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Abstract

A linear method for computing a projective reconstruction
from a large number of imagesis presented and then evalu-
ated. The method uses planar homographies between views
to linearize the resecting of the cameras. Constraints based
on the fundamental matrix, trifocal tensor or quadrifocal
tensor are used to derive relationships between the posi-
tion vectors of all the cameras at once. The resulting set of
equations are solved using a SVD. The algorithmis compu-
tationally efficient as it is linear in the number of matched
points used. A key feature of the algorithm is that all of
the images are processed simultaneously, as in the Sturm-
Triggs factorization method, but it differsin not requiring
that all points be visiblein all views. An additional advan-
tageisthat it works with any mixture of line and point cor-
respondences through the constraints these impose on the
multilinear tensors. Experiments on both synthetic and real
data confirm the method's utility.

1 Introduction

Itis commonly accepted that bundle adjustment is the Gold
standard for projectivereconstruction. However, when deal-
ing with alarge number of views, bundle adjustment meth-
ods face a dilemma. The computation of al cameras and
all 3D points in a single adjustment neccessitates a good
initialization. On the other hand, processing the views se-
quentially and bundle adjusting after each view is added be-
comes extremely expensive computationally as the number
of images gets large. The factorization method [ST96] pro-
vides a good balance between the two extremes, however
is limited by its restriction that all 3D points must be visi-
blein all views. The planar-based projective reconstruction
method presented here has no such restriction. The method
utilizesthefact that planar homographiesbetween viewsen-
able the linearization of the computation of the camerama-
trices. Further, the method is computationally efficient and
when used as an initialization for bundle adjustment pro-
vides near optimal results.

The algorithm described in this paper is derived from a
brief outline givenin [HZ00]. No implementation details or
analysis of results were given there.

2 Plane-based reconstruction

It is known that if four points visible in some number of
images are known to be coplanar, then the computation of
the multifocal tensors relating the image points becomes
significantly more simple. For instance, the fundamen-
tal matrix for two views may be computed from two ad-
ditional point correspondences. Using knowledge of pla
narity is the theme of [ST98], and is at the base of the
plane-plus-parallax approach to vision geometry ([KAH94,
IRP97, Saw94]). A major advantage of using knowledge of
planity is that a tensor satisfying all its constraints may be
computed using a linear algorithm. Thisis a particular ad-
vantage in the computation of the trifocal tensor or quadri-
focal tensor, which must satisfy many constraints (8 and 51
respectively) imposed by the geometry.

In this paper, it is shown that the linear methods of com-
puting the multi-view tensors may be extended to estimate
all the camera matrices simultaneously, using a new linear
algorithm. Thisalgorithm isvery rapid, in fact linear in the
number of matched points known. A similiar approach is
given in [RCO1] where the cameras and projective structure
are computed simultaneously.

The condition that four of theimage correspondencesare
derived from coplanar points is equivalent to knowing the
homographies between the images induced by a plane in
space, since a homography may be computed from the four
points. It is only the homographies that are important in
the following approach, for that reason, we will henceforth
suppose that image-to-image homographies are known be-
tween imagesin a sequence.

If H! isthe plane-induced homography that maps a point
in the first image to its matching point in the i-th image,
then the set of camera matrices can be assumed to have the
form P? = [H!|t!], where the H are known, but the final
columns t? are not. We may assume that P! = [I | 0], so
thatt! = 0. Theset of al remaining t* have 3m —4 degrees
of freedom, where m is the number of views, since the t*
are defined only up to a common scale. Now assume that
severa point or line correspondences across two or more
views are known (three views are required for lines). In
order to provide useful information, these correspondences
must derive from 3D points or lines that do not lie in the
reference plane (used to compute the H?). Each point cor-



respondence across two views leads to a linear equation in
the entries of the fundamental matrix. Similarly, correspon-
dences of points or lines across three or four views lead to
linear equations in the entries of the trifocal or quadrifocal
tensor.

