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Abstract: Several space-borne cameras use push-
broom scanning to acquire imagery. Traditionally, mod-
eling and analyzing these sensors has been computation-
ally intensive due to the motion of the orbiting satellite
with respect to the rotating earth, and the non-linearity
of the mathematical model involving orbital dynamics.
A new technique for mapping a 3-D point to its cor-
responding image point that leads to fast convergence
i1s described. Besides computational efficiency, experi-
mental results also confirm the accuracy of the model in
mapping 3-D points to their corresponding 2-D points.

1 Pushbroom Sensors

The pushbroom principle 1s commonly used in satellite
cameras for acquiring 2-D images of the Earth surface.
SPOT satellite’s HRV camera is a well-known example of
a pushbroom system [1]. In general terms, a pushbroom
camera consists of an optical system projecting an image
onto a linear array of sensors. At any time only those
points are imaged that lie in the plane defined by the
optical center and the line containing the sensor array.
This plane will be called the instantaneous view plane
or simply view plane (see [2] for details).

This optical system is mounted on the satellite and as
the satellite moves, the view plane sweeps out a region
of space. The sensor array, and hence the view plane,
is approximately perpendicular to the direction of mo-
tion. The magnitude of the charge accumulated by each
detector cell during some fixed interval, called the dwell
time, gives the value of the pixel at that location. Thus,
at regular intervals of time 1-D images of the view plane
are captured. The ensemble of these 1-D images consti-
tutes a 2-D image. It should be noted that one of the
image dimensions depends solely on the sensor motion.

It is well known that the standard photogrammetric bun-
dle adjustment typical of aerial imagery does not work
for satellite imagery [3, 2]. Even if one were to model the
ortho-perspective nature of the imagery, classical space
resectioning is unable to separate the correlation among
the unknown parameters. For accuracy, and in fact con-
vergence, a pushbroom camera model must explicitly
take into account the constraints imposed by: (1) the
Kepler’s Laws, (2) the rotation of the earth, and (3) the
constraints imposed by the ephemeris data.

For satellite cameras the task of finding the image co-
ordinates of a point in space 1s relatively complex and
computationally intensive because many of intermediate
steps force the use of approximate or iterative schemes.
For instance, there is no closed-form expression deter-
mining the angular position of an orbiting satellite given
its time of flight from any given point in its orbit (e.g.,
time of flight from perigee). Because of this, the ex-
act computation of the image produced by a pushbroom
sensor has traditionally been a time consuming task.

This paper describes a general methodology for estimat-
ing parameters of a pushbroom camera that alleviates
the problems mentioned above. A new technique for ef-
ficiently mapping a 3-D point to its corresponding 2-D
image coordinate is described. Despite the non-linearity
of the mathematical model, our scheme exhibits fast con-
vergence: in most cases we obtained the desired accuracy
in one or two iterative steps. Experimental results also
confirm the accuracy of the model in mapping 3-D points
to their corresponding 2-D points.

The model described here has been implemented for the
SPOT satellite’s HRV cameras. Even though some of the
terminology used refers specifically to SPOT, the model
is applicable to all pushbroom cameras. To that extent,
SPOT is just an example application.

The overall camera parameter estimation process can be
divided into two main tasks, a modeling task and an
optimization task.

Modeling Task. Before we can estimate the parame-
ters of a camera, we have to implement a software model
of the camera. This software model transforms a point in
the world coordinate system (given, for example, as [lat,
lon, elevation]) into a pixel location (u,v) of the same
point, in accordance with parameters and mechanisms
of the camera. A camera modeling routine essentially
mimics the operation of the camera as it transforms a
ground point into a pixel in the image.

Optimization Task. If a routine to transform any
3-D point (z,y,z) into its image coordinates (u,v) is
available, one can formulate the camera parameter es-
timation problem as a global optimization problem. In
this formulation, the parameters of the camera are the
unknown variables while the ground control points and
the ephemeris information collected by the on-board sys-
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Figure 1: The six orbital parameters.

tems provide inputs and constraints. The overall task 1s
to compute a set of camera parameters that minimize
the least-squared-error between the given and computed
pixel values for each ground control point while abiding
by all the orbital constraints.

The optimization method used in our implementation is
based partly on the well known Levenberg-Marquardt
(LM) parameter estimation algorithm [4]. Our exten-
sions to the basic LM algorithm include methods to
handling sparsity in the Jacobian matrix and its cus-
tomization for the camera parameter estimation prob-
lem. These implementation details are beyond the scope
of this paper.

