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Abstract

Modelling the push broom sensors commonly used in satellite imagery is quite
difficult and computationally intensive due to the complicated motion of the
orbiting satellite with respect to the rotating earth. In addition, the mathemat-
ical model is quite complex, involving orbital dynamics, and hence is difficult
to analyze. In this paper, a simplified model of a pushbroom sensor (the linear
pushbroom model) is introduced. It has the advantage of computational sim-
plicity while at the same time giving very accurate results compared with the
full orbiting pushbroom model.

Methods are given for solving the major standard photogrammetric problems
for the linear pushbroom sensor. Simple non-iterative solutions are given for
the following problems : computation of the model parameters from ground-
control points; determination of relative model parameters from image corre-
spondences between two images; scene reconstruction given image correspon-
dences and ground-control points.

In addition, the linear pushbroom model leads to theoretical insights that will
be approximately valid for the full model as well. The epipolar geometry of
linear pushbroom cameras in investigated and shown to be totally different from
that of a perspective camera. Nevertheless, a matrix analogous to the essential
matrix of perspective cameras is shown to exist for linear pushbroom sensors.
From this it is shown that a scene is determined up to an affine transformation
from two views with linear pushbroom cameras.

Keywords : pushbroom sensor, satellite image, essential matrix photogram-
metry, camera model
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1 Real Pushbroom Sensors

Pushbroom sensors are commonly used in satellite cameras, notably the SPOT
satellite for the generation of 2-D images of the earth’s surface. Fig 1 shows
the idea behind a pushbroom sensor. In general terms, a pushbroom camera
consists of an optical system projecting an image onto a linear array of sensors,
typically a CCD array. At any time only those points are imaged that lie in
the plane defined by the optical center and the line containing the sensor array.
This plane will be called the instantaneous view plane or simply view plane.
The pushbroom sensor is mounted on a moving platform, usually a satellite
and as the platform moves, the view plane sweeps out a region of space. At
regular intervals of time 1-dimensional images of the view plane are captured.
The ensemble of these 1-dimensional images constitutes a 2-dimensional image.
For a SPOT satellite, the linear array of sensors consists of 6000 pixel array
of electronic sensors covering an angle of 4.2 degrees. In 9 seconds a total of
6000 line images are captured. Hence a 6000× 6000 pixel image is captured in
9 seconds. Such an image covers a square with side approximately 60 Km on
the ground.

The task of modelling a SPOT satellite image exactly is somewhat complex and
several factors must be taken into account.

• By Kepler’s Laws, the satellite is moving in an elliptical orbit with the
center of the earth at one of the foci of the ellipse. The speed is not
constant, but varies according to the position of the satellite in its orbit.

• The earth is rotating with respect to the plane of the satellite orbit, so the
motion of the satellite with respect to the earth’s surface is quite complex.

• The satellite is slowly rotating so that it is approximately fixed with re-
spect to an orthogonal coordinate frame defined as follows : the z-axis
points straight down; the x-axis lies in the plane defined by the satellite
velocity vector and the z axis; the y-axis is perpendicular to the x and z
axes. This coordinate frame will be called the local orbital frame. During
one orbit, the local orbital frame undergoes a complete revolution about
its y axis.

• The orientation of the satellite undergoes slight variations with respect to
the local orbital frame.

• The orientation of the view plane with respect to the satellite may not be
known.

Some of the parameters of the satellite motion depend on fixed physical and
astronomical constants (for example, gravitational constant, mass of the earth,
rotational period of the earth). Other parameters such as the major and minor
axes and orientation of the satellite orbit are provided as ephemeris data with
most images. In addition, the fluctuations of the satellite orientation with re-
spect to the local orbital frame are provided as is also the orientation of the view
plane. Nevertheless, it has proven necessary for the sake of greater accuracy to
refine the ephemeris data by the use of ground-control points.
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Even if the orbit of the satellite is known exactly, the task of finding the image
coordinates of a point in space is relatively complex. There is no closed-form
expression determining the time when the orbiting satellite will pass through a
given point in its orbit (time to perigee) – it is necessary to use an approxima-
tion. Furthermore the task of determining at what time instant a given ground
point will be imaged must be solved by an iterative procedure, such as New-
ton’s method. This means that exact computation of the image produced by a
pushbroom sensor is time consuming.

In this paper, a linear approximation to the pushbroom model is introduced.
This new model very greatly simplifies the computations involved in working
with pushbroom images. The linear pushbroom model is defined and discussed
in section 2. In subsequent sections, many of the standard photogrammet-
ric problems associated with parameter determination are solved for the linear
pushbroom model. All the algorithms discussed are non-iterative, relatively sim-
ple, very fast, and do not rely on any extraneous information. This contrasts
with parameter determination for the full pushbroom model, which is slow and
requires knowledge of orbital and ephemeris parameters. In a final section, the
accuracy of the linear pushbroom model is discussed, and the results of some
of the algorithms described here are given. It turns out that for SPOT images
of size 6000× 6000 pixels covering 4.2 degrees, the linear and full models agree
within less than half a pixel. This corresponds to a difference of about 6× 10−6

radians, or about 5 metres on the ground.