The key point (as explained in section 3) is that we may
express the entries of the fundamental matrix (or trifocal
or quadrifocal tensor) linearly in the entries of the vectors
t?. Therefore each linear relation induced by a point or line
correspondence may be related back to alinear relationship
in terms of the entries of the t?. Thus, for example, a cor-
respondence across views i, j and k gives rise to a set of
linear equations in the entries of the three vectorst?, t/ and
t*. A set of correspondences across many views can be bro-
ken down into correspondences across sets of consecutive
views. Thus, for example, a single point correspondence
acrossm > 4 views will give a set of equations of the form
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where each row represents a set of equations derived from a
quadrifocal tensor relationship. Each X represents a block
with 3 columns corresponding to one of the vectors t . In
the table above, we choose to wrap the equations around
from the last to the first view to add greater rigidity. Oth-
erwise, the values of the t* can drift from the first to the
last view. Other schemes for selecting groups of views are
possible, and it is not necessary to restrict to consecutive
views.

Linear relations may be generated between any subset of
sufficiently many images (2, 3 or 4 depending on which ten-
sor isused to generatethe equations). One must trade off the
added stability of the solution against the added computa-
tional cost of adding more equations. A mixture of bifocal,
trifocal and quadrifocal constraints may be used in generat-
ing the set of all equations, and it is not necessary that al
points be visible in al views. In addition, equations may
be derived from line or line-point correspondences, through
trifocal or quadrifocal constraints ([Har97].

3 Details of equation formation

Consider a pair of camera matrices, denoted for conve-
nienceP = [Ala] and P’ = [B|b] and let the corresponding
fundamental matrix be F. A point correspondencex’ «+» x
between the two views leads to a well-known equation
x'TFx = 0 involving the entries of F, and linear in those

entries. For several (say n) point correspondences between
the same two views, the set of all equations may be written
as

Sf=0, ()

where S isann x 9 matrix, and f is the vector containing
theentries of F.

Now, if left-hand 3 x 3 blocks A and B of the two camera
matrices are known, then the entries of F may be written as
linear expressions in terms of the last columns a and b of
the two camera matrices. To be more precise, the entries
of F are written in terms of the camera matrices as follows
([HZ00, Har95, Hey9q)) :

Fji = (_I)H_j ~P'(J) (3)
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where ~P() represents the matrix P with the i-th row re-
moved. Vertical bars represent the determinant. For exam-
ple,

A2 0,2

A3 a3

B2 b2

B3 b3

i =

Expanding this determinant down the last column gives
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Thus, F}; isalinear expressionin terms of the unknown en-
tries ¢* and b*. The other entries of the fundamental matrix
may be similarly expressed, leading to alinear relationship

f=Tt (4)

where t is the 6-vector consisting of the elements of a and
b, and T isa9 x 6 matrix representing the linear relationship.
Combining this equation with (2) yieldsaset of equations of
theform STt = 0, where ST isan x 6 matrix. Notethat S is
determined by the set of all point correspondences between
the pair of images, and T is computed from the known 3 x 3
blocks A and B of the two cameramatrices.

Given several (say m) images, and corresponding points
xj- in the set of images, one may form such a set of equa-
tions for each pair of images. All such equations involve
the unknown last columns of the camera matrices, and may
be combined together to form alarge set of equations of the
form Et = 0, where now t is the 3m-vector consisting of
thefina columns of all cameramatrices.

It will not normally be necessary to include all pairs of
views when forming such equations. If only pairs of con-
secutive images are used, then a sparse equation set results,



where E has the following form:;
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An entry X represents a non-zero block of coefficients, and
empty slots represent blocks of zeros.

It was observed in [HZ00] that it is not sufficient to use
only consecutive pairs of views! ; in fact it is advisable to
include also aternate pairs of views, resulting in a further
set of equations with the block-form as follows:

X X

In solving the total set of equations, one may (and
should) assume that the first camera matrix has zerosin the
last column. Thus, the first three entries of t are zero, and
the equation matrix is reduced in dimension by deleting its
first three columns, leaving a set of equationsin 3(m — 1)
variables.

