
Projective Reconstruction from Line

Correspondences

Richard I. Hartley

G.E. CRD, Schenectady, NY, 12301.

Abstract

The paper gives a practical rapid algorithm for doing projective reconstruction
of a scene consisting of a set of lines seen in three or more images with uncali-
brated cameras. The algorithm is evaluated on real and ideal data to determine
its performance in the presence of varying degrees of noise. By carefully con-
sideration of sources of error, it is possible to get accurate reconstruction with
realistic levels of noise. The algorithm can be applied to images from different
cameras or the same camera. For images with the same camera with unknown
calibration, it is possible to do a complete Euclidean reconstruction of the image.
This extends to the case of uncalibrated cameras previous results of Spetsakis
and Aloimonos on scene reconstruction from lines.

Keywords : Projective reconstruction, Structure from motion, Epipo-
lar geometry, Fundamental Matrix

1 Introduction

This paper gives an effective algorithm for the projective reconstruction of a
scene consisting of lines in space as seen in at least three views with uncali-
brated cameras. The placement of the cameras with respect to the scene is also
determined. At least three views are necessary, since as discussed in [13], no in-
formation whatever about camera placements may be derived from any number
of line-to-line correspondences in fewer than three views. With three arbitrary
cameras with unknown possibly different calibrations it is not possible to spec-
ify the scene more precisely than up to an arbitrary projective transformation
of space. This contrasts with the situation for calibrated cameras in which
a set of sufficiently many lines may be determined up to a scaled Euclidean
transformation from three views ([12, 13]).

In the case where all of the three cameras are the same, however, or at least
have the same calibration, it is possible to reconstruct the scene up to a scaled
Euclidean transformation. This result relies on the theory of self-calibration

expounded by Maybank and Faugeras ([9]) for which a robust algorithm has
been given in [6]. In particular for the case of a stationary camera and a moving
object the camera calibration remains fixed. This motion and structure prob-
lem for lines was solved in [12, 13] for calibrated cameras. The assumption of
calibration means that a pixel in each image corresponds to a uniquely specified
ray in space relative to the location and placement of the camera. The result of
this paper is that this assumption is not necessary.

The fundamental matrix defined by Longuet-Higgins ([7]) (originally for cali-
brated cameras) contains all the information available about relative camera
placements that can be derived from image point correspondences. The meth-
ods of this paper give a way of computing the fundamental matrix from line
correspondences.

It will be assumed that three different views are taken of a set of fixed lines in
space. That is, it is assumed that the cameras are moving and the lines are
fixed, which is opposite to the assumption made in [13]. In general, it will not
be assumed that the images are taken with the same camera. Thus the three
cameras are uncalibrated and possibly different.

2 Notation and Basics

The three-dimensional space containing the scene will be considered to be the
3-dimensional projective space P3 and points in space will be represented by
homogeneous 4-vectors x. Similarly, image space will be regarded as the 2-
dimensional projective space P2 and points in an image will be represented
by homogeneous 3-vectors u. The space-image mapping induced by a pinhole
camera may be represented by a 3 × 4 matrix M of rank 3, such that if x and
u are corresponding object and image points then u =Mx. Such a matrix will
be called a camera matrix. The pose and internal calibration of the camera are
easily deduced from the camera matrix (for instance see [6]). It will often be
desirable to decompose a camera matrix into a 3 × 3 matrix A and a column
vector t, as follows : M = (A | t). If the camera centre is at a finite point, then
A is non-singular, but we will not make this restriction.

All vectors are assumed to be column vectors. The transpose u� of u is a row
vector. Notationally, vectors will be treated as n × 1 matrices. In particular
a�b is the scalar product of vectors a and b, whereas ab� is a matrix.

If t is a vector and X is a matrix, then t ×X denotes the matrix (t × x1, t ×
x2, t × x3) constructed by taking the cross product t × xi with each of the
columns xi of X individually. Similarly, X × t is a matrix obtained by taking
the cross product of t with the rows of X individually.