Apart from allowing computational efficiency, the linear pushbroom model pro-
vides a basis for the mathematical analysis of pushbroom images. The full
pushbroom model is somewhat intractable as far as analysis is concerned. On
the other hand, the agreement between the full pushbroom model and the lin-
ear pushbroom model is so close that results of analyzing the linear pushbroom
model will be closely applicable to the full model as well. As an example of the
theoretical and practical gains achieved by studying the linear pushbroom model
is Theorem 5.3 of this paper, which shows that two linear pushbroom views of
a generic scene determine the scene up to an affine transformation. This has
the practical consequence that affine invariants of a scene may be computed
from two pushbroom views. A similar result applies to perspective views2, as
was shown in [1, 6]. It is hoped that the linear pushbroom model may provide
the basis for the development of further image understanding algorithms in the
same way that the pinhole camera model has given rise to a wealth of theory
and algorithms.

2 Linear Pushbroom Sensors

In order to simplify the pushbroom camera model to facilitate computation and
to provide a basis for theoretical investigation of the pushbroom model, certain
simplifying assumptions can be made, as follows.

• The platform is moving in a straight line at constant velocity with respect
2In the case of perspective (pinhole) images, the scene is determined up to projectivity

from two views
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to the world.

• The orientation of the satellite, and hence the view plane, is constant.

The first assumption is that during the time of acquisition of one image the
variations in velocity of the satellite in its orbit are negligible. In addition,
the motion of the earth’s surface can be included in the motion of satellite,
the composite motion being approximately rectilinear. The second assumption
is that the rotation of the local orbital frame as well as the fluctuations of
orientation with respect to this frame can be ignored. To what extent these
assumptions are justified will be explored in a section 8.

We now describe our model of a pushbroom camera in mathematical terms.
This simple pushbroom model will be called a linear pushbroom camera. The
camera is modelled as a pin-hole camera moving along a linear trajectory in
space with constant velocity and fixed orientation. Furthermore, the camera is
constrained so that at any moment in time it images only points lying in one
plane, called the view plane, passing through the center of the camera. Thus, at
any moment of time, a 2-dimensional projection of the view plane onto an image
line takes place. The orientation of the view plane is fixed, and it is assumed
that the motion of the camera does not lie in the view plane. Consequently,
the view plane sweeps out the whole of space as time varies between −∞ and
∞. The image of an arbitrary point x in space is described by two coordinates.
The first coordinate u represents the time when the point x is imaged (that is,
lies in the view plane) and the second coordinate v represents the projection of
the point on the image line.

We consider an orthogonal coordinate frame attached to the moving camera as
follows. The origin of the coordinate system is the center of projection. The y
axis lies in the view-plane parallel with the focal plane (in this case, the linear
sensor array). The z axis lies in the view plane perpendicular to the y axis and
directed so that the visible points have positive z coordinate. The x coordinate
is perpendicular to the view plane such that x, y, and z axes form a right-
handed coordinate frame. The ambiguity of orientation of the y axis in the
above description can be resolved by requiring that the motion of the camera
has a positive x component.

First of all, we consider two dimensional projection. If the coordinates of a
point are (0, y, z) with respect to the camera frame, then the coordinate of this
point in the 1-dimensional projection will be v = fy/z+ pv where f is the focal
length (or magnification) of the camera and pv is the principal point offset in
the v direction. This equation may be written in the form

(
wv
w

)
=
(

f pv
0 1

)(
y
z

)
(1)

where w is a scale factor (actually equal to z).

Now for convenience, instead of considering a stationary world and a moving
camera, it will be assumed that the camera is fixed and that the world is moving.
A point in space will be represented as x(t) = (x(t), y(t), z(t))� where t denotes
time. Let the velocity vector of the points with respect to the camera frame
be −V = −(Vx, Vy, Vz)�. The minus sign is chosen so that the velocity of the
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camera with respect to the world is V. Suppose that a moving point in space
crosses the view plane at time tim at position (0, yim, zim)�. In the 2-dimensional
pushbroom image, this point will be imaged at location (u, v) where u = tim
and v may be expressed using (1). This may be expressed in an equation

 u
wv
w


 =


 1 0 0

0 f pv
0 0 1




 tim

yim

zim


 (2)

Since all points are moving with the same velocity, we may write

x(t) = x0 − tV = (x0, y0, z0)� − t(Vx, Vy, Vz) . (3)

Since the view plane is the plane x = 0, the time t when the point x crosses the
view plane is given by t = x0/Vx. At that moment, the point will be at position

(0, yim, zim)� = (0, y0 − x0Vy/Vx, z0 − x0Vz/Vx)� .