4 Equationsderived from thetrifocal
and quadrifocal tensors

The above discussion gave the general outline of how to
derive equations based on the fundamental matrix. Itisalso
possible to use three and four-view relations based on the
trifocal and quadrifocal tensors.

Trifocal constraints. Given a point correspondence
across three views x «» x’' + x', a set of relationships
of the form
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exists ([HZ00, Har97]). Each choice of the free indices u
and v givesasingle linear relationshipin the entries of 7.7,
a total of 9 equations, but only 4 of them are linearly in-
dependent. Given several point correspondences across the
three views, a set of equations of the form Et = 0. Here t
isa27-vector consisting of the entries of thetrifocal tensor,
andE isa4n x 27 matrix (or 9n x 27 if al 9 equations are
included).

IHowever experiments with atableau of the form (5) seem to give good
results.

As with the fundamental matrix, the entries of the trifo-
cal tensor may be written in terms of the last columns of
the camera matrices. The analogous formula to (3) in the
trifocal caseis

~P (%)
o= (-1 | P ©)
PHT

where P’ means the i-th row of P’ and as before ~P(?) rep-
resents the matrix P with the i-th row removed. Expanding
thisformulain cofactors down the last column as beforere-
sultsin alinear expression for the entriesof 7;7* in terms of
thefinal columnsa, b and c of the three camera matrices.

Combining the sets of equations from successive triples
of views into a single equation set results in an eguation
matrix with the block-form

X X X
X X X
X X X

(7)
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Quadrifocal constraints.  The method worksjust aswell

with quadrifocal constraints. The basic quadrifocal con-
straint involving a point correspondence across 4 viewsis

i 15 1"k i TS __
€T 6ipt-rjejqu-27 €krvl elstpq = Opwvw -

Each choice of free index gives a single equation, but the
full set of equations has rank 16.
The formulafor the quadrifocal tensor is
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Expanding this determinant down the last column gives
a linear formula for each entry of @) in terms of the last
columns of the four camera matrices. Consecutive quadru-
ples of views give a sparse set of equations of the form (1).

5 Efficiency considerations

The full set of eguations created by the algorithm here de-
scribed may be very large. For instance, consider a set of n
pointsseeninm views, al pointsbeing visiblein al views.
Inthetrifocal case, atotal of 4 (or 9 non-independent) equa-
tions are generated for each point in each triple of images,
atotal of 4mn equationsin total. The complete set of equa-
tions has dimension 4mn x 3(m — 1). In the quadrifocal



case this becomes 16mn x 3(m — 1). Typically we run
thisagorithm with 500 points (comfortably found using the
Kanade-L ucas point tracker [LK81]) and 20 or more views.
Thetotal set of equationsis of size 40000 x 57 in the case
of the trifocal agorithm or 160000 x 57 in the quadrifo-
cal case — arelatively large set of equations. Typicaly, this
equation set is solved in aleast-squares sense using the Sin-
gular Value Decomposition (SVD), wherethe solutionisthe
singular vector corresponding to the smallest singular value.
A full-scale computation of the SVD, E = UDV " in which
both U and vV are computed will be very expensive. Accord-
ing to formulae quoted by Golub ([GVL83]) afull SVD of
anm x n matrix requires4m?n + 8mn? + 9n? flops. How-
ever, if only the matrices Vv and D are required, then only
4mn? + 8n? flops are required. This is the present case,
sincethe solution isthe last column of V. For a160000 x 57
matrix, the full SVD would require 5841 Gflops, whereas
only 2.08 Gflops are used if U is not accumulated. Clearly,
itisessentia to use an implementation of the SVD in which
one has the option not to accumul ate U.

Further improvements.  One may take further advan-
tage of the sparseness of the system. For concreteness, con-
sider the quadrifocal case. The total set of equationsto be
solved has the form given in (1). One achieves greater ef-
ficiency by carrying out orthogonal row reductions on the
sets of eguations derived from a single quadruplet, repre-
sented by a single row of blocks in (1). Thus, the set of
equations derived from a single quadruplet of views has di-
mension 16n x 12, each point correspondence contributing
16 equations in the 12 (last columns of the camera matri-
ces) related to the four views in question. Clearly, this set
of eguations can not have rank greater than 12, the number
of rows. Consequently, it may bereducedto a12 x 12 set of
equations. In order to obtain the same numeric result, this
should be done by orthogonal row operations.

