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Abstract
This paper gives a practical algorithm for the self-

calibration of a camera from several views. The
method involves non-iterative methods for finding an
initial calibration for the camera, followed by least-
squares iteration to an optimum solution. At the same
time, a scaled Euclidean reconstruction of the scene
appearing in the images is computed.

1 Introduction
The possibility of calibrating a camera based on

the identification of matching points in several views
of a scene taken by the same camera has been shown
by Maybank and Faugeras ([9, 3]). Using techniques
of Projective Geometry they showed that each pair of
views of the scene can be used to provide two quadratic
equations in the five unknown parameters of the cam-
era. A method of solving these equations to obtain
the camera calibration has been reported in [9, 3, 8]
based on directly solving these quadratic equations us-
ing continuation. It has been reported however that
this method requires extreme accuracy of computa-
tion, and seems not to be suitable for routine use. In
addition with large numbers of cameras (more than
three or four) this method threatens to be unwork-
able.
In this paper a method is given based partly on

the well known Levenberg-Marquardt (LM) parame-
ter estimation algorithm ([11]), partly on new non-
iterative algorithms and partly on techniques of Pro-
jective Geometry for solving this self-calibration prob-
lem. This algorithm has the advantage of being appli-
cable to large numbers of views, and in fact performs
best when many views are given. As a consequence,
the algorithm can be applied to the structure-from-
motion problem to determine the structure of a scene
from a sequence of views with the same uncalibrated
camera. Indeed, since the calibration of the camera
may be determined from the correspondence data, it
is possible to compute a Euclidean reconstruction of
the scene. That is, the scene is reconstructed, rela-
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tive to the placement of one of the cameras used as
reference, up to an unknown scaling.
The algorithm has been demonstrated on real and

synthetic data and was shown to perform robustly in
the presence of noise.
An extended version of this paper giving more im-

plementation details appears in [6].

2 The Camera Model
A commonly used model for perspective cameras is

that of projective mapping from 3D projective space,
P3, to 2D projective space, P2. This map may be
represented by a 3×4 matrix, M of rank 3. The map-
ping from P3 to P2 takes the point x = (x, y, z, 1)�

to u = Mx in homogeneous coordinates.
The matrixM may be decomposed asM = K(R|−

Rt), where t represents the location of the camera, R
is a rotation matrix representing the orientation of the
camera with respect to an absolute coordinate frame,
and K is an upper triangular matrix called the cali-
bration matrix of the camera.
The entries of the matrix K may be identified with

certain physically meaningful quantities known as in-
ternal camera parameters.

3 The Euclidean Reconstruction Prob-
lem

Consider a situation in which a set of 3D points xj
are viewed by a set of N ≥ 3 cameras with matrices
Mi numbered from 0 to N − 1. Denote by uij the
coordinates of the j-th point as seen by the i-th cam-
era. Given the set of coordinates uij it is required to
find the set of camera matrices, Mi and the points xj .
This is the reconstruction problem. A reconstruction
based on a set of image correspondences {uij} consists
of a set of camera matricesMi and points xj such that
Mixj ≈ uij . (The notation ≈ denotes equality up to
a non-zero scale factor.) Without further restriction
on the Mi or xj , such a reconstruction is not unique,
and may differ by an arbitrary 3D projective transfor-
mation from the true reconstruction ([2, 4]). Such a
reconstruction is called a projective reconstruction. A
reconstruction that is known to differ from the true re-
construction by at most a 3D affine transformation is



called an affine reconstruction, and one that differs by
a Euclidean transformation from the true reconstruc-
tion is called a Euclidean reconstruction. The term
Euclidean transformation will be used in this paper to
mean a similarity transform, namely the composition
of a rotation, a translation and a uniform scaling.
In this paper we seek a reconstruction such that

all cameras have the same calibration, so that Mi =
K(Ri | −Riti), where each Ri is a rotation matrix and
K is an upper-triangular matrix, the common calibra-
tion matrix of all the cameras. For convenience, it
may be assumed further that R0 = I and t0 = 0. Ac-
cording to [9] the calibration matrix K is determined
by these conditions. Therefore, we are reduced to the
problem of reconstruction from views with calibrated
cameras. It is well known ([7]) that the relative place-
ment of the cameras may then be computed, up to
an indeterminate global scale. Furthermore, the scene
may be constructed uniquely with relative to the cam-
era placement. Thus, a Euclidean reconstruction is
possible.