We may write this as
 tim

yim

zim


 =


 1/Vx 0 0
−Vy/Vx 1 0
−Vz/Vx 0 1




 x0

y0

z0


 (4)

Combining this with (2) gives the equation
 u

wv
w


 =


 1 0 0

0 f pv
0 0 1




 1/Vx 0 0
−Vy/Vx 1 0
−Vz/Vx 0 1




 x0

y0

z0


 (5)

Here, (x0, y0, z0)� are the coordinates of the point x in terms of the camera
frame at time t = 0. Normally, however, the coordinates of a point are known
not in terms of the camera-based coordinate system, but rather in terms of some
fixed external orthogonal coordinate system. In particular, let the coordinates
of the point in such a coordinate system be (x, y, z)�. Since both coordinate
frames are orthogonal, the coordinates are related via a transformation

(x0, y0, z0)� = R
(
(x, y, z)� − (tx, ty, tz)�

)
= (R | −Rt)(x, y, z, 1)� (6)

where t = (tx, ty, tz)� is the location of the camera at time t = 0 in the external
coordinate frame, and R is a rotation matrix.

Finally, putting this together with (5) leads to


 u

wv
w


 =


 1 0 0

0 f pv
0 0 1




 1/Vx 0 0
−Vy/Vx 1 0
−Vz/Vx 0 1


 (R | −Rt)




x
y
z
1




= M(x, y, z, 1)� (7)

Equation (7) should be compared with the basic equation describing pinhole, or
perspective cameras, namely (wu,wv,w)� = M(x, y, z, 1)� where (x, y, z)� are
the coordinates of a world point, (u, v)� are the coordinates of the corresponding
image point and w is a scale factor. It may be seen that a linear pushbroom
image may be thought of as a projective image in one direction (the v direction)
and an orthographic image in the other direction (the u direction).
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3 Parameter Retrieval

It may be seen that the last two rows of matrix M may be multiplied by a
constant without affecting the relationship between world point coordinates
(x, y, z) and image coordinates (u, v) expressed by (7). This means that the
3×4 matrix M contains only 11 degrees of freedom. On the other hand, it may
be verified that the formation of a linear pushbroom image is also described by
11 parameters, namely the position (3) and orientation (3) of the camera at
time t=0, the velocity of the camera (3) and the focal length and v-offset (2).
It will next be shown how the linear pushbroom parameters may be computed
given the matrix M . This comes down to finding a factorization of M of the
kind given in (7). The corresponding problem for pinhole cameras has been
solved by Ganapathy ([3]) and Strat ([14]).

First of all we determine the position of the camera at time t = 0, referred to
subsequently as the initial position of the camera. Multiplying out the product
(7) it may be seen that M is of the form (K | −Kt) for a non-singular 3 × 3
matrix K. Therefore, it is easy to solve for t by solving the linear equations
Kt = −c4 where c4 is the last column of M , and K is the left-hand 3×3 block.

Next, we consider the matrix K. According to (7), and bearing in mind that
the two bottom rows of K may be multiplied by a constant factor k, matrix K
is of the form

K =


 1/Vx 0 0
−k(fVy/Vx + pvVz/Vx) kf kpv
−kVz/Vx 0 k


R . (8)

where R is a rotation matrix. In order to find this factorization, we may multiply
K on the right by a sequence of rotation matrices to reduce it to the form of
the left hand factor in (8). The necessary rotations will be successive Givens
rotations about the z, y and x axes with angles chosen to eliminate the (1,2),
(1,3) and (3,2) entries of K. In this way, we find a factorization of K as a
product K = LR where R is a rotation matrix and L is a matrix having zeros in
the required positions. It is not hard to verify that such a factorization is unique.
Equating L with the left hand matrix in (8) it is seen that the parameters f ,
pv, Vx, Vy and Vz may easily be read from the matrix L. In summary

Proposition 3.1. The 11 parameters of a linear pushbroom camera are uniquely
determined and may be computed from the 3× 4 camera matrix.

4 Determination of the Camera Matrix

In this section it will be shown how a linear pushbroom camera matrix may be
computed given a set of ground control points. The method is an adaptation
of the method of Roberts or Sutherland ([15]) used for the pinhole cameras. In
particular, denoting by m1

�, m2
� and m3

� the three rows of the matrix M
and x = (x, y, z, 1)� a ground control point, (7) may be written in the form of
three equations

u = m1
�x
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wv = m2
�x (9)

w = m3
�x .