By orthogonal row operations is meant multiplying the
equation matrix E on the left by an orthogonal matrix U so
that UE has block form

EI
UE = { : }

where E' is a square matrix. The matrix E’ is then used in-
stead of E. Orthogonal row reduction is most efficiently car-
ried out using Householder matrices (as in the first step of
an SVD algorithm [GVL83]). It may also be accomplished
(though with some inefficiency) by using SVD, without ac-
cumulationof U. If E = UDV', thenE' = DV' isthere-
quired orthogonally row-reduced matrix.

The complete algorithmis then as follows (described be-
low for trifocal tensor implementation, but also valid for
fundametal-matrix and quadrifocal tensor cases):

Objective Generate set of equations from n views of m
points.

Algorithm

1. For groupsof 3 views, use al pointsvisiblein al three
viewsto generateadn x 27 set of linear equations St =
0.

2. Generate the 27 x 9 matrix T expressing t in terms of
the vector of last columns of the three views: t = Ta.

3. Formthe4n x 9 matrix E = ST.
4. Orthogonally row-reduceE to get E'.

5. From the equation matrices E’ formed from all groups
of 3 views used, generate a complete set of equations
of dimension9m x 3(m — 1), asin (7).

6. Solve this set of equations (using SVD) to find the so-
lution, namely the last columns of all the camera ma-
trices.

Total complexity Using thismethod, thetotal complexity
of all the SVD computations may be computed as follows.
For the purposes of this computation, we suppose that there
arem views of n points and that all pointsare visiblein all
views. Thisis of course not necessary for the algorithm to
work. It is furthermore assumed that m groupsof 2, 3 or 4
views are used, as for instance in (1). Finaly, for simplic-
ity in computing the computational cost, it is assumed that
the orthogonal row reductionis done using SVD. Denote by
SvD(a, b) the cost of carrying out a singular value decom-
position of a matrix with @ rows and b columns, namely
SVD(a,b) = 4ab?® + 8b3.

The computation cost involved in computing the SVDs
(the major algorithmic cost) then consists of

1. For each of the m groups of views, multiplication E =
ST to form the set of equations for this group.
bifocal case n x 9 x 6 multiply/adds.
trifocal case 4n x 27 x 9 multiply/adds.
quadrifocal case 16n x 81 x 12 multiply/adds.

2. For each of m groups of views, orthogonal row reduc-
tion of aset of equationsderived from n point matches.
bifocal case n equationsinr = 6 unknowns.
trifocal case 4n equationsinr = 9 unknowns.
quadrifocal case 16n equationsinr = 12 unknowns.

3. SVD of the complete set of equations of dimension

mr X 3(m — 1) equationsto solve for thelast columns
of the cameramatrices.



Thisgives atotal complexity of
bifocal case 54mn+m x SVD(n, 6)+SVD(6m,3(m—1)).

trifocal case 972mn +m x SVD(4n,9) +SVD(9m, 3(m —

1)).

quadrifocal case 15522mn + m x SVD(16n,12) +
SvD(12m, 3(m — 1)).

For the case of 500 points in 20 views, this gives 5.0
Mflops, 26.6 Mflops and 252.5 Mflops for the bifocal, tri-
focal and quadrifocal cases respectively.

Comparison with factorization algorithm.  In the fac-
torization algorithm, one is faced with the task of carrying
out a full SVD (including accumulation of U and V) for a
3m x n matrix of image measurements. This requires ap-
proximately 4(3m)?n + 8(3m)n? + 9n? flops. In the case
of 500 points, 20 views, this gives 76.3 Mflops.

Note that the complexity of the factorization agorithm
grows as the square of the number of points, but the planar-
based algorithm growslinearly in the number of points. The
result is that the factorization algorithm is faster than the
planar-based methodsfor small numbersof points (lessthan
about 200), but is slower for large numbers of points.