2 Camera Parameters

All the parameters needed for modeling the camera have
a predetermined nominal value which is known prior to
the launch. For some parameters, since they are con-
tinuously monitored by the on-board systems, a more
accurate value is provided to the user as ephemeris and
other auxiliary information. Nevertheless, for the sake
of greater accuracy it has proven necessary to refine the
ephemeris data and estimate all the parameters simul-
taneously by solving the overall mapping problem using
ground-control points and orbital constraints. It is use-
ful to classify the camera parameters into three classes:
known parameters, independent parameters, and depen-
dent parameters.

Known Parameters. Constants for the planet around
which the satellite is rotating (typically Earth) are as-
sumed to be known a priori. These parameters include:
semi-major, semi-minor axes and the eccentricity of the
planet (which is assumed to be ellipsoidal with uniform
density), planet’s GM constant (gravitational constant
times mass), length of sidereal day, and the longitude of
the first descending node.

Independent Parameters. The exact position of a
satellite in its orbit is fully described by the following six
parameters (Fig. 1 and [5]): (1) semi-major axis of the
orbital ellipse a, (2) orbital eccentricity e, (3) inclination

Figure 2: The local orbital frame.

of orbital plane with respect to the equatorial plane 4, (4)
geocentric angle between the perigee and the ascending
node w, (5) longitude of the ascending node Asn, or the
descending node Apy, ), and (6) true anomaly f.

The first two parameters determine the elliptical shape
of the orbit. The third and fourth parameters fix this el-
lipse in space with respect to the equatorial plane. The
fifth parameter, Aan, (or, equivalently, Apy, ), registers
the k-th orbital track with the rotating earth. Because
of the rotation of earth, the equator crossing of the satel-
lite drifts westward by a fixed known amount with each
revolution. The true anomaly f denotes the angular po-
sition of the satellite from the perigee. In this list, this
is the only time dependent parameter; all others can be
assumed to be fixed for any given track of the satellite.

The above orbital parameters specify the position of the
camera platform. In order to specify the orientation or
the pose of the camera the following reference frames are
needed.

A Local Orbital Frame is defined at every point in the
orbit as follows (see Fig. 2). The origin of the frame is
the satellite’s center of mass; the yaw azis is the geocen-
tric vector pointing radially away from the Earth center;
the roll axzis 1s in the orbital plane perpendicular to the
yvaw axis, along the velocity vector; and pitch axis is per-
pendicular to both yaw and roll axes.

The Satellite Attitude Reference Frame is fixed
with the satellite. Nominally it is aligned with the local
orbital reference frame as follows: the X axis i1s along
the pitch axis, the Y axis is aligned with the roll axis
and the Z axis is aligned with the yaw axis. The angles
between the attitude frame and local orbital plane are
used to orient the satellite.

The complete orientation of the satellite 1s computed in
two parts: (1) the attitude or the look direction of each
pixel in the detector array within the satellite attitude
reference frame, and (2) the orientation of the attitude
reference frame with respect to the local orbital reference
frame.

First we specify the look direction of each detector ele-
ment. It is customary to specify the look direction by
two angles: U, and ¥, (Fig 3). ¥, represents the rota-
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tion that causes the satellite to look forward or backward
along the direction of flight; ¥, is the rotation perpendic-
ular to i1t. More precisely, the first angle ¥, is the angle
made by the orthogonal projection of the look direction
in the Y-Z plane with the negative Z axis of the satellite
attitude reference frame. If the camera is pointed to-
wards the nadir, this angle is zero; a non-zero ¥, makes
the satellite look forward or backward along the ground
track. Similarly, ¥, is the angle that the orthogonal pro-
jection of the look direction vector, projected in the X-Z
plane, makes with the negative Z axis. In nadir viewing,
W, is zero for the central pixel; it gradually increases for
detectors looking eastward, and decreases for detectors
looking westward (see [1]).

Given ¥, and ¥, , the unit vector along the look direc-
tion in the attitude reference frame is given by U =
[tan W, tan ¥, 1]/\/1 + tan® ¥, + tan?¥,. The look
direction of the pth pixel in the attitude reference frame
can be computed from that of the first and the Nth pixel
by interpolation using U, = (1 — J’\),;_ll)Ul + (JZ\),;_ll)UN,
where U7 and Uy are the look directions vectors for the
first and the N-th pixels.

