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In this note, we would like to explore some of the issues suggested by the discussion
paper of Pizlo et. al. The context is the study of image of planar objects taken with
calibrated cameras. However, in this note, we shall consider the question using notation
that has become somewhat standard in the literature of computer vision, particularly in
the study of uncalibrated cameras.

1 Camera Model.

The projection from three-dimensional Euclidean space (or projective space) to the two
dimensional image is conveniently expressed using formalism of projective geometry. Rep-
resenting points in Euclidean space and in the image by homogeneous coordinates allows
the mapping to be expressed in a very simple form as :

u =Mx (1)

where u = (u, v, w)� are the homogeneous coordinates in the image, x = (x, y, z, t)� is
the point in space, expressed also in homogeneous coordinates, and M is a 3× 4 matrix.
Since we are using homogeneous coordinates, the matrix M is defined up to a constant
factor only, and hence has 11 degrees of freedom.

The matrix M may be split up as a product

M = K3×3(I3×3 | 0)
(
R3×3 t

0 1

)

= K(R | t) . (2)

In this equation R3×3 is a rotation matrix, and the right-hand term in the equation is
simply a Euclidean change of coordinates in object space. The central term, (I | 0)
represents the projection from 3 to 2 dimensions, and the left hand term K is a 3 × 3
upper triangular matrix representing an affine transformation of the image. The matrix
K encodes the information about the calibration of the camera. In talking of calibrated
cameras, we imply that K is known. Once again we may count 11 degrees of freedom :
6 for the Euclidean change of coordinates (three for rotation and three for translation)
and 5 for the entries of the matrix K, which we defined only up to an irrelevant scale
factor. All this is fairly standard. One may see [2] for a few more details.



Calibrated Cameras. If the camera is calibrated as in the discussion paper of Pizlo
et. al. then the matrixK is know. In this case it is customary to correct for the calibration
by replacing the point u = Mx by u′ = K−1u, in which case we have u′ = (R | t)x.
Thus henceforth, one may assume that the calibration matrix K is in fact the identity.
Correspondingly, we drop the notation u′ and write in future u = (R | t)x. A calibrated
camera has 6 degrees of freedom, three for the rotation and three for the translation of
the camera.

Images of planar objects. Now we consider what happens when the object lies in
a plane. We may assume for simplicity that the plane is the plane z = 0. In this case
when we write 

 u
v
w


 = (R | t)



x
y
z
1




the third column of the matrix R is irrelevant, since it is always multiplied by z = 0.
Therefore, we may eliminate the third column of the matrix, and write

u = (r1, r2, t)


 x

y
1




where r1 and r2 are the first two columns of the matrix R. This is the general form of
the transformation from a planar object to the image by a calibrated camera. Notice
that eliminating the third column, r3 from the matrix does not decrease the number of
degrees of freedom of the transformation, since the vector r3 may always be retrieved
by the formula r1 × r2 = r3. This shows that the plane-to-plane transformation effected
by a calibrated camera has 6 degrees of freedom. We will call such a transformation a
CP-transformation, where C stands for “calibrated” and P stands for “planar”. The set
of all CP-transformations will be denoted by A. The set of CP-transformations does not
form a group. We believe that the set of CP-transformations is the same as the FCDP
transformations of the discussion paper.

2 Shape

Consider some object of interest in the in the object plane. To avoid overuse of the word
object, we will refer to this object of interest as a doodle. A doodle may be a polygon,
a set of points, a curve or some other geometrical entity. The image of a doodle will
be called a doodle as well. Since the group of CP-transformations may be described
by 6 parameters, the set of image doodles corresponding to a given object doodle is a
6-parameter family. How can this finding be reconciled with Pizlo’s claim that the set
of shapes that can be taken by the image of a planar object through projection with a
calibrated camera form a 3-parameter family ?