The unknown factor w can be eliminated leading to two equations

u = m1
�x

vm3
�x = m2

�x (10)

Supposing that the world coordinates (x, y, z) and image coordinates (u, v) are
known, equations (10) are a set of linear equations in the unknown entries of the
matrix M . Given sufficient ground control points we can solve for the matrix
M . Note that the entries in the row m1

� rely only on the u coordinates of the
ground control points. Given four ground control points, we can solve for the
first row of M . Similarly, the second and third rows of M depend only on the v
coordinates of the matrix. Given five ground control points we can solve for the
second and third rows of M up to the undetermined factor. With more ground
control points, linear least squares solutions methods can be used to determine
the best solution.

5 Relative Camera Model Determination

The problem of determining the relative camera placement of two or more pin-
hole cameras and consequent determination of pinhole cameras has been exten-
sively considered. Most relevant to the present paper is the work of Longuet-
Higgins ([8]) who defined the so-called essential matrix Q, which may be deter-
mined from eight or more correspondence points between two images by linear
techniques. Other non-linear techniques for determining Q, more stable in the
presence of noise, have been published ([19, 18, 9, 16]). Those techniques relate
especially to so called “calibrated cameras”, for which the internal parameters
are known. A paper that deals with the determination of the essential matrix for
uncalibrated cameras is [2]. As for the determination of the world coordinates
of points see from two pinhole cameras, it has been shown ([1, 7]) that for un-
calibrated cameras the position of world points is determined up to an unknown
projective transform by their images in two separate views. A similar result for
linear pushbroom cameras will be shown here, except that the world points are
determined up to affine transformation, rather that projective transformation.
The proof depends on a definition of a matrix Q for linear pushbroom cameras
analogous to the essential matrix for pinhole cameras.

5.1 Definition of the Essential Matrix

Consider a point x = (x, y, z)� in space as viewed by two linear pushbroom
cameras with camera matrices M and M ′. Let the images of the two points be
u = (u, v)� and u′ = (u′, v′)�. This gives a pair of equations

(u,wv, w)� = M(x, y, z, 1)�

(u′, w′v′, w′)� = M ′(x, y, z, 1)� (11)
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This pair of equations may be written in a different form as


m11 m12 m13 m14 − u 0 0
m21 m22 m23 m24 v 0
m31 m32 m33 m34 1 0
m′11 m′12 m′13 m′14 − u′ 0 0
m′21 m′22 m′23 m′24 0 v′

m′31 m′32 m′33 m′34 0 1







x
y
z
1
w
w′




= 0 (12)

The 6×6 matrix in (12) will be denoted A(M,M ′). Considered as a set of linear
equations in the variables x, y, z, w and w′ and constant 1, this is a set of six
homogeneous equations in six unknowns (imagining 1 to be an unknown). If this
system is to have a solution, then detA(M,M ′) = 0. This condition gives rise
to a cubic equation p(u, v, u′, v′) = 0 where the coefficients of p are determined
by the entries of M and M ′. The polynomial p will be called the essential
polynomial corresponding to the two cameras. Because of the particular form
of p, there exists a 4× 4 matrix Q such that

(u′, u′v′, v′, 1)Q(u, uv, v, 1) = 0 (13)

The matrix Q will be called the essential matrix corresponding to the linear
pushbroom camera pair {M,M ′}. Matrix Q is just a convenient way to display
the coefficients of the essential polynomial. Since the entries of Q depend only
on the two camera matrices, M and M ′, equation (13) must be satisfied by any
pair of corresponding image points (u, v) and (u′, v′).

It is seen that if either M or M ′ is replaced by an equivalent matrix by multiply-
ing the last two rows by a constant c, then the effect is to multiply detA(M,M ′),
and hence the fundamental polynomial p and matrix Q by the same constant c
(not c2 as may appear at first sight). Consequently, two essential polynomial or
matrices that differ by a constant non-zero factor will be considered equivalent.
The same basic proof method used above may be used to prove the existence of
the essential matrix for pinhole cameras.

A closer examination of the matrix A(M,M ′) in (12) reveals that p = detA(M,M ′)
contains no terms in uu′, uvu′, uu′v′ or uvu′v′. In other words, the top left hand
2× 2 submatrix of Q is zero. Since Q is defined only up to a constant factor, it
contains no more than 11 degrees of freedom. Given a set of 11 or more image-
to-image correspondences the matrix Q can be determined by the solution of a
set of linear equations just as with pinhole cameras.

