
� − w′α23

�)u = w′′(v′α31
� − w′α21

�

v′′(v′α33
� − w′α23

�)u = w′′(v′α32
� − w′α22

�)u .

(14)

As stated previously, we may set w, w′ and w′ to 1 to obtain a relationship between
observed image coordinates.

To be able to write the general form of the trilinearity equation, we write (u1, u2, u3)
instead of (u, v, w), and make the same notational change for the primed and doubly
primed quantities. Furthermore, we denote the k-th entry of αij by αijk . Then the
general trilinearity relationship obtained from (13) may be written in a simple form :

3∑
h=1

(u′ju
′′
i αklh + u′ku

′′
l αjih)uh =

3∑
h=1

(u′ku
′′
i αjlh + u′ju

′′
l αkih)uh (15)

where i, j, k and l range over all indices such that i �= l and j �= k. Since we get the
same relation by interchanging i and l, or j and k, we may assume that i < l and j < k.
There are therefore 9 different equations defined by this expression.

Given 7 point correspondences, we have 28 equations, which is enough to solve for the
vectors αij . Thus, we may obtain the transfer equations (13) linearly from a set of 7
point matches in all three images. Shashua states that better results are obtained by
including 6 equations for each point match. Possibly the best results are obtained by
including all 9 equations, but this has not been tested.

7 Connection with Line Equations

The fact that we have 27 unknown values in the three matrices Ti as well as in the 9
vectors αij suggests that there could be a connection between these techniques. This is
indeed the case as will now be demonstrated. We denote the k-th entry of the vector αij
by αijk. Similarly, we denote the (jk)-th entry of the matrix Ti by Tijk. The entries of
matrices A and B will be denoted by aij and bij .

Now, from (11) we have
αijk = ai4bjk − bj4aik . (16)

Further, from (4) we have
Tijk = ajibk4 − aj4bki (17)

One immediately sees that
αijk = −Tkij (18)
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This equation has the significant implication that we may amalgamate the line and point
algorithms into one algorithm. In particular, each line correspondence λ↔ λ′ ↔ λ′′ gives
two linear equations in the entries Tijk, whereas each point correspondence gives four
linear equations in the entries αijk which are the same as the Tijk except for the order of
the indices. Therefore, provided that 2#lines+4#points ≥ 26 we have sufficiently many
matches to solve for the Tijk, and hence to carry out a projective scene reconstruction,
as seen in Sections 9 and 10.

8 Iterative Linear Method

In finding a least-squares solution to a redundant set of equations of the form (eq:line-
equations) and (eq:4-point-equations) linearly it is clear that we are not minimizing
precisely what we would want to minimize, namely the distances between the transferred
points, or lines and the measured ones.

Consider first of all the line transfer equation (6). The expression (u, v, 1)(λ′�T1λ
′′,λ′�T2λ

′′,λ′�T3λ
′′)�

is not equal to the distance between the point (u, v, 1)� and the transferred line (λ, µ, ν) =
(λ′�T1λ

′′,λ′�T2λ
′′,λ′�T3λ

′′)�. To get the correct distance, we need to divide by
sqrtλ2 + µ2 as indicated by equation (1). This shows that to express the true distance be-
tween the point (u, v, 1)� and the transferred line (λ, µ, ν) = (λ′�T1λ

′′,λ′�T2λ
′′,λ′�T3λ

′′)
we need to write an equation

(u, v, 1)�(λ, µ, ν)/
√

λ2 + µ2 .

Unfortunately, the resulting equation is not linear in the entries of the Ti. To overcome
this problem, we adopt a strategy of adaptive weights. Let W0 = 1. We construct and
solve (see section sec:notation the set of linear equations (6), and any point equations of
the form (refeq:4-point-equations) as well to get a solution for Ti. From this, we may
compute the transferred line (λ, µ, ν)� = (λ′�T1λ

′′,λ′�T2λ
′′,λ′�T3λ

′′)�. From this we
compute a weight

W1 = 1/
√

λ2 + µ2 = 1/sqrt(λ′�T1λ
′′)2 + (λ′�T2λ

′′)2 . (19)

Now, we multiply each of the equations (6) by the weight W1 and solve again. This
process may be repeated several times, at each iteration computing the new weight Wi

computed from the previous solution. Finally the values of the weights will converge (one
hopes), and the residual error will indeed equal the distance from the point (u, v, 1)� to
the transferred line. The least squares error will be equal to the sum of the squares of
the errors as desired.