4 Direct Iterative Reconstruction
One approach to the Euclidean reconstruction

problem is to solve directly for the unknown camera
matrices, Mi = K(Ri | −Riti) and points xj . In par-
ticular, we search for Mi of the required form, and xj
such that ûij =Mixj and such that the squared error
sum ∑

i,j

d(ûij ,u
i
j)

2 (1)

is minimized, where d(∗, ∗) represents Euclidean dis-
tance.
This problem may be described in general terms as

follows. Given a hypothesized functional relation Y =
f(X) where X and Y are vectors in some Euclidean
spaces Rm and Rn, and a measured value Ŷ for Y,
we wish to find the vector X̂ that most nearly satisfies
this functional relation. More precisely, we seek the
vector X̂ satisfying Ŷ = f(X̂) + ε̂ for which ||ε̂|| is
minimized. For the Euclidean reconstruction problem
the variables X comprise the 3D coordinates of each
of the points x in space, the rotations Ri of each of the
cameras and the common calibration matrix K. The
dependent variablesY comprise the image coordinates
uij . The Levenberg-Marquardt (LM) method ([11]) is
a popular method of solving problems of this nature,
which has been used with success on a wide range
of problems. Starting with an initial estimate X0 it
proceeds by iteration to the final solution.
Using the LM method to solve the Euclidean recon-

struction problem works well provided the initial esti-
mate is sufficiently close. With arbitrary or random

guesses at initial values of the parameters it usually
fails dismally.

5 Projective Reconstruction

Instead of attempting a direct reconstruction, cal-
ibration and pose estimation as in the previous sec-
tion, we use a two-step approach. In the first step,
a reconstruction of the scene is computed, dropping
the assumption that the images are all taken with
the same camera. The scene configuration obtained
in this manner will differ from the true configuration
by an unknown 3D projective transformation ([2, 4]).
In the second step, this projective transform is esti-
mated. The advantage of proceeding in this manner
is that projective reconstruction is relatively straight-
forward. Then step two, the estimation of the cor-
rect 3D transformation, comes down to solving an
8-parameter estimation problem, which is far more
tractable than the original problem.
Various methods of projective reconstruction from

two or more views have been given previously ([2, 4,
10]). The method given in [4] is a straight-forward
non-iterative construction method from two views.
Where high precision is required, it should be followed
by iterative refinement. Mohr et. al. ([10]) have re-
ported a direct LM approach to projective reconstruc-
tion. A different approach using LM has been reported
in [6]. This method finds a set of camera matrix Mi

and points xi such that M0 = (I | 0) to minimize
the goal function (1). A linear method ([4]) is used to
provide an initial estimate.

6 Converting Projective to Euclidean
Reconstruction

Once we have a projective reconstruction of the
imaging geometry any other reconstruction (includ-
ing a desired Euclidean reconstruction) may be ob-
tained by applying a 3D projective transformation.
In particular, if ({Mi}, {xj}) is a projective recon-
struction, then any other reconstruction is of the form
({MiH

−1}, {Hxj}) where H is a 4 × 4 non-singular
matrix. We seek such a matrix H such that the trans-
formed camera matricesMiH

−1 all have the same (yet
to be determined) calibration matrix, K. In other
words, we seek H such that MiH

−1 = K(Ri | −Riti)
for all i, where each Ri is a rotation matrix and K is
the common upper-triangular calibration matrix.
Without loss of generality, we may make the addi-

tional restriction that the zeroeth camera remains lo-
cated at the origin and that R0 is the identity. Since
in the original projective reconstruction M0 = (I | 0),
it follows that H−1 may be assumed to have the re-



stricted form

H−1 =
(

K 0
−v�K α

)
=
(

I 0
−v� α

)(
K 0
0 1

)

(2)
Since the constant α represents scaling in 3-space,

we may further assume that α = 1. Now, writing each
Mi = (Ai | −Aiti) and multiplying out leads to a
requirement that