Just as points in image space P2 are represented by homogeneous vectors so
are lines in P2. Bold greek letters such as λ represent lines. The point u lies
on the line λ if and only if λ�u = 0. The line through two points u and u′

is given by the cross product u × u′. Similarly, the intersection of lines λ and
λ′ is equal to λ× λ′. We will sometimes wish to consider the Euclidean space
R2 as a subset of P2 and determine the perpendicular Euclidean distance from
a point to a line. If u = (u, v, w)� and λ = (λ, µ, ν)�, then the perpendicular

2

distance is given by

d(λ,u) =
λ�u

w(λ2 + µ2)1/2
(1)

The fundamental matrix : The fundamental matrix corresponding to a
pair of cameras is of basic importance in analyzing pairs of images of a common
scene. It is at the heart of algorithms for camera calibration [9, 4, 2], image
rectification [5], scene reconstruction [6, 3, 7] and transfer [1].

The fundamental matrix may be computed from a pair of camera matrices as
shown in the following proposition.

Proposition2.1. If M0 and M1 are two camera matrices and H is any non-
singular 4× 4 matrix, then the fundamental matrices corresponding to the pairs
(M0,M1) and (M0H,M1H) are equal.
The fundamental matrix corresponding to a pair of cameras with matrices (I | 0)
and (A | t) is equal to t×A.

The first statement is that the fundamental matrix is invariant under projective
transformation of the two cameras. The formula for the fundamental matrix is
a special form of a more general formula given in [4].

Methods have been given for the computation of the fundamental matrix from
point correspondences [7, 8, 6]. It will be shown in this paper how the funda-
mental matrix may be computed from line correspondences.

Projective Reconstruction Consider a set of lines in space viewed by several
cameras, and let λij be the image of the i-th line in the j-th image. The task
of projective reconstruction is to find a set of camera matrices Mj and 3D-lines
χi so that line χi is indeed mapped to the line λij by the mapping Mj. For the
present we pass over the questions of how to represent lines in space and how
they are acted on by camera matrices Mj.

If the camera matrices are allowed to be arbitrary, then it is easily seen that
the scene can not be reconstructed more precisely than up to an arbitrary 3D
projective transformation. Indeed, let H be a non-singular 4 × 4 matrix, and
let every point x be transformed by the projective transformation x �→ Hx. If
the camera matrices Mj are simultaneously transformed to M ′j = MjH

−1, then
M ′jHx = Mx. Thus, the correspondence between object and image points is
preserved. It follows that the correspondence between 3D-lines and image lines
is also preserved, since lines are made up of individual points.

Consider now a reconstruction from three views, and let the three camera ma-
trices be M0, M1 and M2. We make the assumption that no two of the cameras
are located at the same point in space. Let H be formed by adding one extra
row to M0 to make a non-singular 4 × 4 matrix. Then since HH−1 = I4×4,
it follows that M0H

−1 = (I|0). Since M0 may be transformed to (I | 0), by
applying transformation H to the reconstruction we may assume without loss
of generality that M0 = (I | 0). Next we turn to the form of M1 = (A1 | t1).
Since cameras M0 and M1 are not located at the same points, t1 �= 0 and M1

may therefore be scaled so that t1�t1 = 1. It may be observed that further

3

multiplication on the right by a matrix H−1 =
(

I 0
−t1�A1 1

)
transforms

(I | 0) to itself, while mapping (A1 | t1) to (A1−t1t1�A1 | t1). This matrix has
the interesting property that the columns of A1− t1t1�A1 are perpendicular to
t1, since t1�(A1 − t1t1�A1) = 0. It follows of course that A1 has rank 2, and
so the camera is located on the plane at infinity, but this remark is not used.

The result of this discussion is that in seeking a projective reconstruction of a
scene from three views, we may assume without loss of generality that

1. M0 = (I | 0).

2. M1 = (R | r4), where r4�R = 0, and r4�r4 = 1.

3. M2 = (S | s4), where s4�s4 = 1

where for simplicity in future computations we have changed notation to avoid
proliferation of subscripts. The observation that these conditions determine the
reconstruction uniquely will not be needed.

3 The Transfer Equations

We now address the question of how lines are mapped by camera matrices. In-
stead of considering the forward mapping, however, we will consider the back-
ward mapping – given a line in an image, determine the plane in space that
maps onto it. This will be a plane passing through the camera centre, consist-
ing of points that map to the given image line. This plane has a simple formula
as follows.

The plane in space mapped to the line λ by the camera with matrix
M is equal to M�λ.

To justify this remark, note that a point x lies on the plane with coordinates
M�λ if and only if λ�Mx = 0. This is also the condition for the point Mx to
lie on the line λ.