First of all, we ought to define shape. Two doodles that differ by a translation or rotation
should be considered to have the same shape. This leads to a definition of shape to be the
equivalence class (orbit) of a doodle under the action of the group of rigid translations of
the plane. Maybe one may also consider two doodles that differ only by a scaling to have
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the same shape as well, and one might adopt a different definition of shape accordingly.
However, this point will not make much difference in the future discussion

Suppose that C is a CP-transformation and R is a rotation (about the origin), then one
quickly verifies that RC is a CP-transformation. On the other hand, if T is a transfor-
mation, then in general, TC is not a CP-transformation. Furthermore, if S represents
isotropic scaling, then SC is also not a CP-transform, unless the rotation involved in the
CP-transform C is the identity. In fact, in general for a rigid transformation S, we may
observe that SC is a CP-transformation only if S is a rotation about the origin. Thus,
if s represents a doodle in the object plane, and As represents the corresponding set of
all images doodles, then in general Cs and C′s have the same shape only if C′ = RC,
where R is a rotation. Since the group of rotations is a one-parameter group, and the
set of all image doodles is a 6-parameter set, we deduce that the set of all image shapes
is a 5-parameter set. This seems interesting, so we will display it.

Proposition 2.1. The set of all shapes that may appear as the image (with a calibrated
camera) of a given planar shape forms a 5-parameter set.

So what is meant by Pizlo et. al. when they claim that the set of shapes is a 3-parameter
set ?

3 Normalized shape.

One of the consequences of assuming a calibrated camera is that one knows the principal
point of the camera, which acts as a distinguished point (in fact the coordinate origin) in
the image. Now, consider a given shape in the object plane. In the image plane, it will
appear as a certain given shape. If one holds the camera centre (and of course also the
object) stationary while changing the camera orientation (panning), then of course the
object will change position in the image. What is not quite so obvious, but is also true
is that the shape of the imaged object will also change. This effect is readily perceived
by looking through the view-finder of a camera with large field of view. This effect was
exploited in [2] for camera calibration. In fact, it was shown in [2] that the image-to-image
transformation that takes place when the camera is panned is a projective transformation
of the image represented by a matrix H of the form H = KSK−1, where K is the
calibration matrix and S is a rotation matrix. In our case, we are assuming that K is the
identity. Thus, the resulting transformation is a projective transformation represented by
a rotation matrix S. (Note that this does not mean that the transformation is a rotation,
since we are talking about a 3 × 3 transformation of homogeneous coordinates.) It may
be verified easily that if S is a 3 × 3 rotation matrix, and C is a CP-transformation, of
the form (r1r2t) then the product SC is also a CP-transformation, since the two first
columns of SC are the first two columns of the rotation matrix SR.

Now, suppose that we were to see a doodle in an image, placed far from the principal
point. Suppose we asked the following question : “What would this doodle look like in
the image if we were to point the camera straight at the object doodle?”. The image
doodle would then be placed near to the principal point. This question could easily be
answered by choosing a 3× 3 rotation matrix that, when interpreted as a 2D projective
transformation, moves the image doodle to the principal point.
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Let us make this more precise. Suppose that there is a distinguished point p0 on the
object doodle s (for instance a given vertex). Let point p0 be fixed also as the origin
of the object plane. Given the image of this doodle under a CP-transformation, C one
may compute a further transformation S, represented by a 3 × 3 rotation matrix that
moves the image of the distinguished point, Cp0, to the origin of image coordinates
(the principal point). The composition of the imaging transform, C and the normalizing
transform S is a CP-transform taking the origin of the object plane to the origin of image
coordinates. Since S does not represent a rigid transformation, it transforms the shape
of the image doodle Cs to a normalized shape represented by the doodle SCs.

Given an image doodle and specification of a distinguished point, one can easily compute
a representative normalized doodle by finding the appropriate normalizing transformation
S. The transformation S that maps the distinguished point to the origin is not unique.
However, it is easily seen that any two such transformations S and S′ differ by a 2D
rotation about the origin. Such a rotation preserves shape. Hence, the normalized shape
is uniquely defined, and a representative normalized doodle is easily computed.