5.2 Extraction of Relative Cameras from Q

Longuet-Higgins ([8]) showed that for calibrated cameras the relative position
and orientation of the two cameras may be deduced from the essential matrix.
This result was extended to uncalibrated cameras in [7] where it was shown that
if M1 and M ′1 are one pair of cameras corresponding to an essential matrix Q
and if M2 and M ′2 are another pair corresponding to the same essential matrix,
then there is a 4 × 4 matrix H such that M1 = M2H and M ′1 = M ′2H . This
result will be shown to hold for linear pushbroom cameras with the restriction
that H must be a matrix representing an affine transformation, that is, the last
row of H is (0, 0, 0, 1).
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First of all, it will be shown that M and M ′ may be multiplied by an arbitrary
affine transformation matrix without changing the essential matrix. Let H be
a 4× 4 affine transformtion matrix and let Ĥ be the 6× 6 matrix

Ĥ =
(

H 0
0 I

)

where I is the 2×2 identity matrix. If A is the matrix in (12) it may be verified
with a little work that A(M,M ′)Ĥ = A(MH,M ′H), where the assumption
that the last row of H is (0, 0, 0, 1) is necessary. Therefore, detA(MH,M ′H) =
detA(M,M ′) detH and so the fundamental polynomials corresponding to pairs
{M,M ′} and {MH,MH ′} differ by a constant factor and so are equivalent.

Next we will consider to what extent the two camera matrices M and M ′ can
be determined from the essential matrix. As has just been demonstrated, they
may be multiplied by an arbitrary 4 × 4 affine matrix H . Therefore, we may
choose to set the matrix M ′ to a particularly simple form (I | 0) where I is
an identity matrix, by multiplication of both M and M ′ by the affine matrix(

M ′−1 t
0 1

)
. It will be seen that with the assumption that M ′ = (I | 0), the

other matrix M is almost uniquely determined by the essential matrix.

Under the assumption that M ′ = (I | 0), the essential matrix may be computed
explicitly in terms of the entries of M . Using Mathematica([10]) or by hand it
may be computed that.

Q = (qij) =




0 0 m11m33 −m13m31 m13m21 −m11m23

0 0 m11m32 −m12m31 m12m21 −m11m22

m22 −m32 m14m32 −m12m34 m12m24 −m14m22

m23 −m33 m14m33 −m13m34 m13m24 −m14m23


 (14)

Given the entries qij of Q the question is whether it is possible to retrieve the
values of the entries mij . This involves the solution of a set of 12 equations in
the 12 unknown values mij . The four entries m22, m23, m32 and m33 may be
immediately obtained from the bottom left hand block of Q. In particular,

m22 = q31

m23 = q41

m32 = −q32

m33 = −q42

(15)

Retrieval of the remaining entries is more tricky but may be accomplished as
follows. The four non-zero entries in the first row can be rewritten in the
following form (using (15) to substitute for m22, m23, m32 and m33).


−q42 0 −m13 −q13

−q41 m13 0 −q14

−q32 0 −m12 −q23

−q31 m12 0 −q24






m11

m21

m31

1


 = 0 . (16)

Similarly, the bottom right hand 2× 2 block gives a set of equations

−q42 0 −m13 −q43

−q41 m13 0 −q44

−q32 0 −m12 −q33

−q31 m12 0 −q34






m14

m24

m34

1


 = 0 . (17)
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Immediately it can be seen that if we have a solution mij , then a new solution
may be obtained by multiplying m12 and m13 by any non-zero constant c and
dividing m21, m31, m24 and m34 by the same constant c. In other words, unless
m13 = 0, which may easily be checked, we may assume that m13 = 1. From the
assumption of a solution to (16) and (17) may be deduced that 4× 4 matrices
in (16) and (17) must both have zero determinant. With m13 = 1, each of
(16) and (17) gives a quadratic equation in m12. In order for a solution to
exist for the sought matrix M , these two quadratics must have a common root.
This condition is a necessary condition for a matrix to be an essential matrix.
Rearranging the matrices slightly, writing λ instead of m12 and expressing the
existence of a common root in terms of the resultant leads to the following
statement.

Theorem 5.2. If a matrix 4× 4 matrix Q = (qij) is an essential matrix, then

1. q11 = q12 = q21 = q22 = 0

2. the resultant of the polynomials

det




λ 0 q31 q24

0 λ q32 q23

1 0 q41 q14

0 1 q42 q13


 (18)

and

det




λ 0 q31 q34

0 λ q32 q33

1 0 q41 q44

0 1 q42 q43


 (19)

vanishes.

3. The discriminants of the polynomials (18) and (19) are both non-negative.

If the two quadratics have a common root, then this common root will be the
value of m12. The linear equations (16) may then be solved for m11, m21 and
m31. Similarly, equations (17) may be solved for m14, m24 and m34. Unless
q31q42−q41q32 vanishes, the first three columns of the matrices (18) and (19) will
be linearly independent and the solutions for the mij will exist and be unique.