Now, consider three cameras with matrices M0 = (I | 0), M1 = (R | r4) and
M2 = (S | s4). Let λ0, λ1 and λ2 be corresponding lines in the three images,
each one the image of a common line in space. The planes corresponding to
these three lines are the columns of the matrix(

λ0 R�λ1 S�λ2

0 r4�λ1 s4�λ2

)
.

Since these three planes must meet in a single line in space, the above matrix
must have rank 2. Therefore, up to an insignificant scale factor,

λ0 = (R�λ1)(s4�λ2)− (S�λ2)(r4�λ1) (2)

This important formula allows us to transfer lines from a pair of images to a
third image directly. In general, we will represent a line in space simply by

4

giving its images λ1 and λ2 with respect to the two cameras with matrices M1

and M2.

Now, writing R = (r1, r2, r3) and S = (s1, s2, s3) where the ri and si are the
columns of R and S, we see that the i-th entry (or row) of λ0 given in (2) is
(ri�λ1)(s4�λ2) − (si�λ2)(r4�λ1), which may be rearranged as λ1

�(ris4� −
r4si�)λ2. This leads to a second form of (2).

λ0 =

 λ1

�(r1s4� − r4s1�)λ2

λ1
�(r2s4� − r4s2�)λ2

λ1
�(r3s4� − r4s3�)λ2

 =

 λ1

�T1λ2

λ1
�T2λ2

λ1
�T3λ2

 (3)

where the 3 × 3 matrices Ti are defined by this equation. Formula (3) is much
the same as a formula given for calibrated cameras in [13], but proven here for
uncalibrated cameras. In [13], the letters E, F and G are used instead of Ti.
However, since F is the standard notation for the fundamental matrix, we prefer
to use Ti. Equations (2) and (3) may be termed the transfer equations in two
alternative forms.

If sufficiently many line matches are known, it is possible to solve for the three
matrices Ti. In fact, since each λi0 has two degrees of freedom, each set of
matched lines λi0 ↔ λi1 ↔ λi2 gives rise to two linear equations in the entries
of T1, T2 and T3. Exactly how these equations may best be formulated will
be discussed later. Since the T1, T2 and T3 have a total of 27 entries, but are
defined only up to a common scale factor, 13 line matches are sufficient to solve
for the three matrices. With more than 13 line matches, a least-squares solution
may be computed.

4 Retrieving the Camera Matrices

Formula (3) gives a formula for the transfer matrices Ti in terms of the camera
matrices. We now show that it is possible to go the other way and retrieve
the camera matrices, Mi from transfer matrices Ti. It will be assumed in this
discussion that the rank of each of the matrices Ti is at least 2, which will be
the case except in certain special camera configurations. There are methods of
proceeding in case one or more of the Ti has rank one, but we omit any further
consideration of these cases, for lack of space. See [13] for the a discussion of
methods applying to calibrated cameras. For general camera configurations all
Ti have rank 2.

Now, note that (r4 × ri)�Ti = 0 since (r4 × ri)�ri = (r4 × ri)�r4 = 0. It
follows that we can compute r4 × ri up to an unknown multiplicative factor by
finding the null-space of Ti for each i = 1, . . . , 3. However, by (2.1) r4 × R =
(r4 × r1, r4 × r2, r4 × r3) is the fundamental matrix for cameras 0 and 1, and
hence has rank 2. It follows that r4 (or −r4) may be computed as the unique
unit vector normal to all of r4 × ri for i = 1, . . . , 3. The vector s4 may be
computed in the same way.

Once we have computed r4 and s4, the computation of the fundamental matrices

5

is easy, according to the following formulae :

F01 = (r4 × r1, r4 × r2, r4 × r3) = (r4 × T1s4, r4 × T2s4, r4 × T3s4)
F02 = (s4 × s1, s4 × s2, s4 × s3) = −(s4 × T1

�r4, s4 × T2
�r4, s4 × T3

�r4)
(4)

where F01 and F02 are the fundamental matrices corresponding to the camera
pairs (M0,M1) and (M0,M2) respectively.

Next, we derive formulae for the camera matrices M1 and M2. To do this, we
make use of the assumption that r4�ri = 0 for each i. Then one verifies that
r4�Ti = −si�. This means thatM2 = (S | s4) = (−T1

�r4,−T2
�r4,−T3

�r4, s4).
Furthermore, substituting r4�Ti = −si� into the formula Ti = ris4� − r4si�
and multiplying by s4 gives Tis4 = ri + r4r4�Tis4, from which one may solve
for ri. This gives the following formulae for the camera matrices.