Ai(I + tiv�)K ≈ KRi (3)

for some rotation matrix Ri. Our goal is to find K
and v to satisfy this set of conditions. Recall that K
is upper triangular, and we may further assume that
K33 equals 1, hence K contains five unknown entries.
The vector v has a further three unknown entries. In
total, it is required to estimate these eight unknown
parameters.
Of course, for inexact data, the equations (3) will

not be satisfied exactly, and so we will cast this prob-
lem as a least-squares minimization problem that may
be solved using LM. In particular, given values for K
and v, we compute the expression Ai(I + tiv�)K for
each i (remembering that Ai and ti are known). Tak-
ing the QR decomposition of this matrix, we obtain
upper-triangular matrices K ′i such that

Ai(I + tiv�)K = K ′iRi . (4)

Subsequently, we compute the matrices Xi = K−1K ′i
for all i. Since we have assumed that M0 = (A0 |
−A0t0) = (I | 0), it follows that X0 = I. Further-
more, if K and v satisfy the desired condition (3) then
K ′i ≈ K for all i > 0, and so Xi ≈ I. Accordingly, we
seek to minimize the extent by which Xi differs from
the identity matrix. Consequently, we multiply each
Xi by a normalizing factor αi chosen so that the sum
of squares of diagonal entries of αiXi equals 3, and so
that detαiXi > 0. Now, we seek K and v to minimize
the expression

∑
i>0

||αiXi − I||2 (5)

Note that each αiXi−I is an upper-triangular matrix.
This minimization problem fits the general form of LM
estimation of a fuction f : R8 
→ R6(N−1) where N is
the total number of cameras. The function f maps
the eight 1 variable entries of K and v to the diagonal
and above-diagonal entries of αiXi−I for i > 0. Since
this minimization problem involves the estimation of

1It is possible to assume certain restrictions on the entries
of K, such as that skew is zero and that the pixels are square,
thereby diminishing the number of variable parameters

8 parameters only, it is obviously a great improvement
over the original problem as stated in Section 3 that
required the simultaneous estimation of the matrixK,
the N − 1 rotation matrices Ri for i > 0 and the 3D
point coordinates of all points xj .
It turns out still to be impractical to solve this min-

imization problem without a good initial guess at K
and v. It is possible to take a good prior guess at K
if some knowledge of the camera is available. On the
other hand, it is difficult to guess the vector v, so it
will be necessary to find some way to obtain an initial
estimate for v. It will turn out that if v is known,
then the calibration matrix K can be computed by
a straight-forward non-iterative algorithm, so there is
no need to guess K.

7 Euclidean From Affine Reconstruc-
tion

With H−1 of the form (2) with α = 1, the matrix
H may be written as

H =
(

K−1 0
0 1

)(
I 0

v� 1

)
.

The right-hand one of these two matrices repre-
sents a transformation that moves the plane at infinity,
whereas the second one is an affine transformation, not
moving the plane at infinity. In fact, if x is a point be-
ing mapped to infinity by the transformation H , then
(v�1)x = 0. So (v�1) represents the plane that is
mapped to the plane at infinity by H .
We will now suppose that by some magic we have

been able to determine v. This means, in effect that
we know the position of the plane at infinity in the
reconstruction. Otherwise stated, we have been able
to determine the structure up to an affine transfor-
mation. We will now present a simple non-iterative
algorithm for the determination of K, and hence of
the Euclidean structure.
Equation (3) may be written as BiK = KRi where

Bi = αiAi(I+tiv�), and the constant factor αi is cho-
sen so that detBi = 1. Matrix Bi is known since Ai, ti
and v are assumed known. Consequently, K−1BiK =
Ri is a rotation matrix. Equating, K−1BiK = Ri
with its inverse transpose and rearranging leads to

(KK�)Bi−� = Bi(KK�) (6)

where Bi
−� is the inverse transpose of Bi. Given suf-

ficiently many views and corresponding matrices Bi,
equation 6 may be used to solve for the entries of the
matrix KK�. In particular we denote KK� by C,
which is a symmetric matrix. Then the equation (6)
gives rise to a set of nine linear equations in the six
independent entries of C. The matrix C can only be



determined up to a constant factor. Because of redun-
dancy, the nine equations derived from (6) for a single
known transformation Bi are not sufficient to solve for
C. However, if two or more such Bi are known, then
we may solve for C.
Once C = KK� is found it is an easy matter to

solve for K using the Choleski factorization ([1, 11]).
A solution for K is only possible when C is positive-
definite. This is guaranteed for noise-free data, since
by construction, C possesses such a factorization. In
cases where the input data is defective, or the plane at
infinity is not accurately known it is possible that the
matrix C turns out not to be positive-definite, and so
the calibration matrix can not be found. In practice
however, the algorithm works extremely well, provided
the plane at infinity is accurately placed and there are
no gross inaccuracies (mistaken matched points) in the
data.