To recapitulate, if m12 is a common root of the two quadratic polynomials
(18) and (19), m13 is chosen to equal 1, and q31q42 − q41q32 �= 0 then the
matrix M = (mij) may be uniquely determined by the solution of a set of linear
equations. Relaxing the condition m13 = 1, leads to a family of solutions of the
form 

 m11 m12c m13c m14

m21/c m22 m23 m24/c
m31/c m32 m33 m34/c


 (20)

However, up to multiplication by the diagonal affine matrix diag(1, 1/c, 1/c, 1)
all such matrices are equivalent. Furthermore, the matrix M ′ = (I | 0) is
mapped unto an equivalent matrix by multiplication by diag(1, 1/c, 1/c, 1). This
shows that once m12 is determined, the matrix pair {M,M ′} may be computed
uniquely up to affine equivalence.
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Finally, we consider the possibility that the equations (18) and (19) have two
common roots. This can only occur if the coefficients of Q satisfy certain re-
strictive identities that may be deduced from (18) and (19). This allows us to
state

Theorem 5.3. Given a 4× 4 matrix Q satisfying the conditions of Proposition
5.2, the pair of camera matrices {M,M ′} corresponding to Q is uniquely de-
termined up to affine equivalence, unless Q lies in a lower dimensional critical
set.

5.3 More about the Critical Set

It is not the purpose here to undertake a complete investigation of the critical
set. As previously stated, conditions under which there are two common roots
to (18) and (19) leading to two distinct solutions for M may be deduced from
the form of (18) and (19). This investigation will give a condition in terms of
the entries of Q. More enlightening would be a conditions in terms of the entries
of the matrix M for the solution to be ambiguous. This will be investigated
next.

There will be ambiguous solutions to the problem of estimating the matrix M
if the polynomials (18) and (19) have two common roots. Suppose that the
matrix Q is of the form given in (14). Then we may compute the two quadratic
polynomials from (18) and (19). The results3 are

p1(λ) = (m13λ−m12)(m22m31 −m21m32 − λ(m23m31 −m21m33))
p2(λ) = (m13λ−m12)(m22m34 −m24m32 − λ(m23m34 −m24m33))

As expected, p1(λ) and p2(λ) have a common root λ = m12/m13. The second
root of p1 and p2 is the same if and only if two linear polynomials (m22m31 −
m21m32−λ(m23m31−m21m33)) and (m22m34−m24m32−λ(m23m34−m24m33))
have the same root. This is so if and only if

(m21m34 −m24m31)(m22m33 −m23m32) = 0 (21)

Since the right hand side of this expression is a product of two factors, there
are two separate conditions under which an ambiguous solution exists. The first
condition (m21m34 −m24m31) = 0 corresponds geometrically to the situation
where the trajectories of the two cameras meet in space. This may be seen as
follows. A point x = (x, y, z)� lies on the trajectory of the centre of projection
of a camera with matrix M if and only if M(x, y, z, 1)� = (u, 0, 0)�, for under
these circumstances the v coordinate of the image is undefined. In particular,
the points that lie on the trajectory of the camera M ′ with matrix (I | 0) are
of the form (x, 0, 0)�. Such a point will also lie on the trajectory of the camera
with matrix M if and only if xm21 + m24 = xm31 + m34 = 0 for some x – that
is, if and only if m21m34 −m24m31 = 0.

The geometrical meaning of the other condition has not been determined so
far.4

3These computations were carried out using Mathematica ([10])
4The condition seems to be that trajectory of the second camera lies parallel to the view

plane of the other camera, but this needs to be checked.
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6 Scene Reconstruction

Once two camera matrices have been determined, the position of the points xi
in space may be determined by solving (12). This will determine the position
of the points in space up to an affine transformation of space.

In the case where both point matches between images and ground-control points
are given, the scene may be reconstructed by using the matched points to deter-
mine the scene up to affine transformation, and then using the ground-control
points to determine the absolute placement of the scene. If the ground control
points are visible in both images, then it is easy to find the correct affine trans-
formation. This is done by determining the position of the ground control points
in the reconstructed image, and then determining the 3-D affine transformation
that will take these points on to the absolute ground-control locations.

If ground-control points are available that are visible in one image only, it is
still possible to use them to determine the absolute location of the reconstructed
point set. A method for doing this is given in [7] and will not be repeated here.

7 Computation of the Essential Matrix

The essential matrix may be computed from image correspondences in much
the same way as Longuet-Higgins computes the perspective essential matrix
([8]). Given 11 or more point-to-point correspondences between a pair of linear
pushbroom images, equation (13) can be used to solve for the 12 non-zero entries
of Q, up to multiplication by an unknown scale. Unfortunately, in the presence
of noise, the solution found in this way for Q will not satisfy the second condition
of (5.2) exactly. Consequently, when solving for the matrix M , one will find
that the two polynomials (18) and (19) do not have a common root. Various
strategies are possible at this stage.