6 Computation of the homographies

Correlation and point-based methods were implemented
with good results. Both methods have their proponents, and
without attempting to make a definitive pronouncement we
make the following remarks. The correlation methods work
well, but are more difficult to implement in cases where a
well-defined plane is not visible in the image, or there is
more than one significant plane. It is possible that an ap-
proximate homography may exist between images, but that
this homography may be one induced by an actual plane;
notethat not all image homographiesareinduced by aplane
([HZ00Q], chapter 12). In addition, the point-based method
has the advantage that planar points may be found by apply-
ing RANSAC to the same set of points subsequently used
to compute the reconstruction, thereby avoiding significant
additional computational burden (RANSAC isfast).

7 Other reconstruction methodsused
for comparison

The new plane-based reconstruction method has been com-
pared with several other popular reconstruction methods.

Factorization method.  Thefactorization method usedis
based on the method of [ST96, Tri96] which is similar in
style to the Kanade-Tomasi factorization method ([TK92]),

but applied to projective cameras. The method is not an ex-
act method, since it relies on an estimate of the “projective
depths’ of the points, which will not in general be exact. In
the original paper, Sturm and Triggs propose an initializa-
tion scheme for the weights based on the fundamental ma-
trix, but in the implementation we used, the weights were
set initially al to 1, and reestimated by reprojection. This
method has been observed by other authors to give good
results.

For the factorization algorithm to be applied, all points
used must bevisiblein all views.

Incremental reconstruction The algorithm is also com-
pared with an incremental method based on two and three-
view reconstruction. The method is as follows (described
for the trifocal-tensor implementation):

1. Choose three views containing sufficiently many com-
mon matched points, and carry out projective recon-
struction based on the trifocal tensor ([Har97].

2. Compute the 3D locations of all points visible in at
least two of the views. At the end of this step, some of
the 3D points have been computed (said to be “recon-
structed”) and some are not, since they are visible in
only one of the three initial views.

3. Select the one of the remaining views that see the
largest number of reconstructed points, and compute
the camera matrix for this view using the DLT algo-
rithm ([Sut63, HZ0Q]).

4. Reconstruct all additional points that are now visible
in two of the views. Return to the previous step if any
cameramatrices remain to be computed. Steps2 and 3
are repeated until completion.

A similar method was tried, in which the initial projective
reconstruction was carried out using just two views, using
the fundamental matrix ((HGC92]).

Thereis atrade-off when using this incremental method
in choosing viewsfor theinitial reconstruction. If the views
are close together in sequence, then there may be many
matched points, but the base-line may be short, resulting
ininaccurateinitial reconstruction, and ultimate failure. On
the other hand, if the base-line is wider, then the number of
common pointsmay be small. Inthe exampleswe used, this
was not aproblem, since it was possibleto find many points
visible across al views, and so we chose the widest pos-
sible base-line for the initial reconstruction — namely first,
last and middle views.

Obviously variations on this method are possible, such
as an adjustment to the reconstruction after each new view
is computed. However, the unavoidable problem with such
incremental methods is that they are strongly dependent on
the initial reconstruction, which depends on a small subset
of views.



8 Reaults

The agorithm was tested on both real and synthetic data.
The experiments on synthetic data enabled a quantitative
comparison of the various reconstruction methods in typi-
cal settings. Towards this end, rather than using purely syn-
thetic data, real sequences served as the basis for the syn-
thetic experiments (e.g. the boat sequencein figure 1). A
3D projective reconstruction was computed using the linear
resection algorithm followed by a complete bundle adjust-
ment. “ Ground truth” 2D datawas taken to be the projection
of the 3D pointsinto each of the views.

8.1 Syntheticresults

Varying amounts of Gaussian noise were added to the
“ground truth” 2D data. A projective reconstruction was
then computed from the noisy data using the various al-
gorithms. The methods were compared according to their
residual error which was computed by taking the root-
mean-square of the reprojected 3D points from the ground
truth 2D data (in pixels). A comparison of the planar re-
construction algorithm using different multi-linear (bifocal,
trifocal, quadrifocal) constraintsis shownin figure 2 for the
room sequence of figure 1. One hundred trials per method
used.