The orientation of the satellite attitude reference frame
can be specified by three rotation angles, Rot X;, RotYj,
and RotZ;, of the attitude frame with respect to the
local orbital frame, for each row 7 in the image. Nomi-
nally, Rot X;, RotY;, and RotZ; are zero at every point in
the orbit. These parameters are continuously monitored
by the attitude control system and their rate of change
(instead of the actual value) is reported as a part of the
auxiliary information gathered during image acquisition.

d(RotX;) d(RotY;
We assume that (fh ), (C(l)t ),

able for each row, either directly, or through interpola-
tion. Under this assumption, the drift of the attitude
frame with respect to the local orbital plane can be com-
puted by integration if that for the first row of imagery
is known. This gives rise to three new independent vari-
ables RotX,, RotYy, and RotZy, the rotation angles for
the first row.

d(RotZ, .
and & gt ) are avail-

Besides the above parameters, other independent camera
parameters include (1) time from the perigee to the scene
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Figure 4: Parameters of an ellipse.

center, (2) the dwell time for the detectors (i.e. the time
between image lines), and (3) the image coordinates of
the center pixel.

Dependent Parameters. These parameters can ei-
ther be computed from the independent parameters or
are measured directly by the on-board systems. The
list includes such measurable and given parameters as
the ephemeris information (positions and velocities at
different points in the orbit), ground control points (i.e.,
associations between [lat, lon, elevation] and (u, v) in the
image), and rates of change of RotX;, RotY;, and RotZ;.
Dependent parameters are used to impose constraints on
the solution.

3 Tracking the Satellite

A satellite provides a stable and, more importantly, a
predictable platform as one can employ constraints dic-
tated by Kepler’s laws. This section details the proce-
dures for computing the angular position of a satellite
given its travel time from perigee and vice versa. The
various elliptical parameters are defined in Fig. 4 [5].

Elapsed Time from True Anomaly. The true
anomaly f can be converted into the eccentric anomaly
E using, cos F = é%%
of the orbit. A direct relationship exists between the
mean anomaly M and the eccentric anomaly F, viz.,
M = F — esin E. Thus, from Kepler’s second law, one
can compute the elapsed time as t = M/w. In this equa-
tion, the mean angular velocity w can be computed using
GM,

a3

where e i1s the eccentricity

where a 1s the semi-

Kepler’s third law: & =
major axis of the orbit, G is the universal gravitational
constant, and M, is the mass of the earth.

True Anomaly from Elapsed Time. One is tempted
to back-trace the computation described above to com-
pute the true anomaly from the elapsed time. However,
the equation that relates M and F 1s not explicit in M.
To overcome this one must either linearize it to express
E in terms of M, or compute E iteratively.
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Figure 5: Bringing the ground point in the view plane.

Once again, Mean Angular Velocity can be computed
from Kepler’s 3rd law, © = \/(GMe/a?’). The mean
anomaly, then, is given by M = t x @, where ¢ is
the elapsed time. Omne can first compute, from mean
anomaly M, a rough value for the eccentric anomaly E
using a series expansion of M = E — esin . With this
coarse value as the starting point, we can solve for fixed
point iteratively as follows.

old_E = 0.0;

while(fabs(E - old_E) > EPSILON) {
old_E = E;
E=M+ e * sin(old_E); }

In practice, the above iteration rarely takes more than
one or two iterative steps. Finally, to compute the true
anomaly f from eccentric anomaly F, we use the identity

V1—e2si
tanf: 1 esmE.

cosE—e

4 The Mapping Algorithm

Fig. 5 depicts the mapping of a 3-D ground point to its
corresponding image point. The satellite’s initial posi-
tion S in the orbit at time ¢ = 0 is marked A. At this time
instant, everything in the intersection of the view plane
ABC and the ground swath is observed by the satel-
lite. The satellite will observe the point (#,y, z) from
the point D in the orbit: at this point, the new view
plane (DEF) passes through the ground point. Thus,
from a known starting position such as A, the satellite
must be moved to point D. We accomplish this by mak-
ing the angle between the view plane and the ray SX
equal to zero, where S denotes the instantaneous posi-
tion of the satellite in the orbit. The algorithm executes
the following steps.

1. Initialization. We always starts at the scene center
(i.e., the point A in the above description is the point
in the orbit where the central row of the image was ac-
quired). The true anomaly at A is computed using the
time from perigee to the scene center and the satellite is

moved there. Recall that the time from perigee to the
scene center is an independent parameter; Computation
of anomaly, given the travel time, has already been de-
tailed in Section 3.

The satellite 18 moved from point A to D in two main
steps called the coarse and fine pointing modes.