One strategy is as follows. Consider each of the two roots m12 of (18) and with
each such value of m12 proceed as follows : Substitute each such m12 in turn
into the equation (17). giving a set of four equations in three unknowns; solve
(17) to find the least-squares solution for m14, m24 and m34. Finally accept the
root of (18) that leads to the best least-squares solution. One could do this the
other way round as well starting by considering the roots of (19) and accepting
the best of the four solutions found. A different strategy is to choose m12 to be
the number that is closest to being a root of each of (18) and (19). This is the
algorithm that we have implemented, with good results so far.

To obtain the best results, however, it is probably necessary to take the condi-
tions of Proposition 5.2 into account explicitly and compute an essential matrix
satisfying these conditions using explicit assumptions about the source of error
to formulate a cost function to be minimized. This has been shown to be the
best approach for perspective cameras ([9, 16]).

Let us assume that the error is in the specification of the image coordinates
(ui, vi)� and (u′i, v

′
i)
� in the two images, and that the errors in coordinates are

independent Gaussian variables. For simplicity we assume that the variances of
individual pixels are the same, though this assumption is not necessary. In this
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case, the correct minimization problem is to find a matrix Q and coordinates
(ûi, v̂i)� and (û′i, v̂

′
i)
� such that Q is of the form specified by Proposition 5.2, the

epipolar constraint (û′i, û
′
iv̂
′
i, v̂
′
i, 1)

�Q(ûi, ûiv̂i, v̂i, 1) = 0 is satisfied for all i and
the difference

∑
i(ui− ûi)2 +(vi− v̂i)2 +(u′i− û′i)

2 +(v′i− v̂′i)
2 is minimized. This

problem can be solved using a standard photogrammetric resection approach.
Instead of solving for Q, we solve for the camera matrix M and the world point
locations xi. We assume without loss of generality that M ′ = (I | 0). Given
an estimate for M and each x̂i, image coordinates (ûi, v̂i)� and (û′i, v̂

′
i)
� are

computed from the basic formula (7) and the cost function to be minimized
is the squared pixel error. An initial estimate of the camera matrix M may
be computed using the straight-forward linear approach given above. By non-
linear least squared iteration a final estimate for M and each xi is found. The
essential matrix Q may be computed from the final estimate of M . Although
this method has not been tested on pushbroom cameras, it has proven successful
with perspective cameras.

The problem with the above method is that a large non-linear problem must be
solved. A comparison of this method and a different, fast and almost optimal
method that uses the correlation matrix of Q may form the subject of another
paper.

The question of numerical stability is important in implementing algorithms us-
ing the linear pushbroom model. In particular, it is easy to encounter situations
in which the determination of the linear pushbroom model parameters is very
badly conditioned. In particular, if a set of ground-control points lie in a plane
or are very close to being planar, then it is easily seen (just as with perspective
cameras) that the determination of the model parameters is ambiguous. We
have developed techniques (not described here) for handling some cases of in-
stability, but care is still necessary. The algorithms described in this paper can
not be used in cases where the object set lies in a plane.

8 Experimental Results

Several experiments were conducted to measure the accuracy of the linear push-
broom model.

In the first experiment, the accuracy of the linear pushbroom model was com-
pared with the full model. In order to make this comparison, a full SPOT
model was used. The details of this model are given in [4]. The full model takes
account of orbital dynamics, provided ephemeris data and attitude drift data
to model the imaging process as accurately as possible. A different model is
discussed in [17].

Using the full pushbroom model parametrized to an actual orbit and ephemeris
data, and an artificial terrain model, a set of ground to image correspondences
were computed, one such ground control point being computed every 120 pixels.
This gave a 51×51 grid of ground-control points covering approximately 6000×
6000 pixels. Next, these ground control points were used to instantiate the
linear pushbroom model using the algorithm of section 4. In this experiment,
the locations of ground points were fixed for both the full and linear pushbroom
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models. The difference was measured between the corresponding image points
as computed by each of the models. The absolute value of error as it varies
across the image is shown in Fig 2. The maximum error was less than 0.4 pixels
with an RMS error of 0.16 pixels. As can be seen, for a complete SPOT image,
the error incurred by using the linear pushbroom model is less than half a pixel,
and much less over most of the image.

To test whether a perspective camera model could do as well, the same set of
ground control points were modelled using a perspective camera model. The
result was an RMS error of 16.8 pixels with a maximum pixel error of over 45
pixels. Fig 3 shows the error distribution across the image.