M1 = (R | r4) = ((I − r4r4�)T1s4, (I − r4r4�)T2s4, (I − r4r4�)T3s4, r4)
M2 = (S | s4) = (−T1

�r4,−T2
�r4,−T3

�r4, s4)
(5)

The correctness of this formula relies on the fact that Ti is of the form Ti =
ris4� − r4si�. In other words, if one computes M1 and M2 from the Ti using
(5) and then recomputes Ti using (3) then one does not retrieve the same values
of Ti unless Ti is of the correct form.

5 How close are two lines?

If the algorithm outlined so far is used to compute the camera matrices from a set
of line correspondences in three images, then the results are good as long as the
data is noise-free. Of course, this will never be the case, and disappointingly, the
results are extraordinarily bad in the presence of even small amounts of noise.
Why is this the case, and how do we fix it ? These questions will be answered
in the following sections.

The effect of noise will be to perturb lines to lines that lie close to the correct
lines. The goal of the reconstruction algorithm must then be to find 3D lines
in space and camera matrices that project the 3D lines to lines in the images
“close” to the measured lines. But what does it mean for two lines to be close to
each other, and how is this to be quantified. The obvious answer is to represent
lines as homogeneous vectors of unit norm and to consider the two lines to be
close when the vectors are close to each other. Formally, if λ and λ′ are two
lines represented by unit homogenous vectors, then we can define

d(λ,λ′) = min(||λ− λ′||, ||λ+ λ′||)
This definition turns out to be entirely unsuitable, however. As an example,
consider two lines with equations u = 100 and v = 100. These two lines are
perpendicular to each other, and no one would consider them to be “close”.
However, as normalized homogeneous vectors, they have representations ap-
proximately equal to (0.01, 0,−1)� and (0, 0.01,−1)� respectively. These two
vectors are close to each other.

Intuitively, two lines can be considered close only if they have nearly the same
slope. However, two lines with slightly differing slope may be considered close

6

near their point of intersection, but not at points far from their intersection.
For instance, lines u+v = 1000 and u+0.999v = −1000 should not normally be
considered close, except near their intersection point (−199000, 200000). This
example makes the point, however, that closeness of lines depends on which
region of the lines are being considered.

In general, in computer vision, we are interested in line segments, and not
infinite lines. However, often different segments of the same line are seen in two
different views, so the distance between endpoints is not a suitable metric. We
will take the position in this paper that line segments are usually defined by
specifying two end points. Lines can arise in other ways, such as by taking a
best fit to a set of edgels on a purported straight line in the image, but most
representations of lines may readily be reduced to one in terms of two end points.
We denote the line defined by points u and u′ as λ(u,u′). Let λ′ be another
line. We define the distance d(λ′,λuu′) to be (d2

1 + d2
2)1/2, where d1 and d2 are

the perpendicular distances from the line λ′ to the points u and u′ respectively,
as given by (1). The fact that this function d(∗, ∗) is not symmetric, and hence
not a true metric, concerns us not at all.

Now, we return to equations (3). Let lines λ1 and λ2 be defined precisely by
their end points, and let λ0 = λ0(u0,u′0). From the equation λ0(u0,u′0) =
(λ1
�T1λ2,λ1

�T2λ2,λ1
�T3λ2)� we obtain two equations

u0λ1
�T1λ2 + v0λ1

�T2λ2 + λ1
�T3λ2 = 0

u′0λ1
�T1λ2 + v′0λ1

�T2λ2 + λ1
�T3λ2 = 0 (6)

where u0 = (u0, v0, 1)� and u′0 = (u′0, v
′
0, 1)

�. These two equations do not
represent precisely the distance from the transferred line to the endpoints of
the measured line λ0, since the normalizing factor in the denominator of (1)
is missing. This is the price we pay, however, to have a linear algorithm. The
equations (6) are linear in the entries of the Ti and 13 point correspondences
are sufficient to solve for the matrices Ti up to a common scale factor.

6 Getting the best solution

As pointed out, the linear methods described here for computing the camera
matrices are not stable in the presence of noise. It is necessary to take extra
precautions in order to get a good solution that is relatively immune to noise.
The methods described below give the best results among several different ap-
proaches that were tested to avoid problems with noise. In fact, using these
techniques result in quite accurate and stable reconstruction.