Comparison of three planar methods
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Figure 2: Comparison of the three planar methods (bifo-
cal, trifocal and quadrifocal) applied to the room sequence
(without bundle adjustment). The theoretical minimum is
shown in black. All three methods perform well, within
about 10% of the theoretical minimum. The trifocal and
quadrifocal methods perform slightly better than the bifo-
cal method at low noise levels. The deviationsat high noise
levels are due to occasional failure of the algorithm, but
these noise level s are beyond practical noise limits.

A second set of experiments was conducted comparing
the new planar-based method with two common reconstruc-
tion approaches-the incremental and factorization methods
discussed in section 7. Itisdifficult to provideadirect com-
parison of the methods, because the incremental method is

highly dependent on the initial views chosen and the fac-
torization method applies only to 3D points seen across
all views, whereas the new method is not similarly re-
stricted. Accordingly, the comparisons were accomplished
under conditions most favorable to the other methods, that
is, using (RANSAC weeded) featureswhich werevisiblein
all views. Further, the incremental method was initialized
with the widest possible baseline-the first, last, and middle
imagesin the sequence. Results are shown in figure 3.

8.2 Real Imagery

The agorithm was also tested on several real sequences.
Heretheresidual error wastaken to be the root-mean-square
of the reprojected 3D points from the 2D maximum likeli-
hood estimates. Figure 1 shows the actual residuals for the
three sequencesin figure 4 using the various algorithms, be-
fore and after bundle adjustment.

Finally, afull metric reconstruction of the boat sequence
was done using the trifocal plane-based projective recon-
struction method followed by self calibration. The resultant
VRML isshownin figure5.

Figure 5: Euclidean VRML

9 Conclusions

The plane-based method described in this paper is one of
the few methods in which the full set of images are handled
uniformly and simultaneously to obtain a projective recon-
struction. The only other general procedurethat doesthisis
the factorization method of Sturm-Triggs[ST96].

It may be seen from the experimental evaluation that the
planar-based methods perform very well, when applicable.
Of coursethisis only in cases where a plane may be identi-
fied in theimages, but this covers awide class of real-world
seguences including the boat and canyon sequences illus-
trated here.

In cases where neither the factorization nor plane-
based methods are applicable, the reconstruction problemis
harder, and some sort of incremental method must be used,
such as the one discussed here. However, without consider-
able care, these methods can be unstable and were inferior
to the planar and factorization methods on the sequences
used here. The planar based method also has the compu-
tational advantage of being linear in the number of points
used, unlike the factorization method that is quadraticin the
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Figure 1. Snippets from three of the image sequences used to evaluate the algorithms. All three sequences were obtained
using a hand-held camcorder—the last two from a helicopter flying overhead.

number of points. In addition, it does not need points de-
fined in all views, and may even be applied to line matches.
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Figure 3: Comparison of the trifocal-planar method with the factorization and incremental-trifocal methods, as well as
the theoretical minimum ground-truth error. Above are the results for the method alone, below the results after bundle

15 2
Noise (pixels)

15
Noise (pixels)

adjustment. The graphs on the left correspond to the room sequence and the ones on the right to the boat sequence. Note
that both the planar and factorization methods are better than the incremental method for both sequences. The factorization

method performs dightly better than the planar method, but after bundle adjustment both are nearly optimal at low noise,
and at all noise levelsin the room sequence.
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Figure 4: Results of running the various algorithms on the real room, boat, and canyon sequences in figure 1. The total
height represents the residual error after running just the algorithm. The grey bars represent the residual error after bundle
adjusting the results of the algorithm. The far left and far right plots correspond to the incremental trifocal and factorization
methods while the center three plots within each graph correspond to the various planar methods. Note that although the
factorization method initially performs better (Linear error), the bundle adjusted errors are nearly identical.