Of course, one should simultaneously do a similar thing with the point equations (14).
In particular the residual error in the first of these equations is u′′(u′α33

� − α13
�)u −

(u′α31
�−α11

�)u. On the other hand, the difference between the measured image coor-
dinate u′′ and the coordinate of the transferred point is u′′−(u′α31

�−α11
�)u/(u′α33

�−
α13

�)u. To get the correctly weighted error, we need to multiply the equation u′′(u′α33
�−

α13
�)u− (u′α31

� −α11
�)u by a weight

W = 1/(u′α33
� −α13

�)u . (20)

The other equations are to be multiplied by weights of a similar form. As before, this
would result in non-linear equations. Consequently we again use the strategy of adaptive
weights.
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The adaptive weighting of the line and point equations should be carried out simultane-
ously. One particular result of doing this is that the line and point equations are assigned
their correct weights relative to each other. Otherwise, there is no a priori method of
correctly weighting the point and line equations relative to each other.

This iterative proceedure has several advantages compared with a full least-squares mini-
mization scheme such as Levenberg-Marquardt. For instance, it is very simple to program
once one has the linear method coded. Further, one does not have to worry about an
initial estimate, since this method is self-initializing. Finally, there is no difficulty with
a stopping criterion – one simply continues until the change in weights from iteration
to iteration is small. The solution of the set of equations is quite insensitive to small
variations in the weights. The stopping criterion I have used is to continue as long as∑

j(|W i
j /W i−1

j | − 1)2 < 10−8, where W i
j is the i-th measurement of the j-th weight.

Convergence is usually rapid and reliable. An alternative is to iterate for a fixed small
number of iterations (such as 3).

9 Retrieving the Camera Matrices

Formula (4) gives a formula for the transfer matrices Ti in terms of the camera matrices.
We now show that it is possible to go the other way and retrieve the camera matrices, Mi

from transfer matrices Ti. It will be assumed for now that the rank of each of the matrices
Ti is at least 2, which will be the case except in certain special camera configurations.

Now, note that (a4 × ai)�Ti = 0 since (a4 × ai)�ai = (a4 × ai)�a4 = 0. It follows that
we can compute a4×ai up to an unknown multiplicative factor by finding the null-space
of Ti for each i = 1, . . . , 3. Since the camera matrix M ′ = (A | a4) = (a1, a2, a3, a4) has
rank 3, the set of vectors {a4 × ai : i = 1 . . . 3} has rank 2. Consequently, a4 (or −a4)
may be computed as the unique unit vector normal to all of a4× ai for i = 1, . . . , 3. The
vector b4 may be computed in the same way.

The vectors a4 and b4 were found as the common perpendicular to the null-spaces of
the three transfer matrices. In some cases, one or more of the Ti will have rank 1, in
which case the null-space will be 2-dimensional. This can occur when (for instance)
a4 ≈ ai. To find a4, it is not really necessary to assume that all the Ti have rank 2.
We can make do easily if two of the matrices have rank 2, for we need only two vectors
to find a common perpendicular. Even if all three matrices Ti have rank one (which is
probably not possible), one can still find a4 as the common perpendicular to the three
2-dimensional null-spaces. See [16] for the a further discussion of methods applying to
calibrated cameras for the case where the rank of Ti is less than 2.

As noted previously, a4 and b4 are the homogeneous coordinates of the epipoles in the
second and third images corresponding to the centre of the first camera. Once a4 and b4

are known there are several ways to compute the matrices A and B to reconstruct the
complete camera matrices. We continue by considering three such methods.