6.1 Condition number

If the units in the image plane are pixel numbers, then a typical line will have
an equation of the form λu + µv + ν = 0, where ν >> λ, µ. If the equations
(6) are constructed using these unadjusted coordinates, then the resulting set of
equations is poorly conditioned. By experiment, it has been found that scaling
all pixel coordinates so that the pixel values in the data range between about

7

−1.0 and 1.0 works well, giving a far closer match of the transferred line to the
actual data than with the unscaled coordinates. An alternative approach is to
try a range of scale factors, selecting the one that gives the best sum-of-squares
residual error. The residual error is obtained by solving the equations (6) to find
the Ti, then computing line λ̂0 using (3) and finally computing the Euclidean
distance of λ̂0 to the end points of λ0. Since this computation is quite fast, one
can afford repeated trials of this nature.

6.2 Converging on the optimal solution

In the presence of noise, the matrices Ti obtained by solving equations (6) will
not have the correct form as given in (3). Hence the camera matrices computed
using (5) will not correspond precisely to the computed Ti. Furthermore, solving
equations (6) does not correspond exactly to minimizing the distance of the
constructed line λ̂0 to the endpoints of λ0. Thus, the computed camera matrices
can only be considered as an approximation to the optimal solution – and not
a very good approximation either. Nevertheless, it is good enough to initialize
an iterative algorithm to converge to the optimal solution.

Starting from the initial solution found by the linear methods already described,
we proceed by varying the entries of the camera matrices M1 and M2 so as to
minimize the sum of squares of distances of the transferred lines λ̂

i

0 to the
measured defining endpoints of the lines λi0. We use the first form of the trans-
fer equation (2). This is a straight-forward parameter minimization problem,
solved simply using the Levenberg-Marquardt algorithm ([10]). The varying
parameters are the 24 entries of the matrices M1 and M2 and the quantity to
be minimized is the sum of squares of Euclidean distances. The lines λi1 and λi2
are not varied, but are set to the exact measured values. Typically convergence
occurs within 10 iterations. Furthermore, each iteration is very fast, since con-
struction of the normal equations ([10]) requires time linear in the number of
points, and the normal equations are only of size 24×24. For construction of the
normal equations, numerical (rather than symbolic) differentiation is adequate,
and simplifies implementation. The fact that this problem is over-parametrized
(since M1 and M2 are not uniquely determined) causes no problems whatever.
The total time required for reconstruction of 20 lines in three views is not more
than 5 seconds on a Sparc 2.

6.3 The Optimal Solution

The solution given in the previous example is not quite optimal, since all the
error is confined to measurement in the zero-th image, instead of being shared
among all three images. The true optimal solution can be found by approximat-
ing lines λi1 and λi2 by lines λ̂

i

1 and λ̂
i

2 which are allowed to vary, as well as the
matrix entries. The goal is to minimize the sum-of-squares of distances of lines
λ̂
i

j for all j = 1, 2, 3. The disadvantage of doing this is that there may be a large
number of varying parameters. This disadvantage is mitigated however by an
implementation based on the sparseness of the normal equations as described
in [11]. Carrying out this final iteration to obtain a true optimal solution gives

8

minimal gain over the method described in the previous section. Moreover, it
is definitely not a good idea to skip the previous iterative refinement step and
attempt to find the optimal solution right away. Convergence problems can
arise if this is done.

7 Reconstruction

Once the camera matrices are computed, it is a simple task to compute the
positions of the lines in space. In particular, the line in space corresponding to
a set of matched lines λ0 ↔ λ1 ↔ λ2 must be the intersection of the three planes
Mi
�λi. A good way to compute this line is as follow. One forms the matrix

X = (M0
�λ0,M1

�λ1,M2
�λ2). Then a point x will lie on the intersection of the

three planes if and only if x�X = 0. We need to find two such points to define
the line in space. Let the singular value decomposition ([10]) be X = UDV �,
where D is a diagonal matrix diag(α, β, 0, 0). Since (0, 0, 0, 1)DV = 0, it follows
that (0, 0, 0, 1)U�(UDV �) = (0, 0, 0, 1)U�X = 0. The vector (0, 0, 0, 1)U� is
simply the last column of U . The same argument shows that (0, 0, 1, 0)U�X = 0.
In summary, the third and fourth columns of the matrix U represent a pair of
points on the intersection of three planes, and hence define the required line in
space.