8 Quasi-affine Reconstruction
We are interested, however, in finding the plane at

infinity without any extra given information. The first
step will be to get an approximation to the plane at
infinity. This will be done by considering the cheirality
of the images, in other words, by taking into account
the fact that the points must lie in front of the cameras
that view them.
The subject of cheirality of cameras was considered

in detail in [5]. It was shown in that paper that if
({Mi}, {xj}) is a projective reconstruction of a set
of image correspondences derived from a real scene,
then there exist constants ηj and εi equal to ±1, such
that εiηjMixj = (uij , v

i
j , w

i
j)
� where each wij > 0. It

should be noted that the equality sign here means ex-
act equality, and not equality up to a constant factor.
Given the reconstruction ({Mi}, {xj}) we may replace
Mi by εiMi and xj by ηjxj to obtain a reconstruction
such thatMixj = (uij, v

i
j , w

i
j)
� and each wij > 0. Sup-

pose that this has been done. Now ([5]) there exists a

matrix H =
(

βI 0
αv� α

)
with α, β = ±1 such that

Hxj = (x′j , y
′
j , z
′
j , s
′
j)
� with s′j > 0 for all j, and such

that MiH
−1 = (A′i | −A′iti) with detA′i > 0 for all i.

The conditions satisfied by the matrix H transform
into inequalities. In particular, s′j > 0 means that

α(v�1)xj > 0 (7)

for each point xj . The condition detA′i < 0 also gives
rise to a linear inequality as follows. Writing Mi =
(Ai | −Aiti) then MiH

−1 = (A′i | −A′it′i) where A′i =
βAi(I + tiv�). Then

detA′i = β detAi det(I + tiv�) = β(1+ ti�v) detAi .

Since Ai and ti are known this gives a linear inequality

β(1 + ti�v) detAi > 0 (8)

in the entries of v. These set of inequalities (7) and
(8) constraining the placement of the plane at infinity
are called the cheiral inequalities.
Naturally, we propose to solve the cheiral inequal-

ities using linear programming (LP). The four cases
corresponding to the choices of α and β must be con-
sidered. In order to obtain a single solution it is nec-
essary to define an appropriate goal function to opti-
mize. We choose to maximize the margin by which
the given inequalities are satisfied, since this should
correspond informally to a placement of the plane at
infinity at a maximum distance from the points and
the cameras. For this to make sense, the homogeneous
coordinate expression for xj = (xj , yj , zj, sj)� should
first be normalized so that ||xj || = 1. Now, we have a
set of inequalities of the form f i�v ≥ gi, where f i is
simply the vector of coefficients of the i-th equation.
We add an extra variable δ to obtain equations of the
form f i�v − δ ≥ gi. The LP problem is to maximize
δ subject to the given inequalities. If δ > 0 in the
optimum solution, then the original inequalities have
a solution, and this is the solution that we accept to
obtain v. Once v has been found by solving the LP
problem, the projective reconstruction is transformed
by the corresponding matrix H . The new reconstruc-
tion may be termed a quasi-affine reconstruction.
By solving this cheiral inequalities, we find a can-

didate value for v. By the method of Section 7 we can
now compute the corresponding value of K. This esti-
mate may then be refined using the method described
in Section 6. There is one flaw in this scheme, namely
that it may not be possible to find K corresponding to
the estimated v, because the matrix C, which should
equal KK�, is not positive definite. In this case, it
is necessary to select a different v. This may be done
by carrying out a random search over the convex re-
gion of 3-space defined by the cheirality inequalities.
In fact, a reasonable approach is to find several candi-
date vectors v and iterate from each of them, finally
selecting the best solution. This is what I have done
in practice.