Next, the linear pushbroom model was compared with the full model on a pair of
real images with matched points computed using a stereo matching algorithm.
A stereo pair of SPOT images of the Malibu region, centered approximately at
34 deg 5 min north, and 118 deg 32 min west (images with (J, K) = (541, 281)
and (541, 281) in SPOT’s grid reference system [13]) were used. We estimated
the camera models for these two images using a set of 25 ground control points,
visible in both images, picked form USGS maps and several automatically gen-
erated image to image correspondences found using STEREOSYS ([5])

Two performance metrics were computed. The accuracy with which the cam-
era model maps the ground points to their corresponding image points is im-
portant. The RMS difference between the known image coordinates and the
image coordinates computed using the derived camera models was measured.
An application-specific metric, viz. the accuracy of the terrain elevation model
generated from a stereo pair, was also measured.

Once again, the data was modelled using a perspective camera model, a linear
pushbroom model and a full pushbroom model.

In order to make the results directly comparable, the same ground control points
and image to image correspondences were used for camera model computations
in all three experiments. (The number of tie or match points in computation of
the pin-hole camera is an exception where 511 tie-points, instead of 100, were
provided in an attempt to boost its accuracy.) In addition, the terrain model
was also generated using the same set of match points.

The results of these three experiments are tabulated in Table 1. The first and
the second row list the number of ground control points and the number of ties
points used in the camera model computation. The third row gives the number
of match points for which a point on the terrain was generated. The camera
model accuracy, i.e., accuracy with which a ground point (x, y, z)� is mapped
into its corresponding image point, listed in the fourth row. Finally, the RMS
difference between the generated terrain and the ground truth (DMA DTED
data) is given in the fifth row.

The attempt to model SPOT’s HRV cameras by perspective cameras yielded
camera models with a combined accuracy of about 11 pixels. This is a large
error because for a high platform such as a satellite, even a single pixel error can
translate into a discrepancy of tens of meter along the horizontal and vertical
dimensions (the exact amount depends on the pixel resolution and the look
angles). This is reflected in the accuracy of the generated terrain which is as
much as 380 meters off, on the average. Thus, as expected, a pin-hole camera
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Pin-hole Linear Push- Full SPOT
Model broom Model Model

Num. gc pts 25 25 25
Num. match pts 511 100 100
Num. terrain points 68,131 68,131 68,131
RMS error 11.13 pixels 0.80 pixels 0.73 pixels
Terrain accuracy 380.79m 35.67m 11.10m
Time ∼5 sec. ∼5 sec. > 20 min.

Table 1: A comparison of the three camera models.

is a poor approximation for pushbroom camera. The linear push, on the other
hand, is quite competitive with the detailed model, both in terms of camera
model accuracy, as well as the accuracy of the generated terrain.

The last entry on the fifth row (the 11.10m accuracy for the terrain generated
by the complex model) is a little misleading since generated terrain is more
accurate than the claimed accuracy of the ground-truth it is being compared
with. This figure is a statement about the accuracy of the ground-truth, instead
of the other way around. Figures 4 and 5 show the terrain generated by the
perspective and the full SPOT models, respectively. Fig 5 can be regarded as
the ground truth. In all these figures, the Pacific Ocean has been independently
set to have an elevation of 0. Also, since the area covered is rather large (about
60km×60km), the terrain relief has been considerably exaggerated compared to
the horizontal dimensions.

9 Epipolar Geometry

One of the most striking differences between linear pushbroom and perspective
cameras is the epipolar geometry. First of all there are no epipoles in the familiar
manner of perspective cameras, since the two pushbroom cameras are moving
with respect to each other. Neither is it true that epipolar lines are straight lines.
Consider a pair of matched point (u, v)� and (u′, v′)� in two images. According
to equation (13) these points satisfy (u′, u′v′, v′, 1)�Q(u, uv, v, 1) = 0. Now,
fixing (u, v)� and enquiring for the locus of all possible matched points (u′, v′)�,
and writing (α, β, γ, δ)� = Q(u, uv, v, 1)�, we see that αu′+βu′v′+γv′+δ = 0.
This is the equation of a hyperbola – epipolar loci are hyperbolas for linear
pushbroom cameras. The epipolar locus of a point is the projection in the second
image of a straight line emanating from the instantaneous centre of projection
of the first camera. In general, therefore, lines in space map to hyperbolas in
the image. Only one of the two branches of the hyperbola will be visible in the
image. The other branch will lie behind the camera.

Fig 6 shows the images of a set of lines in space as taken with a linear pushbroom
camera. The curvature of the lines is exaggerated by the wide field of view.
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Figure 1. Pushbroom satellite
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Figure 2. Error profile for linear pushbroom model
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Figure 3. Error profile for perspective model
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Figure 4. Terrain reconstructed from perspective model
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Figure 5. Terrain reconstructed from full model
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Figure 6. Epipolar lines
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