8 Algorithm Outline

Here is a brief outline of the algorithm for reconstruction. We start with a set
of at least thirteen sets of matched lines in three views : λi0 ↔ λi1 ↔ λi2, each
line defined by specifying two end points uij and u

′i
j in the image.

1. Scale the coordinates of the line end points so that u and v coordinates
lie in a range −1 to 1.

2. Set up and solve the set of equations (6). The solution is the singular vec-
tor corresponding to the smallest singular value of the matrix of equations.
This gives three 3× 3 matrices Ti

3. Compute the vectors r4 and s4, and then compute the camera matrices
M1 and M2 using (5).

4. Adjust the initial computed values ofM1 andM2 by Levenberg-Marquardt
iteration so that the transferred lines λi0 given by (2) are optimally close
to the measured end points of λi0. (See section 6.2.)

5. If desired do a full least-squares fit to the data as described in section 6.3.

6. Compute the projective reconstruction of the lines geometry using the by
intersection three planes corresponding to the three matching lines (section
7).

9

Figure 1: Three photos of houses

At this point we have a projective reconstruction of the scene. If we now assume
that the three cameras were the same for all three views, then it is possible to ad-
just this reconstruction by the appropriate projective transformation to obtain
a scaled Euclidean reconstruction of the scene. This possibility is ensured theo-
retically by [9]. A practical algorithm for converting a projective to a Euclidean
reconstruction is given in [6] and may be applied with minor modifications to
the case of lines.

9 Experimental Evaluation of the Algorithm

This algorithm was tested as follows. Three images of a scene consisting of
two houses were acquired as shown in Fig 1. Edges and vertices were obtained
automatically and matched by hand. In order to obtain some ground truth
for the scene, a projective reconstruction was done based on point matches
using the algorithm described in [6]. To carefully control noise insertion, image
coordinates were adjusted (by an average of about 0.5 pixels) so as to make the
projective reconstruction agree exactly with the pixel coordinates.

Lines were selected joining vertices in the image, only lines that actually ap-
peared in the image being chosen (and not lines that join two arbitrary vertices),
for a total of 15 lines. Next, varying degrees of noise were added to the end-
points defining the lines and the algorithm was run to compute the projective
reconstruction.

Finally for comparison, the algorithm was run on the real image data. For this
run, two extra lines were added, corresponding to the half obscured roof and
ground line in the right hand house. Note that in the three images the endpoints
of these lines are actually different points, since the lines are obscured to differing
degrees by the left hand house. One of the advantages of working with lines
rather than points is that such lines can be used.

In order to judge the quality of the reconstruction, and present it in a simple
form, the errors in the positions of the epipoles were chosen. The epipolar posi-
tions are related to the relative positions and orientations of the three cameras.
If the computed camera positions are correct, then so will be the reconstruction.
The epipoles in images M1 and M2 corresponding to the centre of projection of
camera M0 are simply the last columns of M1 and M2 respectively. To measure

10

whether two epipoles are close, the following method was used. Let p and p̂
be actual and computed positions of the epipole, each vector being normalized
to have unit length. We define d(p, p̂′) = 180.0 ∗ min(||p − p̂||, ||p + p̂||)/π.
If the epipoles are close to the centre of the image, then this quantity gives a
measure of their distance. If they are far from the image centre (which they are
in this case – the epipoles are at locations (8249, 2006) and (-17876, 23000) in
Euclidean coordinates), this is an approximate measure of the angular difference
between the radial directions to the epipoles. The factor 180/π is included to
give this angle in degrees.

The results of these experiments are given in table 9. The columns of this table
have the following meanings.

• Column 1 gives the standard deviation of zero-mean gaussian noise added
to both the u and v coordinates of the end-points of the lines

• Column 2 gives the residual error, which is the RMS distance of the images
of the reconstructed lines from the measured noisy end points of the lines.

• Columns 3 and 4 (epipolar error) give the epipolar error (described above)
for the epipoles in images 1 and 2 corresponding to the camera centre of
image 0.