The linear method If a4 and b4 are known, the equations (4) form a redundant
set of linear equations in the entries of A and B. We may solve these equations using
linear least-squares methods ([11, ?]) to find A and B, and hence M ′ = (A | a4) and
M ′′ = (B | b4).
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The recomputation method. An alternative method is to solve for the entries of A
and B by going back to equations (2) and (13) and solving them again now that a4 and
b4 are known. These equations can be written in terms of aij and bij by substituting
using equations (16) and (17). The resulting equations will be linear in terms of the
entries of A and B, and may be solved by the eigenvalue method (see section 3). In
solving these equations, one may again use the method of adaptive weights. The initial
weights chosen should ideally be the final weigths used for the initial solution for the Ti.

The Closed Form Method. In [6] closed form formulas were given for M ′ and M ′′,
namely

M ′ = (A | a4)
= (XT1b4, XT2b4, XT3b4, a4)

M ′′ = (B | b4)
= (−T1

�a4,−T2
�a4,−T3

�a4,b4)

(21)

where X = I − a4a4
�.

This method of determining M ′ and M ′′ was coded and evaluated in [6]. By carefully
examining the results of that method, it has subsequently been found that using these
formulae to determine M ′ and M ′′ is very unstable in the presence of noise, and hence
is not recommended. Solving directly for A and B is a far more stable method, and the
results of this paper have been found by using this method.

10 Reconstruction

Once the camera matrices are computed, it is a simple task to compute the positions of
the points and lines in space. Different ways in which this may be done for points are
described in [?].

For lines, the line in space corresponding to a set of matched lines λ ↔ λ′ ↔ λ′′ must
be the intersection of the three planes Mi

�λi. A good way to compute this line is as
follow. One forms the matrix X = (M�λ, M ′�λ′, M ′′�λ′′). Then a point x will lie
on the intersection of the three planes if and only if x�X = 0. We need to find two
such points to define the line in space. Let the singular value decomposition ([11]) be
X = UDV �, where D is a diagonal matrix diag(α, β, 0, 0). Since (0, 0, 0, 1)DV = 0, it
follows that (0, 0, 0, 1)U�(UDV �) = (0, 0, 0, 1)U�X = 0. The vector (0, 0, 0, 1)U� is
simply the last column of U . The same argument shows that (0, 0, 1, 0)U�X = 0. In
summary, the third and fourth columns of the matrix U represent a pair of points on the
intersection of three planes, and hence define the required line in space.

11 Iterative Methods.

In the presence of noise, the matrices Ti obtained by solving equations (6) will not have
the correct form as given in (4). This means that the epipoles a4 and b4 may not be
extremely accurate. Furthermore, solving equations (6) and (14) even using the method
of iterative weighting does not correspond exactly to minimizing the cost function defined
by the sum of squares of distances between predicted and measured image coordinates.
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Therefore, to obtain an optimal solution, a least-squares minimization technique may be
used, in which the initial solution is provided by the linear methods described so far.
I have implemented such a method using the Levenberg-Marquardt (LM) method for
carrying out the least-squares optimization.

11.1 Converging on the optimal solution - Lines

A method that gains in simplicity at the cost of a not-quite optimal result is described
first. The varying parameters are the 24 entries of the matrices M ′ and M ′′ and the
quantity to be minimized is the sum of squares of Euclidean distances of the transferred
lines or points to the measured lines or points. We assume that the lines λ′ and λ′′

occuring in the equations (6) are accurate, as are the points u and u′ occuring in (14). As
the entries of the matrices M ′ and M ′′ are made to vary, the matrices Ti are computed
using (4) and the transferred lines λ and points u′′ are computed using (3) and (13.
Finally, the differences between these transferred features and the measured lines λ and
points u′′ are measured. It is the sum of squares of these errors that is to be minimized.
Of course, in the case of lines, the measured error is the distance of the transferred line
from the defining end points of the measured line.

Typically convergence occurs within 10 iterations. Furthermore, each iteration is very
fast, since construction of the normal equations ([11]) requires time linear in the number of
points, and the normal equations are only of size 24×24. For construction of the normal
equations, numerical (rather than symbolic) differentiation is adequate, and simplifies
implementation. The total time required for reconstruction of 20 lines in three views is
not more than 5 seconds on a Sparc 2.