9 Algorithm Outline

Since the details of the outline have been obscured
by the necessary mathematical analysis, the complete
algorithm for Euclidean reconstruction will now be
given. To understand the details of the steps of the al-
gorithm, the reader must refer to the relevant section
of the previous text.



1. Compute a projective reconstruction of the scene
(Section 5)

2. Compute a quasi-affine reconstruction of the
scene (Section 8)

3. Search for a quasi-affine reconstruction from
which the calibration matrixK may be computed
(Section 8)

(a) For a randomly selected set of vectors v
contained within the region determined by
the cheiral inequalities solve the equations
CBi

−� = BiC as described in Section 7 un-
til we find a v such that the solution C is
positive-definite.

(b) Determine K by Choleski factorization of
C = KK�.

4. Carry out LM iteration using the method of Sec-
tion 6 to find a Euclidean reconstruction.

5. Using the values ofK, Ri and xj that come out of
the previous step, do a complete LM iteration to
find the optimal solution minimizing the image-
coordinate error, using the method described in
Section 4.

Various comments are in order here. First of all,
some of the steps in this algorithm may not be nec-
essary. The second step (determination of a spe-
cific quasi-affine reconstruction) may not be necessary,
since the third step does a search for a modified quasi-
affine reconstruction. However, it is included, since it
provides a point of reference for the subsequent search.
The vector v found in the third step of the algorithm
should be small, so that the modified quasi-affine re-
construction is close to the original one. In fact, as
mentioned previously it is possible to use the cheiral
inequalities to give bounds on the individual entries in
the vector v. Finally, it has been found that the last
step of the algorithm, the final iteration is scarcely
necessary, and does not make a very large difference
to the solution. It commonly decreases the value of the
image coordinate error by no more that about 10%, at
least when there are many views. In addition, this last
step is relatively costly in terms of computation time.

10 Experimental Evaluation
Synthetic Data. Two experiments were carried
out with synthetic data – one with three views and one
with 15 views. With just three views (the minimum
possible) the algorithm’s performance was mediocre.
For RMS noise levels less than 0.5 pixels in each axial
direction in a (700 × 600 image), the focal length of

the camera was accurate within about 10%, but the
principal point was displaced by about 250 pixels.
For 15 views, however the algorithm performed ex-

tremely well. For an RMS noise level of 8 pixels in each
axial direction (a rather high value) the principal point
was located within 20 pixels and the two axial scaling
factors were accurate to within 2%. The RMS recon-
struction error was only 1.45cm for the scene consist-
ing of 50 random points in a 1m radius sphere. Even
for a noise level of 16 pixels the reconstruction error
was only 3.3cm, whereas for a noise level of 1 pixel
(a realistic value), the reconstruction was accurate to
within 1.6mm, and the focal lengths were accurate to
within 0.1 %.
More details of these experiments are given in [6].

Real Data. The algorithm was also evaluated on
a set of image coordinate correspondences kindly sup-
plied by Boubakeur Boufama and Roger Mohr. The
object in question was a wooden house, for which 9
views were used and a total of 73 points were tracked.
This is the same image set as used in the paper [10].
Figure 1 shows one of the views of the house. The al-
gorithm converged very successfully on this data. The
measured residual RMS pixel error was found to be
0.6 pixels per point, which is about as good as can be
expected, since the image correspondences were not
supplied with sub-pixel accuracy. Reconstruction ac-
curacy, however, could not be tested, and may be sus-
pect. Figure 2 shows a reconstructed view of the set of
73 points looking directly down the edge of the house.
Clearly visible is the corner of the house, showing a
right-angled corner. This gives evidence for the suc-
cess of Euclidean reconstruction, since angles are a
Euclidean attribute of the scene.

11 Conclusions

The experience gained with the implementation of
this algorithm shows that special care is needed in
camera calibration using only image correspondences
in multiple views. Nevertheless, a multi-step approach
to reconstruction, proceeding via a preliminary pro-
jective reconstruction can give good results. If only
3 views are given, then the performance of the algo-
rithm is not entirely satisfactory, mainly because the
problem is inherently unstable. For larger numbers of
views, however, the algorithm works well. This sug-
gests that it may be successfully applied to video se-
quences taken with a moving camera, or of a moving
object.



Figure 1: One of the views of wooden houses

Figure 2: View of reconstructed point set
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