As can be seen from this table, the algorithm performs quite well with noise
levels up to about 2.0 pixels (the image size being 640×484 pixels). For 3.0 and
4.0 pixels error the residual error is still small, but the epipolar error is large,
meaning that the algorithm has found a solution other than the correct one.
Since residual error should be of the order of the injected noise, the solution
found is apparently just as good as the correct solution. Thus, the algorithm
has worked effectively, but the problem is inherently unstable with this amount
of noise. Note that 3–4 pixels’ error is more than should occur with careful
measurement.

The last line of the table gives the results for the real image data, and shows
very good accuracy.

10 Conclusions

The algorithm described here provides an effective means of doing projective
reconstruction from line correspondences in a number of images. The algorithm
is rapid and quite reliable, provided the degree of error in the image-to-image
correspondences is not excessive. It does, however require careful implementa-
tion to avoid convergence problems. For more than about 2 pixels of error in an
image of size about 512 × 512 pixels, the problem of projective reconstruction
becomes badly behaved. There exist multiple near-optimal solutions. For high
resolution images where the relative errors may be expected to be smaller, the
algorithm will show enhanced performance.

It is to be expected that (as with reconstruction from points [6]) the robustness
of the reconstruction will increase substantially with more than the minimum

11

Noise residual epipolar epipolar
error error 1 error 2

0.1 1.82e-02 4.55e-01 4.27e-01
0.25 4.50e-02 1.15e+00 1.07e+00
0.5 8.89e-02 2.31e+00 2.14e+00
1.0 1.74e-01 4.50e+00 4.26e+00
2.0 3.38e-01 7.29e+00 7.44e+00
3.0 9.96e-01 8.10e+01 2.56e+01
4.0 1.36e+00 2.15e+01 2.84e+01
– 3.10e-01 2.55e-01 7.27e-01

Table 1: Results of reconstruction for 15 lines from three views. Dimension of
the image is 640× 484 pixels. The last line represents the reconstruction from
17 real data lines.

number of views. This situation arises when an object is tracked through several
frames by a video camera.

The work of [6] shows that a projective reconstruction may be converted to a
Euclidean reconstruction if all the cameras have the same calibration, or alter-
natively Euclidean constraints are imposed on the scene.

12

References

[1] Eamon. B. Barrett, Michael H. Brill, Nils N. Haag, and Paul M. Payton.
Invariant linear methods in photogrammetry and model matching. In J.L.
Mundy and A. Zisserman, editors, Geometric Invariance in Computer Vi-
sion, pages 277 – 292. MIT Press, Boston, MA, 1992.

[2] O. D. Faugeras, Q.-T Luong, and S. J. Maybank. Camera self-calibration:
Theory and experiments. In Computer Vision - ECCV ’92, LNCS-Series
Vol. 588, Springer-Verlag, pages 321 – 334, 1992.

[3] R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages
761–764, 1992.

[4] R. I. Hartley. Estimation of relative camera positions for uncalibrated cam-
eras. In Computer Vision - ECCV ’92, LNCS-Series Vol. 588, Springer-
Verlag, pages 579 – 587, 1992.

[5] Richard Hartley and Rajiv Gupta. Computing matched-epipolar projec-
tions. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
pages 549 – 555, 1993.

[6] Richard I. Hartley. Euclidean reconstruction from uncalibrated views. In
Proc. of the Second Europe-US Workshop on Invariance, Ponta Delgada,
Azores, pages 187–202, October 1993.

[7] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene
from two projections. Nature, 293:133–135, Sept 1981.

[8] Q.-T Luong. Matrice Fondamentale et Calibration Visuelle sur
l’Environnement. PhD thesis, Universite de Paris-Sud, Centre D’Orsay,
1992.

[9] S. J. Maybank and O. D. Faugeras. A theory of self-calibration of a moving
camera. International Journal of Computer Vision, 8:2:123 – 151, 1992.

[10] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, 1988.

[11] C. C. Slama, editor. Manual of Photogrammetry. American Society of
Photogrammetry, Falls Church, VA, fourth edition, 1980.

[12] Minas E. Spetsakis and John Aloimonos. Structure from motion using line
correspondences. International Journal of Computer Vision, 4:3:171–183,
1990.

[13] J. Weng, T.S. Huang, and N. Ahuja. Motion and structure from line cor-
respondences: Closed-form solution, uniqueness and optimization. IEEE
Trans. on Pattern Analysis and Machine Intelligence, Vol. 14, No. 3:318–
336, March, 1992.

13