11.2 The Optimal Least Squares Solution

The solution given in the previous example is not quite optimal, since all the error is
confined to measurement in the zero-th image, instead of being shared among all three
images. To find the true optimal solution, we proceed differently. In this case, apart
from the 24 parameters of the two camera matrices, M ′ and M ′′, we need parameters
representing each of the 3D lines and points in the scene. This is a fairly standard least-
squares minimization problem in which the parameters of the cameras, as well as the
parameters used to represent the features (lines and points) are varied. The features
are then projected into each view, and the errors compared with the measured image
feature locations are found. The goal function to be minimized is the sum of squares of
the errors.

The only novel point about our implementation of this is the manner of representing
lines in space. Each line is parametrized by its image coordinates λ̂

′
and λ̂

′′
in two

images. In this way, we do not have to worry about how to project the line into these
two images – the projections are λ̂

′
and λ̂

′′
respectively. The projection λ̂ of the line in

the other image is computed using (2). The error to be measured is the distance between
the projected lines λ̂, λ̂

′
and λ̂

′′
and the measured lines λ, λ′ and λ′′. More exactly we

measure the distance from the projected lines to the endpoints of the measured lines.

The parametric representation for each point is as a homogeneous 4-vector representing
the position of the image in space. In this way, the standard pinhole-camera mapping is
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used to compute the projection of the point in each image.

The disadvantage of this complete minimization approach is that there may be a large
number of varying parameters. This disadvantage is mitigated however by an implemen-
tation based on the sparseness of the normal equations as described in [14, 5]. Carrying
out this final iteration to obtain a true optimal solution gives minimal gain over the
method described in the previous section.

12 Algorithm Outline

To tie together all the threads of the reconstruction algorithm, an outline will now be
given. As input to this algorithm, we assume as set of point-to-point image corre-
spondences ui ↔ u′i ↔ u′′i , and a set of line correspondences λi ↔ λ′i ↔ λ′′i , where
# lines + 2 ∗# points ≥ 13. The lines are assumed to be specified by giving the two
end points of each line. The steps of the algorithm are as follows.

1. Coordinate scaling and translation. For each image separately, translate and
scale the coordinates of the points such that the centroid of all given coordinates
is at the origin, and the coordinates lie in a range [-1.0, 1.0].

2. Computing and normalizing the lines. The lines λ′i and λ
′′
i are computed

from their enpoints, and normalized.

3. Construct the equations. For each line correspondence, construct a pair of
equations of the form (5) in the the entries of the matrices Ti. Similarly, for each
point correspondence, construct four equations of the form (14) also in the entries
of matrices Ti. The relationship between the Ti and the αij is given by (18).

4. Initial solution. Solve the set of equations to find an estimate of the matrices
Ti.

5. Computing the weights. Compute a set of weights to apply to each equation.
The weights are of the form (19) or (20).

6. Iterative weight adjustment. Weight the set of equations, and solve again.
Iterate on these last two steps until convergence, or for a small number of iterations
(at most 5).

7. Computation of the epipoles. Find a4 and b4 as the common normal to the
left (respectively, right) null spaces of the three matrices Ti.

8. Computation of the Camera Matrices. Now that b4 and a4 are known, the
equations (5) and (14) become linear in the remaining entries of the camera ma-
trices, taking into account the formula for Ti given by (4). These linear equations
may be solved to find the camera matrices (the recomputation method). Alterna-
tively, we may simply solve for the camera matrix entries using (4) directly (linear
method).

9. Reconstruction. Given the camera matrices, the points may be reconstructed
using the triangulation methods of [7]. The lines may be reconstructed as described
in section 10.
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Figure 1: Three photos of houses

10. Iterative Refinement. A full iterative least-squares refinement of the computed
solution may be carried out.

11. Unscaling The effect of the initial scaling and translation of the images may be
undone by replacing the image coordinates by their original values, and making a
corresponding adjustment to the computed camera matrices.