A CP-transformation C that takes the origin of the object plane to the origin of image
coordinates (and hence a doodle to a normalized image doodle) must be of the form

C =


r1r2

0
0
k


 . (3)

Transformations of this type form a 4-parameter set. Since a further rotation about the
origin preserves shape, we deduce the following result

Proposition 3.2 Pizlo et. al.. The set of normalized shapes corresponding to a given
planar object doodle with a distinguished point constitutes a 3-parameter set.

4 Questions

A number of questions naturally arise

Identification. Given a certain known object doodle s, how can one tell whether a
given image doodle is (or may be) an image of s. This question is considered in Pizlo’s
paper.

For the case where both object and image doodles are triangles, it seems likely that
there is always a CP-transformation that takes the object to the image triangle. One can
always assume that corresponding points lie at the origin of object and image coordinates.
In this case, the CP-transformation can be assumed to have the form (3). Every other
pair of points give rise to 2 linear equations in the entries of the matrix. In addition,
there are two quadratic constraints indicating that the two first columns are orthogonal
and of the same length. This gives sufficiently many equations to determine the entries
of the matrix M . Given that we have two quadratic equations, it is possible to have up
to four solutions. It is also possible to have no real solutions. It would be interesting to
know if there actually exist two triangles for which no real solution exists.

For point configurations consisting of more than 3 points, one can answer the identifica-
tion question by first finding the CP-transformation or transformations that realize the
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correspondence between three points, and then see if any of the possible transformations
gives the required correspondence on the rest of the points.

Correspondence. Suppose one has two images of doodles. Is it possible that they
are images of the same (unknown) object doodle ? The answer to this question seems
to be yes if and only if there is a projective transformation taking one of the doodles to
the other. The only if part of this claim is obvious, since two projections of the same
planar doodle must be projectively equivalent. To justify the if part, suppose there is a
projective transformation H taking one doodle to the other. Let ui be four points in the
one image, and u′i be the four corresponding points in the other image. The projective
transform is determined by the correspondence of the four points. We seek a set of four
object points xi and two CP-transforms C and C′ such that Cxi = ui and C′xi = u′i.
Counting the number of unknowns, we see that there are

1. For each transformation, 9 matrix entries.

2. For each of the 4 object points, 2 coordinates.

This gives a total of 9×2+2×4 = 26 unknowns. On the other hand, counting equations,
there are

1. For each transformation, 3 quadratic constraints expressing the fact that the first
two columns are the columns of a rotation matrix.

2. For each point correspondence, 2 linear equations expressing the correspondence.

This gives a total of 3× 2 + 4× 2× 2 = 22 equations. The system is therefore underde-
termined, and one can expect a 4-parameter family of solutions. Allowing 3 parameters
for the placement and orientation of the object doodle, we are reduced to a 1-parameter
family of solutions. It may also be observed that the overall size of the object can not
be determined from two views. Allowing for scale ambiguity, we are reduced to a 0-
parameter family of solutions, namely a finite set of solutions. This of course ignores
such issues as the existence of only complex solutions and cheirality ([1, 3]).

Thus, we deduce that there exists at least one pair of transformations C and C′ and
points xi that satisfy Cxi = ui and C′xi = u′i for i = 1, . . . , 4. From this it follows that
C′C−1ui = u′i = Hui for i = 1, . . . , 4. Since H and C′C−1 correspond on four points,
they must be equal. So H = C′C−1. Now, for points ui for i ≥ 5 we may define xi by
xi = C−1ui. One then verifies that Cxi = ui and also that C′xi = C′C−1ui = Hui = u′i.
In summary, there exist points xi for all i that map to the given image points under the
two constructed CP-transformations. These points xi form the desired object doodle.

Reconstruction. From the previous argument, it appears that a planar doodle can
be reconstructed up to rigid transformation from its projection in two images, as long
as 4 point correspondences are known. This is much the same as in the case of three
dimensional objects where 8 point correspondences are enough to give a unique solution
([3]). In the case of 4 planar point correspondences, We do not know how many distinct
solutions are possible, though the number should be at most 16.
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