2. Move the View Plane: Coarse Pointing Mode.
In this mode, it is assumed that the satellite is a perfectly
stable platform and any drifts in its attitude are ignored.
In other words, the local orbital frame and the satellite
attitude frame are assumed to be perfectly aligned with
each other at every point in the orbit.

Assume that the satellite is flying in a straight line as
shown in Fig. 6. Let the instantaneous position of the
satellite be ¢+ = t; as shown. At this time instant, one
can compute the angle between the ray and the view
plane in a straight-forward manner. Instead of working
with the angle discrepancy between the look direction
and the view plane, we work with its complement, viz.,
the angle between the look direction and the direction of
the motion of the satellite. We want to move the satellite
to its target position at ¢ = ¢; where the angle is ©;. In
order to accomplish this, we move the satellite a small
time step At to a new position t5. At this new time
instant, we recompute the position, the velocity vector,
and the angle ©,. Using sine law

At _ X
’ sin(@2—01) — sin O,

and sin(@éf—®2) = sin(lg%—@t)' Eliminating the unknown
X, we get
sin (©; — O2) sin ©4
ot = At. 1
sin®;  sin(0; —64) M

It can be shown that no matter where 5 1s with respect
to t; and t;, the above equation holds. Thus we can
bring the satellite to bear any desired look angle ©;.

In practice when the satellite is actually moved by
At + ét, the angular discrepancy becomes smaller but
is not exactly zero. This is because of the assumption
concerning the straight-line motion of the satellite. The
above step is repeated till the angular discrepancy is as
close to zero as is numerically meaningful.

3. Move the View Plane: Fine Pointing Mode.
Here, the attitude drifts measured by on-board system
are taken into account. To do this, the drift in yaw,
roll and pitch angles of the attitude frame with respect
to the local orbital frame are determined from the rate
of change in the satellite’s orientation measured by on-
board systems. Typically, the rates of change of yaw,
roll and pitch angles are given only at few select points
in the orbit; for others, they are interpolated. From this
data, the actual drift in yaw, roll and pitch angles at
any point in the orbit i1s computed via integration. To
account for these angles, the satellite is moved as before;
The only difference is that at each iterative step the look
angles computed are modified by the drift in satellite’s
attitude determined above.
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4. Computation of u and v. Once the satellite has
been brought to a place where the 3-D ground point lies
in the instantaneous view plane, the travel time contains
the information about the u coordinate. If Ppx and Ppy
denote image center then u = Ppx + (travel_time —
center travel_time)/dwell time.

Within the instantaneous view plane, the fraction of
field of view angle in the cross-flight direction that
is being cut by the look direction needed to see p3d
contains the information about the v coordinate. Let
viewing _angle_ratio denote this fraction. The v coordi-
nate is given by v = 1 + 2(Ppy — 1)viewing_angle_ratio.

Parameter Actual Nominal
Semi-major axis a 7182980 7203322 m
Eccentricity e 0.00103919 | 0.001327417
Inclination 2 98.77000 98.73727 deg
Perigee angle w 90.00000 71.39493 deg
Longitude of DN -131.31380 | -131.2472 deg
Look angle ¥y 0.54666602 | 0.8728483 deg
Look angle ¥, 0.56695408 | 0.8895469 deg
Look angle ¥, 0.22989154 | 0.2299154 deg
Look angle ¥, 27.1112440 | 27.11084 deg
Time perigee to ctr | 1238.47153 | 1237.909 sec
Dwell time 0.00150400 | 0.001503339 sec

Table 1: Estimated vs. nominal parameter values.

5 Experimental Results

A pair of SPOT stereo images of the Los Angeles area
were used to calibrate the corresponding cameras. A
set of 25 ground control points and 100 image to image
match points were used for calibration. The algorithm
took about 1 minute on a SPARC 10 to solve for both
cameras.

Table 1 shows the estimated independent camera pa-
rameters, and their nominal values, for one of the two
cameras. As can be seen that a considerable variation
exists between the actual and the nominal values. If the
ideal values for independent parameters are used for 3-D
to 2-D mapping, we get an RMS error of 48.92 pixels.
On the ground, this i1s equivalent to having a discrepancy
of about 489 meters.

Fig. 7 shows the error distribution of the re-projected
points. As can be seen, about 90% of the points have
a reprojection error of less than 1.0 pixel and over 95%
are with in 2 pixel error. Points with larger than two
pixel errors were manually confirmed to be outliers aris-
ing from errors in the matching procedures (i.e., these
point pairs were mistakenly identified as match points).
The overall RMS error with which a ground point can be
mapped to its corresponding image point 1t 0.73 pixels.
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