13 Experimental Evaluation of the Algorithm

This algorithm was tested as follows. Three images of a scene consisting of two houses
were acquired as shown in Fig 1. Edges and vertices were obtained automatically and
matched by hand. In order to obtain some ground truth for the scene, a projective
reconstruction was done based on point matches using the algorithm described in [4].
To carefully control noise insertion, image coordinates were adjusted (by an average of
about 0.5 pixels) so as to make the projective reconstruction agree exactly with the pixel
coordinates.

Lines were selected joining vertices in the image, only lines that actually appeared in
the image being chosen (and not lines that join two arbitrary vertices), for a total of 15
lines. Next, varying degrees of noise were added to the endpoints defining the lines and
the algorithm was run to compute the projective reconstruction.

Finally for comparison, the algorithm was run on the real image data. For this run, two
extra lines were added, corresponding to the half obscured roof and ground line in the
right hand house. Note that in the three images the endpoints of these lines are actually
different points, since the lines are obscured to differing degrees by the left hand house.
One of the advantages of working with lines rather than points is that such lines can be
used.

In order to judge the quality of the reconstruction, and present it in a simple form, the
errors in the positions of the epipoles were chosen. The epipolar positions are related
to the relative positions and orientations of the three cameras. If the computed camera
positions are correct, then so will be the reconstruction. The epipoles in images M ′ and
M ′′ corresponding to the centre of projection of camera M are simply the last columns
of M ′ and M ′′ respectively. To measure whether two epipoles are close, the following
method was used. Let p and p̂ be actual and computed positions of the epipole, each
vector being normalized to have unit length. We define d(p, p̂′) = 180.0 ∗ min(||p −
p̂||, ||p + p̂||)/π. If the epipoles are close to the centre of the image, then this quantity
gives a measure of their distance. If they are far from the image centre (which they are
in this case – the epipoles are at locations (8249, 2006) and (-17876, 23000) in Euclidean
coordinates), this is an approximate measure of the angular difference between the radial
directions to the epipoles. The factor 180/π is included to give this angle in degrees.

The results of these experiments are given in Table 1. The columns of this table have
the following meanings.
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Noise residual epipolar epipolar
error error 1 error 2

0.1 1.82e-02 4.55e-01 4.27e-01
0.25 4.50e-02 1.15e+00 1.07e+00
0.5 8.89e-02 2.31e+00 2.14e+00
1.0 1.74e-01 4.50e+00 4.26e+00
2.0 3.38e-01 7.29e+00 7.44e+00
3.0 9.96e-01 8.10e+01 2.56e+01
4.0 1.36e+00 2.15e+01 2.84e+01
– 3.10e-01 2.55e-01 7.27e-01

Table 1: Results of reconstruction for 15 lines from three views. Dimension of the image
is 640× 484 pixels. The last line represents the reconstruction from 17 real data lines.

• Column 1 gives the standard deviation of zero-mean gaussian noise added to both
the u and v coordinates of the end-points of the lines

• Column 2 gives the residual error, which is the RMS distance of the images of the
reconstructed lines from the measured noisy end points of the lines.

• Columns 3 and 4 (epipolar error) give the epipolar error (described above) for the
epipoles in images 1 and 2 corresponding to the camera centre of image 0.

As can be seen from this table, the algorithm performs quite well with noise levels up to
about 2.0 pixels (the image size being 640× 484 pixels). For 3.0 and 4.0 pixels error the
residual error is still small, but the epipolar error is large, meaning that the algorithm has
found a solution other than the correct one. Since residual error should be of the order of
the injected noise, the solution found is apparently just as good as the correct solution.
Thus, the algorithm has worked effectively, but the problem is inherently unstable with
this amount of noise. Note that 3–4 pixels’ error is more than should occur with careful
measurement.

The last line of the table gives the results for the real image data, and shows very good
accuracy.

14 Conclusions

The algorithm described here provides an effective means of doing projective reconstruc-
tion from line correspondences in a number of images. The algorithm is rapid and quite
reliable, provided the degree of error in the image-to-image correspondences is not exces-
sive. It does, however require careful implementation to avoid convergence problems. For
more than about 2 pixels of error in an image of size about 512×512 pixels, the problem
of projective reconstruction becomes badly behaved. There exist multiple near-optimal
solutions. For high resolution images where the relative errors may be expected to be
smaller, the algorithm will show enhanced performance.

This equation has a number of significant implications.
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1. Given a set of 7 point matches in 3 images, one has a linear method of computing
the projective structure of the scene, including the three camera matrices and the
fundamental matrices. One uses the 7-point linear method to compute the values
αijk and from this one reassembles the matrices Ti. Finally, the methods of Section
9 may be used to compute the camera matrices.

2. We may compute (linearly) the projective structure of a set of lines and points
seen in three views, provided that 2#lines + 4#points ≥ 26. In particular, for
each point, equation (13) gives 4 equations in the values αijk, and for each line,
equation (5) gives two equations in the entries Tijk. However, the unknowns Tijk
and αijk are the same (modulo a change of sign and permutation of the indices).
Thus, provided we have at least 26 equations, we may compute the values of Tijk
linearly and then reconstruct the scene as in Sections 9 and 10.

It is to be expected that (as with reconstruction from points [4]) the robustness of the
reconstruction will increase substantially with more than the minimum number of views.
This situation arises when an object is tracked through several frames by a video camera.

The work of [4] shows that a projective reconstruction may be converted to a Euclidean
reconstruction if all the cameras have the same calibration, or alternatively Euclidean
constraints are imposed on the scene.

Appendix : Lines specified by several points

In this paper, we have considered the case where lines are specified by their two end-
points. Another common way that lines may be specified in an image is as the best
line fit to several points. In this appendix it will be shown how that case may easily be
reduced to the case of a line defined by two end points. Consider a set of points ui in
an image, and let λ = (λ, µ, ν)� be a line, which we suppose is normalized such that
λ2 + µ2 = 1. In this case, the distance from a point ui to the line λ is equal to ui�λ.
The squared distance may be written as d2 = λ�uiui�λ, and the sum-of-squares of all
distances is ∑

i

λ�uiui�λ = λ�(
∑
i

uiui�)λ .

The matrix E = (
∑

i uiui
�) is positive-definite and symmetric.

As in the standard method for line-fitting, we may compute the line that minimizes
the sum-of-squares distance λ�Eλ as follows. The line in question will be the one
that minimizes λ�Eλ subject to the condition λ2 + µ2 = 1. Using the method of
Lagrange multipliers, this comes down to minimizing λ�Eλ − d(λ2 + µ2), where (since
the conventional symbol λ is already in use) we denote the Lagrange coefficient by d.
Now, taking the derivative with respect to λ and setting it to zero, we find that

2Eλ− d


 2λ

2µ
0


 = 0 .

This may be written as (E − dJ)λ = 0. The minimizing solution is the line λ corre-
sponding to the minimum root of the equation det(E − dJ) = 0. Let this minimum root
be d0.
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Now, E − d0J being symmetric and positive semi-definite may be written in the form
E − d0J = V diag(r, s, 0)V � where V is an orthogonal matrix and a and b are positive.
It follows that

E − d0J = V diag(r, 0, 0)V � + V diag(s, 0, 0)V �

= rv1v1
� + sv2v2

�

where vi is the i-th column of V . Therefore E = d0J + rv1v1
�+ sv2v2

�. If (as we have
assumed) λ2 + µ2 = 1, then

∑
i

(uiλ)2 = λ�Eλ

= d0 + (
√

rv1
�λ)2 + (

√
sv2
�λ)2 .

Thus, we have replaced the sum-of-squares of several points by a constant value d0, which
is not capable of being minimized, plus the weighted sum-of-squares of the distances to
two points v1 and v2.

In constructing the equations (6) for a line defined by a set of point, we use the pair of
equations

√
rv1
�λ = 0

√
sv2
�λ = 0 (22)

where λ defined by (5) is the transferred line. Similarly, in a full LM minimization, we
may consider the line to be defined by the two weighted end points,

√
rv1 and

√
sv2.
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